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Abstract 

RATIONALE Carotenoids are polyene isoprenoids with an important role in photosynthesis 

and photoprotection. Their characterization in biological matrices is a crucial subject for 

biochemical research. In this work we report the full fragmentation of 16 polyenes 

(carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-

CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). 

METHODS Analyses were carried out on a quadrupole time-of-flight (QToF) mass 

spectrometer coupled with nanoESI source and on a Fourier-transform ion cyclotron 

resonance (FTICR) mass spectrometer with ESI source. The formulae of the product ions 

were determined by accurate-mass measurements.   

RESULTS It is demonstrated that the fragmentation routes observed for the protonated 

carotenoids derive essentially from charge remote fragmentations and pericyclic 

rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a 

sigmatropic hydrogen shift). All mechanisms are dependent of cis-trans isomerization 

through the formation of several conjugated polyene carbocation intermediates. Some 

specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium 

ions. 

CONCLUSION Complete fragmentation pathways of protonated carotenoids by ESI and 

nanoESI-CID-MS/MS provide structural information about functional groups, polyene 

chain and double bonds, and contributes to carotenoid identification based on MS/MS 

fragmentation patterns. 

 

Keywords: carotenoids, retro-ene, aromatic elimination, tandem mass spectrometry, 

electrospray ionization. 
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Introduction 

Carotenes and xanthophylls (oxygenated carotenoids) represent a large group of 40-

carbon isoprene natural products with conjugated polyene chain (with up to 15 double 

bonds).[1] These molecules are widely distributed in nature where they play important roles 

in photosynthesis and photoprotection as direct quenchers of singlet oxygen and other 

reactive oxygen species (ROS), vitamin A precursors, membrane stabilizers, light 

harvesting and thermal dissipative agents.[2-7]  

About 750 naturally occurring carotenoids had been reported so far, with biosynthetic 

sources ranging from bacteria, yeast, algae and plants. In animals and humans their 

accumulation is derived through dietary intake. Over 250 carotenoids have been isolated 

from marine organisms, some of them (e.g. acetylenic carotenoids) come exclusively from 

this source.[6, 8]  

According to literature, most structural variations on carotenoids arise from biosynthetic 

modifications at the polyene chain, like cyclization, hydroxylation, epoxidation and 

rearrangement, which led to differences in the carotenoid backbone, the presence of 

heteroatoms and/or changes in π-system size and position.[1, 9, 10] 

Considering their economic relevance to the pharmaceutical and cosmetic industries, 

numerous analytical methods have been developed to detect and quantify carotenoids 

based on their chemical reactivity and light-absorbing properties.[11] High performance 

liquid chromatography coupled with photodiode array detector (HPLC-PDA) is by far the 

most common method, nevertheless structural similarity and isomeric forms hinder 

identification, especially in mixtures, where complete LC resolution is mandatory to assure 

correct detection solely by UV-Vis spectra.[11, 12]   

Liquid chromatography combined with mass spectrometry (LC-MS) is a step forward for 

carotenoid characterization since it provides unique structural features in an selective and 
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sensitive analysis, promoting the distinction between co-eluting carotenoids in small 

amounts of very low concentration samples.[11, 13]  

Various MS methods have been reported for carotenoid analysis using different ionization 

methods, including electron impact (EI), fast atom bombardment (FAB), matrix-assisted 

laser desorption/ionization (MALDI), electrospray (ESI) and atmospheric pressure 

chemical ionization (APCI).[13-20] Most of these applications are focused on molecular 

weight determination and/or rapid bulk analyses to confirm their presence in complex 

matrices. Only a few recent papers have looked into the use of MS/MS to differentiate 

structural isomers and identify new compounds.[13, 17, 18, 20] Moreover, very few studies have 

explored mechanistically and structurally the gas-phase chemistry of carotenoids to 

understand their unique fragmentation patterns.[13, 17, 21] 

One possible reason might be the ability of carotenoids to oxidize through electron 

abstraction, producing M•+, as well as generating protonated ions through acid-base 

ionization. This opens up multiple fragmentation routes resulting from these distinct 

ionization mechanisms (acid-base and/or redox) which can have the effect of hampering 

structural elucidation through increase complexity.[12, 21, 22] 

In this study, the main fragmentation pathways of protonated carotenoids are investigated. 

