
                          Charytan, D. M., Desai, M., Mathur, M., Stern, N. M., Brooks, M. M.,
Krzych, L. J., ... Winkelmayer, W. C. (2016). Reduced risk of myocardial
infarct and revascularization following coronary artery bypass grafting
compared with percutaneous coronary intervention in patients with chronic
kidney disease. Kidney International, 90(2), 411-421. DOI:
10.1016/j.kint.2016.03.033

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.kint.2016.03.033

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S0085253816301260. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83928926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.kint.2016.03.033
http://research-information.bristol.ac.uk/en/publications/reduced-risk-of-myocardial-infarct-and-revascularization-following-coronary-artery-bypass-grafting-compared-with-percutaneous-coronary-intervention-in-patients-with-chronic-kidney-disease(47b5343d-f23d-4693-a335-79582fd02439).html
http://research-information.bristol.ac.uk/en/publications/reduced-risk-of-myocardial-infarct-and-revascularization-following-coronary-artery-bypass-grafting-compared-with-percutaneous-coronary-intervention-in-patients-with-chronic-kidney-disease(47b5343d-f23d-4693-a335-79582fd02439).html


Charytan et al, CABG versus PCI in CKD 

Coronary Artery Bypass Grafting Compared with Percutaneous Coronary Intervention in 
Chronic Kidney Disease: An Individual Patient Meta-Analysis of Randomized Trials 

 
 

David M. Charytan, MD, MSc,1 Manisha Desai, PhD2, Maya Mathur, MS2, Noam M. Stern1, MD, 
Maria M. Brooks, PhD,3 Lukasz J. Krzych, MD, PhD,4 Gerhard C Schuler, MD,5  Jan Kaehler,  

MBa, MD,6 Alfredo M. Rodriguez-Granillo, MD,7 Whady Hueb, MD, PhD,8 Barnaby C. Reeves, D 
Phil,9 Holger Thiele, MD,10 Alfredo E. Rodriguez, MD PhD,11 Piotr P. Buszman MD, PhD12,13 

Paweł E. Buszman MD, PhD,13 Rie Maurer1, MA, and Wolfgang C. Winkelmayer, MD, ScD14 
 

Departments of Medicine, Brigham & Women’s Hospital, Boston, MA,1 and Stanford University 
School of Medicine, Palo Alto, CA,2 University of Pittsburgh, Graduate School of Public Health, 
Pittsburgh,PA,3 Department of Cardiac Anesthesiology and Intensive Care Medicine, Medical 

University of Silesia, Katowice, Poland,4 Heart Center, University of Leipzig, Leipzig, Germany,5 

Department of Cardiology, Klinikum Herford, Herford, Germany,6 Research department, Centro 
de Estudios en Cardiologia Intervencionista, Buenos Aires, Argentina,7 Heart Institute (InCor) 

University of Sao Paulo, Sao Paulo, Brazil,8 Clinical Trials and Evaluation Unit, 
School of Clinical Sciences, University of Bristol, Bristol, UK,9 University Heart Center Luebeck 

and German Heart Research Center (DZHK), Luebeck, Germany,10 Cardiac Unit, Otamendi 
Hospital, Buenos Aires School of Medicine, Buenos Aires, Argentina,11 Silesian Center for Heart 
Diseases, Zabrze, Poland,12 American Heart of Poland, Katowice, Poland,13 and Department of 

Medicine, Baylor College of Medicine, Houston, TX14 
 
 
 
 
 
 

Running Title: CABG versus PCI in CKD 
Word Count: exclusive of title, abstract, acknowledgements, references: 4363 
Abstract Word Count: 249 
 

 
Correspondence: 
David M. Charytan, MD, MSc 
Renal Division 
Brigham & Women’s Hospital 
1620 Tremont Street, 3rd Floor 
Boston, MA 02120 
Phone: (617) 525-7718 
Fax: (617) 975-0840 
Email: dcharytan@partners.org 
 
  

mailto:dcharytan@partners.org


Charytan et al, CABG versus PCI in CKD 

Abstract 
Coronary atherosclerotic disease is highly prevalent in chronic kidney disease (CKD). Although 

revascularization improves outcomes, procedural risks are increased in CKD and unbiased data 

comparing bypass surgery (CABG) and percutaneous intervention (PCI) in CKD are sparse. To 

compare outcomes of CABG and PCI in stage 3-5 CKD, we systematically identified 

randomized trials comparing CABG and PCI. Investigators were contacted and individual, 

patient-level data obtained. Ten trials enrolling 3993 subjects out of 27 meeting inclusion criteria 

provided data. These trials included 526 subjects with stage 3-5 CKD including 137 with stage 

3b-5 CKD. Among individuals with stage 3-5 CKD (HR 0.99, 95% CI: 0.67, 1.46) or stage 3b-5 

CKD (HR 1.29, 95% CI: 0.68, 2.46) survival through 5-years was not different following CABG 

compared with PCI. In contrast, CKD modified the impact on survival free from myocardial 

infarction (Pinteraction=0.04), which did not differ between CABG and PCI for individuals with 

preserved kidney function (HR 0.97, 95% CI: 0.80, 1.17), but was lower following CABG in 

stage 3-5 CKD (HR 0.49, 95% CI: 0.29, 0.82) and stage 3b-5 CKD (HR 0.23, 95% CI: 0.09, 

0.58). Repeat revascularization was reduced following CABG compared with PCI regardless of 

baseline kidney function. Results were limited by unavailability of data from several trials and 

the small number of enrolled subjects with stage 4-5 CKD. Our patient-level meta-analysis of 

individuals with CKD randomized to CABG versus PCI suggests that CABG significantly 

reduces the risk of subsequent MI and revascularization without impacting survival in these 

patients. 
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Introduction 

More than 10% of the adult U.S. population have chronic kidney disease (CKD)1, which 

is associated with increased cardiovascular morbidity and mortality2, 3. Standard cardiovascular 

therapies have the potential to decrease morbidity and mortality, but utilization of established 

cardiovascular therapies including coronary angiography and revascularization procedures has 

remained lower in individuals with CKD than in patients with relatively preserved kidney 

function.4, 5 

Although this selective underutilization of coronary revascularization in a population at 

high cardiovascular risk (“renalism”5) could represent inappropriate therapeutic nihilism, recent 

trials have failed to demonstrate efficacy of standard medical therapies in patients on dialysis6, 7 

while the majority of large cardiovascular trials have excluded individuals with CKD raising 

important questions about the efficacy or safety of other accepted cardiovascular therapies in 

this population. Indeed, patients with CKD experience higher perioperative mortality8, 9 following 

coronary artery bypass grafting (CABG), are at higher risk of acute kidney injury following CABG 

surgery or percutaneous coronary intervention (PCI)10, 11, and have generally much higher 

overall mortality12, 13 compared with the subjects enrolled in landmark trials comparing CABG 

and PCI, in whom advanced kidney dysfunction was uncommon8. Therefore, a dedicated, CKD-

specific comparison of the risks and benefits of PCI and CABG is needed to define the optimal 

role for each therapy in the setting of impaired kidney function.   

 Although several retrospective comparisons of PCI and CABG among individuals with 

CKD undergoing coronary revascularization for clinical indications have generally favored 

CABG14-16, the potential for indication bias and residual confounding remains an important 

concern with non-randomized studies in this area. To provide highest-level evidence, we 

conducted a systematic review of the literature and, subsequently, a detailed, individual-level 

meta-analysis of patients with moderate to severe CKD from published randomized trials 

comparing CABG and PCI. 
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Results 
Study Identification and Characteristics 

Our pre-specified literature search identified 1111 citations (Figure 1). After title and 

abstract review, 75 citations were examined in detail; however, 48 were excluded because they 

failed to meet the specified inclusion criteria. A total of 27 eligible trials were identified for 

inclusion, but 17 had to be excluded for the following reasons: data no longer available (n=3)17-

19; insufficient data to calculate eGFR (n=7)20-26unable to contact the investigators despite 

multiple attempts (n=3)27-29; investigators unable (n=2)30, 31 or unwilling (n=2)32, 33 to share data.    

The remaining 10 trials comprised the analytical dataset and included the following trials: 

AMIST34; Bypass Angioplasty Revascularization Investigators Trial (BARI)35; Cisowski et al. 36; 

Argentine Randomized Study: Coronary Angioplasty with Stenting versus Coronary Bypass 

Surgery in Multivessel Disease (ERACI II)37; German Angioplasty Bypass Surgery Investigation 

(GABI)38; Left Main Stenting (Le MANS)39; Leipzig40; Medicine, Angioplasty or Surgery Study 

(MASS 1)41; Medicine, Angioplasty or Surgery II Study (MASS 2)42; and Veterans Affairs 

Cooperative Study #385, the Angina With Extremely Serious Operative Mortality Evaluation (VA 

[AWESOME])43.  

All studies used central and concealed randomization and intention to treat analyses of 

outcomes. However, in 2 studies, outcomes assessors were not blinded to treatment 

assignment.34, 36  Loss to follow-up was generally low, but exceeded 10% in 2 studies34, 38 

(Table 1).  

 The majority of trials completed enrollment between 1991 and 2001 with exception of a 

single trial that completed enrollment in 200236 and the Le Mans trial, which enrolled subjects 

from 1997-200839. As shown in Table 1, stents were utilized in all but 2 studies38, 41, and off-

pump bypass techniques were available for CABG patients in 5 studies34, 36, 39-41. Four studies 

required multi-vessel disease for inclusion35, 37, 38, 42 while 4 excluded individuals with multi-
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vessel coronary disease34, 36, 40, 41. One study (AMIST)34 did not collect data on at least one 

covariate leading to systematic missingness.  Eligible studies for which we were unable to 

obtain data were qualitatively similar to included studies in terms of sample size, year enrolled, 

revascularization technique, inclusion criteria and the range of relative risks of study outcomes 

following PCI compared with CABG (Supplementary Tables 4 & 5). 

 

Baseline Characteristics of Study Subjects 

 The study cohort included 3993 randomized subjects (CABG: 1994, PCI: 1999,) with 

17,131 person-years (PY) of post-intervention follow-up time (post-CABG: 8528 PY, post-PCI: 

8603 PY). There were 526 individuals with stage 3 or worse CKD with 1856 PY of follow-up 

(CABG: 892 PY, PCI: 964 PY), and 137 with stage 3b or worse CKD (20 with stage 4-5 CKD) 

with 402 PY of follow-up (CABG: 195 PY, PCI: 207 PY).  There were 7 individuals with stage 5 

CKD. Baseline characteristics of the enrolled patients and those with CKD are shown in Tables 

2 and 3. Individuals with and without CKD were mostly similar, but those with CKD tended be 

older and a higher percentage of those with CKD were female. 

  

Survival 

 All-cause mortality rates were similar following CABG or PCI, and were higher among 

individuals with CKD (CABG: 5.6/100 PY, PCI: 5.5/100 PY) compared to those with preserved 

kidney function (CABG: 2.1/100 PY, PCI: 2.3/100 PY).  

 In primary multiple imputation-based analysis adjusted for all covariates of interest, 

mortality did not differ between patients randomized to CABG versus PCI among individuals 

with relatively preserved kidney function (HR 0.90, 95% CI: 0.73, 1.11), those with stage 3-5 

CKD (HR 0.99, 95% CI: 0.67, 1.46), those with stage 3a CKD (HR 0.79, 95% CI: 0.47, 1.33), or 

those with stage 3b-5 CKD (HR 1.29, 95% CI: 0.68, 2.46; Figure 2A-C). In the overall cohort, 

there was no significant evidence for effect modification by the presence of CKD 
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(Pinteraction=0.52). Among individuals with CKD there was no significant effect modification on 

survival according to the presence of proximal left anterior descending artery stenosis 

(Pinteraction=0.88) or according to the presence or absence of multi-vessel disease 

(Pinteraction=0.13). Results were similar in crude and adjusted analyses (Table 4).  For the 

subgroup with stage 3-5 CKD, the I2 statistic (0.0%) was consistent with minimal between-study 

heterogeneity. 

 Short-term results at 1 year were qualitatively similar to 5-year outcomes.  Adjusted risks 

of mortality did not differ 1 year after CABG compared with PCI among individuals with 

preserved kidney function (HR 1.35, 95% CI: 0.95, 1.93), those with stage 3-5 CKD (HR 0.92, 

95% CI: 0.54, 1.58), those with stage 3a CKD (HR 0.73, 95% CI: 0.35-1.54), or those with stage 

3b-5 CKD (HR 1.28, 95% CI: 0.56, 2.95). 

