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RAMSEY MULTIPLICITY OF LINEAR PATTERNS IN CERTAIN FINITE
ABELIAN GROUPS

A. SAAD AND J. WOLF

Abstract. In this article we explore an arithmetic analogue of a long-standing open problem
in graph theory: what can be said about the number of monochromatic additive configur-
ations in 2-colourings of finite abelian groups? We are able to answer several instances of
this question using techniques from additive combinatorics and quadratic Fourier analysis.
However, the main purpose of this paper is to advertise this sphere of problems and to put
forward a number of concrete questions and conjectures.

1. Introduction

Using an elementary argument, Goodman [12] proved in the 1950s that a random 2-colouring
of the edges of a large complete graph Kn contains asymptotically (in n) the minimum number
of monochromatic triangles. Subsequently Erdős [11] conjectured that for all s > 3, it was in-
deed the random colouring that minimised the number of monochromatic copies ofKs amongst
all 2-colourings of the edges of a large Kn. This conjecture was disproved by Thomason [35] in
1989, who exhibited an infinite family of 2-colourings of Kn which contained asymptotically
strictly fewer than 21−6

(
n
4

)
monochromatic K4s. A few years prior Burr and Rosta [2] had in

fact optimistically generalised Erdős’s conjecture from Ks to every fixed graph H. Clearly,
since Erdős’s conjecture is false, the Burr-Rosta conjecture does not hold for general graphs
H. This was shown, independently of Thomason, by Sidorenko [29], who defined a sequence
of edge-colourings of Kn that contained too few monochromatic copies of a graph H that
consisted of a triangle with one additional edge attached to one of the vertices. However,
the Burr-Rosta conjecture has been verified for several classes of graphs, which we shall call
common in keeping with the usual terminology. Graphs known to be common include trees,
cycles, even-spoked wheels, triangular edge- and vertex-trees [29, 30, 22, 36], to name just a
few. Despite much research over the past two decades, the question of determining for which
small graphs H the Burr-Rosta conjecture holds remains wide open. For a concise overview
of the state-of-the-art, including a weaker version of the original Burr-Rosta conjecture that
may hold for all graphs H, see [6, Section 2.6].

A particularly significant class of graphs that are known to be common stems from a closely
related and arguably more acclaimed conjecture in graph theory, namely Sidorenko’s conjecture
[30], which has received a significant amount of attention lately. It states that the minimum
number of copies of H in G essentially occurs when G is a random graph (and also appeared
in a slightly weaker form in [31]). Clearly if Sidorenko’s conjecture holds for a graph H, then
H is common. It is easily seen that trees are Sidorenko, and as a result of recent work by Li
and Szegedy [23], Szegedy [33] and Conlon et al. [5, 7], Sidorenko’s conjecture is known for
other large classes of bipartite graphs H. This includes bipartite graphs H which have at least
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one vertex connected to all vertices in the other part [5]. The most general known examples
are not straightforward to describe, and we refer the reader to [7].

In this article we shall explore the following arithmetic analogue of the above sphere of
problems. Throughout we let Z be a finite abelian group. In some of our examples we shall
take Z to be the cyclic group Z/NZ for a sequence of primes N →∞, but even more frequently
we shall consider the case where Z = Fnp is a vector space of dimension n over a finite field of
prime characteristic p. In the ‘finite-field model’ as it is generally understood (see [17, 38]), it
is important that p be thought of as small and fixed (we shall see p = 3 and 5 most frequently
in the sequel), while the dimension n is to be thought of as tending to ∞. Asymptotic results
for this group are thus asymptotic in n.

Let L be a system ofm homogeneous linear equations in d variables with integer coefficients,
and let A be a subset of Z. We define the arithmetic multiplicity of L in A, denoted by tZ,L(A),
to be the number of solutions to L in A divided by |Z|deg(L), where deg(L) is the number of
degrees of freedom of the linear system L (or the dimension of the solution space). In other
words, tZ,L(A) denotes the probability that a randomly chosen solution to L in Z forms a
solution to L in A. We also define the arithmetic Ramsey multiplicity of L with respect to
the colouring induced by A and its complement AC by mZ,L(A,AC) := tZ,L(A) + tZ,L(AC),
where AC := Z \A.