CID-MS/MS analyses were performed on both ESI-FTICR and nanoESI-QToF 

instruments to produce accurate-mass data to enable the elucidation of fragmentation 

routes from the distinct ionization processes.  

 

Experimental  

 

Materials 

Alloxanthin, antheroxanthin, canthaxanthin, cryptoxanthin, diadinoxanthin, diatoxanthin, 

lutein, neoxanthin, peridinin, prasinoxanthin, violaxanthin, zeaxanthin, ethyl-apo-carotene 
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and fucoxanthin were obtained from DHI Water & Environment (Copenhagen, Denmark). 

β-carotene and  astaxanthin were purchased from Sigma-Aldrich (St Louis, MO, USA). 

Methanol and acetonitrile were of HPLC grade and obtained from Aldrich (Gillingham, 

Dorset, UK). Deionised water was used throughout the study. Stock solutions of 

alloxanthin (~1.4 mg mL−1), antheroxanthin (~0.6 mg mL−1), canthaxanthin (~0.6 mg mL−1), 

cryptoxanthin (~1.0 mg mL−1), diadinoxanthin (~1.2 mg mL−1), diatoxanthin (~0.9 mg 

mL−1), lutein (~1.3 mg mL−1), neoxanthin (~1.1 mg mL−1), peridinin (~1.0 mg mL−1), 

prasinoxanthin (~1.3 mg mL−1), violaxanthin (~0.8 mg mL−1), zeaxanthin (~0.6 mg mL−1), 

β-carotene (~1.3 mg mL−1) astaxanthin (~1.0 mg mL−1) ethyl-apo-carotene (~0.8 mg mL−1) 

and fucoxanthin (~1.3 mg mL−1) were prepared in methanol and stored at 4 °C. Prior to 

analysis the dilute standard was prepared in methanol-acetonitrile–water (2:1:1 v/v) with 

0.5% formic acid to final concentration of approximately 0.5 mg mL-1.  

 

Instrumentation 

Nanospray ionization analysis was performed on a QStar-XL quadrupole time-of-flight 

hybrid instrument (Applied Biosystems, Warrington, UK) using a Nanomate HD automatic 

chip based nanospray system (Advion Biosciences, Norwich, UK). The QStar acquisition 

parameters were: ion source gas flow rate, 50 arbitrary units; curtain gas flow rate, 20 

arbitrary units; ionspray voltage, 2700 V; declustering potential, 75 V (except where 

indicated otherwise); focusing potential, 280 V; and declustering potential 2.15 V. The ion 

source gas and curtain gas were nitrogen. 

High-resolution accurate-mass ESI analyses were performed on a 7 Tesla Apex IV Fourier 

transform ion cyclotron resonance instrument (Bruker Daltonics, Billerica, MA, USA) using 

an Apollo off-axis ESI source. Samples were directly infused from a syringe pump at 100 

µL min-1. The acquisition parameters were: capillary voltage, 4600 V; end plate voltage, 



6 
 

3500 V; capillary exit potential, 200 V and drying gas temperature, 200 °C. Spectra were 

obtained by summing 80 0.5 s scans. 

In all cases, CID-MS/MS fragmentation analyses were performed on the isolated parent 

ions using either N2 or CO2 collision gas.  

 

Results and Discussion 

Carotenoids can produce both molecular ions, M•+, and protonated molecules, [M+H]+, in 

positive mode ESI independent of the capillary voltage.[12, 19, 21-23]  This ability to be either 

oxidized (through abstraction of one electron) or to be protonated (in acid-base ionization) 

is significantly influenced by charge delocalization by the conjugated polyene chain and 

the oxygen atoms.[12, 19, 21-23] Depending on the type of ions generated (protonated or 

radical), CID-MS/MS can generate multiple distinguishable fragmentation routes based on 

gas-phase acid-base and/or redox chemistry.[12, 17] In order to avoid M•+ formation and the 

subsequent redox reactions in MS/MS experiments, it has been suggested that acidified 

protic solvents are used to aid protonation and to eliminate the generation of the radical 

molecular ion.[12, 22] In this work, all the carotenoids standards (see figure 1) were dissolved 

in a mixture of protic solvents acidified with 0.5% formic acid prior to ionization. The results 

clearly showed that the use of protic solvents favorthe production of [M+H]+ in both ESI 

and nanospray ionization.[12, 19, 22]  

