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ABSTRACT
Wedevelop scalablemethods for fittingpenalized regression splinebasedgeneralized additivemodelswith
of the order of 104 coefficients to up to 108 data. Computational feasibility rests on: (i) a new iteration scheme
for estimation of model coefficients and smoothing parameters, avoiding poorly scaling matrix operations;
(ii) parallelization of the iteration’s pivoted block Cholesky and basic matrix operations; (iii) the marginal
discretization ofmodel covariates to reducememory footprint, with efficient scalablemethods for comput-
ing required crossproducts directly from the discrete representation. Marginal discretization enables much
finer discretization than joint discretization would permit. We were motivated by the need to model four
decades worth of daily particulate data from the U.K. Black Smoke and Sulphur Dioxide Monitoring Net-
work. Although reduced in size recently, over 2000 stations have at some time been part of the network,
resulting in some 10 million measurements. Modeling at a daily scale is desirable for accurate trend estima-
tion and mapping, and to provide daily exposure estimates for epidemiological cohort studies. Because of
the dataset size, previous work has focused on modeling time or space averaged pollution levels, but this
is unsatisfactory from a health perspective, since it is often acute exposure locally and on the time scale of
days that is of most importance in driving adverse health outcomes. If computed by conventional means
our black smoke model would require a half terabyte of storage just for the model matrix, whereas we are
able to compute with it on a desktop workstation. The best previously available reducedmemory footprint
methodwould have required three orders of magnitudemore computing time than our newmethod. Sup-
plementary materials for this article are available online.

1. Introduction

This article proposes a method for estimating generalized addi-
tive models (a particular class of Gaussian latent process mod-
els) for much larger datasets and models than has hitherto
been possible. For our application we achieve a three order of
magnitude speed up relative to previous big data GAM meth-
ods (e.g., Wood, Goude, and Shaw 2015). Our new method
rests on three innovations: (i) an efficient new fitting itera-
tion, employing a minimal number of matrix operations all of
which scale reasonably well, (ii) OpenMP based parallelization
of these matrix operations, and (iii) a novel marginal covariate
discretization scheme, enabling compact model representation
and efficient computation of key matrix crossproducts. These
three elements work together, and dropping any one of them
leads to an increase in fitting time of an order of magnitude or
more.

We aremotivated by a practical problem in spatial epidemiol-
ogy: the local estimation of short-term exposure to air pollution,
based on monitoring network data. Specifically we focus on the
United Kingdom Black Smoke (BS) monitoring network, which
collected daily data onμg m−3 (micrograms per cubic meter) of
BS particulates (largely from coal and Diesel combustion) from

CONTACT Simon N. Wood simon.wood@bristol.ac.uk School of Mathematics, University of Bristol, Bristol, BS TW United Kingdom.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

1961 to 2005. The U.K. BS network fluctuated in size with differ-
ent stations being added and removed over time, peaking at 1269
stations in 1967 but declining to 73 stations by 2005. Figure 1(a)
shows the network in 1967, indicating the average log BS mea-
surements in that year. The other panels in Figure 1 illustrate
the temporal patterns in the data, and in the network size. In
total the data comprise 9,451,232 dailymeasurements from2862
monitoring sites.

Because of the data volume, previous attempts to model spa-
tiotemporal patterns in the BS data have focused on annual
averages (e.g., Shaddick and Zidek 2014). This is not entirely sat-
isfactory from an epidemiological perspective, since acute res-
piratory disease is usually sensitive to exposure to high levels
of pollution over short time periods, and such exposure can be
completely hidden in an annual average. Retrospective cohort
studies, for example, really require estimates of exposure at the
daily level, rather than annual averages, if they are to successfully
uncover acute effects. This difference between acute and long-
term exposure is also reflected in the health guidelines, with EU
regulations currently stipulating that annual average exposure
should not exceed 68μg m−3 while daily peak exposure should
not exceed 213 μg m−3.

©  Simon N. Wood, Zheyuan Li, Gavin Shaddick, and Nicole H. Augustin. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/./), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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Figure . (a) The U.K. Black Smoke Network monitoring network at its largest in . Symbol sizes are proportional to annual average log black smoke. (b) Annual average
log black smoke against year. Black dots are averages over space, with dot size proportional to network size. Gray dots are station averages. (c) Daily averages for ,
across all stations shown in (a). (d) All daily measurements for the longest running site, shown as a gray “+” in (a).

Given the data volume, an obvious option is not tomodel, but
simply to estimate daily exposure directly from the raw mea-
surement, but this is a poor option for several reasons. First,
the network design is not random but shows a type of pref-
erential sampling (Shaddick and Zidek 2014), so that a design
based approach to exposure estimation will result in bias, which
is only avoidable by taking amodel-based approach. Second, the
reduced number of stations later in the datamake spatial predic-
tions difficult without a model that is able to share information
across years. Third, there are strong covariate effects.

We will end up using a model structure

log(bsi)

= f1(yi)+ f2(doyi)+ f3(dowi)+ f4(yi,doyi)

+ f5(yi,dowi)+ f6(doyi,dowi)

+ f7(ni,ei)+ f8(ni,ei,yi)+ f9(ni,ei,doyi)

+ f10(ni,ei,dowi)+ f11(hi)+ f12(T0
i ,T

1
i )

+ f13(T̄1i, T̄2i)

+ f14(ri)+ αk(i) + bid(i) + ei (1)

wherey,doy anddowdenote, year, day of year, and day ofweek;
n ande denote location as kilometers north and east;h andr are
height (elevation of station) and cube root transformed rainfall
(unfortunately only available as monthly average); T0 and T1 are
daily minimum and maximum temperature, while T̄1 and T̄2
are daily mean temperature on and two days previously; αk(i) is
a fixed effect for the site type k of the ith observation (type is
one of R (rural), A (industrial), B (residential), C (commercial),
D (city/town center), X (mixed), or M (missing)); bid(i) is a ran-
dom effect for the idth station, while ei is a Gaussian error term
following an AR process at each site.

