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Abstract. Starting from a Langevin equation with memory describing the attraction of a particle to a

center, we investigate its transport and response properties corresponding to two special forms of the

memory: one is algebraic, i.e., power-law, and the other involves a delay. We examine the properties

of the Green function of the Langevin equation and encounter Mittag-Leffler and Lambert W-functions

well-known in the literature. In the presence of white noise, we study two experimental situations, one

involving the motional narrowing of spectral lines and the other the steady-state size of the particle under

consideration. By comparing the results to counterparts for a simple exponential memory, we uncover

instructive similarities and differences. Perhaps surprisingly, we find that the Balescu-Swenson theorem

that states that non-Markoffian equations do not add anything new to the description of steady-state or

equilibrium observables is violated for our system in that the saturation size of the particle in the steady-

state depends on the memory function utilized. A natural generalization of the Smoluchowski equation for

the time-local case is examined and found to satisfy the Balescu-Swenson theorem and describe accurately

the first moment but not the second and higher moments. We also calculate two-time correlation functions

for all three cases of the memory, and show how they differ from (tend to) their Markoffian counterparts

at small (large) values of the difference between the two times.
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1 Introduction

The time evolution of the probability density of a particle attracted to a center via harmonic forces while being

simultaneously subjected to white Gaussian noise is of interest in a large variety of contexts. The label Ornstein-

Uhlenbeck is attached to the system or process under such situations and the governing equation is said to be the

Smoluchowski equation. It is ubiquitous in statistical mechanics [1,2] and, in a one-dimensional system takes the form

∂P (x, t)

∂t
=

∂

∂x

(
γxP (x, t) +D

∂P (x, t)

∂x

)
(1)

where γ measures the rate of attraction to the fixed center and D is the diffusion constant. Its solutions are well-

known as being essentially identical to those of the simple diffusion equation (no attractive center) provided the time

t itself undergoes a saturation transformation via the Ornstein-Uhlenbeck prescription: t→ (1− e−2γt)/2γ. The word

“essentially” refers here to the fact that initial conditions dictate in this context an extra term not present in the

diffusion equation. The term decays at the rate γ in a well known way.

Our interest in the present paper is in systems in which the attraction to the center proceeds via a time-nonlocal

process. Memory-possessing Langevin equations have come under investigation in various unrelated contexts in the

past, but it is appropriate to say that modern work on the topic appears to have begun with Budini and Cáceres [3].

In a report with far-reaching conclusions, they studied generalized Langevin equations producing many interesting

results, but restricted their investigations primarily to the exponential memory, focusing on various kinds of non-

Gaussian noise including radioactive, Poisson, and Abel noise. They touched upon algebraic memory using fractional

derivatives but assumed zero dissipation in their analysis, i.e., γ = 0. In a more recent study, they analyzed stationary

properties of Langevin equations with memories of the algebraic and delay type [4] as did Drozdov [5] using functionals

to characterize various noise distributions. There is also an intriguing report in the literature by Fiscina et. al. [6] of

related ideas to the behavior of vibrated granular material: they found that the observed asymptotic spectral density

could be well described using a Langevin equation with fractional derivatives. Work exploring the dynamic behavior of

a non-Markoffian Langevin equation was reported by Bolivar [7] for arbitrary Gaussian noise correlation functions with

a focus on the differentiability of the displacement. A path integral analysis of a Langevin equation with exponential

memory has also appeared [8]. Fractional derivatives have been used [9] to introduce what are in essence memory

effects into fractional probability density equations. General expositions of the subject that have been highly useful

for a number of years are available in various articles [10,11,12,13].

As is well known, stochastic analysis may be undertaken either via Langevin equations or via what has often been

called a formalism based on Fokker-Planck equations. The former are ordinary differential equations for stochastic
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variables. The latter are partial differential equations for the deterministic probability density of those variables, an

average of the stochastic variables carried out with the help of the probability density leading to expectation values.

In the present paper, except for a discussion leading into the problem as well as an interesting observation at the

end of the analysis, we will not use Fokker-Planck equations. A number of subtleties and controversies appear in the

discussion of Fokker-Planck equations and we plan to address them in a separate publication. Our focus in the present

paper will be entirely on the Langevin approach: the ordinary differential equation for the basic stochastic variable

under consideration is solved explicitly for the given memory and noise, and the desired function of the variable, for

instance an arbitrary power, is averaged taking into account the properties of the noise.

Thus, our general interest is in treating systems in which the Langevin equation for the coordinate xi of the ith

particle is

dxi(t)

dt
= −γ

∫ t

0

dt′ φ(t− t′)xi(t′) + ξi(t), (2)

where ξi(t) denotes the noise and φ(t) is the memory function. The case when the memory is a δ-function, i.e., when

the Langevin equation is time-local, corresponds to (1). Our specific interest is in two forms of the memory: algebraic,

i.e., power law, and incorporating a delay, as we will explain below.

One example of how non-local (in time) Langevin equations may come about in physical processes is provided by

a scenario in which one refrains from making the high-damping approximation in the Langevin equation. Normally,

as a result of Newton’s law, the latter is a second order equation for the time dependence of the particle coordinate

x. If the damping is very strong, the normal practice is to reduce it to a first order equation by neglecting the inertial

term. If the inertial term is kept intact, both variables, the coordinate x and the velocity v, are typically treated on

an equal footing. An alternative, viable when observables dependent only on the coordinate (and not the velocity) are

of interest, is to stick to a one-variable description but to introduce a memory function relating the time derivative

of x to an appropriate function of x. Such a situation has been discussed in a recent review of the mathematics of

animal motion by two of the present authors [14]. The origin of the memory function or of time-nonlocality would be,

in this case, the incorporation of inertial terms. A quite different source of time-nonlocality is finiteness of the speed

of propagation of signals that are related to the attraction process. Examples may be found in delay formalisms as

in a study of Alzheimer walks [15] and a recent analysis of pairwise movement coordination [16] applicable, e.g., to a

system of foraging bats [17].

Although we will not use Fokker-Planck equations for our analysis, we will begin our considerations with the

Smoluchowski equation (1). We do this because it is easy to introduce our task in that manner and also because there

has been a lot of recent activity on that equation. Thus, an analysis has shown [18] how the Smoluchowski equation
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may be applied to trapping situations and a recent application to the spread of epidemics has been made [19] leading

to an interesting description of the transmission of infection in diseases such as the Hantavirus [20].

The rest of the paper is laid out as follows. We first show in the next section why an intuitively natural memory

generalization of an equation such as (1) does not work. We place our full focus therefore on the Langevin equation with

memory. We are generally interested in biological processes far from thermodynamic equilibrium. The near-equilibrium

requirement of fluctuation-dissipation relations between the noise and the memory then need not apply. To facilitate

calculations we take the noise to be white. Although this restriction is not essential, we limit ourselves to this case

on one hand because of its general usefulness in providing insights into a variety of biological systems [21] ranging

from physiological [22,23] to ecological scales [24], and on the other hand because of the already rich scenario that we

uncover even when the noise is not colored. In sections 3 and 4 respectively, we obtain explicit usable prescriptions,

specifically for algebraic and delay-type memories in the Langevin equation. We find the Green function for the case

of an algebraic memory to be the Mittag-Leffler function. In the case of a single delayed delta function, it is associated

with the Lambert function. A regime in which there is a monotonic decrease on the one hand and decaying oscillations

on the other is found in each of the two Green functions. This is precisely the behavior shown by the simple and well

understood case, for instance for a damped harmonic oscillator, when the memory is an exponential.