 
 

Myocardial Infarction 

 Among individuals with CKD, non-fatal MI rates were higher after PCI (5.1/100 PY) than 

CABG (2.7/ 100 PY, P=0.01) whereas the rates were similar after PCI (2.9/100 PY) and CABG 

(2.9/100 PY, P=0.95) amongst individuals with preserved kidney function. Among individuals 

with CKD 13.2% died within 30 days of an MI compared with 7.3% among those with preserved 

renal function. 

 In primary analysis models, the risk of non-fatal MI among individuals with preserved 

kidney function (HR 0.97, 95% CI: 0.80, 1.17) did not differ between the two treatments, 

whereas MI risk among patients  was lower following CABG compared with PCI in those with 

stage 3-5 CKD (HR 0.49, 95% CI: 0.29, 0.82) and stage 3a CKD (HR 0.70, 95% CI: 0.36, 1.39), 

and was even lower among those with stage 3b-5 CKD (HR 0.23, 95% CI: 0.09, 0.58).  A 

significant test of interaction in analyses of the full cohort was consistent with effect modification 

by the presence versus absence of stage 3-5 CKD (Pinteraction=0.04). Among individuals with 
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CKD, CABG provided similar benefits between individuals with and without multi-vessel disease 

(Pinteraction=0.13) and between those with versus without proximal LAD disease (Pinteraction=0.32). 

Results were qualitatively similar in crude and adjusted analyses (Table 5).  For the subgroup 

with stage 3-5 CKD, the I2 statistic (0.0%) was consistent with minimal between-study 

heterogeneity. 

 Short-term results at 1 year were similar to 5-year outcomes.  Adjusted risks of MI did 

not differ 1 year after CABG compared with PCI among individuals with preserved kidney 

function (HR 1.17, 95% CI: 0.92, 1.49), but were lower following CABG compared with PCI in 

those with stage 3-5 CKD (HR 0.44, 95% CI: 0.23, 0.81), those with stage 3b-5 CKD (HR 0.18, 

95% CI: 0.05, 0.58), and were not significantly lower among those with stage 3a CKD (HR 0.59, 

95% CI: 0.28-1.28). 

 
 
Repeat Revascularization 
 
 Repeat revascularization was conducted more frequently after PCI than CABG (Figure 2) both 

among individuals with CKD (7.2 cases/100 PY versus 1.4 cases/100 PY, P<0.001) and those 

with preserved kidney function (13.7 cases/100 PY versus 1.7 cases/100 PY, P<0.001). Risk 

reduction associated with revascularization was similar for individuals with preserved kidney 

function (HR 0.14, 95% CI: 0.11, 0.17), those with stage 3-5 CKD (0.21, 95% CI: 0.11, 0.39), 

those with stage 3a CKD (HR 0.17, 95% CI: 0.08, 0.40) and those with stage 3b-5 CKD (HR 

0.25, 95% CI: 0.09, 0.71). There was no evidence of effect modification by the presence of 

CKD, Pinteraction=0.26). Tests of interaction with multi-vessel disease (Pinteraction=0.93) or proximal 

LAD involvement (Pinteraction=0.90) were also non-significant. Results were similar in crude and 

adjusted models (Table 6).  For the subgroup with stage 3-5 CKD, the I2 statistic (25.3%) was 

consistent with minimal between study heterogeneity. 

 Short-term results at 1 year were similar to 5-year outcomes.  Adjusted risks of 

revascularization were lower 1 year after CABG compared with PCI among individuals with 
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preserved kidney function (HR 0.08, 95% CI: 0.06, 0.11), as well as those with stage 3-5 CKD 

(HR 0.14, 95% CI: 0.06, 0.30), those with stage 3a CKD (HR 0.12, 95% CI: 0.04-0.33), or those 

with stage 3b-5 CKD (HR 0.17, 95% CI: 0.05, 0.61). 

Sensitivity Analyses 

 Results of models with differing levels of covariate adjustment, excluding studies with 

systematic missingness, or using complete-case analysis rather than multiple imputation were 

qualitatively similar to our main findings (Supplementary Tables).  

 

Acute Dialysis and Hospitalization 

 Information on dialysis was not available for GABI.  In the remaining trials, there were 8 

(0.5%) cases of dialysis requiring acute kidney injury (AKI) in the PCI group and 5 (0.3%) cases 

in the CABG group. Among individuals with stage 3-5 CKD there were 5 (2.4%) cases in the 

PCI group and 2 cases (1.1%) in the CABG group. The risk of dialysis-dependent AKI did not 

differ significantly with CABG compared to PCI overall (odds ratio [OR] 0.61, 95% CI 0.20, 

1.88), those with preserved kidney function (OR 0.98, 95% CI: 0.20, 4.85), or those with stage 

3-5 CKD (OR 0.41, 95% CI: 0.08, 2.15), or stage 3b CKD (OR 0.71, 95% CI: 0.10, 5.23). 

 Data on cardiovascular hospitalizations was available from 6 trials.36, 38, 39, 41-43 CABG 

was generally associated with lower risks of hospitalization than PCI.  At 5-years, the adjusted 

risk was lower after CABG than PCI among those with preserved kidney function (HR 0.30, 95% 

CI: 0.23, 0.39), those with stage 3-5 CKD (0.43, 95% CI: 0.27, 0.71), and those with stage 3a 

CKD (HR 0.32, 0.17, 0.60).  CV hospitalization rates were lower but the change in risk was not 

significant with stage 3b-5 CKD (HR 0.77, 95% CI: 0.35, 1.72).  There was no evidence of effect 

modification according to the presence of CKD (Pinteraction=0.19).  For the subgroup with stage 3-

5 CKD, the I2 statistic (1.0%) was consistent with minimal between study heterogeneity. 

Results during the first year were qualitatively similar to those at 5 years (data not shown).   

Discussion 



Charytan et al, CABG versus PCI in CKD 

 Although CKD is a common condition1 with high risks of cardiovascular morbidity and 

mortality3, high quality evidence to guide the use of PCI versus CABG in the setting of 

significant kidney impairment has been lacking. To better understand the risks and benefits of 

coronary revascularization in individuals with CKD, we analyzed individual, patient-level data 

from almost four thousand individuals enrolled in 10 trials in which patients were randomized to 

receiving CABG or PCI. To our knowledge, the 526 individuals with CKD that we identified 

represent the largest randomly assigned cohort comparing the risks of benefits of CABG and 

PCI in the setting of CKD. 

We found that for individuals with stage 3-5 CKD in whom both CABG and PCI were 

clinically indicated and technically feasible, there were no significant differences in mortality with 

either approach to revascularization. However, despite the similarities in mortality, CABG 

strongly reduced both the risks of MI and the need for additional revascularization procedures 

without evidence for significant effect modification by the presence of single compared with 

multi-vessel disease. The present study provides important new evidence informing the decision 

faced by clinicians and their patients with CKD who require coronary intervention and have to 

decide between CABG and PCI.  

While we are unaware of any published clinical trials specifically randomizing individuals 

with CKD to CABG versus PCI, several observational studies have suggested that CABG was 

associated with lower mortality than PCI in the setting of CKD15, 44-46, and at least one suggested 

that the mortality benefit increased as eGFR declined15. In contrast, a study by Szczech47 was 

consistent with our findings. This study may more closely resemble the randomized population 

we studied as it specifically excluded subjects belonging to anatomic subgroups with grossly 

unbalanced utilization of CABG and PCI (suggesting non-comparability of the indication for 

revascularization), and it did not find a survival benefit from CABG among individuals with 

serum creatinine ≥2.5 mg/dL.   



Charytan et al, CABG versus PCI in CKD 

In contrast with some observational studies, our findings are mostly consistent with a 

prior analysis by Ix et al. of 290 randomized participants with CKD from the Arterial 

Revascularization Therapies Study48 in which CABG did not impact mortality (HR 0.93, 95% CI 

0.54-1.60) compared with PCI, but led to a significant reduction in the need for repeat 

revascularization (HR 0.28, 95% CI: 0.14-0.54). Both results were confirmed by our analysis 

although the primary investigator of the Arterial Revascularization Therapies Study did not grant 

access to their data for our study. Our results differ, however, in that the former study did not 

demonstrate significant reductions in the risk of MI (HR 1.34, 95% CI: 0.55-3.23). However, the 

confidence intervals around this estimate were wide because of low the number of MI events 

(n=20). By contrast, we found a strong reduction in MI risk from CABG that also appeared to 

increase with decreasing kidney function. Therefore, owing to nearly double the number of 

participants, a larger number of events within the CKD population (103 deaths, 68 MIs, 65 

repeat revascularizations), and a more clinically relevant duration of follow-up (5 versus 3 

years), our analysis extends the findings by Ix et al. in several important ways. In particular, our 

cohort included subjects from multiple trials with a more generalizable set of inclusion criteria 

that more broadly represent the range of clinical indications for revascularization than the 

Arterial Revascularization Therapies Study48, which included only subjects with multi-vessel 

disease and excluded subjects with overt congestive heart failure. Finally, the use of an 

individual patient data from multiple trials allowed us to adjust for multiple covariates 

simultaneously, which would not have been possible using traditional meta-analytic techniques.  

Taken together, our study and the one by Ix et al48 suggest that prior observational 

analyses showing large survival benefits may have overestimated the mortality benefits of 

CABG compared with PCI in the setting of CKD. In fact, observational studies have consistently 

demonstrated increasing risks of operative death as kidney function declines49, and our 

estimates  do not rule out worsened survival following CABG compared with PCI among 
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subjects with the most advanced CKD—although confidence intervals around these estimates 

were very wide.  

 Indication bias or residual confounding via selective utilization of CABG in those 

individuals with the best underlying prognosis or with anatomic features most clearly favorable 

to surgical revascularization or, conversely, selective use of PCI in patients with very high 

operative risk, may have driven prior findings of a survival benefit with CABG compared with 

PCI in the setting of CKD. Although our findings do not support a conclusion that CABG reduces 

the hazard of mortality compared to PCI when both CABG and PCI are anatomically and 

clinically feasible, we did find that among CKD patients, CABG was associated with dramatically 

lower risks of MI and repeat revascularization during follow-up. Thus, CABG may be the 

preferable procedure that reduces overall morbidity despite not conferring a survival advantage. 

Our study had certain limitations that require consideration. Unfortunately, despite 

including data from the largest number of trials and including the largest reported number of 

randomized patients with CKD (particularly those with ≥stage 3b disease), numerous trials 

either no longer had data available or failed to collect sufficient information to calculate eGFR. 

We were also unable to obtain data from several additional trials despite several attempts. The 

majority of trials were completed before IDMS-traceable creatinine assays were in wide use, 

and we did not have access to the assays used for creatinine testing. The lack of 

standardization or calibration may have led to some imprecision in estimation of GFR, although 

this should be balanced in the two treatment groups. In addition, for the BARI trial35 we were 

unable to obtain the actual creatinine, and instead had to use a threshold value, as described 

above. Although we are confident with the specificity of this approach for the identification of 

CKD, some patients with moderate CKD may have been missed. 

We were also unable to standardize outcomes or baseline variable definitions across 

trials. We cannot rule out the possibility that different assessments across trials could have 

impacted our findings. Lastly, most of the included trials were completed more than a decade 
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ago. Whether results would differ in the context of contemporary medical therapy, newer 

revascularization techniques, or for subjects not meeting the entrance criteria of these trials 

cannot be answered by our analysis, and results should be extrapolated cautiously. 

Finally, our study does not address the gaping hole in the evidence on how to best treat 

patients with severe kidney dysfunction who require revascularization including those with end-

stage kidney disease requiring dialysis or kidney transplantation. Indeed, an important finding of 

our analysis is that among nearly 4000 patients included in a series of randomized trials that 

helped establish the standard of care for coronary artery disease only 137 had stage 3b or 

worse CKD, only 20 had stage 4-5 CKD, and none had ESRD. Assuming that trial practices 

have not changed, this finding raises serious questions about the extrapolation of standard of 

care practices to the care of those at the most advanced stages of CKD. 