For translation-invariant systems L, a generalised version of Szemerédi’s theorem in finite
abelian groups tells us that mZ,L(A,AC) = Ω(1) as |Z| → ∞, so we shall almost exclusively
focus our attention on translation-invariant systems.1 Unlike the case of graphs, it seems to
not be at all straightforward to show that the limit as |Z| → ∞ of the minimum over A ⊆ Z of
tZ,L(A) (and hence mZ,L(A,AC)) exists, even for simple configurations L and specific families
of finite abelian groups Z, see [8, 4]. We shall not pursue this matter here.

In analogy with the graph-theoretic problem, we shall call a linear patterns defined by L
Sidorenko in Z if it occurs with frequency at least αd in every subset of Z of density α, i.e.
if tZ,L(A) ≥ αd for all A ⊆ Z of density α. We shall call a configuration L common in Z

if it occurs asymptotically with frequency at least 2(1/2)d in any 2-colouring of the elements
of the group Z, that is, if for any A ⊆ Z, mZ,L(A,AC) ≥ 2(1/2)d + o(1) (as |Z| → ∞). As
before, it is easy to see that if a linear system L is Sidorenko, then it is common.

Let us discuss a first (and important) example to clarify these definitions.

Example 1.1 (Additive quadruples). Let Z be any finite abelian group. Let L be an additive
quadruple, that is, a solution to the single equation x+ y = z +w with 3 degrees of freedom,
which we shall denote by AQ. We claim that AQ is Sidorenko in Z and hence common. To
see this, observe that the number of solutions to x + y = z + w in a subset A ⊆ Z can be
written as∑

x,a,b∈Z
1A(x)1A(x+ a)1A(x+ b)1A(x+ a+ b) =

∑
a∈Z

(∑
x∈Z

1A(x)1A(x+ a)

)2

,

where 1A denotes the indicator function of A, which takes the value 1A(x) = 1 if x ∈ A,
and 0 otherwise. A simple application of the Cauchy-Schwarz inequality shows that the
number of solutions to L in A is at least |A|4/|Z|. In other words, tZ,AQ(A) ≥ α4, and hence
mZ,AQ ≥ 2 · (1/2)4, as required.

1For some non-translation invariant linear systems such as Schur triples (see Example 2.2 below), a non-trivial
lower bound on mZ,L(A,AC) in certain families of finite abelian groups follows from a result of Deuber [10].
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This example allows us to explain in more detail why we call the set-up above the arithmetic
analogue of the graph-theoretic question formulated in the introductory paragraphs of the
present paper. Additive quadruples in subsets of finite abelian groups are well known to be in
direct correspondence with 4-cycles in graphs. Specifically, given a subset A ⊆ Z, which we
shall assume to be symmetric in the sense that A = −A := {−a : a ∈ A}, we can construct
the so-called Cayley graph Γ = Γ(Z;A) as follows. Let V (Γ) := Z, and let uv be an edge in
Γ if and only if u − v ∈ A. It is easily verified that the number of 4-cycles in Γ corresponds
precisely to the number of additive quadruples in A.

More generally, such a correspondence can be set up for other linear patterns but the
limitations are twofold. First, not every graph is (isomorphic to) a Cayley graph generated by
a symmetric subset of Z (in fact, such Cayley graphs arise with vanishingly small frequently).
Secondly, not all linear configurations can be made to arise from graphs. For example, it
is well known through attempts of proving Szemerédi’s theorem for arithmetic progressions
of length 4 that the latter linear configuration cannot be represented in the graph-theoretic
universe alone (and in fact, a 3-uniform hypergraph is needed to represent its solutions).