We discuss in Section 5, two applications of our results in the context of two specific experiments that could be

performed on our system in principle. The first is about motional narrowing in the frequency-dependent susceptibility

of our system wherein the particle is charged and a time-periodic electric field is applied. The second queries the

steady-state size of the system as measured by the mean square displacement of the particle around its fixed center

under the combined action of the time-nonlocal attraction and the diffusion. Comparison of the results for the three

memories considered, the algebraic, the single delay, and the simple exponential, brings out interesting similarities

and differences. In the discussion which constitutes Section 6, we analyze a natural but incorrect generalization of the

Smoluchowski equation yet find the remarkable result that its predictions are correct in the context of the first of the

two envisaged experiments.

Contexts in which the analysis presented in this paper should find applicability are, generally speaking, biological

systems far from equilibrium. These include movement of animals having a preference to places visited in the past [25]

and various versions of what has been called in the mathematical literature ‘self-reinforced random walks’ as are met

in Alzheimer-related investigations [26]. The complexity of the biological nature of the systems involved necessitates

a memory description at the Langevin level and the fact that we are not necessarily near equilibrium suggests that
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a fluctuation-dissipation relationship between the memory and the noise need not apply making our simplification of

Gaussian noise a useful first step in the analysis.

2 Viable route for the Description of Memory Effects

The temptation to generalize the Smoluchowski equation, (1), to incorporate memory effects present in its Langevin

equation as in (2), by making (1) itself nonlocal in time is natural but meets with the following problem. Let us,

in addition to the coordinate xi(t), define the velocity of the ith particle at time t as vi(t) = dxi(t)/dt, the latter

being given as a stated function of xi(t). The obvious manner of transforming from a particle description to a field

description in the space of the field variable x is to begin with the microscopic definitions of the (probability) density

P (x, t) and the current density j(x, t),

P (x, t) =
∑
i

δ(x− xi(t)),

j(x, t) =
∑
i

dxi(t)

dt
δ(x− xi(t)),

and to obtain the continuity equation as a consequence:

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0. (3)

One then expresses the x-derivative of j(x, t) by replacing xi(t), wherever it occurs, by x given that δ(x − xi(t)) is

present as a multiplying factor. This allows us to combine the continuity equation with the specific relation between

vi(t) and xi(t) that forms the constitutive relation, and thereby to obtain the Smoluchowski equation. Specifically, for

the simple time-local case in the absence of noise,

vi(t) ≡
dxi(t)

dt
= −γxi(t). (4)

Needless to say, this is the high-friction (sometimes referred to as the Aristotelian) limit corresponding to the time-

local approximation to the Langevin equation. If standard procedures [27] are now used to derive the diffusion term

from the noise in the Langevin equation, one obtains (1). This description may be found for instance in the textbook

by van Kampen [28].

However, if the Langevin equation has memory effects as in (2), xi(t) cannot be replaced by x in the t-nonlocal

velocity equation, (2). The connection is to values of x occupied by the ith particle at all times in the past. It is

then impossible to replace xi(t
′) for all t′ by x: the delta-functions in x do not allow xi(t) to be replaced by x. This
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technical failure to arrive at non-Markoffian field equations is a direct consequence, inevitable at least at this level, of

the memory nature of the interaction.

A viable route to the description of memory effects lies, however, in refraining from a generalization of (1) and

in restricting one’s attention entirely to the Langevin approach. There are in the literature a number of discussions

centered on probability density evolution [29,30,31,32]. For instance, for the specific case of Gaussian white noise, a

Fokker-Planck like equation of the Smoluchowski form results. San Miguel and Sancho [32] address a system consisting

of a Brownian harmonic oscillator with finite inertia. Involved is a second-order linear Langevin equation subject to

an additive Gaussian stochastic forcing. Although their derivation is specifically performed for the Brownian harmonic

oscillator and results in an exponentially decaying memory kernel,

φ(t) = be−bt, (5)

it can be easily generalized to any arbitrary linear memory kernel. The b in (5) obeys γb = ω2, the square of the

oscillator frequency.

Let us avoid the probability density treatments and start from (2). Since there are no inter-particle interactions,

we consider a single particle and drop the label i without loss of generality. Let λ(t) be the Green function of the

homogenous (without noise) part of (2). An immediate consequence of (2) is

λ̃(ε) =
1

ε+ γφ̃(ε)
. (6)

in the Laplace domain: tildes denote Laplace transforms and ε is the Laplace variable. This result leads to the solution

of (2) in the time domain as

x(t) = λ(t)x(0) +

t∫
0

dt′λ(t− t′)ξ(t′). (7)

From here onwards, we only consider systems in which the noise ξ(t) has zero mean, 〈ξ(t)〉 = 0, and is white, which

means that 〈ξ(t)ξ(s)〉 = 2Dδ(t − s) where the constant D describes the strength of the noise. Expectation values of

arbitrary powers of x at a specified time can be calculated explicitly, making the reasonable additional assumption

that the noise is uncorrelated also with the initial value of the observable. The result for the average displacement and

average square of the displacement is

〈x(t)〉 = x0λ(t), (8)

〈∆x2(t)〉 = 〈x(t)2〉 − 〈x(t)〉2 = 2D

t∫
0

dsλ2(s), (9)
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where we take the (localized) initial condition as x(0) = x0. In light of the fact that Eq. (2) already has t = 0 as

a special instant at which the memory is initialized, we observe that there are now two, generally different, times 0

and t0, the latter being the time at which 〈x(t0)〉 is first measured, e.g., the initial observation time. For the sake

of simplicity, we have used t0 = 0; in general the two times may well be different. For non-Markoffian processes, the

general case for which the two times are different leads to interesting subtleties which we do not analyze in the present

work. In the second line we have displayed the difference of the average of the square of the displacement and the

square of its average. We represent it by the symbol 〈∆x2〉 and refer to it, rather than to 〈x2〉, as the mean square

displacement (MSD). Expectation values of two-time quantities such as the correlation function 〈x(t)x(s)〉 can also be

obtained straightforwardly:

〈x(t)x(s)〉 = x20λ(t)λ(s) + 2D

s∫
0

dt′λ(t− t′)λ(s− t′), (10)

f(t, s) ≡ 〈x(t)x(s)〉 − 〈x(t)〉〈x(s)〉 = 2D

s∫
0

dt′λ(t− t′)λ(s− t′). (11)

The above results do not require that the noise be Gaussian. If, however, it is known to be Gaussian we can also write,

for arbitrary powers of the displacement,

〈xn(t)〉 =


∑p
m=0

(2p)!
(2m)!(p−m)!

〈
x2m0

〉
λ2m(t)

(
D
∫ t
0
dsλ2(t)

)p−m
even n (p ≡ n

2 ),

∑p
m=0

(2p+1)!
(2m+1)!(p−m)!

〈
x2m+1
0

〉
λ2m+1(t)

(
D
∫ t
0
dsλ2(t)

)p−m
odd n (p ≡ n−1

2 ),

and thereby solve the entire problem on the basis of the Gaussian property.