In conclusion, our study provides the highest-quality evidence to date regarding the 

morbidity and mortality benefits of CABG compared with PCI in the setting of CKD. While 

survival was similar following CABG and PCI, we found that CABG significantly reduced the risk 

of subsequent MI or revascularization procedures. In the absence of additional randomized 

data, our analysis should be reassuring to clinicians who can counsel individuals requiring 

coronary revascularization that benefits of CABG do not appear to be attenuated in the setting 

of moderate CKD and that surgical revascularization is more likely than PCI to prevent 

subsequent MI or revascularization without adversely impacting survival. Finally, the hypothesis 

generating findings indicating worse survival with CABG in the small subsample of patients with 

Stage 3b and 4-5 CKD should provide additional motivation for performing randomized studies 

specifically enrolling individuals with advanced CKD or ESRD in order to provide better answers 

on risks and benefits in these high risk patients.  

 

 

Methods 
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Search Criteria and Identification of Eligible Trials 

We searched MEDLINE, EMBASE and Cochrane databases (Ovid Technologies 1950-

September 2010) for keywords related to coronary revascularization procedures including, 

“angioplasty, transluminal, percutaneous coronary, and coronary artery bypass”. The search 

was limited to randomized controlled trials (not valid within EMBASE), humans, and English 

language publications. Following automated removal of duplicate citations, results of the 

computerized search were independently reviewed in duplicate by 2 investigators (DMC, NMS, 

or WCW) to identify unique, randomized trials comparing CABG and PCI. The reference lists of 

identified trials and relevant meta-analyses were subsequently reviewed for studies not 

identified electronically. Trials that randomly allocated patients to CABG or PCI were considered 

for inclusion without further restriction. The manuscript reporting the primary endpoint results 

was used to identify trials and investigators.  Additional detail on the research plan and 

modifications to the study protocol are provided in the Supplementary Appendix.  The PRISM 

individual patient meta-analysis statement was used as a guideline for structuring the 

manuscript.50  

 

Data Extraction 

The majority of identified studies had not published CKD-specific results. Investigators 

from each trial were therefore contacted and asked to prepare and share data on trial 

characteristics and individual, patient-level data including serum creatinine, baseline 

characteristics, interventions, and selected outcomes for enrolled subjects. Multiple attempts 

were made to contact study investigators before determining investigators’ status as 

unreachable. Provided data sets were individually cleaned and compared against trial 

publications for consistency with baseline characteristics and main outcomes. Trial investigators 

were re-contacted and queried as needed to ensure fidelity, accuracy, and completeness of final 

data sets.  
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Kidney Function 

Kidney function was determined using the estimated glomerular filtration rate (eGFR), 

which was calculated using the CKD-EPI equation51 from baseline serum creatinine 

concentrations, age, sex, and race. The Bypass Angioplasty Revascularization Investigation  

(BARI) trial recorded only a dichotomized kidney dysfunction variable according to whether 

serum creatinine was >1.5 mg/dL but did not record the actual baseline values35. Therefore the 

theoretical maximum value of eGFR was calculated for BARI subjects using a creatinine of 1.6 

mg/dL for individuals above this threshold and 0.1 mg/dL for individuals below this threshold. 

Given the primary analytic goal of assessing effects of CABG versus PCI in CKD patients, this 

approach was adopted in order to ensure a high specificity of the CKD definition for BARI 

subjects despite the possibility of misclassifying some BARI subjects with less significantly 

elevated creatinine as having preserved kidney function. Stages of CKD were defined as stage 

3a (eGFR 45-59 mL/min/1.73m2), stage 3b (eGFR 30-44 mL/min/1.73m2), stage 4 (eGFR 15-29 

mL/min/1.73m2), or stage 5 CKD (eGFR <15mL/min/1.73m2 or dialysis-dependent) according to 

the 2012 updates of the KDOQI guidelines52.  

 

Other Patient Characteristics 

Baseline demographic and clinical characteristics were assessed according to trial-

specific definitions. Covariates obtained were chosen on the basis of availability and well-

established associations with outcomes and included assigned treatment, age, race, sex, 

history of diabetes, hypertension, hyperlipidemia, congestive heart failure, prior coronary 

revascularization, history of prior myocardial infarction (MI), presentation with MI, unstable 

angina, or elevated cardiac enzymes, ejection fraction, and coronary anatomy.  

 

Endpoints 
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Given the advanced age of the population and inconsistent data capture beyond 5 years, 

we calculated follow-up time and examined time-to-event outcomes through 5 years for the 

following events: all-cause mortality, myocardial infarction (MI), and repeat coronary 

revascularization. MI and repeat coronary revascularization outcomes were assessed according 

to the definitions originally used in the individual trials. Subjects who did not experience the 

event of interest during the study period were censored at the date of last clinical visit or 

recorded activity with right censoring at 5-years.  

 

Statistics and Analysis 

 Summary statistics are presented as counts (%) or mean ± standard deviation (SD) as 

appropriate. For the primary analyses, we used Cox proportional hazards regression models, 

stratified by trial, to model the hazard of each endpoint (all-cause mortality, MI, and repeat 

revascularization) as a function of treatment arm (PCI versus CABG), adjusting for age, 

diabetes, prior history of MI, proximal left anterior descending artery disease, ejection fraction 

<40%, prior revascularization, and multi-vessel disease. We fit models to the entire pooled 

dataset as well as within pre-defined subsets of clinical interest. Namely, subset analyses were 

conducted in subjects with: 1) preserved kidney function, 2) stage 3-5 CKD, 3) stage 3a CKD, 4) 

stage 3b-5 CKD, 5) CKD with multi-vessel disease, 6) CKD with single-vessel disease, 7) CKD 

with proximal left anterior descending [LAD] disease, or 8) CKD without proximal LAD disease.  

Kaplan-Meier estimates were used to graphically depict survival. 

 Multiple imputation was used to account for missing data. Multiple imputation is a 

statistical method used to address missing data by imputing values for missing observations 

from plausible distributions that preserve the interrelationships among the variables.53, 54 Validity 

of the results relies on the assumption that data are missing at random (MAR), or that 

missingness is related to observed features only. Specifically, for primary analyses, we imputed 

data using predictive mean matching to impute each row independently. It is critical to include 
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the outcome in the imputation model to reduce bias55; we therefore included an indicator for 

whether the observation was censored and also included the Nelson-Aalen estimator of 

cumulative hazard as a co-factor within the imputation models.56  As a sensitivity analysis, we 

imputed under a linear multilevel model that accounts for a trial-specific underlying hazard of the 

event corresponding to the study’s unique population. For this approach, computational 

limitations required the exclusion of trials (Angioplasty versus Minimally Invasive Surgery Trial, 

AMIST)34 with systematic missingness on any variable (meaning that a variable is completely 

missing within a trial).  

 We conducted sensitivity analyses manipulating 3 analytic choices in all possible 

combinations to assess the effects on point estimates of covariate adjustment, inclusion of 

studies with systematic missingness, and method of handling missing data. Firstly, we 

conducted analyses adjusting for 1) all covariates of interest, as in primary analyses, 2) a 

“minimal” subset of only those covariates that were not systematically missing by trial, or 3) no 

covariates (unadjusted estimates). Secondly, we excluded either 1) none of the 10 eligible 

studies, as in primary analyses, or 2) all studies with systematic missingness on any variable. 

Thirdly, we handled missing data either 1) via multiple imputation, as in primary analyses, or 2) 

via complete-case analysis. 

 Heterogeneity of outcomes within the CKD group was analyzed by calculating the I-

squared statistic.  Published meta-analyses comparing CABG and PCI  have not found 

evidence of publication bias.8 Given our primary aim of comparing unpublished outcomes from 

the subset of those studies with available data on renal function and the attendant analysis of 

only a minority of published studies, testing for publication bias on the included studies was not 

repeated. 

Baseline data and incidence rates and calculation of I-squared for measurement of 

heterogeneity were analyzed using STATA (version 13.0, STATA Corp, College Station, Texas). 

Multiple imputation and survival analyses were performed in R (Version 3.1.0, R Foundation for 
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Statistical Computing, Vienna, Austria)57-61. All tests were two-sided, and we defined statistical 

significance using an alpha threshold of 0.05. 
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 This research was conducted in accordance with the declaration of Helsinki. Informed 
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Table 1.Trial characteristics 

Characteristic AMIST BARI 
 

Cisowski ERACI II GABI Le MANS Leipzig MASS 1 MASS 2 VA 

Central 
randomization 

+ + - + + + + + + + 

Concealed 
randomization 

+ + + + + + + + + + 

Blinded outcomes 
assessment 

- + - + + + + + + - 

Intention to treat 
analysis 

+ + + + + + + + + + 

Stents used +* + +* + - +* +* - + + 
Off-pump bypass +* - +* - - + +* - - NR 
LIMA +* + +* + + + +* +* + + 
Enrollment Period 1999-2001 1988-1991 2000-2002 1996-1998 1986-1991 1997-2008 1997-2001 1988-1991 1995-2000 1995-2000 
Single vessel 
disease only 

+ - + - - - +* +* - - 

Multi-vessel 
disease only 

- +* - +* +* - - - +* - 

Single or multi-
vessel disease 

- - - - - + - - - + 

Left main disease - - - + - +* - - - - 

NR-not recorded.  LIMA-left internal mammary artery. *Required by protocol. 
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Table 2. Baseline characteristics of trial subjects 

Characteristic 
       N (%) 

AMIST BARI 
 

Cisowski ERACI II GABI Le MANS Leipzig MASS 1 MASS 2 VA 

Year published 2004 1996 2002 2001 1994 2008 2005 1999 2002 2001 
No. of subjects 89 1829 76 450 313 82 220 141 408 385 
Age,  
  years mean (SD) 

57.7 (9.6) 61.0 (9.4) 53.4 (10.0) 60.7 (10.3) 58.9 (7.9) 61.0 (9.8) 62.0 (10.1) 56.5 (10.1) 59.7 (9.0) 67.4 (9.2) 

Male 71 (79.8) 1340 (73.3) 63 (82.9) 357 (79.3) 248 (79.2) 56 (68.3) 164 (74.6) 104 (73.8) 283 (69.4) 381 (99.0) 
White 87 (97.8) 1653 (90.4) 76 (100.0) 450 (100.0) 313 (100.0) 81 (98.8) 220 (100.0) 137 (97.2) 352 (86.3) 339 (88.1) 
Stage 3-5 CKD 18 (20.2) 43 (2.4)  11 (14.5) 111 (24.7) 51 (16.3) 16 (19.5) 30 (13.6) 25 (17.7) 83 (20.3) 138 (35.8) 
Stage 3b-5 CKD 4 (4.5) 23 (1.3) 4 (5.3) 14 (3.1) 11 (3.5) 5 (6.1) 4 (1.8) 4 (2.8) 18 (4.4) 50 (13.0) 
Diabetes -- 353 (19.3) 6 (7.9) 78 (17.3) 39 (12.6) 14 (17.1) 63 (29.6) 30 (21.3) 115 (28.2) 125 (32.6) 
Smoking -- 463 (25.3) 39 (51.3) 233 (51.8) 35 (11.8) 6 (9.0) 54 (25.4) 56 (39.8) 123 (30.2) 96 (34.0) 
Hypertension -- 896 (49.0) 42 (55.3) 318 (70.7) 130 (41.8) 76 (92.7) 152 (71.4) 43 (30.5) 253 (62.0) 267 (69.5) 
Hyperlipidemia -- 725 (44.0) 59 (77.6) 275 (61.1) 193 (62.7) 80 (97.6) 152 (71.4) 108 (76.6) 322 (78.9) -- 
Prior 
revascularization 

-- 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 6 (7.3) 0 (0.0) 0 (0.0.) 0 (0.0) 164 (42.7) 

Prior MI -- 987 (54.5) 9 (11.8) 126 (28.0) 143 (46.3) 31 (37.8) 99 (46.5) 0 (0.0) 191 (46.8) 275 (72.0) 
CHF -- 161 (8.9) 0 (0.0 16 (3.6) 151 (48.7) 1 (1.2) -- 0 (100.0) 2 (0.5) 294 (86.5) 
Multi-vessel 
disease 

0 (0.0) 1796 (98.4) 0 (0.0) 450 (100.0) 313 (100.0) 78 (95.1) 0 (0.0) 0 (0.0) 408 (100.0) 316 (82.1) 

Left main disease 0 (0.0) 0 (0.0) 0 (0.0) 21 (4.7) 0 (0.0) 80 (97.6) 0 (0.0) 0 (0.0) 0 (0.0) 28 (7.5) 
Proximal LAD 
disease 

89 (100.0) 1081 (59.2) 76 (100.0) 230 (51.1) 90 (28.9) 28 (34.2) 220 (100.0) 141 (100.0) 381 (93.4) 221 (58.9) 