The [M+H]+ ions were selected as the precursor ions for ultra-high resolution FTICR-

MS/MS. The use of high resolution mass spectrometers enables the full separation and 

isolation of [M+H]+ from any radical ions that are still generated, and so avoiding the 

occurrence of cross radical fragmentations that can result from low resolution precursor 

ion selection.[17] MS/MS analyses were also conducted by nanoESI-CID-QToF. The major 

product ions from tandem mass spectra of all carotenoids (available in Supporting 
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information) are summarized in Table 1, and the major fragmentation routes are 

exemplified in scheme 1. 

Various product ions are present in the MS/MS analysis of all the carotenoids, specifically 

in the low-mass region (m/z < 300). Similar product ions were obtained in both ESI and 

nanoESI, despite nanoESI producing more abundant low-mass ions. Previous studies 

have compiled positive ion fragmentation data of carotenoids using various ionization 

techniques and matrices, however no systematic studies have completely elucidated their 

gas-phase chemistry.[13, 17] 

The suggested fragmentation routes are initiated by the elimination of molecules of water 

from the oxygenated groups (hydroxyl, carbonyl or oxirane substituents) in xanthophylls. 

Dehydrations from hydroxyl groups can be explained via 1,4-elimination, except for lutein, 

where the hydroxyl group is in a allylic position which would promote direct protonation 

and formation of an allylic carbocation (stabilized through resonance) after water 

elimination.[21, 24, 25] Neutral eliminations of acetic acid or CO can also be observed for 

peridinin, fucoxanthin and astaxanthin by a similar mechanism. 

Fragmentation pathways of all carotenoids were also accompanied by pericyclic reactions 

as electrocyclic, retro-ene eliminations and charge remote fragmentations (assisted by a 

sigmatropic hydrogen shift in some cases), through the formation of conjugated 

carbocation ions with different cis-trans isomerization of the polyene chain.[26, 27]  

For pericyclic reactions to occur, several pairs of bound electrons need to be able to move 

concertedly in a six-membered transition state; which requires adequate orientation of the 

orbitals involved.[28, 29] Additionally, for retro-ene fragmentation reactions to occur, a γ-

hydrogen to an unsaturated carbon is requiredto yield both -ene and -enophile 

fragments.[28] Both requirements (correct orbital orientation and γ-hydrogen distribution) 

can be achieved during the protonation of carotenoids through carbocation formation and 

cis-trans π-system conversion , as displayed in scheme 2.  
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Formation of the intermediate carbocation can be rationalized by protonation at a sp2 

carbon double bond, which results in sp3 hybridization and the formation of a single bond. 

Subsequently, free rotation of the new single bond can reverse isomerization due to the 

resonance effect of the polyene chain.[27] In case of xanthophylls, isomerization can be 

assisted by the lone pair of electrons from the oxygen atoms.  

Formally, positive charge delocalization should be drawn at a terminal double bond of one 

ionone moiety, e.g. C5-C6, and protonation could be equally possible at multiple sites, 

however semi-empirical calculations showed delocalization of intermediate carbocation is 

negatively affected by the torsion angle between the ionone ring and the polyene chain, 

reducing orbital overlap and charge delocalization. On the other hand, the large number 

of conjugated double bonds favored carbocation resonance in the “middle” of the polyene 

– C13-C13’, due to higher electronic density. For those reasons, protonation of 

carotenoids is favored at C7-C11, even in xanthophylls, where it would be expected to 

observe protonation at electronegative oxygen. [26, 27] 

Electrocyclic elimination was proposed as the mechanism for the neutral losses of 92 and 

106 u, (elimination of toluene and xylene respectively), observed for all of the carotenoids 

analyzed. 