3 Algebraic Memories in the Langevin Equation

The family of algebraic functions provides a useful case study of the class of memories that cannot be approximated

via a Markoffian procedure. The latter means the replacement of φ(t) for long times by a delta-function in t of strength∫∞
0

dtφ(t). We consider such memories as our starting point for the present section:

φ(t; ν) =
α(αt)ν−1

Γ (ν)
. (12)

Here α is a positive constant with units of inverse time and Γ (ν) provides the appropriate normalization. We analyze

the Green function λ(t).
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The Laplace transform1 of (5), and insertion into (6), gives the Laplace domain Green function as,

λ̃(ε; ν) =
1

ε+ γαν

εν

=
εν

εν+1 + γαν
=

1

ε
(
1 + γαν

εν+1

) , (13)

which is the Laplace-domain representation of the Mittag-Leffler function of one parameter, written in usual notation

as Eν+1(−γανtν+1) [34]. In the time domain, setting γαν ≡ ζν+1, this results in the series,

λ(t; ν) =

∞∑
n=0

[
− (ζt)

(1+ν)
]n

Γ (n(1 + ν) + 1)
. (14)

This expression is derived through a binomial expansion of the denominator in (13). One obtains a formal series in

increasing powers of (ζ/ε)1+ν . A term-by-term inverse Laplace transform of this formal series results in (14) for all

ν > −1. The resulting series converges for all finite times.

For the parameter range of interest, the Green function we have calculated shows three interesting types of behavior.

The first is an overdamped decay, ν ∈ (−1, 0), the second is underdamped oscillations, ν ∈ (0, 1), and the third unstable

oscillations, ν ∈ (1,∞). We depict λ(t) for the cases of overdamped decay (left) and underdamped oscillations (right)

in Fig. 1 over 16 dimensionless time units ζt. The overdamped regime exhibits sharper initial decays, but longer tails,

as the value of ν is made more negative. Both, the amplitude of oscillation and the time for which they persist,

increase for increasing ν in the underdamped regime. The value of dλ(t)/dt at t = 0 changes discontinuously when ν

approaches 0 from either direction. For positive values of ν it vanishes. For negative values it tends to infinity. This

behavior is sharply different from that in the case of the simple exponential memory characteristic of the damped

harmonic oscillator. For the latter, dλ(t)/dt at t = 0 always vanishes. Not shown are the unstable oscillations for values

of ν > 1. Three special values exist. For ν = −1, we have standard Brownian diffusion, i.e., a Wiener process or an

unconfined random walk. For ν = 0, we have the standard Smoluchowski equation, the Ornstein-Uhlenbeck process.

For ν = 1, we have pure oscillations with no damping.

A second representation of λ(t) is found by explicitly closing the Bromwich contour. For all non-integer values of

ν, (13) has at least two singularities of interest: branch points at zero and infinity, connected by a branch cut chosen

to be along the negative real axis. This choice of branch cut is made to restrict the domain of ε to the Riemann sheet

with | arg(ε)| < π. Additionally, simple poles exist for all relevant values of ν at the points ln(ε) = ±i(1+2m)π/(ν+1)

where m is an integer greater than zero. However, not all fall on the relevant Riemann sheet. When ν < 0, there are

no additional simple poles. As ν passes through each successive even integer, two additional poles move on to the

1 The Laplace transform of (12) only exists for ν > 0. However, the form of the Laplace-domain noiseless Green function,

(13), suggests extending the domain of validity to ν ≥ −1. In this range, the Green function is unity when t = 0 (except for

ν = −1 where λ(t) = 1/2).
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Fig. 1. The noiseless Green function, λ(t), for varying ν in (14) over the overdamped (left) and underdamped (right) regimes in

the range [−0.8,−0.2] and [0.2, 0.8] in steps of 0.2. Time is plotted in units of 1/ζ. As ν is made more negative, λ(t) approaches

0 more slowly. As ν is made more positive, the amplitude of the oscillations increases and they last longer.

relevant Riemann sheet. Therefore, the Bromwich integral of (13) can be performed to quadrature and results in

λ(t; ν) = − sin νπ

π

∞∫
0

dre−rζt
rν

r2(ν+1) − 2rν+1 cos νπ + 1

+



0 −1 < ν ≤ 0

2
ν+1e

−ζt cos νπ
ν+1 cos(ζt sin νπ

ν+1 ) 0 < ν ≤ 2

2
ν+1

[
e−ζt cos

νπ
ν+1 cos(ζt sin νπ

ν+1 ) + e−ζt cos
3νπ
ν+1 cos(ζt sin 3νπ

ν+1 )
]

2 < ν ≤ 4

(15)

where λ(0; ν) equals 1 for all ν. The integral in (15) is the Laplace transform of a positive definite function and, for

non-integer values of ν, is therefore non-negative at all times. As mentioned previously, additional exponential terms

become relevant as ν is increased further.

We have given two separate representations of λ(t) in the time domain: the series, (14), and the integral expression,

(15). These are compared in Fig. (2), over a range of approximately 30 dimensionless time units for 2 values of ν in

each regime, ±0.1 and ±0.9. The two representations match up well over shorter time periods. However, at longer

times, the numerical implementation of the series leads to divergent results as a consequence of round-off errors.

The integral in (15) is not reducible in terms of known functions for arbitrary ν. For the particular case of

ν = m+ 1/2, where m is an integer, a transform of u = r1/2 simplifies the integrand to

(−1)m+1 2

π

∫ ∞
0

due−u
2ζt u2(m+1)

u2(2m+3) + 1
.
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Fig. 2. Depicts the integral representation and the series representation of the Green function, λ(t), over short times for the

overdamped regime (left) and the underdamped regime (right) for ν = ±0.2,±0.8. The series representation is indicated by

dots and the integral representation by solid lines. At approximately 30 dimensionless time units ζt, the series begins to diverge

as a result of numerical round-off results.

The denominator of this integral is easily factorable into the (2m + 3)th roots of 1. This results in the standard

integral representation of the Faddeeva function, w(iz) = erfcx(z), which corresponds to the scaled error functions

with complex arguments [35]. We give here the ν = −1/2 (m = −1) and ν = 1/2 (m = 0) cases:

λ

(
t;−1

2

)
= eζterfc

(
(ζt)

1
2

)
, (16)

λ

(
t;

1

2

)
= e−

ζt
2 cos

3
1
2 ζt

2
+ w

(
i(ζt)

1
2

)
− w

(
i
(
ζte

i2π
3

) 1
2

)
− w

(
i
(
ζte−

i2π
3

) 1
2

)
. (17)

The long-time behavior of the Mittag-Leffler function, valid for non-integer values of ν in the region (−1, 1), is well

known [34],

λ (t→∞; ν) = −
p∑

n=1

1

Γ [1− n(ν + 1)]

[
−1

(ζt)(ν+1)

]n
+O(t−p(ν+1)). (18)

We see that an algebraic memory results in an algebraic time-dependence of λ(t) at long times. The dominant term

in the series, proportional to 1/ (ζt)
1+ν

, leads to a decay which is stronger when ν is larger. In the underdamped

regime, the leading term of (18) is negative. Therefore, at long times, λ(t) approaches zero from below, confirming the

existence of at least one minimum. This term is positive for the overdamped regime. The correspondence between the

long-time approximation, (18) with 5 terms, and the full propagator is depicted in Fig. 3 for 6 values of ν: ±0.1, ±0.5,
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Fig. 3. Comparison at long times of the integral expression, (15), of the noiseless Green function (solid line) with its series

approximation (dashed line), (18). The latter consists of the first 5 terms for 3 values of ν, 0.1 (left), 0.5 (center), and 0.9 (right)

over differing time ranges.

