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ABSTRACT 20 

In order to mitigate CO2 emissions while continuing to use fossil fuels as an energy source, CO2 21 

emissions from large point sources such as power stations can be captured and stored in suitable 22 

subsurface sedimentary formations. However, concerns have been raised that the injection of 23 

pressurized CO2 may alter the subsurface stress state, leading to the re-activation of faults and 24 

generating induced seismic activity. Southeast Saskatchewan has seen extensive oil and gas activity 25 

since the 1950s. This activity includes, in recent years, a boom in shale oil production entailing 26 

hydraulic fracturing. It is also home to two world-leading CCS projects, the Weyburn-Midale CO2 27 

Monitoring and Storage Project, and the Boundary Dam/Aquistore Project. The aim of this paper is to 28 

assess whether any of the conventional oilfield operations, shale oil activity or CCS has caused 29 

induced seismicity in southeast Saskatchewan. We find that the region has a very low rate of natural 30 

seismicity, and that there is no evidence to suggest that any kind of oilfield activity has caused induced 31 

events. However, seismicity has been associated with potash mining activities in the region. It is not 32 

clear whether the potash mining-induced events are triggered by subsidence above the mined zones, or 33 

by re-injection of waste brines. It is of interest to compare the situation in southeast Saskatchewan with 34 

other areas that have seen substantial increases in the amount of injection-induced seismic activity. It 35 

is notable that in many areas that have seen injection-induced seismicity, fluid injection is into basal 36 

aquifers that are hydraulically connected to the crystalline Precambrian basement. In contrast, most 37 

oilfield activities in southeast Saskatchewan are in Carboniferous formations, while the only units to 38 

have experienced a net volume increase are of Cretaceous age. It is tentatively suggested that the lack 39 

of induced seismic activity is due to the fact that injection is hydraulically isolated from the basement 40 

rocks, although it is also possible that stress conditions in the region are less conducive to induced 41 

seismicity.      42 

  43 



1. INTRODUCTION 44 

It has been conclusively demonstrated that injecting fluids into the subsurface can trigger 45 

seismic activity (e.g., Raleigh et al., 1976). However, early research on Carbon Capture and 46 

Storage (CCS) was focussed on the danger that the buoyant CO2 plume will migrate through 47 

the caprock and leak back to the surface. The potential hazard posed by injection-induced 48 

seismicity was generally downplayed (e.g. Damen et al., 2006) or not considered (e.g. Bickle, 49 

2009). Even where microseismicity was observed at CCS sites, such observations were 50 

generally considered in terms of potential leakage through the caprock because of fracturing, 51 

rather than the hazard posed by injection-induced seismicity (e.g., Verdon et al., 2011).  52 

However, these assessments were made prior to recent events in the mid-continental USA, 53 

where sharp increases in wastewater disposal volumes have lead to a dramatic increase in the 54 

number of recorded earthquakes (Ellsworth, 2013). Given that, on a well-by-well basis, 55 

injection volumes proposed for future CCS sites match or even exceed current wastewater 56 

injection volumes (e.g. Verdon, 2014), these observations have lead to a re-appraisal of the 57 

hazard posed by injection-induced seismicity at CCS sites (e.g. Zoback and Gorelick, 2012).  58 

The Williston Basin underlies parts of Saskatchewan, North and South Dakota, Montana and 59 

Manitoba. It is a large (500,000km2) intra-cratonic basin of roughly oval shape, the origin of 60 

which is speculative. The Precambrian Trans-Hudson Orogen trends in a NE-SW direction 61 

beneath the basin, sandwiched between the Archaean Wyoming and Superior Cratons. The 62 

oldest formation to be deposited on top of Precambrian crystalline basement is the Deadwood 63 

Formation, which is of late Cambrian/early Ordovician age. At its deepest, the thickness of 64 

sediments above the Precambrian basement is about 5km. Most of the sediments are of 65 

Paleozoic age, although sedimentation continued through the Mesozoic. In Figure 1 we show 66 

a stratigraphic column and schematic cross section of the area. 67 

Oil and gas has been extracted from fields in southeast Saskatchewan since the 1950s, and 68 

production continues today. Substantial volumes of produced water are also generated by this 69 

extraction. Some of this water is re-injected for secondary recovery, while some is disposed 70 

of into saline aquifers. Additionally, the Bakken Shale underlies the conventional fields in 71 

southeast Saskatchewan. Within the past decade, this resource has been targeted for shale oil 72 

extraction using hydraulic fracturing.  73 

CO2 injection for the combined purposes of Enhanced Oil Recovery (EOR) and Carbon 74 