Using reduced rank spline basis expansions for the terms
in (1) requires around 8000 model coefficients. So estimating
the model as a penalized GLM in the manner of Wood (2011)
would require half a terabyte of storage just for themodelmatrix

and is clearly infeasible. Our original intention was to use the
method ofWood, Goude, and Shaw (2015) (available in R pack-
age mgcv) or to follow Shaddick and Zidek (2014) in using
the method of Rue, Martino, and Chopin (2009) (via the INLA
package), however this proved not to be feasible. Even if the
computational load had been acceptable in terms of execu-
tion time, our experiments with smaller models and datasets
suggested that INLA would require more than the 128Gb of
memory that we had available. The Wood, Goude, and Shaw
(2015) method would have been possible in terms of mem-
ory footprint, but we estimated that fitting would have taken
in excess of a month of computing time (12 core Xeon E5-2670
2.3 GHz CPU), even using an enhanced efficiency version of the
method employing some of the ideas from the current article for
REML smoothing parameter selection. Using just the published
method would have required approximately five times as long.

After reviewing model representation in Section 2, we
develop a practical fitting method in Sections 3 and 4, which
reduces the fitting time for model (1) to under an hour. The
novel developments that allow this are covered in Section 4 and
appendix A. Sections 5 and 5.1 then discuss the black smoke
modeling in more detail.

2. Model Class and Representation

We first review the class of generalized additive models (GAM)
introduced by Hastie and Tibshirani (1986, 1990) (see also
Wahba 1990), relating a univariate response, yi to predictors x ji
(which may be vector). A GAM has the structure

yi ∼ EF(μi, φ) where g(μi) = A(i, :)θ +
∑
j

f j(x ji), (2)

μi = E(yi), EF denotes an exponential family distribution with
known or unknown scale parameter φ, g is a known smooth
monotonic link function, A(i, :) the ith row of any paramet-
ric model matrix, and θ the corresponding parameter vec-
tor. The f j are unknown smooth functions to be estimated
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(and must usually be subjected to sum-to-zero identifiability
constraints).

For estimation purposes we adopt the widely used approach
of representing the unknown functions using reduced rank
smoothing splines. Full smoothing splines arise from solving
variational problems. For example, the cubic spline problem
seeks f , from some reproducing kernel Hilbert (or appropriate
Sobolov) space, tominimize

∑n
i=1{yi − f (xi)}2 + λ

∫
f ′′(x)2dx

(λ is a smoothing parameter). The result can be represented in
terms of an explicit n-dimensional basis, while the spline penalty
becomes a quadratic penalty on the basis coefficients. However,
since, at latest, Wahba (1980) and Parker and Rice (1985), it has
been recognized that an n-dimensional basis representation is
computationally wasteful for negligible statistical gain and use of
a k� n dimensional basis is often preferable. Theoretical work
by Gu and Kim (2002), Hall and Opsomer (2005), Li and Rup-
pert (2008), Kauermann, Krivobokova, and Fahrmeir (2009),
Claeskens, Krivobokova, and Opsomer (2009) andWang, Shen,
and Ruppert (2011) show that the reduced rank approach is well
founded, with k needing to grow only rather slowly with sample
size (e.g., k = O(n1/5) for a cubic spline under REML smooth-
ness estimation).

A rich variety of reduced rank model terms are available
in addition to cubic splines. Examples are the P-splines of Eil-
ers and Marx (1996); Marx and Eilers (1998); Ruppert, Wand,
and Carroll (2003), and adaptive variants (e.g., Wood 2011),
as well as the isotropic thin plate and other Duchon splines
(Duchon 1977), for which rank reduction is conveniently per-
formed by the eigenmethod ofWood (2003). Reduced rank ten-
sor product splines (e.g., Eilers and Marx 2003; Wood 2006) are
important for representing smooth interactions, splines on the
sphere (Wahba 1981) and Gaussian process smoothers (Kam-
mann and Wand 2003; Handcock, Meier, and Nychka 1994)
are useful in some spatial applications. In all cases if f j =
[ f j(x j1), f j(x j2), . . .]T we can write f j = X jβ j where X j is an
n× p j model matrix for the smooth, containing its basis func-
tions evaluated at the observed x j values. β j is the correspond-
ing coefficient vector. The smoothing penalty for f j can then be
written βT

jS jβ j , where S j contains known coefficients. Since
the individual f j in (2) are only estimable to within an inter-
cept term, identifiability constraints need to be applied. As dis-
cussed in Wood, Scheipl, and Faraway (2013) the sum-to-zero
constraints,

∑
i f j(x ji) = 0 have the advantage of leading to nar-

row confidence intervals on the constrained f j, and it is easy to
reparameterize to incorporate the constraints directly into X j
and S j (which, respectively, lose a column, and a row and col-
umn in the process).

It is then straightforward to create a single n× p model
matrix X = (A,X1,X2, . . .) with corresponding combined
parameter vector β. Given some smoothing parameters λ

a combined smoothing penalty could then be written as∑
j λ jβ

T
jS jβ j =

∑
j λ jβ

TS jβ = βTSλβ, where S j is simply a
zero padded version ofS j and Sλ =

∑
j λ jS j. Hence, we have an

overparameterized GLM structure, g(μ) = Xβ. Given smooth-
ing parameters it is estimated via

β̂ = argmax
β

l(β)− βTSλβ/2. (3)

This penalized likelihood approach (e.g., Green and Silverman
1994) can be viewed as a reasonable approach in its own right.

An alternative is to view penalization as the expression of a belief
that “smooth is more probable than wiggly” and to express this
using the (improper) prior

β ∼ N(0, S−λ ),

where S−λ is aMoore-Penrose pseudoinverse (Sλ being rank defi-
cient because the penalties leave some space of functions unpe-
nalized, and in any case do not penalize the fixed effects). In that
case β̂ is the MAP estimator of β, and it is clear that we can view
the GAM as a Gaussian latent random field model (see Kimel-
dorf and Wahba 1970; Wahba 1983; Silverman 1985; Fahrmeir
and Lang 2001; Ruppert, Wand, and Carroll 2003, etc.). The
smoothing parameters,λ, can be estimated by generalized cross-
validation or similar (e.g., Craven and Wahba 1979), but Reiss
andOgden (2009) showed that a (restricted)marginal likelihood
approach (e.g., Wood 2011) offers practical reliability advan-
tages, in being less prone to multiple local optima and conse-
quent undersmoothing.