±0.9. The long-time approximation does not lead to oscillations, rather to an overall decay towards 0. For smaller

values of |ν|, the approximation becomes valid at earlier times.

Thus, the algebraic memory leads to a noiseless Green function that corresponds exactly to the Mittag-Leffler

function. Three separate regimes emerge: overdamped decay, −1 < ν ≤ 0, underdamped oscillations, 0 < ν < 1, and

unstable oscillations, ν ≥ 1.

4 Memories that Represent Delay Processes

We now focus on the particular case of a memory which selects only one time τ in the past via a Dirac-delta centered

at τ . In other words,

φ(t) = δ(t− τ). (19)
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To avoid dealing with a piece-wise process, i.e. Wiener dynamics for 0 ≤ t < τ , and delayed dynamics for t ≥ τ , we

extend the range of integration in the Langevin equation, (2), back in time to −τ < 0 and consider,

dx(t)

dt
= −γ

∫ t

−τ
ds φ(t− s)x(s) + ξ(t), (20)

such that at time t = 0 the evolution of x is now dependent on the history of x between t = −τ and t = 0. After

inserting φ(t) = δ(t− τ) in (20) one recognizes that the system is governed by the stochastic delay Langevin equation,

dx(t)

dt
= −γx(t− τ) + ξ(t), t > 0

x(t) = Φ(t), − τ ≤ t < 0, (21)

where Φ(t) is a given deterministic history function. To solve this stochastic delay differential equation we use the

Laplace transform and obtain [36]

x(t) = x(0)λ(t) +

∫ t

0

ds λ(t− s)ξ(s)− γ
∫ 0

−τ
ds λ(t− s− τ)Φ(s), (22)

which is formally equivalent to (7), with the additional term representing the history-dependence. In (22) the Laplace

transform of the Green function λ(t) is given by,

λ̃(ε) =
1

ε+ γe−ετ
. (23)

We now turn to the analysis of single delay processes.

The analytic calculation of λ(t) from (23) has been performed independently or repeated by a number of authors [15,

16,37,38,39] following different methods. Using Cauchy’s residue theorem one can write λ(t) as

λ(t) =
∑
Res

eεt

ε+ γeετ
, (24)

where the summation is over the residues. The poles of λ̃(ε) are the roots, η, of the characteristic equation, η+γe−ητ = 0,

which can be written in the form ητeητ = −γτ . This latter transcendental equation corresponds exactly with the inverse

relationship, W (z)eW (z) = z, defining the so-called Lambert function, W (z) [40,37]. By direct comparison we see that

the roots of the characteristic equation for the single delay process are given by the multivalued Lambert function,

η =
1

τ
W (−γτ). (25)

Given the well documented computational procedures for evaluating the Lambert function [41], λ(t) can be computed

with sufficiently high precision. The roots η of the characteristic equation provide information about the evolution

and stability of the system at long times. It is known [36] that the system decays monotonically for 0 ≤ γτ < e−1,



14 M. Chase et al.: Langevin Analysis for Time-Nonlocal Brownian Motion

0 2 4 6 8 10

−1

−0.5

0

0.5

1

t/τ

λ
(t
)

γτ = 0.3

γτ = 0.6

γτ = 1

γτ = 1.6

Fig. 4. The noiseless Green function λ(t) for the single delay process. Four choices of the parameter γτ are considered, repre-

senting the stable non-oscillatory, stable oscillatory and unstable oscillatory regimes. The first zero crossings of the oscillatory

curves occur in the second interval for γτ ≥ 1, specifically at t0/τ = 1.625 and 2 for γτ = 1.6 and 1.0 respectively. In contrast,

the oscillatory curve with γτ = 0.6 first crosses the zero in the third interval.

undergoes oscillatory decay for e−1 ≤ γτ < π/2, and performs unstable oscillations for γτ > π/2. At long times the

eigenvalue with the largest real part, corresponding to the principal branch of the Lambert function W0, dominates

the behavior of the system. In the monotonic regime (γτ > e−1), this principal branch can actually be evaluated

analytically [41] via W0(−γτ) = −
∑∞
n=1 n

n−1(γτ)n/n!.

Whilst the expression for λ(t) in (24) is exact and provides insights into the long time behavior of the system, it

is of limited use for studying the dynamics of the system at shorter times because of the large number of eigenvalues

required. An alternative expression can be derived for λ(t) by expanding (23) as a power series and performing the

Laplace inversion to give the following expression [15,39,38,16],

λ(t) =

∞∑
k=0

(−γ)k

k!
(t− kτ)kΘ(t− kτ), (26)

where Θ represents the Heaviside step function.

The alternative exact expression (26) requires only a finite number of terms for any finite time t with a functional

dependence given by a polynomial of degree k in each interval kτ ≤ t ≤ (k+ 1)τ . Expansion of the sum in (26) shows
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in fact explicitly that λ(t) = 1 for t ∈ [0, τ ], and = 1− γ(t− τ) for t ∈ [τ, 2τ ], and = 1− γ(t− τ) + α2(t− 2τ)2/2 for

t ∈ [2τ, 3τ ], and so on. From these polynomials we can study properties of the Green function, such as the time at

which it first reaches zero, denoted t0, when the system is in the oscillatory regime. The Green function is constant

on the first interval and thus clearly t0 > τ . The Green function on the second interval, when τ < t0 ≤ 2τ , has one

root at t0 = τ + 1/γ, which corresponds with the first zero crossing when γτ ≥ 1. This implies that the first zero is

found in the second interval for the entirety of the unstable regime (γτ ≥ π/2), and roughly half of the oscillating

regime (γτ ≥ e−1). For other parameter values in most cases one has to find the roots of the higher order polynomials

numerically. Examples of the different regimes for λ(t) are shown in Fig. 4. Note also that, as τ → 0, we recover the

Ornstein-Uhlenbeck process (no memory effects in the attraction to the center) and, as γ → 0, we have the Wiener

process, i.e., a standard walk with no confinement.

5 Application to Experiments and Comparison of Consequences of Different Forms of the

Memory

With an application of our formalism in mind, to two experiments possible in principle, one on the motional narrowing

of spectral lines and the other on the spatial extension of the particle in the steady-state, we now compare our

predictions for the three cases of algebraic, single delay, and exponential memory. The latter, given by (5), has appeared

not only in the damped harmonic oscillator treated by the authors of ref. [32], but in numerous contexts, some to

describe transport with an arbitrary degree of quantum mechanical coherence [42,?,?]. Although its introduction in

the latter references has occurred in the context of site-to-site motion of a quasiparticle, rather than of attraction

towards a center as in the present paper, many expressions obtained earlier, and much of the intuition, can be ported

over here. The Green function λ(t) is well-known to be given by the simple expression

λ(t) = e−bt/2 [cosΩt+ (b/2Ω) sinΩt] , (27)

where Ω =
√
ω2 − b2/4. Standard features well-known from other fields of study, ranging from quantum quasiparticle

transport to RLC circuits in electrical networks, are easily noticed in (27): the original undamped oscillator frequency

ω, its reduction to Ω when damping is introduced via the damping exponent b/2, the passage from the damped

oscillatory regime to the overdamped regime when b/2 > ω when the trigonometric functions change into their

hyperbolic counterparts leading to familiar phenomena such as motional narrowing of spectral lines.
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Fig. 5. Motional narrowing in the dependence of the a.c. susceptibility on the frequency, f, of the applied electric field. All three

cases, exponential (left), single delay (center), and algebraic (right), display two peaks in the coherent limit which, as damping

is increased, initially broaden more and more and move towards each other (to the center, i.e., the region f = 0). On increasing

the damping beyond a critical value in each case, however, the line narrows rather than broadens as the damping is increased.