Capture and Storage (CCS) has been conducted at the Weyburn oilfield, in southeast 75 

Saskatchewan, since 2000. In 2015, CO2 injection for CCS began at the Boundary 76 

Dam/Aquistore site, near to Estevan (approximately 85km southeast of Weyburn). Southeast 77 

Saskatchewan is therefore home to two world-leading CCS projects, which provide an 78 



excellent opportunity to study the effects of CO2 injection into the subsurface. At Weyburn, 79 

oil production is from, and CO2 injection is into, Carboniferous rocks at a depth of 80 

approximately 1.5km, while at Aquistore, CO2 is injected into the Deadwood Formation, 81 

which sits on top of the Precambrian basement at a depth of approximately 3.5km.  82 

 83 
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(b) 86 

Figure 1: In (a) we show a stratigraphic column showing the key lithologies in our study area. Each 87 

stratigraphic unit is categorised as being either an aquifer, through which fluids can flow relatively 88 

easily, or an aquitard, through which fluid flow is difficult or impossible, owing to the unit’s low 89 

permeability. In (b) we show a schematic cross section running from west to east through southern 90 

Saskatchewan. The approximate positions and target depths of the Weyburn oilfield and Aquistore CCS 91 

project are both marked. Both figures are modified from Rostron et al. (2012).        92 

Therefore, there are and have been a range of oilfield activities conducted in southeast 93 

Saskatchewan that have the potential to induce seismic activity. The aim of this paper is to 94 

evaluate recorded seismicity in southeast Saskatchewan and to compare this activity with 95 

industrial activities in the area, thereby establishing whether oilfield activities have induced 96 

seismic activity. By doing so, we hope to better understand the tectonic setting in which these 97 

CCS sites are being developed, and thereby to assess the likelihood that they will lead to 98 

injection-induced seismicity as larger volumes of CO2 are injected. Our principal study area 99 

extends northwards from the USA-Canada border approximately 1° of latitude (49° – 50°N) 100 

and westward from the Saskatchewan-Manitoba border approximately 3.5° of longitude 101 

(101.4° – 105°W). However, we also consider seismic activity across the broader southeast 102 

Saskatchewan-Montana-North Dakota region, which covers much of the Williston Basin.  103 

2. SEISMICITY RECORDED IN SOUTHEAST SASKATCHEWAN 104 

2.1. Monitoring Networks 105 

We begin by curating a catalogue of seismic events recorded in the southeast Saskatchewan-106 

Montana-North Dakota region. Broadly speaking, seismicity in this region is rare, and of low 107 

to moderate magnitude. However, for long periods, seismometer coverage has been equally 108 
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sparse. Horner and Hasegawa (1978) describe the historical seismometer coverage in this 109 

area, and estimate detection thresholds of magnitude 6 prior to the 1950s, and of magnitude 5 110 

until the mid-1960s. From this time onwards, detection thresholds are estimated to be 111 

magnitude 3, although the Large Aperture Seismic Array (LASA), which was deployed in 112 

Montana in 1966-67, provided a brief period of improved detection (Reinbold and Gillespie, 113 

1974).  114 

At present, several permanent stations of the USGS Advanced National Seismic System 115 

(ANSS) and Global Seismographic Network (GSN) provide the nearest real-time coverage. 116 

The nearest such station is at Dagmar, Montana (DGMT) which is approximately 130km 117 

from the area of interest (Figure 2a).  118 

However, several studies have shown that such regional networks may not be able to detect 119 

small injection-induced events (e.g., Frohlich, 2012; Friberg et al., 2014; Frohlich et al., 120 

2015). Therefore, in addition to events listed in National Earthquake Information Centre 121 

(NEIC) and National Earthquake Database of Canada (NEDC) catalogues, we also identified 122 

additional seismometer networks with which to search for small events. These additional 123 

stations are shown in Figure 2b, and included: 124 

• Stations of the Earthscope USArray Transportable Array that swept through Montana 125 

and North Dakota between from 2008 – 2011.  126 

• In 2013, a network of 3 broadband seismometers were installed to monitor CO2 127 

injection at the Aquistore project.  128 

• Between August 2014 – August 2015, we installed an additional network of 3 129 

seismometers to monitor the Weyburn CCS-EOR project.  130 

With each of the above networks, we used an automated picking algorithm (Lomax et al., 131 

2012) to search for potential events. Potential events were identified when at least 4 stations 132 

of the USArray, or all 3 stations of the Aquistore and Weyburn arrays, recorded co-incident 133 

triggers.  134 



 
 

(a) (b) 