No. diseased 
vessels  

1 (0.0) 2.4 (0.5) 1 (0.0) 2.4 (0.5) 2.4 (0.5) 3.0 (1.0) 1.2 (0.4) 1 (0.0) 2.6 (0.5) 2.3 (0.8) 

Ejection Fraction, 
%, mean (SD) 

66.6 (10.6) 57.4 (11.0) 56.9 (4.9) 52.9 (5.6) 63.8 (10.6) 54.3 (8.6) 62.4(13.1) 69.2 (3.2) 67.3 (8.0) 46.0 (14.7) 

Elevated cardiac 
biomarkers on 
admission 

-- -- 0 (0.0) 87 (19.3) 0 (0.0) 6 (7.3) 0 (0.0) -- 0 (0.0) -- 

MI on admission 0 (0.0) 58 (3.2) 0 (0.0) 0 (0.0) 0 (0.0) 6 (7.4) 0 (0.0) 0 (0.0) 191 (46.8) 134 (34.8) 
Unstable angina on 
admission 

18 (21.2) 1192 (65.2) 8 (10.5) 412 (91.6) 40 (13.5) 45 (54.9) 37 (16.8) 0 (0.0) 0 (0.0) -- 

Table 1-Baseline characteristics.  Data are presented as n (%) unless otherwise noted. CKD-chronic kidney disease, CHF-congestive heart failure, LAD-left anterior descending 

artery, MI-myocardial infarction, No-number, SD-standard deviation. Data on diabetes was not available for subjects in AMIST and was missing for 3 subjects in GABI, and 2 
subjects in the VA study. Data on smoking was not available in AMIST, and was missing in 181 subjects from BARI, for 2 subject from GABI, 15 in LE MANS, 7 in Leipzig, and 103 
subjects in the VA study.  Hyperlipidemia was missing all AMIST subjects, 181 in BARI, 5 in GABI, 7 in Leipzig and all VA subjects. Data on baseline hypertension was unavailable 
in AMIST and was missing for 2 subjects from BARI, 2 in GABI, 7 in Leipzig and 1 in the VA study. Prior MI was unavailable for AMIST, and was missing in 18 subjects from BARI, 
6 subjects from GABI, 7 in Leipzig, and 3 in the VA study.  CHF was not available for AMIST participants and Leipzig and was missing in 10 subjects in BARI, 3 from GABI, and 45 
subjects from the VA study.  Prior revascularization was unavailable for AMIST and was missing 1 subject in the VA study.  Multi-vessel disease was missing in 3 subjects from 
BARI. Left main disease was missing in 10 subjects from the VA study. Proximal LAD was missing in 3 subjects in BARI, 2 in GABI, and 10 in the VA study. Data on number of 
diseased vessels was missing in 7 subjects from GABI, 3 subjects from BARI, and 6 subjects from the VA study.  Ejection fraction was missing in 55 subjects in AMIST, 475 in 
BARI 149 in GABI, 3 in Le  MANS and 98 in the VA study.  Cardiac biomarkers at baseline were not available for AMIST, BARI, VA, and MASS 1 studies.  MI on admission was 
missing in 1 subject from Le MANS.  Unstable angina at admission was missing in 4 subjects from AMIST, 17 from GABI, and all subjects in the VA study.  

 



Charytan et al, CABG versus PCI in CKD 
Table 3. Baseline characteristics of trial subjects with chronic kidney disease 
 

Characteristic AMIST 
(n=18) 

BARI 
(n=43) 

Cisowski 
(n=11) 

ERACI II 
(n=111) 

GABI 
(n=51) 

Le MANS 
(n=16) 

Leipzig 
(n=30) 

MASS 1 
(n=25) 

MASS 2 
(n=83) 

VA 
(n=138) 

Age,  
  years mean (SD) 

64.3 (8.9) 63.9.(8.8) 62.3 (10.0) 64.6 (9.4) 64.3 (7.0) 68.0 (8.3) 68.7 (7.2) 61.8 (9.4) 66.2 (6.5) 72.2 (6.6) 

Male 11 (61.1) 31 (72.1) 7 (63.6) 44 (39.6) 26 (51.0) 7 (43.8) 16 (53.3) 8 (32.0) 3 (63.9) 136 (98.6) 
White 18 (100.0) 33 (76.7) 11 (100.0) 111 (100.0) 51 (100.0) 16 (100.0) 30 (100.0) 25 (100.0) 76 (91.6) 122 (88.4) 
Stage 3b-5 CKD 4 (22.2) 23 (53.5) 4 (36.4) 14 (12.6) 11 (21.6) 5 (31.3) 4 (13.3) 4 (16.0) 18 (21.7) 50 (36.2) 
Stage 4-5 CKD, 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.9) 4 (7.6) 1 (6.3) 0 (0.0) 0 (0.0) 4 (4.8) 10 (7.0) 
eGFR 
  mL/min/1.73m2,  
  mean (SD) 

49.8 (8.1) 43.0 (6.7) 48.3 (8.1) 50.1 (6.6) 49.7 (11.4) 46.9 (8.4) 53.1 (6.5) 52.0 (6.7) 49.0 (10.4) 46.9 (10.6) 

Diabetes -- 20 (46.5) 3 (27.3) 22 (19.8) 8 (15.7) 6 (37.5) 15 (5.7) 5 (20.0) 25 (30.1) 40 (29.0) 
Smoking -- 7 (16.3) 3 (27.3) 50 (45.1) 3 (5.9) 1 (6.7) 4 (13.8) 7 (28.0) 14 (16.9) 20 (20.2) 
Hypertension -- 33 (76.7) 8 (72.7) 91 (82.0) 32 (62.8) 16 (93.8) 28 (96.6) 7 (28.0) 58 (69.9) 113 (81.9) 
Hyperlipidemia -- 18 (48.7) 5 (45.5) 72 (64.9) 36 (70.6) 16 (100.) 18 (62.1) 19 (76.0) 61 (73.5) -- 
Prior 
revascularization 

-- 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 49 (35.5) 

Prior MI -- 24 (57.1) 2 (18.2) 31 (27.9) 27 (54.0) 11 (68.8) 17 (58.6) 0 (0.0) 38 (45.8) 93 (68.4) 
CHF -- 14 (32.6) 0 (0.0) 2 (1.8) 30 (58.8) 0 (0.0) -- 0 (0.0) 2 (2.4) 108 (88.5) 
Multi-vessel disease 0 (0.0) 42 (97.7) 0 (100.0) 111 (100.0) 51 (100.0) 16 (100.0) 30 (0.0) 0 (0.0) 83 (100.0) 116 (84.1) 
Left main disease 0 (0.0) 0 (0.0) 0 (0.0) 5 (4.5) 0 (0.0) 16 (100.0) 0 (0.0) 0 (0.0) 0 (.0.0) 12 (8.9) 
Proximal LAD 
disease 

18 (100.0) 27 (62.8) 11 (100.0) 59 (53.2) 14 (27.5) 8 (50.0) 30 (100.0) 25 (100.0) 78 (94.0) 69 (51.1) 

No. diseased 
vessels, mean (SD) 

1 (0.0) 2.6 (0.5) 1 (0.0) 2.6 (0.5) 2.4 (0.5) 3.3 (0.8) 1.2 (0.4) 1 (0.0) 2.6 (0.5) 2.3 (0.8) 

Ejection Fraction, %, 
mean (SD) 

61.3 (14.1) 54.5 (12.5) 58.1 (5.9) 52.8 (5.3) 64.1 (11.1) 54.1 (5.0) 62.6 (13.5) 69.3 (3.2) 67.5 (9.2) 45.4(14.7) 

Elevated cardiac 
biomarkers on 
admission 

-- -- 0 (0.0) 29 (26.1) 0 (0.0) 1 (6.3) 0 (0.0) -- 0 (0.0) -- 

MI on admission 0 (0.0) 1 (2.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.3) 0 (0.0) 0 (0.0) 38 (45.8) 40 (29.0) 
Unstable angina on 
admission 

3 (16.7) 32 (74.4) 1 (9.1) 104 (93.7) 10 (20.0) 11 (68.8)  6 (20.0) 0 (0.0) 0 (0.0) -- 

Table 1-Baseline characteristics.  Data are presented as n (%) unless otherwise noted. eGFR estimates for BARI were calculated as described in the methods. CKD-

chronic kidney disease, CHF-congestive heart failure, LAD-left anterior descending artery, MI-myocardial infarction, No-number, SD-standard deviation. Data on diabetes 
was not available for subjects in AMIST. Data on smoking was not available in AMIST, and was missing for 1 subject in LE MANS, and 39 subjects in the VA study.  
Hyperlipidemia was missing all AMIST subjects, 6 in BARI, 1 in Leipzig, and all VA subjects. Data on baseline hypertension was unavailable in AMIST and was missing for 
1 subject from Leipzig. Prior revascularization was unavailable for AMIST.  Prior MI was unavailable for AMIST, and was missing in 1 subject from BARI, 1 subject from 
GABI, 1 in Leipzig, and 2 in the VA study.  CHF was not available for AMIST participants and was missing in 16 subjects from the VA study.  Data on left main disease was 
missing in 3 VA subjects.  Proximal LAD was missing in 3 subjects in the VA study. Data on number of diseased vessels was missing in 3 subjects from the VA study.  
Ejection fraction was missing in 10 subjects in AMIST, 23 in GABI, 1 in Le MANS and 33 in the VA study.  Cardiac biomarkers at baseline were not available for AMIST, 
BARI, VA, and MASS 1 studies.  Unstable angina at admission was missing in 1 subject from GABI, and all subjects in the VA study.  
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Table 4.  Mortality risk with CABG compared to PCI 

Group  Crude 
HR 

95% CI P Value Adjusted 
HR 

95% CI P Value 

Overall (n=3993)  0.93 0.77, 1.12 0.43 0.92 0.76, 1.11 0.38 
Preserved kidney 
   Function (n=3467) 

 0.92 0.74, 1.13 0.42 0.90 0.73, 1.11 0.33 

Stage 3-5 CKD (n=526)  1.01 0.68, 1.49 0.98 0.99 0.67, 1.46 0.96 
Stage 3a CKD (n=389)  0.87 0.52, 1.45 0.60 0.79 0.47, 1.33 0.39 
Stage 3b-5CKD (n=137)  1.15 0.62, 2.13 0.67 1.29 0.68, 2.46 0.43 
CKD with multi-vessel 
disease* (n=419) 

 1.16 0.77, 1.75 0.49 1.10 0.73, 1.67 0.65 

CKD with single-vessel 
disease* (n=107) 

 0.33 0.07, 1.61 0.17 0.32 0.06, 1.76 0.19 

CKD proximal LAD 
disease* (n=342) 

 0.88 0.54, 1.43 0.61 0.94 0.57, 1.54 0.80 

CKD without proximal 
LAD disease* (n=185) 

 1.31 0.67, 2.56 0.43 1.15 0.57, 2.27 0.71 

All models were stratified by trial.  Multivariable models adjusted for treatment, age, diabetes, 
prior myocardial infarction, proximal left anterior descending artery disease, ejection fraction 
<40%, prior revascularization, and multi-vessel. *To avoid model overspecification, these 
subgroup models did not include terms for multi-vessel disease or proximal LAD disease, 
respectively.  CKD-chronic kidney disease. LAD-left anterior descending artery.  
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Table 5. Risk of myocardial infarction with CABG compared to PCI 

Group  Crude 
HR 

95% CI P Value Adjusted 
HR 

95% CI P Value 

Overall (n=3981)  0.90 0.75, 1.07 0.23 0.88 0.73, 1.05 0.16 
Preserved kidney  
   Function (n=3459) 

 0.98 0.81, 1.19 0.87 0.97 0.80, 1.17 0.72 

Stage 3-5 CKD (n=522)  0.49 0.30, 0.81 0.01 0.49 0.29, 0.82 0.01 
Stage 3a CKD (n=388)  0.68 0.37, 1.27 0.24 0.71 0.36, 1.39 0.31 
Stage 3b-5CKD (n=134)  0.27 0.11, 0.66 0.004 0.23 0.09, 0.58 0.002 
CKD with multi-vessel 
disease*  (n=416) 

 0.45 0.26, 0.79 0.01 0.43 0.24, 0.76 0.004 

CKD with single vessel 
disease* (n=106) 

 0.71 0.20, 2.47 0.59 1.09 0.24, 4.86 0.91 

CKD proximal LAD disease* 

(n=338) 
 0.39 0.19, 0.80 0.01 0.39 0.18, 0.82 0.01 

CKD without proximal LAD 
disease* (n=183) 