3. The Fitting Iteration

The purpose of this article is to allow the rich existing modeling
framework, described in Section 2, to be used with much larger
models and datasets than has hitherto been possible, by provid-
ing substantially new scalable fittingmethods. The newmethods
are based on the performance iteration (Gu 1992) or PQL (Bres-
low and Clayton 1993) approach to model fitting, modified to
obtain reasonable scalability. Before introducing the modifica-
tions, wemotivate the basic approach and provide an alternative
justification for its use, suited to penalized regression.

It is readily shown that maximization of (3) by Fisher scoring
is equivalent to the following penalized iteratively reweighted
least squares (PIRLS) scheme. Initialize μ̂i = yi + δi and η̂i =
g(μ̂i) where δi is a small constant (often zero) chosen to ensure
g(μ̂i) exists. Then iterate the following to convergence

1. Form “pseudodata” zi = g′(μ̂i)(yi − μ̂i)+ η̂i
and weight matrix W = diag(wi) where w−1i =
V (μ̂i)g′(μ̂i)

2.
2. By penalized least squares, estimate β for the working

model

z = Xβ + ε, where β ∼ N(0, S−λ ),

E(ε) = 0 and E(εεT) = φW−1.

The key idea of performance iteration/PQL is to estimate
λ and φ at each iteration from the working model. Consider
using restricted marginal likelihood (REML) for this purpose.
First suppose that we were to make the clearly false assumption
that ε ∼ N(0,W−1φ). If β̂λ = argminβ‖z− Xβ‖2w/φ + βTSλβ,
where ‖x‖2w = xTWx and M is the dimension of the null space
of Sλ, then the twice negative log REML (e.g. Wood 2011) is

V(λ) = ‖z− Xβ̂λ‖2w/φ + β̂
T
λSλβ̂λ + log |XTWX/φ + Sλ|

− log |Sλ|+ + n log(φ)+ (n−M) log(2π). (4)

Differentiating V with respect to φ and equating to zero, we find
that the REML estimate of φ must satisfy

φ̂ = ‖z− Xβ̂λ‖2w
n− τ

, (5)
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where τ = tr{(XTWX/φ̂ + Sλ)
−1XTWX/φ̂} is the “effective

degrees of freedom” of the model. So φ̂ is simply the “Pearson
estimator” of the scale parameter, which is a reasonable estima-
tor without any REML justification, and without assuming nor-
mality of z (see, e.g., Wahba 1983; McCullagh and Nelder 1989;
Hastie and Tibshirani 1990).

Now let us eliminate the false assumption of normality of z,
replacing it with central limit theorem justification. Consider
the QR decomposition

√
WX =QR, where Q has orthog-

onal columns and R is upper triangular (this decomposition
is purely a theoretical device, nowhere in the new methods
below do we actually need to compute a QR decomposition).
Define f = QT

√
Wz, r = ‖z‖2w − ‖f‖2. In that case XTWX =

RTR, ‖z− Xβ̂λ‖2w = ‖f −Rβ‖2 + r, and we have the alter-
native working model

f =Rβ + e, β ∼ N(0, S−λ ) and e ∼ N(0, Iφ), (6)

where the multivariate central limit theorem justifies e ∼
N(0, Iφ) as ann/p→∞ approximation. The twice negative log
restricted marginal likelihood for this model is

Vr(λ) = ‖f −Rβ̂λ‖2/φ + β̂
T
λSλβ̂λ + log |RTR/φ + Sλ|

− log |Sλ|+ + p logφ + (p−M) log(2π).

For a given φ, V and Vr differ only by an additive constant, and
therefore result in identical inference about λ and β. Inference
about φ would of course differ, since r carries information about
φ, but if we plug the Pearson estimate (5) into Vr then we obtain
identical inference to that obtained by simply using V for φ and
λ. This justifies use of (4) for λ, φ estimation.

Note that once the coefficients and smoothing parameters are
estimated, further inference can be based on the large sample
Bayesian result,

β ∼ N(β̂, (XTWX/φ + Sλ)
−1), (7)

which turns out to provide well calibrated frequentist inference
(Wahba 1983; Silverman 1985; Nychka 1988; Marra and Wood
2012; Wood 2013).

4. A Practical FittingMethod

Implementation of the fitting iteration of Section 3 is limited by
several practical considerations.

1. For the target datasets and models, it is impractical to
explicitly form X whole.

2. The log determinant terms in V are potentially numer-
ically unstable. Because having some λ j →∞ is legiti-
mate in GAM estimation, Sλ can become so badly scaled
that the computation of log determinants involves taking
the logs of terms that are numerically zero.

3. For maximal efficiency it is not sensible to optimize V at
each iteration step, when it will anyway be modified at
the next step.

4. The update step for V should involve computations that
scale well to multi-core computation.

Wood,Goude, and Shaw (2015) addressed 1 by iteratively updat-
ing the QR factorization of X, and then applying the method of

Wood (2011) to (6). This approach ignored 3, requires pivoted
QR decomposition and addressed 2 by stabilizing reparame-
terizations involving p× p symmetric eigen decomposition:
the QR and eigen decompositions do not scale well. For exam-
ple the state of the art block pivoted QR decomposition of
Quintana-Ortí, Sun, and Bischof (1998), only has around half
the floating point operations as matrix-matrix computations. In
consequence the Wood, Goude, and Shaw (2015) was compu-
tationally impractical for the black smoke model. See appendix
C for a discussion of the issues around multicore computing.

Our proposal here addresses 3 by taking a single Newton step
to update ρ = log(λ) at each cycle of the iteration (rather than
fully optimizing V at each cycle). We propose to avoid the sta-
bilizing reparameterization step by avoiding evaluation of the
log determinants altogether (hence, addressing 2). This is based
on the observation that the Newton step, �, only involves the
derivative of V , and the derivatives of the log determinants are
less numerically problematic. Evaluation ofV is usually required
to ensure that the Newton step results in an improvement of V .
We cannot skip such a check, but we can substitute the alterna-
tive check that�T∇V(ρ +�) ≤ 0, that is, that V is nonincreas-
ing in the direction of� at the end of the Newton step (see, e.g.,
Wood, 2015, sec. 5.1.1).