In the next section we ease into the problem with some relatively straightforward examples of
additive configurations, including hypercubes and 3-term arithmetic progressions. In Section
3 we recall (and extend) the more complicated example of 4-term arithmetic progressions,
studied by the second author in [37]. We examine to what extent adding free variables makes
a given linear pattern uncommon (Section 4), and subsequently present some evidence to
support a new conjecture concerning the (perhaps surprisingly) difficult case of linear patterns
defined by one equation in an even number of variables (Section 5).

What we hope will spark the reader’s interest when presented with this broad range of
examples is the analysis of the underlying reason for which a linear pattern turns out to be
common or uncommon. Unlike the case of graphs, where a multitude of cases has been studied
but any attempt at classification appears extremely difficult, there is a strong structural
theory for the arithmetic instance of the problem which allows us to be more systematic in
our approach. However, we shall see that this theory turns up a range of reasons for the
(un)commonality of a given linear pattern, which we believe shows that the problem is a
difficult one even in the arithmetic setting. We present a summary of the emerging picture in
Section 6.

2. Some straightforward patterns

We start by discussing a simple generalisation of Example 1.1. For a definition of the Fourier
transform, the uniformity norms and other standard notation, we refer the reader to [18].

Example 2.1 (Additive k-tuples). Let Z be any finite abelian group. Let k ≥ 2 be an integer
and consider solutions to the equation x1 +x2 + · · ·+xk = xk+1 +xk+2 + · · ·+x2k, denoted by
AQk. This linear pattern is easily seen to be Sidorenko (and hence common). The Cauchy-
Schwarz argument from Example 1.1 generalises, but we may also use the Fourier transform
to see that

tZ,AQk
(A) = Ex1A ∗ 1A ∗ · · · ∗ 1A(x)2 =

∑
γ

|1̂A(γ)|2k,

where the convolution is k-fold, which by positivity of the summand is bounded below by
|1̂A(0)|2k = α2k as claimed.

What can we say about other linear patterns defined by one equation? We shall examine
the first non-trivial case, namely that of an equation in three variables.
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Example 2.2 (Schur triples). Let Z be any finite abelian group. A Schur triple, denoted by
ST , is a solution to the equation x+y = z. It is well known that there are dense sets containing
no Schur triples at all, implying that this pattern is not Sidorenko. For example, in Fnp we
may take any non-trivial coset of a subspace of codimension 1, which has density 1/p in the
group. In Z/NZ it is easy to see that the “middle-thirds” set {x ∈ Z/NZ : N/3 ≤ x < 2N/3}
contains no solutions to x + y = z. A comprehensive analysis of the quantity tZ,ST (A) for
various groups Z has recently been undertaken by Samotij and Sudakov in [27].

On the other hand, it is elementary to see that Schur triples are common, see for example
Theorem 1 in [9] and Corollary 3.1 in [3]. One way is to simply expand

mZ,ST (A,AC) = Ex,y1A(x)1A(y)1A(x+ y) + Ex,y1AC (x)1AC (y)1AC (x+ y),

replace 1AC by 1−1A, and evaluate the corresponding sums. Note that the terms containing a
triple product of indicator functions disappear, due to a sign change. Another way of reaching
the same conclusion is to rewrite tZ,ST (A) in terms of the Fourier transform of 1A and to use
the fact that 1̂A(γ) = −1̂AC (γ) for γ 6= 0.

It is remarkable that we not only obtain a lower bound on the number of monochromatic
Schur triples, but in fact an exact formula for mZ,ST (A,AC) whose value only depends on the
density of the colour classes. An identical phenomenon occurs in the following example.