Frequency is plotted on the horizontal axis in units of the coherent parameter ω, µ and ζ for the three respective cases. Units

along the vertical axis are arbitrary. Two arrows in the central panel locate the additional peaks that develop for the single

delay process. The sharp transition at f = 0 for the algebraic memory, which is a jump from a vanishing to an infinite value,

can be seen when comparing the ν = −0.3 case with the ν = 0.1 case.

5.1 Motional Narrowing of Spectral Lines

We envisage two experiments that could be performed, in principle, on our system. In one, our particles are charged (but

noninteracting among themselves), we apply a time-varying electric field and measure the polarization and therefore

the susceptibility. Thus, (2), with the label i suppressed, is augmented by an appropriate term to give

dx(t)

dt
= −γ

∫ t

0

dt′ φ(t− t′)x(t′) + E(t) + ξ(t). (28)

Our interest lies in measuring the frequency-dependent susceptibility which is the ratio of the Fourier transforms of

the polarization and the applied electric field. The term E(t) is essentially the electric field and absorbs unimportant

proportionality constants. The spectral line at frequency f is proportional to 〈x̂(f)〉Ê(f) where the circumflexes denote

Fourier transforms and f is the frequency. We use f rather than the more usual ω to distinguish it from the oscillator

frequency that we have already used in our treatment.
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A well-known phenomenon known in systems with a simple exponential memory, as in the case of a damped

harmonic oscillator, is motional narrowing: spectral lines, sharp if the damping in the system is vanishing or small,

broaden as the damping is increased but, after a critical value of the damping is exceeded, separate lines coalesce and

increased damping narrows the line. The question we ask here is whether this motional narrowing occurs also for our

algebraic and delay cases. One sees from (28) that what is required is the one-sided Fourier transform of the Green

function λ(t): the frequency-dependent susceptibility is proportional to 〈x̂(f)〉Ê(f) . From (27) for the exponential memory

and (14) and (26) for the algebraic and single delay memories, respectively, we have

λ̂(f) =



√
f2 + b2√

(f2 − ω2)
2

+ f2b2
Exponential, (29a)

1√
f2 − 2fτµ2 sin fτ + τ2µ4

Single Delay, (29b)

(|f |)ν√
|f |2(ν+1) − 2 (|f |ζ)

ν+1
sin πν

2 + ζ2(ν+1)

Algebraic, (29c)

where we have given the absolute value of the Fourier transforms. In (29b) we have introduced the coherence parameter

µ for the delay case. It is analogous to ω in the exponential case and ζ in the algebraic case and is specifically defined

via µ =
√
γ/τ .

We show the results of (29) in Fig. 5 for the exponential (left), single delay (center) and algebraic (right) memories.

Units along the vertical axis are arbitrary. The left panel depicts motional narrowing for the exponential memory: two

peaks broaden and then coalesce into a single peak as the damping is increased. Similar transitions are seen for both

the single delay memory (coherence measured by the value µτ) and the algebraic memory (coherence measured by

the value ν). The single delay process is quite similar with the exception that it develops additional symmetric peaks,

indicated by the arrows. The algebraic process, while also similar in the overall aspects, exhibits sharp differences

for small values of f . The source of this peculiar behavior is the fact that the integral of λ(t) over all time changes

drastically as one crosses from the oscillatory to the monotonic region. The integral is 0 for positive ν and infinite for

negative values of ν.

The motional narrowing phenomenon [45] we have discussed above is ubiquitous and appears in magnetic resonance

observations [46], neutron scattering experiments [47,48,49,50,51,52], and in numerous other contexts such as optical

absorption whenever there is underlying dynamics of a system undergoing spectral diffusion. Such spectral diffusion

can arise not only from thermal motion in an inhomogeneous medium as has been sometimes mentioned in the past

but from a variety of sources including changes in the bath fluctuation rate [53]. The simple exponential memory case

we have mentioned for the sake of comparison above can be seen to arise explicitly in the magnetic resonance context.

This can be noted clearly in Appendix F of the text Principles of Magnetic Resonances by Slichter [46] where the
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exponential nature of the memory emerges simply on elimination of separate quantities M±, summing them to get

the total magnetization M . The original theory of motional narrowing was developed by Kubo [45], a number of cases

for neutron scattering were treated for simple memories by other authors such as Brown and Kenkre [48,49,50,51,

52] and a recent lineshape theory was given by Jung, Barkai, and Silbey [53] directed at the important observation of

power-law statistics in spectral diffusion.

5.2 Spatial Extent in the Steady State

What is the spatial extent of the particle in the steady-state when the diffusive tendency to enhance it and the

attraction to the center to reduce it have balanced themselves? A number of experimental techniques could be devised

in principle to measure the spatial extent or size. The size in the steady-state is given by the saturation value of the

MSD
〈
∆x2

〉
. The time-dependent MSD for the exponential memory is given by,

〈
∆x2

〉
(t) =

D

ω

[
ω

b
+
b

ω
− be−bt

ω

(
ω4

b2Ω2
+

4Ω2 − ω2

4Ω2
cos 2Ωt+

3ω2 − 4Ω2

2bΩ
sin 2Ωt

)]
. (30)

Although any two of the three parameters ω, b and Ω uniquely determine the third, we have used all three here and

elsewhere to avoid cumbersome square roots in the display. In the overdamped limit, i.e., when b > 2ω, the above

trigonometric functions turn into hyperbolic functions as Ω becomes imaginary.

The MSD for the case of the single delay is

〈
∆x2

〉
(t) = 2D

(
Θ(k)

k−1∑
l=0

∫ (l+1)τ

lτ

ds gl(γs) +

∫ t

kτ

ds gk(γs)

)
, (31)

where gk(t) is defined as

gk(γt) =

k∑
m=0

k∑
n=0

(−1)(m+n)

m!n!
(γt−mγτ)m(γt− nγτ)n,

in any interval, kτ ≤ t ≤ (k + 1)τ .

The MSD for the algebraic case is given by,

〈∆x2〉(t) = 2D

∫ t

0

ds


[∫ ∞

0

dr

π
e−rζsC(r)

]2
−1 < ν ≤ 0, (32a)[

Ae−βζs cosκζs−
∫ ∞
0

dr

π
e−rζsC(r)

]2
0 < ν ≤ 2, (32b)

with

A =
2

ν + 1
C(r) =

rν sin νπ

r2(ν+1) − 2r(ν+1) cos νπ + 1
,

β = cos

(
νπ

ν + 1

)
, κ = sin

(
νπ

ν + 1

)
.
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Our interest lies in the steady-state size of the particle given by these expressions in the limit t→∞ . Calling the

saturation value of the MSD as the particle size S (in units of area for our 1-dimensional system), we have

S =



D

ω

(
ω

b
+
b

ω

)
, (33a)

D

µ

(
1 + sinµ2τ2

µτ cosµ2τ2

)
, (33b)

D

ζ

∫ ∞
0

∫ ∞
0

drdq

π2

2C(r)C(g)

r + q
, (33c)

D

ζ

[
A2

2

(
β +

1

β

)
− 4A

∫ ∞
0

dr

π

C(r)(β + r)

r2 + 2βr + 1
+

∫ ∞
0

∫ ∞
0

drdq

π2

2C(r)C(q)

r + q

]
, (33d)

where (33c) is for −0.5 < ν ≤ 0 and (33d) is for 0 < ν ≤ 1. For the parameter range ν ≤ −0.5, the MSD diverges as,

lim
t→∞
〈∆x2〉(t) ∝


ln t ν = −0.5,

t2|ν|−1 −1 ≤ ν < −0.5.