 0.64 0.31, 1.33 0.23 0.74 0.34, 1.64 0.46 

All models were stratified by trial.  Multivariable models adjusted for treatment, age, diabetes, 

prior myocardial infarction, proximal left anterior descending artery disease, ejection fraction 

<40%, prior revascularization, and multi-vessel. * To avoid model overspecification, these 

subgroup models did not include terms for multi-vessel disease or proximal LAD disease, 

respectively.  CKD-chronic kidney disease. LAD-left anterior descending artery  
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Table 6. Risk of repeat revascularization for CABG compared to PCI 

Group  Crude 
HR 

95% CI P Value Adjusted 
HR 

95% CI P Value 

Overall  (n=3912)  0.14 0.12, 0.17 <0.001 0.14 0.11, 0.17 <0.001 
Preserved kidney  
   Function (n=3405) 

 0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 

Stage 3-5 CKD (n=507)  0.21 0.11, 0.40 <0.001 0.21 0.11, 0.39 <0.001 
Stage 3a CKD (n=371)  0.18 0.08, 0.41 <0.001 0.17 0.08, 0.40 <0.001 
Stage 3b-5CKD (n=136)  0.30 0.11, 0.85 0.02 0.25 0.09, 0.71 0.01 
CKD with multi-vessel 
disease* (n=400) 

 0.21 0.10, 0.46 <0.001 0.21 0.10, 0.46 <0.001 

CKD with single vessel 
disease* (n=107) 

 0.20 0.07, 0.62 0.01 0.19 0.06, 0.61 0.01 

CKD proximal LAD disease* 

(n=329) 
 0.19 0.09, 0.40 <0.001 0.18 0.09, 0.38 <0.001 

CKD without proximal LAD 
disease* (n=176) 

 0.25 0.07, 0.87 0.03 0.25 0.07, 0.92 0.04 

All models were stratified by trial.  Multivariable models adjusted for treatment, age, diabetes, 
prior myocardial infarction, proximal left anterior descending artery disease, ejection fraction 
<40%, prior revascularization, and multi-vessel. * To avoid model overspecification, these 
models did not include terms for multi-vessel disease or proximal LAD disease, respectively.  
CKD-chronic kidney disease. LAD
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Figure 1. Flow diagram of study selection 

Figure 2. Actuarial freedom from death, MI, or revascularization after CABG and PCI by clinical 

subset 

Event-Free Survival after CABG and PCI calculated using the Kaplan-Meier method. (A-C) 

Overall survival.  (D-F) Freedom from myocardial infarction.  (G-I) Freedom from repeat 

revascularization. Unadjusted (Cox) P values stratified by trial are provided.  CABG-dashed 

lines.  PCI-solid lines.  



Supplementary Methods 

Search Criteria and Identification of Eligible Trials 

Search Terms were as follows: a) “angioplasty or transluminal or percutaneous coronary).mp. 

[mp=ti, ab, tx, kw, ct, ot, sh, hw, nm, ui]”; and b) “coronary artery bypass.mp. [mp=ti, ab, tx, kw, 

ct, ot, sh, hw, nm, ui]”. Differences in opinion regarding inclusion or the rationale for individual 

citations were resolved by consensus.   

 

Data Extraction 

Using standardized spreadsheet with standard variable names and descriptions of 

requested data, investigators from each trial were contacted and asked to prepare and share 

data. The independent data sets were separately assessed, and baseline and outcome data 

from each trial was analyzed.  Trial investigators were re-contacted and queried to resolve any 

apparent differences between provided data sets and trial publications.  Following data 

cleaning, a composite data set including a variable to identify the trial source for each subject 

was assembled and used for all further analyses.  

 

Statistics and Analysis 

 Multiple imputations were created using the chained equations method and pooled using 

Barnard-Rubin adjusted degrees of freedom.1 It is critical to include the outcome in the 

imputation model to reduce bias.2 We therefore included an indicator for whether the 

observation was censored as well as the Nelson-Aalen estimator of cumulative hazard.3 In 

primary analyses, we calculated the Nelson-Aalen estimator treating all observations as 

independent. Sensitivity analyses in which we calculated the Nelson-Aalen estimator within 

each study separately yielded similar results.    

As a sensitivity analysis, we imputed under a linear multilevel model that employed 

random intercepts to account for a trial-specific underlying hazard of the event corresponding to 



the study’s unique population. The imputation model additionally included fixed effects and 

random slopes by study for all predictor variables of interest (except for the Nelson-Aalen 

estimator, which was modeled with only a fixed effect by study). There is not yet robust 

statistical methodology for multilevel imputation in the presence of both systematic missingness 

(meaning that a variable is completely missing within at least one trial) and sporadic 

missingness (meaning that a variable is sometimes observed and sometimes missing within at 

least one trial). Thus, for this approach, we excluded the trial (AMIST) with systematic 

missingness on any variable.  

Multiple imputation and survival analyses were performed in R (Version 3.1.0, R 

Foundation for Statistical Computing, Vienna, Austria)4-8 using the mice.impute.pmm and 

mice.impute.2l.norm methods in the mice imputation package.  All tests were two-sided, and we 

defined statistical significance using an alpha threshold of 0.05. 

 

Statistical Code 

R code for the primary analysis is provided below: 

The primary analysis was coded as follows:  

 

################################ MAKE IMPUTED DATASETS 

################################# 

 

###### Function: Impute Dataset with Specified Method and NA estimator 

###### 

 

# data: raw dataset 

# na.est: "NA.est.strat" or "NA.est.naive" 

# method: "2l.norm.me" for Resche-Rigon's MICE-RE, "2l.norm" for MICE's 

native 2l.norm, or "pmm" for MICE default 

 

impute = function( data, na.est, .method ) { 

   

  # use PI's name to generate seed for project 

  #set.seed(char2seed("Wolfgang"))   

   

  # keep only relevant NA estimator (delete anything else containing 

"NA.est") 



  na.names = names(data)[ grep("NA.est", names(data)) ]  # all variable 

names containing "NA.est" 

  ones.to.delete = na.names[na.names != na.est]  # delete all but the one 

we're actually using 

  #one.to.delete = switch(na.est, "NA.est.strat"="NA.est.naive", 

"NA.est.naive"="NA.est.strat") 

  d = data[, !names(data) %in% ones.to.delete] 

   

  # first fit normal MICE to get predictor matrix 

  ini = mice(d, maxit = 0) 

  pred = ini$predictorMatrix 

   

  # modify predictor matrix 

  pred[ pred==1 ] = 2  # give random effects to all variables used for 

prediction 

   

  # treat trial as the cluster term 

  col = pred[ , "trial_name"]; col[col==2] = -2; pred[, "trial_name"] = 

col 

   

  # fixed effects for N-A estimator 

  col = pred[ , na.est ]; col[col==2] = 1; pred[ , na.est ] = col 

   

  # change method to either Resche-Rigon or MICE's 2l.norm 

  method = ini$method; method[method == "pmm"] = .method 

   

  # convert class column to integer (required) 

  d$trial_name = as.integer(d$trial_name) 

  d$trial_name = as.integer(d$trial_name) 

   

  # impute with MICE-RE 

  imp = mice(d, maxit = 0, pred = pred, method = method) 

   

  return(imp) 

} 

 

 

################################# FIT ANALYSIS MODELS 

################################# 

 

###### Function: nicely round p-value ###### 

 

round_p_val = function(p) { 

  rounded = ifelse(p<0.001, "<0.001", round(p,3)) 

  return(rounded) 

} 

 

 

###### Function: fit models with different covariate and clinical subsets 

###### 

# Note: outcome variable must be called "outcome"; time variable must be 

called "time" 

 



# data = either the imputed data from mice if using MI or the original 

dataset if using CC 

# method = "MI.naive", "MI.strat", "CC" 

# sporadic.only = T/F 

# outcome.time = 1 or 5 

# subsets = logical statements defining each clinical subset 

# covariates.full = vector of covariates to adjust for in fully-adjusted 

model 

# covariates.min = vector of covariates to adjust for in minimally-

adjusted model 

 

 

fit_models = function(data, method, sporadic.only, outcome.time, subsets, 

covariates.full, covariates.min) { 

   

  if(!outcome.time %in% c("one", "five")) browser() 

   

  # initialize dataframe for results 

  d = as.data.frame(matrix(nrow=9, ncol=24)) 

   

  names(d) = c("Unadj.all.HR", "Unadj.all.CI", "Unadj.all.p", 

"Unadj.all.n",  

               "Min.all.HR", "Min.all.CI", "Min.all.p", "Min.all.n",  

               "Full.all.HR", "Full.all.CI", "Full.all.p", "Full.all.n",  

 

               "Unadj.some.HR", "Unadj.some.CI", "Unadj.some.p", 

"Unadj.some.n",  

               "Min.some.HR", "Min.some.CI", "Min.some.p", "Min.some.n",  

               "Full.some.HR", "Full.some.CI", "Full.some.p", "Full.all.n" 

                ) 

  rownames(d) = subsets 

   

  for ( r in 1:nrow(d) ) {  # row number 

    for( s in 1:(ncol(d)/4) ) {  # "set" number (every 3 cols is a "set" 

all using the same analysis) 

 

      ##### SET UP ##### 

        # type of covariate adjustment  

        strings = strsplit( names(d)[s*4], "[.]" ) 

        adj = strings[[1]][1] 

       

        # study subset 

        study.subset = strings[[1]][2] 

       

        # define appropriate clinical subset 

        clinical.subset = rownames(d)[r]  # pull subset we're using from 

shell dataframe 

         

        # define appropriate study subset 

        # when using MI, trial is coded as integer to please mice 

        if (method=="CC") exclude.studies = switch(study.subset, 

"all"="a", "some"=c("AMIST", "BARI")) 



        if (method %in% c("MI.naive", "MI.strat") ) exclude.studies = 

switch(study.subset, "all"="a", "some"=c(1, 2))  # the "a" is a hacky 

placeholder to avoid excluding any trials 

       

       

       

        # create formula string 

        covariates = switch(adj, "Unadj"="", "Full"=covariates.full, 

"Min"=covariates.min) 

        cat(outcome.time)  ## TEST ONLY 

        outcome.name = switch(outcome.time, "five"="outcome", 

"one"="outcome.1yr")  # get appropriate outcome name based on whether 

we're doing 1- or 5-yr outcome 

   

        LHS = paste( "Surv(time,", outcome.name, ") ~ treatment + 

strata(trial_name) +", collapse="") 

        RHS = paste(covariates, collapse=" + ") 

        formula = paste(LHS, RHS, collapse="" ) 

       

        # special case if no covariates 

        if (covariates=="") formula = paste( "Surv(time,", outcome.name, 

") ~ treatment + strata(trial_name)", collapse="") 

 

       

      ##### COMPLETE-CASES ##### 

        if (method=="CC") { 

          rs1 = coxph( eval(parse(text=formula) ), data=data, 

                 subset = ( eval( parse(text=clinical.subset) ) & (! 

trial_name %in% exclude.studies) ) 

                ) 

  

          # only proceed if all coefficients are non-NA (i.e. no singular 

predictors) 

          if ( !any( is.na( rs1$coef ) ) ) { 

             

            # get stats for dataframe 

            coef = rs1$coefficients["treatmentb.CABG"] 

            HR = round( exp( coef ), 2 ) 

            p = round_p_val( 

summary(rs1)$coefficients["treatmentb.CABG",5] )  # 1/20/16: PREVIOUSLY 

WAS COLUMN 6 

            CI.low = round( summary(rs1)$conf.int["treatmentb.CABG",3], 2 

) 

            CI.high = round( summary(rs1)$conf.int["treatmentb.CABG",4], 2 

) 

            CI = paste( CI.low, CI.high, sep=", ") 

            n = rs1$n 

             

            # put stats in dataframe 

            d[r, (s*4-3):(s*4) ] = c(HR, CI, p, n) 

          } else { 

            d[r, (s*4-3):(s*4) ] = c("sing", "sing", "sing", "sing") 

          } 

        } 



       

      ##### MULTIPLY-IMPUTED ##### 

        if ( method %in% c("MI.naive", "MI.strat") ) { 

           

          # not currently dealing with this based on simulation study 

results 

          if(method == "MI.strat") stop() 

   

          # decide which NA estimator variable to use (based on outcome 

time desired) 

            if ( (method == "MI.naive") & (outcome.time=="five") ) 

est.name = "NA.est.5yr" 

            if ( (method == "MI.naive") & (outcome.time=="one") ) est.name 

= "NA.est.1yr" 