Figure 2: Monitoring stations used in this study. In (a), we show ANSS and GSN seismometers in the 135 

southeast Saskatchewan-Montana-North Dakota region. The inset shows the areas plotted in (a) (red 136 

rectangle) and (b) (blue rectangle). In (b), we show USArray stations that passed through Montana 137 

and North Dakota from 2008 – 2011 (blue), the 3 seismometers installed to monitor the Aquistore CCS 138 

project in 2013 (green) and the 3 seismometers installed to monitor the Weyburn oilfield (magenta). In 139 

both plots the dashed rectangle shows our specific area of interest, where CCS projects are active in 140 

southeast Saskatchewan.  141 

These potential events were then examined manually. Triggers that did not have the 142 

characteristics of a local earthquake (near-vertical P-wave arrival, followed by S-wave arrival 143 

on horizontal components, and consistent move-out of arrival times across the array) were 144 

discarded. P- and S-wave arrival times were re-picked manually, and inverted for event 145 

hypocentres using the NonLinLoc package (Lomax et al., 2009), and a flat layered velocity 146 

model based on refraction surveys conducted by Morel-à-l’Huissier et al. (1987) and Hajnal 147 

et al. (1997). We note that many apparent “events” were located in close proximity to known 148 

quarries and opencast coalmines. These events were assumed to represent quarrying blasts, 149 

and were discarded from further analysis.  Local magnitudes were computed using the scale 150 

defined by Nuttli (1973).  151 

2.2. Detected Events 152 

Within the southeast Saskatchewan-Montana-North Dakota region, a total of 65 events were 153 

listed on NEIC and NEDC catalogues. In addition, a further 28 events, not listed in 154 

NEIC/NEDC catalogues, were extracted from Bakun et al. (2011). Our analysis of additional 155 

stations revealed a further 6 events that had not been detected by NEIC/NEDC networks – all 156 

of these events were detected using the USArray stations, and no additional events were 157 

detected using the Aquistore and Weyburn arrays.  158 

Figure 3a shows all events listed in the NEIC/NEDC catalogues and by Bakun et al. (2011). 159 

Figure 3b shows the additional events detected using USArray stations. Of these 6 events, we 160 



note that Frohlich et al. (2015) also detected 4 of these events (2009-07-16, 2009-08-31, 161 

2010-03-21, and 2010-06-11). Frohlich et al. (2015) detected a further 5 events that were not 162 

detected during our analysis. This is because Frohlich et al. (2015) had a different area of 163 

interest (Bakken Shale activities in Montana and North Dakota) and so included USArray 164 

stations further to the south in their analysis that we did not use. Our overall compiled 165 

catalogue is shown in Figure 4. 166 

  
(a) (b) 

Figure 3: In (a) we show earthquakes listed in NEDC and NEIC catalogues, and in Bakun et al. 167 

(2011). In (b) we show additional events detected using USArray stations. Event symbols indicate 168 

magnitudes, and colours indicate the time of occurrence.           169 

Figure 5 shows event magnitudes through time. The largest event in the region occurred in 170 

1909, and is known as the Northern Great Plains Earthquake. Bakun et al. (2011) estimate a 171 

magnitude of 5.3 for this event, though for obvious reasons, both the hypocentre and the 172 

magnitude of this event are not well constrained. This event serves as an indication that, while 173 

events in this region are generally small, there must be faults present that are capable of 174 

generating larger events, and that this should be kept in mind when assessing the risks of 175 

injection-induced seismicity. However, since this event, no earthquake larger than magnitude 176 

4.0 has been detected in the region.  177 



 178 

Figure 4: Compilation of all earthquakes recorded in the southeast Saskatchewan-Montana-North 179 

Dakota region. Event symbols indicate magnitudes, and colours indicate the time of occurrence. The 180 

mapped Hinton (H), Weldon (W) and Brockton-Froid (B-F) fault traces are marked (based on Bakun et 181 

al., 2011).   182 

 183 

Figure 5: Event magnitude and occurrence times of all earthquakes in the southeast Saskatchewan-184 

Montana-North Dakota region. Red = catalogue events, blue = additional USArray events. The low-185 

magnitude events recorded in the late 1960s were detected using the LASA array.          186 

We note a number of features in the overall event catalogue (Figures 4 and 5): 187 



• The large cluster of events to the southeast of Yorkton is associated with potash 188 

mining at the Mosaic Company (International Minerals and Chemical Corp as was) 189 

mine. Seismicity might be caused by either subsidence in the rocks overlying the 190 

mined zone, or by re-injection of waste brines into underlying rocks. Hasegawa et al. 191 