The MSD for the single delay memory, (33b), is known to have the analytic expression shown above. It is obtained by

solving [39] the differential equation governing the evolution of the covariance at long times.
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Fig. 6. Spatial extent of the particle in the steady-state, measured by the saturation value of the MSD at long times for: the

exponential memory (left), the single delay memory (center) and the algebraic memory (right). On the vertical axis, the size is

normalized to the steady-state size for the time-local case (φ(t) = δ(t)) with γ equal to the respective coherent parameter: ω

for the exponential memory, µ for the single delay memory and ζ for the algebraic memory. Dotted lines indicate the location

of the transition from monotonic (overdamped) to oscillatory (underdamped) regimes.

Plots of the long-time expressions in (33) are shown in Fig. 6 for the exponential (left), single delay (center) and

algebraic (right) memories respectively. The MSD for all three memories are normalized using the respective coherent
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parameters: ω, µ and ζ. In all three cases, an increase in D leads to a monotonic increase in the MSD. The exponential

memory process has a symmetric dependence on ω and b, with a minimum for b = ω. For the single delay, only in the

stable regime, µ2τ2 < π/2, is the expression valid and, as expected, the MSD diverges as one approaches the unstable

limit. Both for the exponential and the single delay memories, the saturation value of the MSD diverges as ω/b and µτ ,

respectively, approach zero. In both these cases, the tendency to confinement around the attractive center disappears

since γ vanishes.

At long times, the MSD for the algebraic case diverges when ν → −0.5 from the right and when ν → 1 from the

left. The divergence at the lower limit occurs due to the long-time algebraic dependence of the Green functions, (18).

The value of ν for which the steady-state size is minimum depends on the ratio of time constants, γ/α. When this

ratio is equal to 1, the minimum is at ν = 0. This is obvious in Fig 6. For an arbitrary γ/α, the value of ν at the

minimum is given by the transcendental equation,

ln
γ

α
= −(νmin + 1)2

d

dν
lnF (νmin), (34)

where F (ν) is the functional form of the curve plotted in the right panel of Fig. 6. An increase in the ratio of γ/α

shifts the minimum rightwards, a decrease shifts it to the left.

A fruitful comparison of the MSD dynamics can be done by setting the parameters such that, %
∫∞
0
ds λ2d(s) = V ,

where % is the appropriate coherent parameter, is identical for all three cases. The saturation value of the three memories

are not comparable over the entire parameter space. The single-delay process has a minimum MSD saturation when

2µ2τ2 = cos(µ2τ2), i.e., a value V = 1.19, while the exponential memory process has a minimum value, V = 1 exactly

when b/γ = 1. For these parameter values, the algebraic memory has a minimum value of V = 1/2 located at ν = 0.

We select values of V > 1.19 from the algebraic long-time MSD, (33c) and (33d), and solve the exponential and sin-

gle delay memory expressions in (30) and (31) to obtain ω/b = V±
√
V 2 − 1 and sin

(
µ2τ2

)
=
[
(2V µτ)

2 − 1
]
/
[
(2V µτ)

2
+ 1
]
,

respectively. For the exponential memory we choose the negative branch, ω/b = V −
√
V 2 − 1, for the monotonic regime

and the positive branch, ω/b = V +
√
V 2 − 1, in the oscillatory regime.

Using these values of V , ω/b and µτ we plot in Fig. 7 the dynamics of the three memories. In the oscillatory regime,

all three memories exhibit the apparent saturation behavior associated with the oscillations of their respective Green

functions. The single delay memory clearly saturates the fastest. The exponential and algebraic memories have very

similar MSD, with the exponential memory initially larger. In the overdamped regime, the algebraic memory saturates

much slower due to its heavy tail.
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Fig. 7. Comparing the dynamics of the MSD for the algebraic (straight line), exponential memory (dot-dashed line) and single

delay (dashed line) memories when their MSD have a mutual saturation value. We set % equal to the coherent parameter for

each of the memories divided by the diffusion constant, i.e., ω for exponential, µ for the single delay, and ζ for the algebraic

respectively. Two curves for each memory depict dynamics in the underdamped regime and one for each memory in the

overdamped regime. The inset plot shows that same figure with logarithmic axes.

6 Discussion

The focus of this paper has been the investigation of the dynamics of a Smoluchowski system whose Langevin equation

(see, e.g. (2)) describes the attraction, to a fixed center, of a particle via a memory function corresponding to a time-

nonlocal process. The case when the memory function, denoted by the symbol φ in the paper, is a simple delta function

in time (time-local case), is text-book material and leads to solutions of the corresponding Smoluchowski equation via

the Ornstein-Uhlenbeck time transformation. We have investigated here the case of two time-nonlocal memories of

interest to certain current applications in biological systems: the algebraic memory, (12), and a delay case, (19), and

compared them with a standard exponential memory, (5), whose consequences are typically known in the literature.

We find similarities across the three cases as well as some distinguishing characteristics of each. The connection to the
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time-local case represented by φ(t) = δ(t) is trivial in the case of the delay and the exponential cases because, in both

instances, the integral of the memory over all time exists and equals 1. For the algebraic case this is not true and leads

to some peculiar behavior. Such behavior and its analysis given in the present paper will no doubt be of importance

when parameters controlling the non-Markoffian dynamics are strong. Even when they are weak, the algebraic nature

of the memory will ensure that they must be generally taken into account.

6.1 Similarities and dissimilarities in the consequences of the three memories

In all three cases, γφ(t) is convolved with the displacement x(t) in the starting Langevin equation. The strength of

the confinement to the attractive center may be said to be described by γ and the specific (memory) manner in which

the confining is done may be ascribed to φ(t). The loss of coherence occurs at the rate b in the exponential case, at

the rate 1/τ equal to the reciprocal of the delay time in the single delay case, and at α in the algebraic case. The

coherence parameter is ω in the exponential case, µ =
√
γ/τ for the delay case and ζ =

√
γα in the algebraic case.

The three respective memories are found in (5), (19) and (12).

The basic quantity that determines the behavior of the system is the Green function λ(t). It is given generally in

the Laplace domain by (6). In the time domain it takes the form given in (27) for the exponential memory, (26) for

the delay memory, and (14) for the algebraic case. One of the additional results of this paper is an alternate form,

(15) that we have derived. We use it along with its asymptotic form, (18), which is well known in the literature [34].

Both provide considerable computational convenience. While Fig. 1 shows the Green function for the algebraic case

in the underdamped and overdamped regimes, Figs. 2 and 3 display the usefulness of the alternate forms we provide

for the computations.