             

          # decide which method to use (based on sporadic only vs. all 

trials) 

            if ( (method == "MI.naive") & (sporadic.only==TRUE) ) { 

              meth.imp="2l.norm" 

              d2 = data[ data$sporadic.only, ]  # cut down dataset to just 

sporadic trials 

            } 

             

            if ( (method == "MI.naive") & (sporadic.only==FALSE) ) { 

              meth.imp="pmm" 

              d2 = data  # keep same dataset 

            } 

           

          # make imputed data 

          d3 =  impute(d2, est.name, .method=meth.imp) 

           

          #m.imp.spor = impute(m[ m$sporadic.only, ], "NA.est.naive", 

.method="2l.norm") 

          #m.imp.all = impute(m, "NA.est.naive", .method="pmm") 

           

           

          # fit model to imputed datasets and pool 

          rs1 = with( d3, coxph( eval(parse(text=formula) ),  

                                   subset = ( eval( 

parse(text=clinical.subset) ) & (! trial_name %in% exclude.studies) ) 

                                   ) )   

          rs2 = pool(rs1) 

 

          # only proceed if df for all coefficients are non-NA (i.e. no 

singular predictors) 

          if ( !any( is.na( rs2$df ) ) ) { 

  

            # get stats for dataframe 

            coef = summary(rs2)["treatment2",1] 

            HR = round( exp(coef) , 2) 

            p = round_p_val( summary(rs2)["treatment2",5] ) 

            CI.low = round( exp(summary(rs2)["treatment2",6] ), 2 ) 

            CI.high = round( exp(summary(rs2)["treatment2",7] ), 2 ) 

            CI = paste( CI.low, CI.high, sep=", ") 



            n = rs1$analyses[[1]]$n  # take sample size from the first 

imputed analysis 

                         

            # put stats in dataframe 

            d[r, (s*4-3):(s*4) ] = c(HR, CI, p, n) 

            #d[r, (s*3-2):(s*3) ] = c(HR, CI, p) 

             

          } else { 

            d[r, (s*4-3):(s*4) ] = c("sing", "sing", "sing", "sing") 

          } 

        } 

    } 

  }  

  return(d) 

} 

 

 

# covariates for fully-adjusted model 

covariates.full = c("age_in_years", "diabetes", "prior_mi", 

"proximal_lad_disease", 

                    "ef40", "prior_revascularization", 

"multivessel_disease" ) 

 

# covariates for minimally-adjusted model 

# remove the 3 covariates that are systematically missing for any trial 

covariates.min = c("age_in_years", "proximal_lad_disease", 

                   "ef40", "multivessel_disease" ) 

 

# clinical subsets within which to fit model  

subsets = c("TRUE", "ckd==0", "ckd==1", "ckd3a==1", "ckd3b==1", 

            "ckd==1 & multivessel_disease==1", "ckd==1 & 

multivessel_disease==0",  

            "ckd==1 & proximal_lad_disease==1", "ckd==1 & 

proximal_lad_disease==0") 

 

 

 

 

# generate a csv file for every combination of scenarios 

setwd("/Users/mmathur/Dropbox/QSU/Mathur/WOLFGANG/Results") 

 

datasets = c("m", "re", "myo", "cv") 

imp.methods = c("MI.naive", "CC") 

outcome.t = c("one", "five") 

sporadic = c(TRUE, FALSE) 

endpoints = c("mortality", "revasc", "myo.infarc", "cv.hosp") 

 

# world's most inefficient set of for-loops 

for (d in datasets) { 

  for (i in imp.methods) { 

    for (time in outcome.t) { 

      for (s in sporadic) {  

         

        data = get(d) 



         

        string1 = switch(d, "m"="mortality", "re"="revasc", 

"myo"="myo.infarc", "cv"="cv.hosp") 

        string2 = paste(time, "year", sep=".") 

        string3 = ifelse(s, "spor.only", "all.trials") 

         

        full.string = paste(Sys.Date(), string1, i, string2, string3, 

".csv", sep="_") 

       

        cat( "\n\n", full.string ) 

         

        t = fit_models(data=data, method=i, sporadic.only=s, 

outcome.time=time, 

                       subsets, covariates.full, covariates.min) 

        write.csv(t, full.string ) 

         

      } 

    } 

  } 

} 

 

 

 

 

################################# MANUAL CHECKS FOR CODE ACCURACY 

################################# 

 

 

m.imp.all = impute(m, "NA.est.5yr", .method="pmm") 

myo.imp.all = impute(myo, "NA.est.5yr", .method="pmm") 

re.imp.all = impute(re, "NA.est.5yr", .method="pmm") 

cv.imp.all = impute(cv, "NA.est.5yr", .method="pmm") 

 

 

# spot-check main results in abstract 

# main outcome: mortality among all CKD subsets, PMM over all studies, 

fully adjusted 

rs1 = with(m.imp.all, coxph(Surv(time, outcome) ~ treatment + 

strata(trial_name) + age_in_years + 

                              diabetes + prior_mi + proximal_lad_disease + 

ef40 + 

                              prior_revascularization + 

multivessel_disease, subset=(ckd==1) ) ) 

summary(pool(rs1)) 

# matches :) 

 

# main outcome: myo infartcion among CKD 3b-5, PMM over all studies, fully 

adjusted 

rs1 = with(myo.imp.all, coxph(Surv(time, outcome) ~ treatment + 

strata(trial_name) + 

                                age_in_years + diabetes + prior_mi + 

                                proximal_lad_disease + ef40 + 

prior_revascularization + 

                                multivessel_disease, subset=(ckd==1) ) ) 



summary(pool(rs1)) 

# matches :) 

 

# main outcome: myo infartcion among CKD 3b-5, PMM over all studies, fully 

adjusted 

rs1 = with(myo.imp.all, coxph(Surv(time, outcome) ~ treatment + 

strata(trial_name) + 

                                age_in_years + diabetes + prior_mi + 

                                proximal_lad_disease + ef40 + 

prior_revascularization + 

                                multivessel_disease, subset=(ckd==0) ) ) 

summary(pool(rs1)) 

 

 

 

 

 

 

################################# FOREST PLOTS FOR HRs 

################################# 

 

# include only people with CKD in these plots 

 

# the "blahblah" is so that no studies get excluded by default 

make_forest_plot_stats = function(data, method, covariates, 

exclude.studies="blahblah" ) { 

   

  studies = levels(data$trial_name)[! levels(data$trial_name) %in% 

exclude.studies] 

   

  # initialize dataframe for results 

  results = as.data.frame( matrix( nrow=length(studies), ncol=7 ) ) 

  names(results) = c("trial", "HR", "CI.low", "CI.high", "significant", 

"singularity", "singular.vars") 

   

  # model formula 

  string1 = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

  string2 = paste("Surv(time, outcome) ~ treatment") 

  formula = ifelse(is.na(covariates), string2, string1) 

   

  for ( i in studies ) {  # for each trial 

    print(i) 

     

    if (method=="CC") { 

       

      # only keep data from intended trial AND CKD patients 

      temp = data[data$trial_name == i & data$ckd==1, ] 

       

      rs = coxph( eval(parse(text=formula) ), data=temp, subset=(ckd==1) ) 

       

      # get stats for dataframe 

      coef = rs$coefficients["treatmentb.CABG"] 

      HR = exp( coef ) 



      p = summary(rs)$coefficients["treatmentb.CABG",5] 

      CI.low = summary(rs)$conf.int["treatmentb.CABG",3] 

      CI.high = summary(rs)$conf.int["treatmentb.CABG",4] 

       

      # is HR significant at alpha=0.05? 

      significant = (p<=0.05) 

       

      # were there any NA coefficients in regression? (can arise due to 

singularities)  

      singular = any( is.na( rs$coef ) ) 

       

      # singular variables 

      singular.vars = paste( as.vector( names(rs$coef)[is.na(rs$coef)] ), 

collapse=", " )   

    } 

     

    if (method=="MI") {     

      # make imputed data 

      est.name = "NA.est.5yr" 

      meth.imp="pmm" 

      data.imp =  impute(data, est.name, .method=meth.imp) 

       

      # fit Cox model to imputed datasets and pool 

      trial.num = which( levels( data$trial_name ) == i )  # this is 

necessary because trial is coded numerically in MICE object 

      rs1 = with( data.imp, coxph( eval(parse(text=formula) ), subset = ( 

(trial_name == trial.num) & (ckd == 1) ) ) )   

       

      # were there any NA coefficients in regression? (can arise due to 

singularities)  

      singular = any( is.na( rs1$analyses[[1]]$coef ) ) 

       

      # singular variables 

      singular.vars = paste( as.vector( names( rs1$analyses[[1]]$coef )[ 

is.na( rs1$analyses[[1]]$coef ) ] ), collapse=", " ) 

       

      # only proceed with pooling if no singularities 

      if ( !singular ) { 

         

        rs2 = pool(rs1) 

         

        # get stats for dataframe 

        coef = summary(rs2)["treatment2",1] 

        HR = exp(coef) 

        p = summary(rs2)["treatment2",5] 

        CI.low = exp(summary(rs2)["treatment2",6] ) 

        CI.high = exp(summary(rs2)["treatment2",7] ) 

         

        # is HR significant at alpha=0.05? 

        significant = (p<=0.05) 

         

      } else { 

        HR = CI.low = CI.high = significant = NA 

      } 



    } 

    # put stats in results dataframe 

    results[ which( studies==i ), ] = c(i, as.numeric(HR), 

as.numeric(CI.low), as.numeric(CI.high), as.numeric(significant), 

singular, singular.vars) 

  } 

   

  # reorder the trials by HR for sexier plot 

  results.ord = results[ order( (results$trial!="Pooled, adjusted"), 

as.numeric(results$HR), decreasing=TRUE ), ] 

  results.ord$order = nrow(results.ord):1 

  results.ord$trial = as.factor(results.ord$trial) 

  #results.ord = results.ord[ , names(results.ord) != "order" ]  # remove 

order column 

  results.ord$trial = as.character(results.ord$trial) 

   

  return(results.ord) 

} 

 

 

# see which studies need to be excluded due to homogeneity on the outcome 

table(m$trial_name, m$outcome, m$ckd); exclude.studies.1 = c("AMIST", 

"CISOWSKI", "KOPIA") 

table(myo$trial_name, myo$outcome, myo$ckd); exclude.studies.2 = 

c("AMIST", "CISOWSKI", "KOPIA", "Leipzig MIDCAB vs. Stent", "GABI") 

table(re$trial_name, re$outcome, re$ckd); exclude.studies.3 = c("AMIST", 

"ERACI II", "MASS I", "CISOWSKI") 

table(cv$trial_name, cv$outcome, cv$ckd); exclude.studies.4 = 

c("CISOWSKI") 

 

# make forest plot stats for each outcome 

rs1 = make_forest_plot_stats(m, "MI", covariates=NA, exclude.studies = 

exclude.studies.1) 

rs1 = rbind(rs1, c("Pooled, crude", 1.01, .68, 1.49, 0, FALSE, "", -2) ) # 

manually add pooled estimate for CKD==1 (from tables) 

rs1$order = as.numeric(rs1$order)  # I don't know why the above causes 

order to become char... 

 

rs2 = make_forest_plot_stats(myo, "MI", covariates=NA, exclude.studies = 

exclude.studies.2) 

rs2 = rbind(rs2, c("Pooled, crude", 0.49, .3, .81, 1, FALSE, "", -2) ) # 

manually add pooled estimate for CKD==1 (from tables) 

rs2$order = as.numeric(rs2$order)  # I don't know why the above causes 

order to become char... 

 

rs3 = make_forest_plot_stats(re, "MI", covariates=NA, exclude.studies = 

exclude.studies.3) 

rs3 = rbind(rs3, c("Pooled, crude", .21, .11, .4, 1, FALSE, "", -2) ) # 

manually add pooled estimate for CKD==1 (from tables) 

rs3$order = as.numeric(rs3$order)  # I don't know why the above causes 

order to become char... 

 

rs4 = make_forest_plot_stats(cv, "MI", covariates=NA, exclude.studies = 

exclude.studies.4) 



rs4 = rbind(rs4, c("Pooled, crude", .45, .28, .71, 1, FALSE, "", -2) ) # 

manually add pooled estimate for CKD==1 (from tables) 

rs4$order = as.numeric(rs4$order)  # I don't know why the above causes 

order to become char... 