Example 2.3 (3-term arithmetic progressions). Let Z = Z/NZ or Z = Fnp with p > 2. A
3-term arithmetic progression, or 3 − AP , is defined by the equation x + y = 2z. Giving a
lower bound for t3−AP (A) in terms of the density of A corresponds to the infamously difficult
problem of obtaining upper bounds in Roth’s theorem (see for example Chapter 10 of [34]).
In particular, it is known through recent work of Bloom [1] (building on prior work of Sanders
[28]) that in Z/NZ,

tZ/NZ,3−AP (A) ≥ αO(α−1 log3(α−1)),

a far cry from the expected α3 in a random set. On the other hand, Green and Sisask [19]
exhibited a subset A of Z/NZ of density 1/2 for which tZ/NZ,3−AP (A) = 5/48 < 1/8, using
ideas we shall return to in Section 4. It follows that 3-term arithmetic progressions are not
Sidorenko in Z/NZ. However, both proofs in Example 2.2 adapt without difficulty to show
that 3-APs are common.

It was observed, by Cameron, Cilleruelo and Serra [3], for example, that the same argument
can be extended to the analysis of any linear pattern defined by one equation in an odd number
of variables. We leave the proof as an easy exercise to the reader.

Example 2.4 (One equation in an odd number of variables). Let Z be any finite abelian
group, and let OE be a linear pattern defined by one equation in an odd number of variables,
i.e. β1x1 + β2x2 + · · ·+ βkxk = 0 for some odd integer k and integers β1, β2, . . . , βk. Let A be
a subset of Z of density α. Then

mZ,OE(A,AC) = αk + (1− α)k ≥
(

1

2

)k−1
,

from which it follows that OE is common.

Both the Fourier- and the Cauchy-Schwarz approach clearly fail, as a result of lack of
cancellation, for even values of k. We shall return to the unexpectedly difficult case of one
equation in an even number of variables in Section 5. We conclude this section by generalising
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Example 1.1 in another direction, which belongs to a different “complexity class” from the
above and which will naturally lead us on to Section 3.

Example 2.5 (Hypercubes). Let Z be any finite abelian group, and let d ≥ 2 be an integer.
We call the linear configuration Cd given by the 2d linear forms (x0 +

∑d
i=1 εixi)ε∈{0,1}d a

hypercube of dimension d. When d = 2 this definition again reduces to that of an additive
quadruple. Just like an additive quadruple, the hypercube of dimension d is easily seen to be
Sidorenko (and hence common) for d > 2.

3. Square dependent and independent configurations

The reader may care to verify that the preceding example (Example 2.5) does not have a
Fourier-based proof of commonality as for d > 2 there is no useful expression for the number of
hypercubes in terms of the Fourier transform. The latter fact is also true of 4-term arithmetic
progressions, and it is for this reason that Gowers introduced the uniformity norms (see, for
example, Definition 2.12 in [38]).

Arithmetic progressions of length 4, denoted by 4 − AP and defined by the equations
x+y = 2z and y+z = 2w, are clearly not Sidorenko, and finding lower bounds on tZ,4−AP (A)
in terms of the density of A corresponds to finding good bounds in Szemerédi’s theorem in
the group Z.

Motivated by Thomason’s proof [35] that the graph K4 is uncommon, the second author
showed in [37] that 4-term arithmetic progressions are uncommon in Z/NZ. Specifically, it
was shown that there exists a set A ⊆ Z/NZ for which

mZ/NZ,4−AP (A,AC) <

(
1− 1

259200

)
×
(

1

2

)3

≈ 0.12499952,

where (1/2)3 is of course the proportion of 4-APs expected in a random set. In subsequent work
Lu and Peng [24] improved the right-hand side to the much more reasonable 68/75× (1/2)3 ≈
0.113333.2

Given that 4-term arithmetic progressions are uncommon in Z/NZ, it is natural to ask the
following question.

Question 3.1. For a given finite abelian group Z, what is minA⊆Z mZ,4−AP (A,AC)?

In [37] it was shown that

min
A⊆Z/NZ

mZ/NZ,4−AP (A,AC) ≥
(

1

2

)4

,

and the right-hand side was improved by Lu and Peng [24] to 7/96. In graph theory the
corresponding minimisation problem has been studied extensively. For the best known upper
and lower bounds on the minimum number of monochromatic copies of K4 in any 2-colouring
of the edges of Kn see [36] and [32], respectively.