Adopting this approach we find that the derivatives of V
can be obtained using simple matrix operations and a pivoted
Cholesky decomposition of XTWX, which can be accumulated
blockwise, thereby dealing with 1. Lucas (2004) provides a block
oriented pivoted Cholesky decomposition readily parallelized
using openMP (OpenMP Architecture Review Board, 2008),
which deals with point 4. The resulting method has the fur-
ther advantage that, with some further work, it turns out to be
possible to produce further substantial efficiency savings by dis-
cretization of the model covariates (see Section 4.5).

4.1. TheModified Fitting Iteration

Based on the above considerations, the proposed fitting itera-
tion is as follows. Its convergence properties are discussed in
Appendix B.

� Perform the term by term reparameterization described in
Section 4.3.

� Initialize ρ0,�0 = 0, μ̂i = yi + δi and η̂i = g(μ̂i). δi is 0 or
a small value chosen to ensure that η̂i exists.

� Repeat...
1. Accumulate XTWX, f = XTWz and penalized

deviance, D. zi = g′(μ̂i)(yi − μ̂i)+ η̂i and W is
diagonal with entries wi = {V (μ̂i)g′(μ̂i)

2}−1.
2. Test for convergence, terminate if achieved.
3. Except at iteration one, if D∗/φ + β∗TSρβ

∗ < D/φ +
β̂
T
Sρ β̂ set β̂← (β∗ + β̂)/2 and return to 1.

4. β∗ ← β̂.
5. ρ = ρ0 +�0. .
6. Given XTWX, f and ρ, obtain �, the Newton step for

the working model, ∇V the gradient of the working
REML and β̂.

7. If ∇VT�0 > εD then �0← �0/2 and return to 5.
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8. �0← �, ρ0← ρ, D∗ ← D. Form η̂ = Xβ̂ and μ̂i =
g−1(η̂i).

Note that Step 1 does not require the explicit formation of the
whole matrix X. Step 3 reduces the β step taken if the Newton
step was too long, in that it increased the penalized deviance at
the ρ value at which it was computed. Step 5 reduces the ρ step if
it was so long that the REML score was increasing at the end of
the step. When logφ is unknown it can be included as an extra
element of ρ.

Step 6 consists of estimating the β̂λ implied by the proposed ρ

and the currentW and z. Further more the marginal likelihood
of the working penalized linear model is uses as a smoothing
parameter estimation criterion, and the gradient vector of this
criterion along with the first Newton step for optimizing it are
also computed. The next sections detail how Step 6 is accom-
plished.

4.2. The REMLUpdate

Now consider the calculation of the Newton step,�, to improve
(4). We have that β̂λ is the solution of (XTWX+ φSλ)βλ =
XTWz. The actual computation proceeds by taking a Cholesky
decomposition RTR = XTWX/φ + Sλ using a parallel version
of Lucas (2004). This is usually done with pivoting, in which
case the rank of R is then estimated and unidentifiable param-
eters set to zero and dropped from subsequent computations.
We then compute β̂λ = R−1R−TXTWz/φ (by backward and for-
wards substitution). Inwhat follows “pivoting” and “unpivoting”
refer to the application of the Cholesky pivoting order and its
reversal.

The Newton step is � = −(d2V/dρdρT)−1dV/dρ, where
d2V/dρdρT will have been perturbed if necessary to ensure
definiteness (see Nocedal and Wright 2006). Recalling that
d(‖z− Xβ‖2w/φ + βTSλβ)/dβ

∣∣
β̂λ
= 0, we have

dV
dρ j
= λ jβ̂

T
λS jβ̂λ +

d log |XTWX/φ + Sλ|
dρ j

− d log |Sλ|+
dρ j

(8)

and, defining δ
j
k = 1 if k = j and 0 otherwise,

d2V
dρ jdρk

= 2
dβ̂

T
λ

dρk
(XTWX/φ + Sλ)

dβ̂λ

dρ j

+ 2λ jβ
T
λS j

dβ̂λ

dρk
+ 2λkβ

T
λSk

dβ̂λ

dρ j
+ δ

j
kλ jβ̂

T
λS jβ̂λ

+d2 log |XTWX/φ + Sλ|
dρ jdρk

− d2 log |S|+
dρ jdρk

.

Implicit differentiation implies that

dβ̂λ

dρ j
= −λ jR−1R−TS jβ̂λ.

This latter computation is most efficient if β̂λ is first unpivoted,
S jβ̂λ is formed and this is then repivoted: the block structure
of S j (see next section) can then be be exploited. The next two
sections cover computation of the derivatives of the log deter-
minants.

4.3. Computing The Derivatives Of log |Sλ|+
Sλ has block diagonal structure that can be exploited. For exam-
ple, denoting zero blocks by ‘.’,

Sλ =

⎛
⎜⎜⎜⎜⎝

λ1S1 . . . .

. λ2S2 . . .

. .
∑

j λ jS j . .

. . . . .

. . . . .

⎞
⎟⎟⎟⎟⎠ .

That is there are some blocks with single smoothing param-
eters, and others with a more complicated additive structure.
There are usually also some zero blocks on the diagonal. The
block structure means that the generalized determinant and its
derivatives w.r.t. ρk = log λk can be computed blockwise. Note
in particular that, for the above example,

log |Sλ|+ = rank(S1) log(λ1)+ log |S1|+ + rank(S2) log(λ2)

+ log |S2|+ + log |
∑
j

λ jS j|+ + · · ·

For any ρk relating to a single parameter block we have

d log |S|+
dρk

= rank(Sk)

and zero second derivatives. For multi-λ blocks there will gen-
erally be first and second derivatives to compute. There are no
second derivatives “between-blocks.” To facilitate computations
some prefit reparameterization is undertaken, according to the
type of block.

1. Single parameter diagonal blocks. These can be reparam-
eterized so that all nonzero elements are one, and the
rank precomputed.