(1989) and Gendzwill and Unrau (1996) attribute the seismicity to subsidence above 192 

the mined zone. 193 

• A further 2 events, to the NW of Regina are also located near to the Belle Plaine 194 

potash mine, and again are assumed to be caused by mining activities. These 195 

examples indicate that industrial activities, even if not oil and gas activities, are 196 

clearly capable of creating induced seismicity in the region.   197 

• Most of the remaining events fall along a NE-SW trend extending from Montana into 198 

North Dakota and Saskatchewan. This trend matches the trend of 3 mapped fault-199 

zones, the Brockton-Froid, Hinsdale and Weldon (Figure 3 of Bakun et al., 2011). 200 

This trend also follows the strike of the Trans-Hudson Orogen through the region.    201 

Horner and Hasegawa (1978) link naturally occurring seismicity in the region to both 202 

basement structures and to natural dissolution of the Paleozoic Prairie Evaporite deposits. The 203 

Prairie Evaporite deposit, of Middle Devonian age, is found in the sedimentary sequence 204 

across much of the region. It is more than 200m thick in places, and lies at depths of between 205 

400m – 3000m (Hasegawa et al., 1989). Wilson et al. (1963) suggest that basement 206 

lineaments lead to the localisation of upward fluid migration, which in turn results in the 207 

dissolution of the evaporites. Horner and Hasegawa (1978) argue that the salt dissolution 208 

produces stress changes that cause seismicity, pointing out that some of the recorded 209 

seismicity correlates with the edges of the Prairie Evaporite deposits, and with major salt 210 

dissolution structures.    211 

Several events are located within the area that has seen a recent boom of activity in the 212 

Bakken Shale. Within this region, hydraulic fracturing is used to extract shale oil from the 213 

Bakken and Three Forks Formations, while produced water and wastewater from the 214 

hydraulic fracturing process are re-injected into saline aquifers (Gaswirth et al., 2013). Both 215 

processes have the potential to generate seismic activity. Frohlich et al. (2015) investigated 216 

these earthquakes, but were only able to tentatively link one event to injection and/or 217 

production activities. This was the ML = 2.3 event on 2010-03-21, where both production and 218 

injection wells were active within 5km of the epicentre, and no prior events had been 219 

recorded in this vicinity. The remaining events do not occur in close proximity to active 220 

wells. Instead, these events occur in the same vicinity as previous earthquakes that have been 221 

associated with the Brockton-Froid fault zone (Figure 4) that occurred prior to the current 222 

boom in Bakken Shale activity.  223 



Finally, we note that, within the specific area of interest of our investigation, 4 events have 224 

been recorded, occurring in 1968, 1976, 1976, and 1985. Despite the extensive oilfield 225 

activity that has since been conducted in the area, no further events have been identified.  226 

3. OIL PRODUCTION AND WATER/CO2 INJECTION IN SOUTHEAST 227 

SASKATCHEWAN 228 

Volumes of fluids produced and injected in Saskatchewan are reported to the Saskatchewan 229 

Ministry of the Economy, who provided the data used in this study. Data were provided on a 230 

well-by-well basis for over 25,000 wells, shown in Figure 6, for a period covering 2000-01 to 231 

2014-12. Monthly volumes of oil and gas production, water production, water (re-)injection, 232 

and CO2 injection, were listed. Total injection and production volumes for the period 2000 – 233 

2014 are listed in Table 1. Overall, the volume of fluids produced slightly exceeds the 234 

volumes injected. However, we note that the volume of water produced far exceeds the 235 

volume of oil produced, and that this water is almost entirely re-injected. In Figure 7 we plot 236 

the cumulative fluid volumes through time.   237 

 238 

Figure 6: Locations of all production and injection wells provided by Saskatchewan Ministry of the 239 

Economy and used in this study. 240 

Fluid Volume (m3) 
Oil Produced 1.39x108 

Water Produced 1.95x109 
All Fluids Produced 2.09x109 

Water Injected 1.96x109 
CO2 Injected 4.70x104 

Net Fluid Produced – Injected 1.33x108 

Table 1: Total volumes of fluids produced from and injected into oilfields in southeast Saskatchewan. 241 