Noteworthy is the fact that the single parameter ν determines in the algebraic case whether oscillatory (positive

ν) or monotonically decreasing (negative ν) time variation obtains. Whereas for the other two memories, with the

coherence parameter (ω or µ) held constant, variation of the damping (b or 1/τ respectively) transitions the system

from the oscillatory to the overdamped regimes, variation of α with ζ held constant does not do anything similar in the

algebraic case. As a result of the scaling behavior of the power-law dependence, the damping parameter α introduced in

the definition (12) of the algebraic memory in a manner analogous to the exponential case (5), completely drops out of

the picture in the Green function. See (14). The coherence parameter merely serves to scale time and ν alone determines

the oscillatory-decaying transition. This remarkable feature of the algebraic memory stems from its scale-free nature.

The time-integral of the Green function from zero to infinity, i.e.,
∫∞
0
λ(t)dt, is of direct relevance for several

observables. Equation (6) shows that it is given by 1/γφ̃(0). For the exponential and the delay memories, this presents
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no problems but for the algebraic case one runs into the peculiarity that φ̃(0) may not exist. Indeed,
∫∞
0
λ(t)dt vanishes

for positive ν but becomes infinite for negative ν provided ν ∈ [−1, 0). One of the direct consequences of this feature is

the drastic jump from 0 to ∞ observed in the spectral line at zero frequency f noted in Fig. 5 which depicts motional

narrowing of the a.c. susceptibility.

For algebraic and delay memories there is also the regime of unbounded oscillations that occurs for |ν| > 1 and

γτ > π/2 respectively. Because the regime is seldom physical, we have shown it only passingly in Fig. 4 and only for

the delay case, with an effect in the central panel of Fig. 5 where additional peaks in the spectral line result.

6.2 Non-local attractive term in the Smoluchowski equation

Although our focus in this paper is entirely on an analysis of the Langevin equation (with time non-locality), let us

recall that there are in the literature, already, a number of discussions centered on probability density evolution [29,30,

31,32]. These approaches aim to construct an effective Fokker-Planck equation corresponding to the non-Markoffian

Langevin equation, Eq. (2), in what has been termed the bona-fide Fokker Planck description [30]. Given the memory in

the Langevin equation, what is required is a Fokker-Planck equation for the conditional probability distribution rather

than for the single-time probability distribution, as would be appropriate in the absence of the memory. Unfortunately,

available in the literature as a Fokker-Planck equation corresponding to Eq. (2), with Gaussian noise, is only an equation

for a single-time probability distribution [10,32]. Also, the practical utility of that equation appears not to have been

tested. It is known to be undefined (drift and diffusion coefficients blow up) when the mean of the distribution crosses

zero [33]. Crossings of this kind occurs whenever the Langevin dynamics is oscillatory. It is because of these present

uncertainties surrounding Fokker-Planck treatments of such non-Markoffian cases that we have restricted our analysis

here to consequences of a Langevin equation. Let us, nevertheless, return briefly to the issue about the generalization of

the Smoluchowski equation. In our introductory comments in Section 2, we mentioned that, while one could be easily

tempted into generalizing the standard Smoluchowski equation by incorporating a memory function in its attraction

term to describe the non-Markoffian pull towards the center, such a procedure would be incorrect.

Such a generalization of the time-local Smoluchowski equation (1) brought about by introducing a memory into

the attraction term, would result in

∂P (x, t)

∂t
=

∂

∂x

(
γ

∫ t

0

dt′ φ(t− t′)xP (x, t′)

)
+D

∂2P (x, t)

∂x2
. (35)

Although we have seen in Section 2 that it is not possible to deduce (35) from the Langevin equation with memory,

(2), it is interesting to ask what consequences (35) leads to, since it has the appearance of a natural generalization
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of (1) to incorporate a memory process in the attraction. Through an integration by parts, and using the physical

expectation that P (x, t) vanishes sufficiently rapidly at x = ±∞, we obtain equations for the moments of (35) by

multiplying it by xn and integrating over x from −∞ to +∞. For the first moment, (n = 1), we get

d〈x(t)〉
dt

+ γ

∫ t

0

dt′ φ(t− t′)〈x(t′)〉 = 0. (36)

How does this result for the average displacement 〈x(t)〉 compare with one obtained from the correct generalized

Langevin equation, (2)? Differentiation of (9) followed by the use of (6) show explicitly that the evolution of the mean

displacement as predicted by the exact (2) is precisely that given by (36)! While the first moment is given correctly

by the inappropriate generalization (35), higher moments are not. For n > 1, the moment evolution from (35) is

d〈xn(t)〉
dt

+ nγ

∫ t

0

dt′ φ(t− t′)〈xn(t′)〉 =
n!

(n− 2)!
D〈xn−2〉. (37)

To see explicitly that higher moments predicted by the incorrectly generalized Smoluchowski equation are inaccurate,

consider the n = 2 solution of (37). We obtain

〈x2〉(t) = λγ→2γ(t)x20 + 2D

∫ t

0

dt′ λγ→2γ(t′). (38)

Here, by λγ→2γ is meant what is obtained by replacing γ by 2γ in the expression for the Green function λ(t).

Comparison to the correct moment, (14), shows that the higher moment prediction of the inappropriate generalization

is always inaccurate except for the time-local case when φ(t) = δ(t) leading to an exponential λ(t) and to the accidental

correctness of the relation λγ→2γ(t) = λ2(t).

Situations of this kind, wherein lower moments are accurately reproduced by an approximate description but

higher moments are not, are frequently encountered in transport theory [54]. In the next subsection we will see that,

as a consequence of the above, although the inappropriate generalization of the Smoluchowski equation accurately

describes the motional narrowing phenomenon (given that the latter depends completely on the first moment), it fails

to reproduce correctly the size of the particle, time-dependent or steady-state. The size is determined by the second

moment.

6.3 Apparent violation of the Balescu-Swenson Theorem

There is a theorem in non-equilibrium statistical mechanics, named after Balescu [55] and Swenson [56], that states

that, while non-Markoffian equations that are the consequence of microscopic dynamics describe more accurately the

approach to equilibrium or the steady-state than their Markoffian counterparts, their use is unnecessary for describing
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Fig. 8. Time-dependence of the extent of the particle (as measured by the value of the MSD) and apparent violation of the

Balescu-Swenson theorem. The MSD for the exponential memory is plotted for a constant γ and three values of the damping

parameter b/γ: 0.5, 2.5 and 12.5. The correct results as given by our theory, (30), correspond to the dashed lines. Their

saturation values are seen to increase as b/γ is increased. As all cases have the same γ, that increase signifies a violation of

the Balescu-Swenson theorem. By contrast, all three solid lines which are predictions of the incorrect generalization, (38), of

the Smoluchowski equation (see text) saturate to the same single value (as given by the time-local equation) even though the

corresponding values of b/γ are different (as in the respective dashed line cases).

observables in the steady-state. This is so because the latter are reproduced with perfect accuracy by the Markoffian

equations. The reasoning behind the theorem can be understood by realizing that the Markoffian approximation

involves the replacement by zero of the Laplace variable in the Laplace transforms of memories; and that asymptotic

results also require such replacement in the implementation of Tauberian theorems. Steady state results are asymptotic

results valid at long times.