2. Single parameter dense blocks. These can be reparame-
terized to look like the previous type, by similarity trans-
form, again computing rank.

3. Multi-λ blocks are transformed so that
∑

j λ jS j has full
rank in the new parameterization. Again a similarity
transform is used. Typically the S j are of smaller dimen-
sion in the reparameterization and consequently an extra
zero block is introduced on the diagonal of S j.

The generalized determinant of type 3 blocks becomes an ordi-
nary determinant of

∑
j λ jS j after reparameterization. Hence,

its derivatives follow from the standard result

d log |S|
dρ

= tr
(
S−1

∂S
∂ρ

)
.

4.4. Computing The Derivatives of log |XTWX/φ + Sλ|
The following computations build on the Cholesky decomposi-
tion of the previous sections

1. Form P = R−1, and unpivot the rows of P. Then form
PPT. These steps are O(p3), but can be parallelized.

2. Form thematrices containing the nonzero rows of SkPPT

(∀k). This step is cheap for all but type 3 blocks.
3. Compute the required derivatives using

d log |XTWX/φ + Sλ|
dρk

= λktr(SkPPT)
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and

d2 log |XTWX/φ + Sλ|
dρkdρ j

= δ
j
kλktr(SkPPT)− λ jλktr(SkPPTS jPPT).

Note that PPT = (XTWX/φ + Sλ)
−1, the Bayesian covariance

matrix.
The trace computations in step 3 are very efficient, given the

block structure of the Sk, if we employ the following tricks. In
general tr(AB) =∑

k j Ak jB jk. Now let A have nonzero rows
only between k1 and k2, while B has nonzero rows only between
j1 and j2.

tr(A) =
k2∑

k=k1
Akk and tr(AB) =

k2∑
k=k1

j2∑
j= j1

AkjB jk.

Of course normally the initial zero rows would not actually be
stored in which case we have

tr(A) =
k2∑

k=k1
Ak−k1,k and tr(AB) =

k2∑
k=k1

j2∑
j= j1

Ak−k1, jB j− j1,k.

4.5. TheModelMatrix: Efficient Storage and Computation

We are interested in computing with models in which it is
impractical to store the whole model matrix, and in which com-
puting the required matrix cross product may be prohibitively
expensive. For this reason we discretize the model covariates so
that the columns of the model matrix corresponding to a single
smooth term can be stored in compact form. Specifically, sup-
pose that the covariate for the jth term is discretized intom dis-
crete values, then the model matrix columns for that term can
be written as

X j(i, j) = X̄ j(k(i), j),

where X̄ j has only m rows and k is an index vector. Storing X̄ j
and k uses much less memory than storing X j directly. This
idea is introduced in Lang et al. (2014) to obtain efficient stor-
age and computation for large datasets. However, in that article
they employ smooths of one covariate and only require terms
of the form XT

jWX j, but not XT
jWXk. For smoothing param-

eter estimation we require these “off diagonal” product terms
as well. In addition we require tensor product smooths of mul-
tiple covariates. Discretizing multiple covariates onto multidi-
mensional grids requires either substantial storage or substan-
tial approximation error, and in the tensor product context it
makes sense to instead discretize each component marginal
model matrix separately, constructing the full tensor product
model matrix “on the fly.”

Appendix A develops the identities and algorithms required
to compute with X and its products when the submatrices
of X corresponding to individual terms are stored compactly,
and when tensor product terms are computed “on-the-fly”
from compactly stored marginal model matrices. With the cor-
rect structuring each matrix inner product is a factor of p
faster than it would be under direct computation, where p is
the number of columns in the largest marginal model matrix

involved in the product and for nontensor product smooths
their only model matrix is their single model matrix. The cru-
cial advance over Lang et al. (2014) is the ability to deal with
tensor product smooths efficiently, and to compute the off diag-
onal crossproducts efficiently (between single smooths, tensor
product smooths or a mixture of the two). Our method has the
major advantage over alternative discretization approaches (e.g.,
Helwig and Ma 2016) of discretizing covariates independently
(marginally), rather than discretizing jointly so that the unique
combinations of discretized covariates are stored (or the basis
functions evaluated at those unique combinations). The joint
approach typically requires more storage, and/or coarser dis-
cretization than our fully marginal approach.

An obvious question is how fine a discretization is necessary?
Suppose we discretize n observations of covariate x onto a reg-
ular grid of m values (just covering the x range). In the large
m limit an upper bound on the resulting approximation error
is 0.5m−1 max |g′(x)| where g is the true function we are try-
ing to recover. The sampling error on the estimate of g is at best
O(n−1/2), implying thatm = O(n1/2) ismore than adequate. For
any finite sample analysis the approximation error bound can
be evaluated to check the adequacy ofm. Note however, that for
the black smoke network data, many covariates are already dis-
crete: for example, there are only a finite number of site locations,
site labels and elevations, temperature is only recorded to within
0.1◦C, etc.

5. Black SmokeModel Development

Following the industrial revolution, problems associated with
air pollution worsened in many countries. During the first half
of the 20th century major pollution episodes occurred in Lon-
don, notably in 1952 an episode of fog, in which levels of black
smoke exceeded 4500 μg m−3, was associated with 4000 excess
deaths (Ministry of Health 1954). Other early episodes, which
were caused by a combination of industrial pollution sources
and adverse weather conditions, and resulted in large numbers
of deaths among the surrounding populations, include those in
the Meuse valley (Firket 1936) and the United States (Ciocco
and Thompson 1961). Attempts to measure levels of air pollu-
tion in a regular and systematic way arose as a result of these
episodes. In 1961 the world’s first coordinated national air pol-
lution monitoring network was established in the United King-
dom, to monitor black smoke and sulphur dioxide at around
1000 sites (Clifton 1964). Since then all European countries
have established monitoring networks, some of them run at
the national level, others by local authorities or municipalities,
with the initial focus on black smoke (soot) and sulfur diox-
ide, initially largely from coal burning but shiftingmore recently
to other pollutants. Monitoring has increased in the wake of
national and international legislation and the issuing of air qual-
ity guidelines, but most monitoring networks share features of
the U.K. BS network that challenge the interpretation of the
data for epidemiological and policy purposes: (i) monitoring is
expensive and so monitoring networks are typically sparse and
change over time, (ii) concentrationsmay vary greatly over small
distances, especially in urban areas and (iii) networks designed
tomonitor compliance with standards, may not give a good rep-
resentation of levels over an area. Modeling offers the possibility
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Figure . Semivariograms for the th (top row) and th (bottom row) days of years , , , and , checking for residual spatial autocorrelation. Each plot shows
the empirical semivariogram for the log black smoke measurements as black dots, with the corresponding reference bands under zero autocorrelation as black lines. The
white dots and dotted lines show the equivalent for the residuals of model (). The reduction of the network in later years leads to wide reference bands, but in all plots the
model appears to offer a reasonable representation of the spatial pattern.

to alleviate these problems, at least partially, and our approach
to the U.K. black smoke data should be applicable to other mon-
itoring networks.