 

 

 

# coefficient forest plot parameters 

colors = c("black", "red") 

ticks = c(.001, .1, 1:9, (1:5)*10.0) 

limits = c( min(ticks), max(ticks) ) 

ylab = "Crude Hazard Ratio, CABG vs. PCI (95% CI)" 

title="" 

 

 

###### Mortality ###### 

ggplot(rs1, aes( y=as.numeric(HR), x=reorder(trial, order), 

shape=as.factor(trial=="Pooled, crude") ) ) + 

  geom_point(size=4) + geom_errorbar(aes(ymin=as.numeric(CI.low), 

ymax=as.numeric(CI.high) ), width=.1) + 

  scale_shape_manual(values=c(1, 19), name="") + 

  scale_y_log10(breaks=ticks, labels = ticks, limits=limits) +  

  geom_hline(yintercept = 1, linetype=2) + 

  coord_flip() + labs(title = title, x = "Trial", y = ylab) + 

  theme_bw() + scale_color_manual(values=colors) + 

  theme(axis.title = element_text(size=16) ) + 

  theme(legend.position="none") 

 

###### Myocardial Infarction ###### 

ggplot(rs2, aes( y=as.numeric(HR), x=reorder(trial, order), 

shape=as.factor(trial=="Pooled, crude") ) ) + 

  geom_point(size=4) + geom_errorbar(aes(ymin=as.numeric(CI.low), 

ymax=as.numeric(CI.high) ), width=.1) + 

  scale_shape_manual(values=c(1, 19), name="") + 

  scale_y_log10(breaks=ticks, labels = ticks, limits=limits) +  

  geom_hline(yintercept = 1, linetype=2) + 

  coord_flip() + labs(title = title, x = "Trial", y = ylab) + 

  theme_bw() + scale_color_manual(values=colors) + 

  theme(axis.title = element_text(size=16) ) + 

  theme(legend.position="none") 

 

###### Revascularization ###### 

ggplot(rs3, aes( y=as.numeric(HR), x=reorder(trial, order), 

shape=as.factor(trial=="Pooled, crude") ) ) + 

  geom_point(size=4) + geom_errorbar(aes(ymin=as.numeric(CI.low), 

ymax=as.numeric(CI.high) ), width=.1) + 

  scale_shape_manual(values=c(1, 19), name="") + 

  scale_y_log10(breaks=ticks, labels = ticks, limits=limits) +  

  geom_hline(yintercept = 1, linetype=2) + 

  coord_flip() + labs(title = title, x = "Trial", y = ylab) + 

  theme_bw() + scale_color_manual(values=colors) + 

  theme(axis.title = element_text(size=16) ) + 

  theme(legend.position="none") 

 



###### CV Hospitalization ###### 

ggplot(rs4, aes( y=as.numeric(HR), x=reorder(trial, order), 

shape=as.factor(trial=="Pooled, crude") ) ) + 

  geom_point(size=4) + geom_errorbar(aes(ymin=as.numeric(CI.low), 

ymax=as.numeric(CI.high) ), width=.1) + 

  scale_shape_manual(values=c(1, 19), name="") + 

  scale_y_log10(breaks=ticks, labels = ticks, limits=limits) +  

  geom_hline(yintercept = 1, linetype=2) + 

  coord_flip() + labs(title = title, x = "Trial", y = ylab) + 

  theme_bw() + scale_color_manual(values=colors) + 

  theme(axis.title = element_text(size=16) ) + 

  theme(legend.position="none") 

 

 

 

 

################################# INTERACTIONS OF INTEREST 

################################# 

 

##### NOT EDITED YET 

 

# Model 1: interaction of Tx with CKD vs. not 

# Model 2: interaction of Tx with CKD 3B vs. not 

# Model 3: within CKD subset, interactions of Tx*MVD and Tx*Prox LAD 

 

###### Function: Report Model Results Nicely ###### 

 

# m: unpooled results from mice 

# round: decimals to round to 

nice_report = function(m, round=2) { 

  pl = pool(m) 

   

  # get stats 

  HR = exp( summary(pl)[,1] ) 

  p = summary(pl)[,5] 

  CI.low = exp(summary(pl)[,6] ) 

  CI.high = exp(summary(pl)[,7] ) 

   

  rs = data.frame(HR, CI.low, CI.high, p) 

   

  return( round(rs, round) ) 

} 

 

 

###### Mortality ###### 

 

# Model 1 

covariates = c(covariates.full, "ckd*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m1 = with( m.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m1) 

print(formula); nice_report(m1) 

 

# Model 2 



covariates = c(covariates.full, "ckd3b*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m2 = with( m.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m2) 

print(formula); nice_report(m2) 

 

# Model 3 

covariates = c(covariates.full, "multivessel_disease*treatment", 

"proximal_lad_disease*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m3 = with( m.imp.all, coxph( eval( parse(text=formula) ), subset = 

(ckd==1) ) ); summary(m3) 

print(formula); nice_report(m3) 

 

 

###### Myocardial Infarction ###### 

 

# Model 1 

covariates = c(covariates.full, "ckd*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m1 = with( myo.imp.all, coxph( eval( parse(text=formula) ) ) ); 

summary(m1) 

print(formula); nice_report(m1) 

 

# Model 2 

covariates = c(covariates.full, "ckd3b*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m2 = with( myo.imp.all, coxph( eval( parse(text=formula) ) ) ); 

summary(m2) 

print(formula); nice_report(m2) 

 

# Model 3 

covariates = c(covariates.full, "multivessel_disease*treatment", 

"proximal_lad_disease*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m3 = with( myo.imp.all, coxph( eval( parse(text=formula) ), subset = 

(ckd==1) ) ); summary(m3) 

print(formula); nice_report(m3) 

 

 

###### Revascularization ###### 

 

# Model 1 

covariates = c(covariates.full, "ckd*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m1 = with( re.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m1) 

print(formula); nice_report(m1) 

 

# Model 2 



covariates = c(covariates.full, "ckd3b*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m2 = with( re.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m2) 

print(formula); nice_report(m2) 

 

# Model 3 

covariates = c(covariates.full, "multivessel_disease*treatment", 

"proximal_lad_disease*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m3 = with( re.imp.all, coxph( eval( parse(text=formula) ), subset = 

(ckd==1) ) ); summary(m3) 

print(formula); nice_report(m3) 

 

 

###### CV Hospitalization ###### 

 

# Model 1 

covariates = c(covariates.full, "ckd*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m1 = with( cv.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m1) 

print(formula); nice_report(m1) 

 

# Model 2 

covariates = c(covariates.full, "ckd3b*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m2 = with( cv.imp.all, coxph( eval( parse(text=formula) ) ) ); summary(m2) 

print(formula); nice_report(m2) 

 

# Model 3 

covariates = c(covariates.full, "multivessel_disease*treatment", 

"proximal_lad_disease*treatment") 

formula = paste("Surv(time, outcome) ~ treatment +", paste(covariates, 

collapse=" + ") ) 

m3 = with( cv.imp.all, coxph( eval( parse(text=formula) ), subset = 

(ckd==1) ) ); summary(m3) 

print(formula); nice_report(m3) 

 

 

 

 

 

Pre-specified Analytic Plan 

 A formal protocol for the meta-analysis was not specified or published prior to the receipt 

of data, and the study was not registered. Initial conceptions of the project prior to data 



acquisition specified obtaining patient-level data from trial investigators and the use of 

proportional hazards models to analyze the primary endpoint. Mortality and revascularization 

were included as primary endpoints, and the analysis of effect modification by left anterior 

descending artery disease or multi-vessel disease were similarly noted in these plans.  

Separate analyses of stage 4 and stage 3 CKD were considered during planning, but stage 3a 

and 3b CKD were analyzed instead given the limited numbers of subjects with stage 4 CKD in 

the final data set.  Because data on strokes was not readily available, data on MI is presented 

instead of a planned analysis of major adverse cardiovascular events (combined death, MI or 

stroke).   
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Supplementary Data 
Supplementary Table 1. Sensitivity analyses-risks of death with CABG compared to PCI, varying covariate adjustment and study inclusion—

imputed analyses 

Group Crude 
HR 

95% CI P M1 
HR 

95% CI P M2 
HR 

95% CI P M3 
HR 

95% CI P M4 HR 95% CI P M5 
HR 

95% CI P 

Overall 0.93 0.77, 1.12 0.43 0.94 0.78, 1.13 0.48 0.92 0.76, 1.11 0.38 0.92 0.77, 1.11 0.40 0.92 0.76, 1.10 0.36 0.91 0.75, 1.09 0.31 

Preserved 
GFR 

 

0.92 0.74, 1.13 0.42 0.93 0.75, 1.15 0.49 0.90 0.73, 1.11 0.33 0.91 0.74, 1.13 0.39 0.89 0.72, 1.11 0.31 0.88 0.71, 1.1 0.26 

CKD 3-5 1.01 0.68, 1.49 0.98 1.01 0.68, 1.49 0.98 0.99 0.67, 1.46 0.96 1.01 0.68, 1.49 0.97 0.99 0.67, 1.46 0.95 0.96 0.64, 1.42 0.82 

CKD 3a 0.87 0.52, 1.45 0.60 0.82 0.49, 1.37 0.44 0.79 0.47, 1.33 0.39 0.87 0.52, 1.45 0.60 0.79 0.47, 1.34 0.39 0.73 0.43, 1.24 0.25 

CKD 3b-5 1.15 0.62, 2.13 0.67 1.29 0.68, 2.44 0.44 1.29 0.68, 2.46 0.43 1.15 0.62, 2.13 0.67 1.30 0.68, 2.46 0.43 1.26 0.66, 2.4 0.49 

CKD & 
MVD* 

1.16 0.77, 1.75 0.49 1.14 0.75, 1.72 0.55 1.10 0.73, 1.67 0.65 1.16 0.77, 1.75 0.49 1.10 0.73, 1.66 0.66 1.05 0.69, 1.6 0.81 

CKD & 
SVD* 

0.33 0.07, 1.61 0.17 0.34 0.06, 1.94 0.23 0.32 0.06, 1.76 0.19 0.33 0.07, 1.61 0.17 0.32 0.06, 1.76 0.19 0.33 0.06, 1.79 0.20 

CKD & 
pLAD* 

0.88 0.54, 1.43 0.61 0.92 0.57, 1.5 0.75 0.94 0.57, 1.54 0.80 0.88 0.54, 1.43 0.61 0.94 0.57, 1.54 0.80 0.95 0.58, 1.56 0.83 

CKD 
without 
pLAD* 

1.31 0.67, 2.56 0.43 1.28 0.65, 2.54 0.48 1.15 0.57, 2.27 0.71 1.30 0.67, 2.54 0.44 1.13 0.57, 2.26 0.72 0.94 0.46, 1.91 0.86 

 

M1-all studies, only covariates without systematicsystematic missingness.  M2-all studies, full set of covariates imputed. M3-only studies without 

systematic missingness, unadjusted, M4-only studies without systematic missingness, fully adjusted with covariate imputation, M5- complete case 

analysis, fully adjusted.  Multivariable models adjusted for treatment, age, diabetes, prior myocardial infarction, proximal left anterior descending 

artery disease, ejection fraction <40%, prior revascularization, and multi-vessel disease. To avoid singular regression coefficients, these subgroup 

models did not include terms for multi-vessel disease or proximal LAD disease, respectively.  GFR-glomerular filtration rate.  CKD-chronic kidney 

disease. 3-5-stage 3-5 CKD.  3b-5-stage 3b-5 CKD. MVD-multivessel disease.  SVD-single vessel disease. pLAD-proximal left anterior descending 

artery disease. 