Note that CO2 injection volumes are listed by the Saskatchewan Ministry of the Economy are in units of 242 



standard m3. We assume a density of 700kg/m3 to convert CO2 volumes at standard conditions into 243 

volumes at reservoir conditions, which is an approximation for CO2 density at the pressure and 244 

temperature conditions of the Weyburn oilfield.  245 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7: Cumulative fluid production and injection volumes (in m3, excepting CO2 volumes, which are 246 

standard m3) from 2010 to 2015.  247 

Although the net volume change is negative (i.e., more fluid is produced than is injected), 248 

there may be areas and/or units where injection volumes exceed production, and which would 249 

therefore potentially be more prone to seismicity. Therefore, in Figure 8 we divide the study 250 

area into blocks, and consider injection and production volumes within these blocks. We note 251 

that in most blocks, production exceeds injection. However, there are areas where injection 252 

volumes do exceed production volumes. Seismicity associated with oilfield activities can be 253 

induced by both fluid injection and production (e.g. Frohlich and Brunt, 2013). However, it is 254 

generally accepted that increases in pore fluid volumes (and therefore pore pressures) 255 

associated with fluid injection are the more common cause of induced seismicity. Therefore 256 

we expect areas and/or units experiencing a net volume increase to be most prone to induced 257 

seismicity.   258 



259 
Figure 8: Spatial variations in net fluid produced – fluid injected across the area of interest. Each 260 

block is coloured by net fluid produced – injected (in m3). Blue values indicate produced – injected is 261 

negative (i.e. more fluid is injected than produced). The grey lines indicate relative rates through time, 262 

where the left edge of each block is 2000, and the right hand edge is 2015. The 4 earthquakes within 263 

the study area are also shown as grey dots.   264 

Fluids are produced from and injected into different geological units within this area. The 265 

geological ages of formations targeted by injection and production wells are listed in the well 266 

data provided by Saskatchewan Ministry of the Economy. In Figure 9 we plot fluid volumes 267 

by the age of the geological formation. The majority of oil production and water injection 268 

occurs in Carboniferous units. However, significant volumes of water are also re-injected into 269 

shallower Cretaceous units.  270 

  
(a) (b) 



  
(c) (d) 

  
(e) (f) 

Figure 9: Cumulative fluid production and injection volumes from 2010 to 2015, as a function of the 271 

geological age of the unit from/into which fluid is produced/injected. The y-axes of panels (a) – (e) are 272 

logarithmic to allow the differing volumes to be viewed clearly. Where no production/injection has 273 

taken place from/into a unit, no line is plotted.    274 

Verdon (2014) noted that in many (though not all) cases, injection-induced seismicity occurs 275 

when fluids are injected into layers near to the crystalline basement. This suggests that 276 

injection in basal layers may be of greater concern than in shallower layers that are 277 

hydraulically isolated from basement rocks. For example, much of the wastewater disposal 278 

being conducted in Oklahoma, which has seen a substantial increase in injection-induced 279 

seismicity, is injected into the Arbuckle Formation, which overlies crystalline basement rocks 280 

(Keranen et al., 2013; 2014). Three cases of injection-induced seismicity in Ohio, at Perry 281 

(Nicholson et al., 1988), at Ashtabula (Seeber et al., 2004) and Youngstown (Kim, 2013) all 282 

involved injection into the Mt Simon Formation, which again overlies crystalline basement 283 

rocks. Similarly, injection wells that triggered seismicity in Arkansas were injecting into the 284 

Ozark aquifer, which in that location has a direct hydraulic connection to underlying 285 

basement rocks (Horton, 2012).  286 

In contrast, in southeast Saskatchewan, volume changes in deep basal layers are small, with 287 

most oilfield activity focussed in Carboniferous and Mesozoic layers. The only units 288 

experiencing a substantial net volume increase are of Cretaceous age, which are unlikely to 289 



have any hydraulic connection to the basement rocks. It is possible that the absence of a 290 

hydraulic connection between layers in the basement and the layers with net volume increases 291 

is the reason for the lack of induced seismicity in this area.  292 

4. CORRELATION BETWEEN OILFIELD ACTIVITIES AND SEISMICITY? 293 

Figure 8 shows the epicentres of the 4 events that have occurred within our study area, 294 

overlain on a map showing areal variations of net fluid injection volumes. Figure 8 should not 295 

be used as a direct comparison between seismicity and injection, because the injection data is 296 

from 2000 onwards, a long time after these events occurred. However, assuming that injection 297 

and production activities have not changed location substantially, there is no obvious 298 

correlation between event locations and areas with larger volume changes (either positive or 299 

negative). Events are often deemed to be associated with a well if they occur within 5km 300 

(Davis and Frohlich, 1993). In Figure 10 we overlay the event epicentres on a plot showing 301 

the distance to the nearest well (considering only wells that were drilled before 1985, when 302 

the last of these 4 events occurred). 303 

 304 

Figure 10: Epicentres of the 4 events located within the study area (grey dots), overlain on a map 305 

showing localities – shaded areas – that are within 5km of a well (either injection or production) active 306 

in 1985 (the date of the last event to occur in the area). Much of the study area is within 5km of at least 307 

one well. Nevertheless, 3 of the 4 events are located more than 5km from any well.  308 