In addition to the Black smoke data (Loader 2002), we
obtained daily temperature and monthly rainfall data for the
United Kingdom (Perry and Hollis 2005b, 2005a) to use as
covariates, alongside site elevation (of Terrain-50 2015). Given
the volume of data, our initial exploratory model development
concentrated first on modeling space without time, and then
time without space. In this way we were able to develop can-
didate temporal decompositions (in terms of year, day of year,
and day ofweek), and candidatemodels for covariates and space,
whichwere then combinedwhile allowing space and time effects
to interact.

Our basic approach was first to decompose the black smoke
signal into components dependent on different temporal scales:
year (y) for the long term changes, day of year (doy) for the
annual cycle and day of week (dow) for theworkingweek related
cycle. These are represented by f1 − f3 in model (1). These
effects were all allowed to interact: for example, the weekly pat-
tern could change with time of year, and over longer timescales.
These interactions are f4 − f6 in model (1). We then allowed
the effects of year, time of year and day of the week to vary
spatially (terms f8 − f10), as well as allowing a “main effect”
of space, f7. Elevation and rainfall effects f11 and f14 were also
included alongside effects for site type and a site specific random
effect. Residual analysis for a model including only these effects
suggested strong temperature dependence, with an interaction
of daily minimum and maximum temperatures ( f12). Including
this latter term still left a correlation with mean temperatures at
lags of one and two days, resulting in f13.

Main effects of time were represented using cubic regres-
sion splines for y and cyclic cubic regression splines for doy
and dow. Tensor product smooths (e.g., Wood 2006) were used
for the interactions. In cases in which smooth main effects
and interactions were present, then the interaction smooths
were constructed to exclude the main effects, by the simple
expedient of applying sum-to-zero constraints to the marginal
bases of the tensor product smooth, prior to construction of
the tensor product basis. Space time interaction terms follow

Augustin et al. (2009), that is tensor product smoothers with
isotropic smoothers used for the spatial marginal smooth and
cubic splines for the temporal margin.

Due to the marked reduction in the size of the network
in its last decade, and the uneven spatial coverage, some care
is required in the specification of the two-dimensional spa-
tial smoothers of n and e, to avoid extrapolation artifacts in
later years. We chose to use Duchon splines (see Duchon 1977;
Miller and Wood 2014), using first derivative penalties with
Duchon’s s parameter therefore set to 1/2. The use of first
derivative penalties means that such smoothers are smoothing
toward the constant function, which is a reasonable modeling
assumption for black smoke data in sparsely observed regions.
Duchon splines are the general class of splines introduced in
Duchon (1977) of which the popular thin plate spline is a spe-
cial case: seeMiller andWood (2014) for an accessible introduc-
tion. For comparison we also tried Gaussian process smoothers
with a Matérn covariance function following Kammann and
Wand (2003) and Handcock, Meier, and Nychka (1994), as well
as thin plate splines, but in both cases basic model checking
revealed artifacts in model predictions toward the end of the
data. The online supplementary material includes an animation
of predicted log black smoke, clearly illustrating such artifacts
for the thin plate spline based model (the equivalent animation
for the Duchon spline based model is also included).

Given our interest in using the model for prediction away
from the stations, we aimed to keep the station specific ran-
dom effects structure of the model as simple as possible, how-
ever it proved impossible to achieve an adequate fit without any
random effects at all, and the model therefore includes a sin-
gle random intercept term per station, reflecting the individual
idiosyncrasies of station locations not captured by the available
covariates.

Model adequacy was checked using standard residual plots,
as well as autocorrelation function plots and semivariogram
plots to check for unmodeled spatial and temporal correlation.
Figures 2 and 3 show such plots for model 1, showing that
the model does a reasonable job of capturing spatial and tem-
poral correlation, in the data. Further plots are shown in the
online supplementary material. To illustrate the importance of
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Figure . Aggregate ACF for model () residuals assuming independent residuals
in gray, with the equivalent for the standardized residuals assuming AR residuals,
overlaid in black. While not perfect, the AR model greatly reduces the unmodeled
temporal autocorrelation.

the weather variables and site-specific random effects, models
were fitted without these leading to AIC increases of 1.6× 106
and 2.4× 106 formodels without weather variables and the ran-
dom effect, respectively (the corresponding r2 reductions were
approximately 2% and 1%).

A concernwith these data is that they show evidence of a type
of preferential sampling (Shaddick and Zidek 2014): as the net-
workwas reduced over time,monitors in areas of low concentra-
tionsweremore likely to be dropped than those in high pollution
areas (note that this is different in nature to preferential sam-
pling considered by Diggle, Menezes, and Su (2010), for exam-
ple). If we had a perfectmodel without penalties (smoothing pri-
ors) then this preferential sampling might reduce efficiency but
would not introduce bias. However, when using penalties there
is a danger that the reduction of the network so reduces the cov-
erage over some space-time regions that the model predictions
for these regions are dominated by the influence of the penalty. If
the network reduction is subject to preferential sampling, then it
is possible that these space-time regions are systematically those
in which pollution is actually lowest, and that the reliance on the
penalty/prior then introduces systematic positive bias.