The mechanism for the elimination of aromatic rings from carotenoids has been proposed 

as a sequential polyene 8π/6π-electron electrocyclization followed by formation of a four 

membered ring intermediate, as shown in scheme 3a.[21] An alternative route was recently 

presented, comprising of a Diels-Alder reaction forming the stable tricyclic intermediate 

structure as proposed in scheme 3b.[25] 

Both processes require several trans−cis isomerizations to fulfill the correct conformation, 

however the symmetry-allowed disrotatory ring-closure of a cyclo-octatetraene observed 

in electrocylization should be energetically more favorable since it does not depend 

directly on the ionone ring, as proposed by [4 + 2] cycloaddition. Indeed, according to 
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Coughlan and co-workers (2014), density functional theory calculations at the M06-2X/cc-

pVDZ level supported the electrocyclization/fragmentation cascade, probably because it 

avoids the steric effects of ionone ring formation. The evidence for the loss of toluene in 

fucoxanthin reinforces the 8π/6π electron electrocyclizations since there is no double 

bond in the ionone ring which is able to assist the formation of a stable tricyclic 

intermediate structure.[21, 24, 25]  

The MS/MS analysis of all the carotenoids also displayed various abundant ions in the 

low-mass region (< 300 u), similar to those observed in FAB-MS/MS, EI-MS, APCI-MS/MS 

and ESI-MS/MS analysis.[13] These product ions have been proposed as resulting from 

various cleavages of the polyene chain accompanied by hydrogen transfer, however no 

gas-phase mechanisms have been proposed so far in the literature.[13, 18] 

The rationalization for the formation of these low-mass ions suggests a mechanism 

pathway with several cleavages of the polyene chain by sequential retro-ene eliminations 

or vinyl-allyl charge remote fragmentations. The retro-ene elimination involves transfer of 

γ-hydrogen atom to an unsaturated center via a six-electron cyclic transition state.[28, 30] 

Vinyl-allyl fragmentation involves participation of an allylic hydrogen atom on a methylene 

group to form a six-membered transition state. The proposed mechanism of vinyl-allyl 

fragmentation arise from the six-membered intermediate by the transfer of the bis-allylic 

hydrogen atom to the alkenic carbon resulting in formation of a conjugated diene and a 

vinylic molecule.[28, 31-33] 

Possible cleavages of the polyene chain by directed retro-ene and vinyl-allyl reaction are 

depicted in scheme 4. The characteristic cleavages of carbon–carbon bonds at multiple 

sites of the polyene chain in carotenoids are governed by protonation, extensive 

carbocation-charge delocalization and cis-trans isomerization.  Beside this, hydrogen 

sigmatropic rearrangements are necessary to achieve proper orbital conformation and 

hydrogen requirements. Sigmatropic rearrangements are also pericyclic processes in 



10 
 

which an atom (in our case, hydrogen) σ-bonded to a carbon may rearrange its position 

through one or more π-electron systems, without producing any fragment ions.[28]  

Carotenoid 5,6-epoxides also formed characteristic fragments at m/z 221 and 181. These 

product ions have been used as diagnostic ions for the epoxide-containing end group and 

its fragmentation mechanism has been described as direct 8,9 and 10,11 cleavages of the 

polyene chain.[13, 16-18] Here we proposed the cleavage based on epoxide-furanoxide or 

epoxide-oxepinoid rearrangements with formation of cyclic oxonium ions, as shown in 

scheme 5.  

 

Conclusions 

We have presented a complete fragmentation pathway for protonated carotenoids using 

ESI-CID-MS/MS. Protonation of carotenoids was produced simply through the choice of 

acidified protic solvents, minimizing radical molecular ion formation and undesirable redox 

and radical processes that may induce extra routes that complicate structural elucidation. 

The use of high resolution ion isolation enables the [M+H]+ to be selected as the precursor 

ion for MS/MS studies, avoiding co-selection of any low-intensity radical ions that may still 

be present in the spectra. 