In order to assess the possibility that events have been induced by industrial activities, we 309 

consider them within the framework for induced seismicity outlined by Davis and Frohlich 310 

(1993). A series of questions are posed, where predominately “yes” answers indicate that an 311 

event may have been induced by industrial activities. The questions, and their answers in this 312 

particular case, are: 313 



1. Are the events the first known earthquakes of this character in the region? 314 

Hydrocarbon production in this area commenced in the 1950s. However, adequate 315 

seismometer coverage was only achieved in the 1960s. Therefore, we have no assessment of 316 

seismicity rates prior to oilfield activities with which we can answer this question robustly. 317 

However, the rate, magnitudes and positions of these events suggest that they are a 318 

continuation of the trend of seismicity running NE from Montana. This overall trend in 319 

seismicity is seen in producing and non-producing areas alike, suggesting that these events 320 

represent a natural trend.  321 

2. Is there clear temporal correlation between injection and seismicity? 322 

Injection and production has continued apace for nearly 30 years since the last event within 323 

the study area. There does not therefore appear to be any temporal correlation between 324 

injection and seismicity 325 

3. Are epicentres near to wells (within 5km)? 326 

When considering only wells that were active when these events happened, only one event is 327 

(just) within 5km. However, there is no spatial correlation between seismicity and injection 328 

and/or production volumes. 329 

4. Do some events occur at or near to injection depths? 330 

Because of the lack of monitoring stations in the area, event depths are unconstrained. It is 331 

therefore not possible to answer this question.  332 

5. Are changes in fluid pressure sufficient to encourage seismicity? 333 

It is difficult to answer this question, since to model the pressure changes induced at each 334 

injection well is beyond the scope of this study. However, we can consider the case of 335 

Weyburn (as described in Verdon et al., 2011), one of the largest oilfields in the region, as a 336 

representative case. Oil has been produced at Weyburn from Carboniferous age formations 337 

since the 1950s, with water re-injection for secondary recovery. Tertiary recovery was 338 

initiated in 2000 with the injection of CO2 with the combined purpose of CO2 storage and 339 

EOR.  340 

Jimenez Gomez (2006) conducted an extensive study of the geomechanical conditions at 341 

Weyburn. Based on prior studies of borehole breakouts, natural fractures and inelastic strain 342 

recovery tests (McLennan et al., 1986; McLellan et al., 1992), Jimenez Gomez (2006) reports 343 

a maximum horizontal stress azimuth of 40-50°, a vertical stress gradient of 24kPa/m and a 344 

minimum horizontal stress gradient of 18kPa/m. Jimenez Gomez reports a maximum 345 

horizontal stress gradient of 28kPa/m, although this is not well constrained, and he suggests a 346 



more realistic value to be 26kPa/m. Stress orientations can also be determined from 347 

measurements of seismic anisotropy, where the fast shear wave polarisation is typically found 348 

to be parallel to the SH direction (Boness and Zoback, 2006). Using both shear wave splitting 349 

measurements made on microseismic data (Verdon et al., 2011) and controlled source AVOA 350 

observations (Duxbury et al., 2012), the anisotropic fast axis at Weyburn appears to be 351 

oriented at an azimuth of 45°, which is in agreement with the orientation reported by Jimenez 352 

Gomez (2006).  353 

Based on the above, we take the initial stress conditions at Weyburn, which is at a depth of 354 

approximately 1,450m, to be: SH = 37MPa, Sh = 26MPa, SV = 35MPa, with a principal 355 

horizontal stress azimuth of 45°. Hydrostatic pore pressure at these depths is 14.5MPa. We 356 

can resolve this stress tensor onto fault planes of arbitrary angle, computing normal stress, σn, 357 

and shear stress, τ, for all possible fault planes. Mohr-Coulomb theory states that a fault plane 358 

will reactivate if 359 

τ – φσn – C > 0,    (1) 360 

where φ is the friction coefficient, and C is the cohesion. Faults are therefore most likely to be 361 

reactivated if they have strike and dip such that τ – φσn is maximized. In Figure 11 we plot τ – 362 

φσn as a function of fault-normal azimuth and inclination, noting that this analysis suggests 363 

that faults striking ENE-WSW and NNE-SSW are most likely to be re-activated.   364 