To investigate the potential for such effects, we fitted a
reduced model (1) to the data from the year with the most
complete spatial coverage, 1967, dropping all terms involving
long-term effects of time. We also dropped the temperature
and rainfall effects, to force the spatial effects to do as much
of the explanatory work as possible. Using the actual network
design (i.e., with stations added and dropped over time), we
then simulated from a model in which the 1967 fitted model

spatiotemporal pollution fields were repeated each year, but
with a long-term decay matching the full dataset. Station-
specific random effects were added with standard deviations
as estimated from our fit of (1) to the full dataset. Further
details are given in the online supplementary material. So our
simulated data comes from a “truth” that maintains a degree of
spatiotemporal complexity driven by the most “spatially com-
plete” year throughout the simulated dataset, and in which the
sampling is given by the real network evolution and, therefore,
preferentially drops stations from low pollution regions of the
simulation. We then fitted the complete model (1) to the simu-
lated data, and examined its ability to reconstruct the simulated
“true” pollution field at each of the locations of stations present
in 1967, throughout the whole modeling period (i.e., without
any drop out). If our model is sensitive to the preferential
sampling evident in the network evolution, then we should
be able to detect a positive bias in the full model predictions,
which would be likely to grow over time. In fact we can only
detect a very small constant bias of about 0.006 on the log scale
(corresponding to a 0.6% bias on the original scale). There is
no evidence for a trend in the bias: the online supplementary
material includes a plot illustrating this and a fuller discussion.

5.1. Results and Predictions

The model (1) has a conditional r2 of 0.79 (i.e., treating the AR
process as induced by a random field), and a marginal r2 of 0.7
(i.e., ignoring the auto-regressive structure of the residuals). The
online supplementary material includes an animation showing
the evolution of the predicted spatial pollution field over time.
Careful examination shows some artifacts in the fields, usually
in coastal regions away from observation stations, but otherwise
the results appear reasonable, predicting high pollution levels in
the industrial centers especially in the first decade or so, gener-
ally showing cleaner air in wetter regions, and tending to show
an annual cycle reflecting higher fossil fuel use in the winter.

In this section we illustrate the model results with two sets of
plots examining how the chance of exceeding current daily rec-
ommended limits (213μg m−3) has changed over time. Figure 4
shows the log of the number of days for which levels are pre-
dicted to exceed the daily limit, for a town center location, for
several years in the 1960s. These figures are obtained by simply
counting up predicted exceedance days by 5 km2.

Figure . Image plots of log predicted number of days exceeding the EU daily exposure threshold for town center locations for several years in the s. By  there
were essentially no exceedance days predicted.
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Figure . Imageplots of log averageprobability of exceeding the EUdaily exposure threshold for town center locations for several years in the s. Red is - corresponding
to less than one exceedance day expected per year, while the top of the scale is .

An alternative is to compute the average posterior probabil-
ity of the mean exceeding the recommended level using the pre-
dicted level and its standard deviation, based on (7). Figure 5
shows such a plot. Broadly both figures show the same pattern,
with the situation improving rapidly in London in the wake of
the U.K. Clean Air Acts, but taking much longer to improve in
the cold northern industrial conurbations.

6. Discussion

Our development of scalable additive model fitting methods
rests on three innovations: (i) the development of a fitting
method which required only basic easily parallelized matrix
computations and a pivoted Cholesky decompostion; (ii) the
use of a scalable parallel block pivoted Cholesky algorithm; and
(iii) an efficient approach to model matrix storage and compu-
tations with the model matrix, using discretized covariates. The
approach allows much larger additive/latent Gaussian process
models of much larger datasets than has hitherto been feasible,
and is general enough for routine use (see R package mgcv). For
the black smoke modeling, fitting is three orders of magnitude
faster than we could have achieved otherwise.

The three method innovations are interlinked so that cleanly
attributing elements of the speed up to each separately is not
really possible. However, model fitting time increases from
around 55 min to over 7.5 hr if we use a single core, instead of
12 (CPU turbo modes disabled to aid comparability). Using the
new method, profiling reveals that the time spent on the matrix
crossproduct is approximately equal to the time spent on the
other method steps, for the black smoke model. From the oper-
ations counts in Appendix A the crossproduct is around a factor
of 102 less floating point intensive using the new discrete meth-
ods relative to direct crossproduct formation, while the sublead-
ing order cost of basis function evaluation is up to 104 times
less costly. Similarly the leading order costs of each smooth-
ing parameter update can be compared. TheWood, Goude, and
Shaw (2015) method requires approximately 40 times the float-
ing point operations per smoothing parameter update, due to
O(p3) costs per smoothing parameter, coupled with a symmet-
ric eigen decompositon and several QR steps. Hence, all three
components of the new method are required to achieve the
observed efficiency gains.

For discretization we chose to generalize the approach of
Lang et al. (2014), rather than attempt to use the grid-based

approach of Currie, Durban, and Eilers (2006). This is largely as
a result of the very irregular nature of our “grids”: for example,
the approach here avoids having to compute anything that will
then be given zero weight as a result of data being missing at a
grid node.However, our smoothing parameter selectionmethod
should be directly applicable tomodels fit using the Currie, Dur-
ban, and Eilers (2006) approach (unlike, e.g., the approach of
Wood (2011)).

The Black smoke model presented here is the first successful
attempt tomodel these data on a daily basis over several decades,
and offers a basis for estimating daily exposures for use in ret-
rospective cohort studies, for example. While a major advance,
we do not believe that this model is definitive. For example, the
only meteorological variables available to us on a daily basis
were temperature, and the fact that we are forced to usemonthly
rainfall data offers an obvious area for improvement. The model
as it stands shows some artifacts in coastal areas that we are
working to improve. Another obvious deficiency is the lack
of any pollution source data. One might expect substantial
improvements if fine scale data on coal and diesel use were avail-
able as predictors.

The method is implemented in the bam function of R pack-
age mgcv from version 1.8-9, and is invoked via bam argu-
ments discrete and nthreads. The black smoke data are
available from the first author’s web page (http://www.maths.
bris.ac.uk/∼sw15190/).