While the Balescu-Swenson theorem is largely appropriate and highly useful, its non-judicious and blind application

can lead to misleading expectations. The present analysis can provide an interesting example. In order to understand

the context, the usefulness, and the apparent violation of the theorem here, notice that the theorem appeared in the

work, first of Balescu [55] and then of Swenson [56], about the time that the generalized master equation (GME)

made its important appearance. The GME arose in the fundamental work of various investigators [57,58,59,?,61,

62]. By dint of the memory function it possessed, the GME was able to access and describe short-time behavior of
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systems not accessible to the Master equation. The latter is essentially the GME with a delta-function memory. An

object well-known before the advent of memories, it was the central entity of non-equilibrium statistical mechanics

and capable of predicting irreversibility, approach to equilibrium and the second law of thermodynamics.

Because the GME unravelled numerous features of a system additional to those described by the (memoryless)

Master equation, it was of particular importance to know, a priori, what descriptions made it essential to use the GME

in preference to the Master equation and for what properties the Master equation was sufficient. The Balescu-Swenson

theorem performed this important task. The theorem showed that, although frequency-dependent quantities require

the GME for their correct description, dc transport coefficients do not: the latter are accurately described by the

Master equation without memory. Although the theorem had been presented in detailed derivations in the original

enunciations [55,56], the physical understanding and origin of the theorem can be made clear quite simply. Let us

assume, e.g. in the context of Ohm’s law, that one has solved for the time-dependent current and thence for a transport

coefficient such as the ac conductivity. If the calculation uses a GME with memory φ(t), the expression for the current

in the Laplace domain will have inside it φ̃(ε), the Laplace transform of φ(t). The Master equation (which is the GME

without memory) would replace φ̃(ε) by φ̃(0) and thus predict a wrong current in general.

However, the Balescu-Swenson theorem pointed out that in calculating a dc transport coefficient such as the dc

conductivity, equivalently the t → ∞ limit of the relevant observable such as the steady-state current, one would

take the limit ε → 0 as part of a Tauberian argument. One would then get nothing different from the prediction

of the memoryless Master equation: in the latter φ̃(ε) is replaced by φ̃(0) from the very beginning. This applies to

various steady-state transport coefficients such as the dc susceptibility, dc conductivity, viscosity, and ω = 0 values of

lineshapes.

Instances where the Balescu-Swenson theorem does not apply have been pointed out earlier [43,?]. Physically, the

apparent violation has been shown [43] to occur when the particle under consideration has a finite lifetime as is the

case with an excitation (e.g. a Frenkel exciton): the Balescu-Swenson theorem requires that motion over the entire

lifetime (or at least over much of it) be played out.

It was surprising for us to find that the theorem fails in spite of the fact that we have not assumed a finite lifetime.

The saturation value of the MSD in our system, in other words the steady-state size of the particle, is an asymptotic

quantity. Yet we find that its value is dependent on the memory function and does not reduce to that predicted by

the Markoffian approximation (when such is possible). This is clear from (33).

In order to clarify this further, we have constructed Fig. 8 to display the time-dependence and the saturation value

of the mean square displacement for the simple case of exponential memory, with γ held constant, for three values
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of the damping parameter b/γ = 0.5, 2.5 and 12.5. The exact results are shown by dashed lines and we see that the

saturation size increases as b is decreased even though γ does not change. This is certainly in conflict with the Balescu-

Swenson statement if we assume the saturation value of the particle extent to be a valid steady-state observable in

the language of the theorem. Fig. 8 also shows the interesting result that the incorrectly generalized Smoluchowski

equation whose predictions are shown in solid line for the corresponding values of the memory parameters do follow

the Balescu-Swenson theorem. The solid lines 2 all go to the same saturation value of the size that would have been

obtained for the time-local situation.

Needless to say, the original context of the Balescu-Swenson theorem did not include systems such as the one

treated in the present paper. What precise feature of our system makes the theorem inapplicable? The simple answer

to this question is that, whereas the theorem deals with situations in which the memory describes the entire process,

the memory we consider here refers only to a part of the process. It appears only in the systematic term of the Langevin

equation, Eq. (2).

6.4 A Comment on Two-Time Correlation Functions

Two-time correlation functions, such as 〈x(t)x(s)〉 and their antisymmetrized combination f(t, s) which is termed in

some quarters as their covariance, are of importance in physical situations in which, in addition to the initial time,

two more times rather than a single one are of importance. As a practical example, consider an electric current placed

initially in a conductor in some manner. The current is disappearing as the system relaxes to equilibrium. At a certain

instant s before equilibrium is reached, a time-dependent electric field is switched on. At a later time t the time-

dependent current is measured. The analysis of such an experimental set-up clearly requires 〈v(t)v(s)〉, the two-time

autocorrelation of the velocity (instead of x) [66]. Studies of two-time correlations have also been given in the context

of aging [64,65]. We have provided general expressions for 〈x(t)x(s)〉 and f(t, s) in (10) and (11) respectively in terms

of the Green function λ(t). For instance, for the case of an exponential memory, we have

f(t, s) =
D

ω

{
e−

b
2 (t−s)

([
b

ω
+
ω

b

]
cos [Ω(t− s)] +

b2 − ω2

2Ωω
sin [Ω(t− s)]

)
− be−

b
2 (t+s)

ω

(
ω4

Ω2b2
cos [Ω(t− s)] +

4Ω2 − ω2

4Ω2
cos [Ω(t+ s)] +

b2 − ω2

2Ωb
sin [Ω(t+ s)]

)}
(39)

2 Care must be taken not to take these predictions of the incorrect generalization of the Smoluchowski equation too seriously.

There are physical parameter ranges in which the solid lines can dip below zero. The negativity is simply a consequence of the

fact that (35) is not fully accurate.
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Fig. 9. The two-time auto-correlation function plotted as a function of the difference of the times t and s for all three cases

of the memory function, along with the limit of no memory. We depict f(t, s)/D on the y-axis and t − s on the x-axis, both

in units of 1/γ. The sum of the times is held constant at a reasonably large value, γ(t + s) = 30 while the difference γ(t − s)

is varied over the range [0, 30]. Parameters are chosen so that the same Markoffian limit is obtained for all three memories,

exponential (dashed line), algebraic (dotted line) and single delay (dot-dashed line). We show only the underdamped case.

The Markoffian counterpart, obtained by taking the limit b→∞, ω →∞, such that ω2/b = γ, is

f(t, s) =
D

γ

(
e−γ(t−s) − e−γ(t+s)

)
. (40)

Neither of these quantities, needless to say, is a function of merely the difference t − s. As expected, the non-

Markoffian two-time correlation function differs from its Markoffian counterpart at short values of the difference t− s

but tends to the latter for large values. We depict this behavior for the underdamped case graphically in Fig. (9) for

all three cases of the memory by fixing the sum of the two times and varying the difference. Two features are clear,

one at short and one at long t− s. As expected, all cases tend to the Markoffian limit at large values of t− s. At short

times, on the other hand, they all are different. This is so because there they depict the (dimensionless) mean square

displacements which we have seen indeed differ, representing the violation of the Balescu-Swenson theorem.



M. Chase et al.: Langevin Analysis for Time-Nonlocal Brownian Motion 29

This work was supported in part by UNM’s Consortium of the Americas for Interdisciplinary Science, and by the

Engineering and Physical Sciences Research Council (EPSRC) UK Grant No. EP/I013717/1.

References

1. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edition (Springer-Verlag, Berlin, 1989).

2. L.E. Reichl, A Modern Course in Statistical Physics (WileyVCH Verlag, Weinheim, 2009).
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