 365 

Figure 11: Stereoplots showing the Mohr-Coulomb criteria τ – φσn as a function of fault-normal (i.e. 366 

the line drawn perpendicular to the fault plane) azimuth and inclination. Faults will be prone to failure 367 

when τ – φσn is maximized. In this case, vertical faults striking NNE and ENE (marked by dashed red 368 

lines) will be most prone to failure. Vertical faults striking SE-NW will be least prone to failure.  369 



A pore pressure increase will reduce the effective normal stresses, increasing the probability 370 

of slip on a well-oriented fault. The effective stress, σ’ij, is determined as a function of the 371 

stress tensor applied to the rock, σij, and the pore pressure, P: 372 

 σ’ij = σij – βw Iij P,    (2) 373 

where Iij is a 3×3 identity matrix, and βw is the Biot-Willis parameter (e.g., Mavko et al., 374 

1992), typically assumed to be 1. However, as well as influencing the effective stress via the 375 

‘P’ term in the above equation, pore pressure changes also affect the effective stress by 376 

causing a change in the applied stress. For an isotropic, porous elastic reservoir that is thin but 377 

laterally extensive, the change in horizontal applied stress as a function of a change in pore 378 

fluid pressure is  379 

 γH = 1 – 2ν/1 – ν,    (3) 380 

where ν is the Poisson’s ratio, and γH describes how much horizontal stress change ΔσH is 381 

caused by a pore pressure change ΔP:  382 

 γH = ΔσH/ ΔP.     (4) 383 

Assuming a typical value of ν = 0.25, Figure 12 shows how the Mohr circle, representing the 384 

stress conditions, moves as pore pressure increases. Also shown is a typical M-C failure 385 

envelope with a friction coefficient of 0.6. Slip can occur when the Mohr circle exceeds the 386 

failure limit. We find that a pore pressure increase of approximately 10MPa is sufficient to 387 

move the stress conditions from their current stable conditions and into a state where faults 388 

may be able to slip. This value matches the value found for the same conditions by Jimenez 389 

Gomez (2006), though we note that his thesis explored a much greater range of scenarios.  390 

Various reservoir models have been created to simulate the change in pore fluid pressure 391 

during the various stages of production at Weyburn (e.g., Jimenez Gomez, 2006; Verdon et 392 

al., 2013). In the model used by Verdon et al. (2013), at no point does the pore pressure 393 

exceed 10MPa above hydrostatic. In the model used by Jimenez Gomez (2006), pressures do 394 

occasionally exceed 10MPa above hydrostatic, but only rarely and in isolated model cells, 395 

rather than systematically across the reservoir (Figures 8-6, 8-14 and B-19 – B-24 of Jimenez 396 

Gomez, 2006). In summary, while we cannot account for every injection well in the area of 397 

study, injection pressures within the one of the largest oilfields in the area have not reached 398 

the levels necessary to move faults in the present-day ambient stress field beyond the Mohr-399 

Coulomb stability envelope. However, future plans for the Weyburn field include its 400 

conversion into a purely CCS site, once oil production is exhausted. This would entail 401 

continued CO2 injection without any fluid removal (Sun et al., this issue). In such a scenario, 402 

fluid pressures quickly increase to levels that are capable of moving faults beyond the Mohr-403 



Coulomb stability envelope. We therefore recommend that if such plans are realized, 404 

extensive geomechanical and microseismic monitoring should be deployed to ensure that the 405 

risks entailed by deformation and fault re-activation can be mitigated (as described by Verdon 406 

et al., 2015).   407 

 408 

Figure 12: Mohr circles for Weyburn stress conditions as a function of pore pressure increase. Each 409 

Mohr circle represents the effective stress conditions for a given pore pressure increase from 410 

hydrostatic, denoted by the color. Each circle represents a 1MPa increase in pore pressure. Also 411 

shown is a typical M-C failure envelope with a friction coefficient of 0.6: slip is likely if the Mohr 412 

circles exceed this envelope. A pore pressure increase of ~10MPa is sufficient to move the Mohr circle 413 

from its initial conditions to reach the failure envelope.  414 

5. DISCUSSION 415 

Based on our observations and the questions discussed in the previous section, we conclude 416 

that there is no evidence to suggest that oilfield activities in southeast Saskatchewan have 417 

induced seismic activity. Broadly speaking, this conclusion applies across the Western 418 

Canadian Sedimentary Basin in general (Ferguson, 2015). However, it is worth comparing 419 

our study area with others that have experienced much higher levels of induced seismicity 420 

from similar levels of oilfield activity. By making this comparison, it may be possible to 421 

identify why seismicity occurs in some cases and not others, and thereby take steps towards 422 

mitigating the issue.  423 

Frohlich (2012) and Keranen et al. (2014) both link induced seismicity in the mid-continental 424 