A. Methods for Discretized Covariates

This section describes the algorithms required to compute effi-
ciently with marginally gridded covariates in detail. The idea is
that we have a model matrix X = (X0 : X1 : · · · ). Each X j repre-
sents either a single smooth, or a tensor product smooth (e.g.Wood
2006). In the case of a single smooth

Xj(i, l) = X̄ j(k j(i), l), (9)

where X̄ j is an mj × p j matrix evaluating the smooth at the corre-
sponding gridded values. For a tensor product

X j = M j
0 �M j

1 � · · ·M j
d j−1Q

j,

where M j
k are marginal model matrices and Q j is a con-

straint matrix, usually imposing a sum to zero constraint over a

http://www.maths.bris.ac.uk/~sw15190/
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representative subset of the data. � denotes the Kronecker prod-
uct (⊗) applied row-wise (i.e., one row at a time). In this case the
marginal model matrices are stored in compact form:

Mj
l (i,m) = M̄ j

l (k
j
l (i),m).

The following algorithms are most efficient if tensor product terms
are always arranged so that the marginal model matrix with the
most columns is last, but this can be achieved by automatic
rearrangement.

Note that in principle covariates could be discretized jointly onto
a multidimensional grid, so that we store the unique combinations
of covariates, rather than storing the unique covariate values inde-
pendently. With the joint scheme the cross product XTWX is easy
to compute. If X̄ and W̄ contain the unique model matrix rows and
corresponding unique weights, respectively, while N̄ is the diago-
nal matrix containing the number of occurrences of each now of X̄
in X then XTWX = X̄TN̄W̄X̄. The problem is that the number of
unique combinations of covariates, and hence number of rows of X̄
can be very large, unless very coarse discretisation is used. Hence
the requirement for the methods of this appendix.

A variant of the scheme is required when the model contains
terms of the form

∑
k f j(zik)Lik = 
 j{ f j(vec(z))� vec(L)} =


 j{X̃� vec(L)}β, where


 j =
⎛
⎝ 1 0 . . . 0 1 0 . .

0 1 0 . . . 0 1 0 .

. . . . . . . . . .

⎞
⎠ .

If z is n×m, then 
 j is n× nm, and the index vectors must be of
length nm, which is also the number of rows in X̃ (themodel matrix
for f j(vec(z))). The regular case corresponds to 
 j = I. Note that
an L term can be treated as an extra single column tensor product
marginal. A1, A2, A5 andA6, below, simply require
 j to be applied
as the final step, while A3 and A4 require the extra work detailed.

The matrix products required in fitting require the following
basic algorithms.

A1 Extraction of a single column of a single term X j uses (9) at
O(n) cost.

A2 Extraction of a single column of a tensor product term X j .
Let pk denote the number of columns of M j

k, and qk =∏d j−1
i=k+1 pi, with qdj−1 = 1. Then

Xj(i, l) =
d j−1∏
m=0

M̄ j
m(km(i), jm)

where the jm are defined by the following recursion. q−1 =∏d j−1
i=0 p j , j′−1 = j, then iterate from i = 0: qi = qi−1/pi,

ji = � j′i−1/qi�, j′i = j′i−1 mod qi. The cost of thewhole col-
umn is O(ndj).

A3 Single term XT
jy.

XT
j y = X̄T

j ȳ where ȳl =
∑

k j (i)=l
yi,

which has cost O(n)+ O(mjp j). If 
 j �= I then

ȳl =
∑

k j (i)=l
(
T

jy)i,

where the latter is readily computable without explicit for-
mation of 
Ty.

A4 Tensor product term v = XT
jy at costO(np̄)+ O(mdj−1p j).

Let pk be as in A2 and p̄ =∏d j−2
i=0 pi. Then repeat the fol-

lowing for l = 0 . . . p̄− 1.
1. Extract column l of A = M j

0 �M j
1 � · · ·M j

d j−2 � y
using A2 (without 
 j).

2. Form v(l pd j : (l pd j + pdj − 1)) = MT
d j−1A(:, l) using

A3 (with 
 j , if present).
3. Set v← QT

jv
A5 X jβ for single term. (X jβ)(i) = (X̄ jβ)(k j(i)). Cost

O(mjp j)+ O(n).
A6 f = X jβ for tensor product term. Notation as A4. Let B

be pdj × p̄ such that vec(B) = Q jβ. Let C = M̄d j−1B, and
A = M j

0 �M j
1 � · · ·M j

d j−2. Then repeat the following for
l = 0 . . . p̄− 1.
1. Extract column j of A using A2 (without 
 j).
2. For i = 0 . . . n− 1 f (i)← f (i)+C(kdj−1(i), j)A(i, j).

The formation ofXT
jWXk then uses these basic algorithms as fol-

lows. First, if the finalmarginal of k hasmore columns than the final
marginal of j then form XT

kWX j and transpose (a single smooth is
its own marginal, of course). This maximizes efficiency, since the
factor saved relative to direct formation is the dimension of the
largest final marginal. The algorithm is then as follows.

1. For i = 0, . . . , pk − 1 . . .

(a) Extract Xk(:, i) using A1 or A2 as appropriate.
(b) FormWXk(:, i).
(c) Form XT

jWXk(:, i) using A3 or A4 as appropriate.
2. If the Xk is a tensor product then we may need to update

XT
jWXk ← XT

jWXkQk

Q is usually implemented as a singleHouseholdermatrix, so that
multiplication byQ is an efficient rank one update. Step one is easily
parallelized using openMP (OpenMP Architecture Review Board
2008). Finally note that it is easy to substitute W with a banded
matrix, such as the tri-diagonal precisionmatrix implied by an AR1
residual error model.

Prediction from the fitted model can use A5 and A6, but the
computation of prediction variances also requires that we compute
diag(XVXT)whereV is a covariance matrix. This computation can
also be built from A5 and A6 using the fact that

diag(XVXT) =
∑
i

XV(:, i)� X(:, i).

Supplementary Materials

The supplementary material contains further information on the data,
model checking and preferential sampling. In addition, gigam2-AppBC.pdf
contains appendices B and C of the paper, on covergence properties and
parallel computing issues. Finally files tps.mp4 and duchon.mp4 contain
movies showing the fitted model predictions for the whole UK.
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