We use this section to add three further observations to the existing body of work on 4-term
arithmetic progressions. First, we shall give a finite-field version of the construction in [37],
which has the benefit of being significantly easier to understand, and requiring no strenuous
computation whatsoever. Secondly, we examine what can be said about the structure of those
colourings that show 4-APs to be uncommon in this setting. Thirdly, we analyse to what

2Here and elsewhere in the paper, numerical results are given to eight significant figures.
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extent these methods can be used to obtain results about configurations containing 4-term
progressions.

The first colouring containing fewer than the expected number of monochromatic 4-term
progressions in [37] was based on an unpublished construction from quadratic Fourier analysis
due to Gowers [14], who had constructed a subset of Z/NZ of density 1/2 which was uniform
in the sense that the non-trivial Fourier coefficients of its indicator function were small, but
which contained significantly fewer than the expected number of 4-APs.3 In Fn5 , many of the
technical details simplify and we give them in full here.

Example 3.1 (4-term arithmetic progressions). There exists a set A ⊆ Fn5 such that

mFn
5 ,4−AP (A,AC) ≤ 1

8
− 7

21052
≈ 0.12472656.

We shall break up the construction of A into a number of claims.

Claim 3.2. Let f : F5 → {−1, 1} be defined by f(x) = −1 if x = 0 and f(x) = 1 otherwise.
Then

Ex,d∈F5f(x)f(x+ d)f(x+ 2d)f(x+ 3d) = − 7

25
.

Moreover, if we let V := Fn−15 so that Fn5 = V ⊕ V ⊥, and define F : Fn5 → {−1, 1} by setting
F (x) := f(y) when x ∈ V + y for y ∈ V ⊥, then

Ex,d∈Fn
5
F (x)F (x+ d)F (x+ 2d)F (x+ 3d) = − 7

25
.

Proof. There are 25 4-term progressions in F5, including 5 trivial ones which contribute 5/25
to the expectation in f . Each non-trivial progression is counted 4 times, and all besides
1, 2, 3, 4 contribute −4/25 to the expectation, amounting to a total contribution of −16/25.
The progression 1, 2, 3, 4 contributes 4/25, for a total of (5− 16 + 4)/25 = −7/25. The second
part of the claim is immediate by splitting Ex∈Fn

5
= Ey∈V ⊥Ev∈V , and similarly for d. �

Claim 3.3. Let G : Fn5 → [−4, 4] be defined by G(x) := F (x)(ωx·x + ω−3x·x + ω3x·x + ω−x·x).
Then |Ĝ(t)| = o(1) for all t ∈ Fn5 . Moreover,

|Ex,d∈Fn
5
G(x)G(x+d)G(x+ 2d)G(x+ 3d)−4Ex,d∈Fn

5
F (x)F (x+d)F (x+ 2d)F (x+ 3d)| = o(1).

Proof. It is easily computed that for any affine subspace W = w + W0, where W0 6 Fn5 ,
|1̂W (t)| = 1/|W⊥0 | if t ∈ W⊥0 , and 0 otherwise. Recall also that from standard Gauss sum
estimates, |ω̂q(t)| = o(1) for any t ∈ Fn5 and any quadratic form q of rank tending to infin-
ity with n. Thus for any affine subspace W , the function G′(x) = 1W (x)ωq(x) has Fourier
transform of size

|̂G′(t)| = |1̂W ∗ ω̂q(t)| = |
∑
s

1̂W (t− s)ω̂q(s)| ≤ sup
s
|ω̂q(s)|

∑
s

|1̂W (s)| = sup
s
|ω̂q(s)| = o(1).

In order to obtain the result for G, it remains to observe that F is a plus/minus one combin-
ation of indicator functions of 5 affine subspaces.