Systematic studies of the carotenoid fragmentation pathways have demonstrated that 

electrocyclization elimination reactions resulted in the loss of an aromatic ring from the 

polyene chain. Direct cleavages of conjugated π-system also occurs by retro-ene 

reactions and vinyl-allyl charge remote fragmentations. All proposed mechanisms rely on 

correct orbital conformation and adequate distribution of hydrogens. Both requirements 

are achieved during protonation of the polyene chain, forming the carbocation 

intermediate and inducing cis-trans isomerization, and by sigmatropic hydrogen 

rearrangements. 
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Specific fragmentation routes included dehydratation from the ionone ring of xanthophylls 

and formation of oxonium ions in carotenoid 5,6-epoxides. The proposed mechanisms are 

based on gas-phase reactivity of carotenoids and could be of significant use for future 

MS/MS identification. 

 

Supporting information 

Supporting information can be found in the online version of this article. 
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Figure Captions 

 

Figure 1. Structures of carotenoids analyzed. 

 

Scheme 1. Proposed fragmentation routes for a) astaxanthin and b) canthaxanthin. The 

bond colored in red is the site of the C-C cleavage. 

 

Scheme 2. Example of a possible protonation site for the carotenoids. 

 

Scheme 3. Carotenoid fragmentation mechanisms proposed by a) Guaratini et al. (2006) 

and b) Coughlan et al. (2014). In mechanism a), a sequential 8π/6π electron 

electrocyclization leads to an intermediate containing a four-membered ring followed by 

elimination of the aromatic ring, while in mechanism b), the carotenoid undergoes a [4 + 

2] cycloaddition to form a tricyclic intermediate structure.  

 

Scheme 4. Examples of a) retro-ene fragmentation in astaxanthin and b) vinyl-ally charge-

remote fragmentation in canthaxanthin. 

 

Scheme 5. Formation of oxonium ions a) m/z 181 and b) m/z 221 from carotenoid 5,6-

epoxide. 
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Tables 1 

Table 1. Tabulated data for the positive ion CID-MS/MS product ions from both the ESI-FTICR and nanospray-QToF analysis of the 2 

protonated carotenoids. In all cases, the [M+H]+ was the precursor ion.  3 

Carotenoids [M+H]+ Electrocyclic reaction** 
abundant ions in FTICR (first row) and QToF (second row)  

related to retro-ene eliminations 

1 537.4455 445, 431 
261, 185, 149 

321, 245, 185, 173, 135, 123 

2 565.4046 473 , 459, 441 
203, 215, 255, 269, 293 

191, 386, 203, 363, 215, 349, 257, 307, 269, 295 

3 585.4308 493, 475, 457 
341, 327, 315 

427, 433, 419, 175, 391, 259, 327, 315, 285, 361,351 

4 553.4404 461, 447 
413, 153, 187, 337, 215, 281, 269 

* 

5 601.4257 509, 491, 477, 473, 459 
188, 429, 357 

147, 187, 175, 199, 267, 413, 387, 357, 293 

6 567.4197 475, 443 
217, 199, 327, 315, 267, 281, 315 

145, 175, 217, 199, 310, 185 

7 583.4151 491 
221, 413, 419, 391, 337, 327, 315 

375, 199, 217 

8 631.3635 - 
391, 315, 210, 184 

225, 329, 315, 181 

9 - 477, 459 
121, 159, 185, 203, 261, 315, 339, 365 

165, 188, 239, 336, 282 

10 569.4359 477 
152, 215 

175, 232, 312, 296 

11 601.4257 509, 491 221, 203, 315, 419, 391 
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375, 221, 203, 247, 287 

12 601.4257 509, 495, 491, 477, 473, 459, 441 
233, 315 

123, 167, 181, 209, 173, 221, 233, 287, 301, 349 

13 597.3944 505, 491, 487, 473 
413, 419, 391, 201, 285 

135, 147, 201, 379, 215, 365, 285 

14 659.4306 549, 531 
391, 355, 275, 213, 193, 149 

* 

15 565.4046 473, 441 
391, 327, 283, 257, 217, 199, 152, 149 

* 

16 461.3414 - 
337, 291, 235, 221, 171, 157, 119 

* 

* Experiments not performed 4 

** Ions represent elimination of toluene (92 u), xylene (106 u) and possible additional losses of water. 5 

 6 

  7 
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Figures 8 
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