 



Supplementary Table 2. Supplementary analyses-crude and adjusted risks of myocardial infarction with CABG compared to PCI—imputed 
analyses 

Group Crude 
HR 

95% CI P M1 
HR 

95% CI P M2 
HR 

95% CI P M3 
HR 

95% CI P M4 HR 95% CI P M5 
HR 

95% CI P 

Overall 0.90 0.75, 1.07 0.23 0.89 0.75, 1.07 0.22 0.88 0.73, 1.05 0.16 0.90 0.75, 1.08 0.27 0.88 0.74, 1.06 0.18 0.88 0.74, 1.06 0.19 

Preserved 
GFR 

 

0.98 0.81, 1.19 0.87 0.98 0.81, 1.19 0.84 0.97 0.80, 1.17 0.72 0.99 0.82, 1.2 0.93 0.97 0.8, 1.18 0.79 0.98 0.8, 1.19 0.83 

CKD 3-5 0.49 0.30, 0.81 0.01 0.49 0.29, 0.81 0.01 0.49 0.29, 0.82 0.01 0.49 0.3, 0.81 0.01 0.50 0.3, 0.84 0.01 0.46 0.27, 0.78 0.004 

CKD 3a 0.68 0.37, 1.27 0.24 0.75 0.38, 1.46 0.40 0.71 0.36, 1.39 0.31 0.69 0.37, 1.28 0.24 0.71 0.36, 1.41 0.33 0.63 0.31, 1.28 0.20 

CKD 3b-5 0.27 0.11, 0.66 0.004 0.24 0.1, 0.59 0.00 0.23 0.09, 0.58 0.002 0.27 0.11, 0.66 0.00 0.22 0.09, 0.57 0.00 0.21 0.08, 0.55 0.001 

CKD & 
MVD* 

0.45 0.26, 0.79 0.01 0.45 0.26, 0.81 0.01 0.43 0.24, 0.76 0.004 0.45 0.26, 0.79 0.01 0.44 0.24, 0.77 0.01 0.41 0.23, 0.74 0.003 

CKD & 
SVD* 

0.71 0.20, 2.47 0.59 0.64 0.18, 2.27 0.49 1.09 0.24, 4.86 0.91 0.71 0.2, 2.47 0.59 1.13 0.24, 5.23 0.88 1.60 0.32, 8.09 0.57 

CKD & 
pLAD* 

0.39 0.19, 0.80 0.01 0.39 0.19, 0.8 0.01 0.39 0.18, 0.82 0.01 0.38 0.18, 0.79 0.01 0.39 0.19, 0.83 0.01 0.38 0.18, 0.81 0.01 

CKD 
without 
pLAD* 

0.64 0.31, 1.33 0.23 0.62 0.29, 1.35 0.23 0.74 0.34, 1.64 0.46 0.64 0.31, 1.34 0.24 0.74 0.33, 1.65 0.47 0.66 0.3, 1.48 0.32 

 
 

M1-all studies, only covariates without systematic missingness.  M2-all studies, full set of covariates imputed. M3-only studies without systematic 

missingness, unadjusted, M4-only studies without systematic missingness, fully adjusted with covariate imputation, M5- complete case analysis, 

fully adjusted.  Multivariable models adjusted for treatment, age, diabetes, prior myocardial infarction, proximal left anterior descending artery 

disease, ejection fraction <40%, prior revascularization, and multi-vessel disease. To avoid singular regression coefficients, these subgroup models 

did not include terms for multi-vessel disease or proximal LAD disease, respectively.  GFR-glomerular filtration rate.  CKD-chronic kidney disease. 

3-5-stage 3-5 CKD.  3b-5-stage 3b-5 CKD. MVD-multivessel disease.  SVD-single vessel disease. pLAD-proximal left anterior descending artery 

disease.  



Supplementary Table 3. Supplementary analyses- crude and adjusted risks of repeat revascularization with CABG compared to PCI—imputed 
analyses 

Group Crude 
HR 

95% CI P M1 
HR 

95% CI P M2 
HR 

95% CI P M3 
HR 

95% CI P M4 HR 95% CI P M5 
HR 

95% CI P 

Overall 0.14 0.12, 0.17 <0.001 0.14 0.12, 0.17 <0.001 0.14 0.11, 0.17 <0.001 0.14 0.12, 0.17 <0.001 0.14 0.12, 0.17 <0.001 0.14 0.12, 0.17 <0.001 

Preserved 
GFR 

 

0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 0.13 0.11, 0.16 <0.001 

CKD 3-5 0.21 0.11, 0.40 <0.001 0.21 0.11, 0.39 <0.001 0.21 0.11, 0.39 <0.001 0.21 0.11, 0.4 <0.001 0.21 0.11, 0.39 <0.001 0.21 0.11, 0.41 <0.001 

CKD 3a 0.18 0.08, 0.41 <0.001 0.18 0.08, 0.41 <0.001 0.17 0.08, 0.40 <0.001 0.18 0.08, 0.41 <0.001 0.18 0.08, 0.40 <0.001 0.19 0.08, 0.43 <0.001 

CKD 3b-5 0.30 0.11, 0.85 0.02 0.26 0.09, 0.75 0.01 0.25 0.09, 0.71 0.01 0.30 0.11, 0.85 0.02 0.25 0.09, 0.71 0.01 0.25 0.09, 0.71 0.01 

CKD & 
MVD* 

0.21 0.10, 0.46 <0.001 0.21 0.10, 0.46 <0.001 0.21 0.10, 0.46 <0.001 0.21 0.1, 0.46 <0.001 0.21 0.10, 0.46 <0.001 0.22 0.1, 0.47 <0.001 

CKD & 
SVD* 

0.20 0.07, 0.62 0.01 0.20 0.07, 0.62 0.01 0.19 0.06, 0.61 0.01 0.20 0.07, 0.62 0.01 0.19 0.06, 0.60 0.01 0.21 0.07, 0.63 0.01 

CKD & 
pLAD* 

0.19 0.09, 0.40 <0.001 0.19 0.09, 0.39 <0.001 0.18 0.09, 0.38 <0.001 0.19 0.09, 0.4 <0.001 0.18 0.09, 0.38 <0.001 0.18 0.09, 0.39 <0.001 

CKD 
without 
pLAD* 

0.25 0.07, 0.87 0.03 0.25 0.07, 0.9 0.03 0.25 0.07, 0.92 0.04 0.24 0.07, 0.86 0.03 0.25 0.07, 0.93 0.04 0.29 0.08, 1.09 0.07 

 

M1-all studies, only covariates without systematic missingness.  M2-all studies, full set of covariates imputed. M3-only studies without systematic 

missingness, unadjusted, M4-only studies without systematic missingness, fully adjusted with covariate imputation, M5- complete case analysis, 

fully adjusted.  Multivariable models adjusted for treatment, age, diabetes, prior myocardial infarction, proximal left anterior descending artery 

disease, ejection fraction <40%, prior revascularization, and multi-vessel disease. To avoid singular regression coefficients, these subgroup models 

did not include terms for multi-vessel disease or proximal LAD disease, respectively.  GFR-glomerular filtration rate.  CKD-chronic kidney disease. 

3-5-stage 3-5 CKD.  3b-5-stage 3b-5 CKD. MVD-multivessel disease.  SVD-single vessel disease. pLAD-proximal left anterior descending artery 

disease. 

 

 



Supplementary Table 4. Results of eligible Trials  
Trial Overall Mortality Myocardial Infarction Revascularization Follow-Up 

Time 

Number 

Subjects 

RR 95% CI RR 95% CI RR 95% CI   

Excluded Trials         

Syntax1 1.24 0.78, 1.98 1.46 0.92, 2.33 2.29 1.67, 3.14 1 Year 1800 

Stent or Surgery2 2.82 1.27, 6.27 NC NC 3.45 2.34, 5.08 ≤4 Years 988 

SIMA3 0.48 0.04, 5.11 1.43 0.25, 8.24 NC NC Approximately 

3 Years 

123 

RITA 14 0.85 0.56, 1.28 1.46 0.98, 2.17 4.00 0.89, 17.93 ≤8.7 Years 1011 

Octopus5 NC NC 1.24 0.39, 3.95 4.80 1.41, 16.34 1 Year 280 

Myoprotect I6 0.91 0.31, 2.71 NC NC 6.39 0.86, 47.70 1 Year 44 

Goy et al7 2.91 0.31, 27.29 2.59 0.72, 9.34 83.00 4.70-12.00 2 Years 134 

Grip et al8 NC NC 0.92 0.06, 14.09 1.34 0.24, 7.38 6 Months 53 

Kim et al9 1.00 0.15, 6.82 NC NC 7.00 0.89, 54.83 1 Year 100 

Hong et al10 NC NC 0.59 0.08, 4.07 1.76 0.19, 16.57 6 Months 189 

French 

Monocentric11 

1.25 0.52, 2.99 NC NC 6.33 1.96, 20.52 5 Years 159 

ERACI I12 2.03 0.53, 7.77 NC NC 5.84 2.14, 15.93 3 Years 127 

EAST13 1.14 0.54, 2.41 NC NC 3.82 2.63, 5.55 3 Years 392 

Drenth et al14 NC NC 5.00 0.61, 41.31 4.00 0.89, 17.93 1.9-3.9 Years 102 

CARDIA15 1.00 0.38, 2.62 1.79 0.95, 3.35 6.00 2.37, 15.21 1 Year 510 

CABRI16 1.42 0.73, 2.76 1.42 0.80, 2.54 5.23 3.90, 7.03 1 Year 1054 

ARTS17 0.89 0.45, 1.77 1.29 0.80, 2.06 5.52 3.59, 8.49 1 Year 1205 

Relative risk of death, myocardial infarction or repeat revascularization as derived from primary publications of 

trials comparing PCI and CABG.  NC-Not-calculable directly from information in the publication.  Relative risks 

were extracted directly from the cited manuscripts, calculated from reported event rates, or estimated from 

Kaplan-Meir estimates of survival according to data available.   



Supplementary Table 5. Design features of non-included trials 

Characteristic Syntax1 Stent or 
Surgery2 

SIMA3 RITA 14 Octopus5 Myoprotect 

I6 

Goy7 Grip8 Kim9 Hong10 

Central randomization + + NR + NR + NR NR NR NR 
Concealed 
randomization 

+ + NR - NR NR NR NR NR NR 

Blinded outcomes 
assessment 

NR + NR + + NR NR NR NR NR 

Intention to treat 
analysis 

+ + + + + NR + NR NR NR 

Stents used +* +* +* + + +* + + +* +* 
Off-pump bypass - + + - + - - +* +* +* 
LIMA + + + + + NR + + +* +* 
Enrollment Period 2005-2007 1996-1999 1994-1998 1998-1991 1998-2000 1998-2001 1989-1993 NR 2000-2001 2003 
Single vessel disease 
only 

- - + - - - + + + + 

Multi-vessel disease 
only 

+ + - - - - - - - - 

Single or multi-vessel 
disease 

- - - + + + - - - - 

Left main disease + + - - - +*† - - - - 

Characteristic French 
Monocentric

11 

ERACI I12 EAST13 Drenth14 CARDIA15 CABRI16 ARTS17    

Central randomization NR + NR NR + - +    
Concealed 
randomization 

NR NR NR NR + NR NR    

Blinded outcomes 
assessment 

NR NR + NR + NR NR    

Intention to treat 
analysis 

NR NR + + + + +    

Stents used NR - - +* + + +*    
Off-pump bypass NR - - +* + NR NR    
LIMA NR + NR +* + NR +    
Enrollment Period 1989-1993 1988-1990 1987-1990 1997-1999 2002-2007 NR 1997-1998    
Single vessel disease 
only 

- - - + - - -    

Multi-vessel disease 
only 

+ + + - - + +    

Single or multi-vessel 
disease 

- - - - + - -    

Left main disease - - - - - - -    

NR-not recorded.  LIMA-left internal mammary artery. *Required by protocol.  †Left main or left main equivalent require



Supplementary Figure Legends 

Supplementary Figure 1 Within-trial risk of all-cause mortality with CABG compared with PCI 
among individuals with CKD  
 
Crude HRs in are provided as within study homogeneity on individual covariates precludes 
within study calculation of fully-adjusted HRs using the same model across each study. Some 
studies are not shown due to near-homogeneity on the outcome, which would cause model 
overspecification. 
 
Supplementary Figure 2 Within-trial risk of myocardial infarction with CABG compared with 
PCI among individuals with CKD  
 
Crude HRs in are provided as within study homogeneity on individual covariates precludes 
within study calculation of fully-adjusted HRs using the same model across each study. Some 
studies are not shown due to near-homogeneity on the outcome, which would cause model 
overspecification. 
 

Supplementary Figure 3 Within-trial risk of repeat revascularization with CABG compared with 

PCI among individuals with CKD  

Crude HRs in are provided as within study homogeneity on individual covariates precludes 
within study calculation of fully-adjusted HRs using the same model across each study. Some 
studies are not shown due to near-homogeneity on the outcome, which would cause model 
overspecification. 
 
Supplementary Figure 4 Within-trial risk of cardiovascular hospitalization with CABG 

compared with PCI among individuals with CKD  

 
Crude HRs in are provided as within study homogeneity on individual covariates precludes 
within study calculation of fully-adjusted HRs using the same model across each study. Some 
studies are not shown due to near-homogeneity on the outcome, which would cause model 
overspecification. 
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