USA to the presence of high-volume wastewater disposal wells with monthly volumes in 425 

excess of 150,000 – 400,000 barrels per month (bbls/m). In Figure 13 we compare the 426 



maximum monthly injection rates in 2014 for wells in southeast Saskatchewan with data from 427 

Oklahoma1.  428 

In Figure 13 we normalize the number of wells with a given injection volume by the size of 429 

the study area, such that we plot the number of wells with a given maximum injection rate per 430 

100km2. For Oklahoma, the area we use for this normalization is the area of the state. 431 

However, injection wells in Oklahoma are not evenly distributed, so it is likely that there are 432 

areas where the number of injection wells per unit area is larger than that plotted in Figure 13. 433 

Nevertheless, from Figure 13 it is apparent that there are similar numbers of injection wells 434 

with large monthly rates in both Oklahoma and southeast Saskatchewan. Therefore 435 

differences in injection volume alone cannot account for the differences in injection-induced 436 

seismicity.      437 

 438 

Figure 13: Cumulative distribution of the highest monthly injection rates for wells in southeast 439 

Saskatchewan (red), compared with wells in Oklahoma (blue), normalized by the sizes of the areas 440 

under consideration.    441 

It is possible that the stress conditions in southeast Saskatchewan are such that faults are less 442 

likely to rupture. Williams-Stroud and Billingsley (2010) report a low level of stress 443 

anisotropy during hydraulic fracturing in the Bakken Shale, for example. This is consistent 444 

with the generally low levels of natural seismicity in the area. However, potash mining in 445 

southeast Saskatchewan has induced a substantial number of earthquakes, indicating that the 446 

stress conditions are such that seismicity can be triggered in this region, if the necessary 447 

forcing is applied.  448 

Because they have not been well studied, it is not known whether these events are caused by 449 

subsidence of rocks overlying the mined zone, or by wastewater disposal in deeper layers. 450 

                                                             
1 Injection well data for Oklahoma is available from: http://www.occeweb.com/og/ogdatafiles2.htm 



Further analysis of these events is needed to establish why potash mining in the region is able 451 

to induce seismicity, while oilfield activities have not.   452 

A significant difference between the two regions is the injection depth. Wastewater disposal 453 

wells in Oklahoma, Ohio, and Arkansas, which have induced seismicity, inject into basal 454 

aquifers that are hydraulically connected to underlying crystalline basement rocks. In 455 

contrast, the only geological units to have experienced a net volume increase in southeast 456 

Saskatchewan are Cretaceous in age, and so are unlikely to have any hydraulic connection to 457 

the crystalline basement. Basement rocks generally have higher shear moduli and shear 458 

strength. This allows them to store higher shear stresses, and when ruptures occur, they will 459 

be more energetic (e.g., Vilarrasa and Carrera, 2015). Additionally, faults in basement layers 460 

cannot be easily mapped with reflection seismic surveys (and they are rarely the target for 461 

such surveys anyway, since they do not contain hydrocarbons). As such, basement faults may 462 

be present near to injection wells that are not detected. It might therefore be expected that 463 

injection into basal layers, with the result that pore pressures also increase in the crystalline 464 

basement, is more likely to lead to injection-induced seismicity. 465 

Taking the above into account, we note that injection into basal layers is not a necessary 466 

condition for induced seismicity (e.g., Zoback and Gorelick, 2015). For example, injection 467 

wells in the Raton Basin that are 2 – 3km above the basement have induced seismic activity 468 

(Rubinstein et al., 2014). Similarly, some injection wells in East Texas that are a substantial 469 

distance above the basement have also induced seismic activity (e.g., Justinic et al., 2013), 470 

while CO2 injection at In Salah, which is also well above the basement, has also produced 471 

seismicity (Stork et al., 2015).   472 

To date, few wells have targeted the basal formations in southeast Saskatchewan. However, 473 

the Aquistore CCS pilot project has begun to inject CO2 into the basal Deadwood Formation. 474 

At present, only a small volume of CO2 has been injected, and no seismicity has been 475 

recorded. It will be of interest to see whether continued injection into this layer begins to 476 

trigger seismicity, as CO2 injection into the basal Mt Simon Formation has done at the 477 

Decatur CCS pilot project, Illinois (Kaven et al., 2015). The operators of the Aquistore 478 

project have installed an extensive passive seismic monitoring system (Worth et al., 2014). 479 

Whether or not seismicity is triggered may indicate whether injection into basal layers is a 480 

particular risk factor for injection-induced seismicity. 481 
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