To see why the second part of the claim is true we have to work a tiny bit harder. We start
by expanding the product

Ex,d∈Fn
5
G(x)G(x+ d)G(x+ 2d)G(x+ 3d)

3It is significantly easier to obtain an example of a uniform set containing significantly more than the expected
number of 4-APs, see for example Section 2.3 of [38].
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into 44 = 256 terms, each of which is of the form

Ex,d∈Fn
5
F (x)F (x+ d)F (x+ 2d)F (x+ 3d)ωax·x+b(x+d)·(x+d)+j(x+2d)·(x+2d)+k(x+3d)·(x+3d),

where each of a, b, j, k takes one of the values +1,−3,3 or −1. It can easily be checked that the
only assignments (a, b, j, k) that leave the exponent equal to zero are (1,−3, 3, 1), (−1, 3,−3, 1),
(3, 1,−1,−3) and (−3,−1, 1, 3). Together these four contributions give rise to a term of the
form

4Ex,d∈Fn
5
F (x)F (x+ d)F (x+ 2d)F (x+ 3d).

All remaining terms, which involve a product of copies of F with a quadratic exponential or
a non-trivial bilinear phase in x and d, are negligible by a variant of the argument made for
G′ at the start of the proof. �

Claim 3.4. Let h : Fn5 → [0, 1] be defined by h(x) = 1
8(G(x) + 4). Then Exh(x) = 1

2 + o(1)

and |ĥ(t)| = o(1) for all t 6= 0. Moreover,

Ex,d∈Fn
5
h(x)h(x+ d)h(x+ 2d)h(x+ 3d) ≤ 1

16
− 7

21052
+ o(1).

Proof. The claims concerning the average and the Fourier coefficients of h are easy to verify.
To see the final inequality, expand the product

Ex,d∈Fn
5
h(x)h(x+ d)h(x+ 2d)h(x+ 3d)

into 16 terms. The term arising from having chosen 4 from each bracket gives the main
contribution of (1/2)4 = 1/16. Combining Claims 3.2 and 3.3, we see that the term

1

212
Ex,d∈Fn

5
G(x)G(x+ d)G(x+ 2d)G(x+ 3d)

arising from having chosen G from each bracket contributes

≤ −4× 7

25

1

212
+ o(1).

All other terms are negligible as they define configurations in G consisting of at most 3-terms,
all of which are controlled by the Fourier coefficients of G. �

The function h can now be converted into a subset of Fn5 by a standard probabilistic ar-
gument, namely by letting x ∈ Fn5 lie in the desired set with probability h(x). We leave the
details to the reader.

This concludes the proof of the example. In contrast to this analytic way of proceeding, Lu
and Peng [24] used a brute-force computational approach in Z/NZ which turned out to be
quantitatively superior. However, the following simple lemma shows that, at least in a weak
sense, any colouring which contains fewer than the expected number of monochromatic 4-term
progressions (which we shall refer to as bad in the sequel) must arise from a quadratically
structured example as in [37]. The proof uses a deep result, namely the inverse theorem for
the U3 norm (see Theorem 2.3 in [20], which is based on prior work of Gowers [13]), but is
otherwise routine and therefore omitted.

Lemma 3.5 (Structure of bad colourings for 4-APs). Let 0 < δ < 1/8 and suppose that
A ⊆ Fn5 is such that

mFn
5 ,4−AP (A,AC) <

(
1

2

)3

− δ.
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Then there exists a quadratic form q on Fn5 such that |Ex1A(x)ωq(x)| ≥ c(δ), where c is a
function that tends to zero as δ tends to zero.

The dependence of c(δ) on δ is relatively weak, meaning that Lemma 3.5 is primarily of
qualitative interest.4 Having said this, we believe it provides the first insight into the structure
of bad colourings. In particular, to our knowledge no such result is known for the original
graph-theoretic problem (although interestingly, Thomason’s first construction in [35] was also
based on a quadratic form).

Finally, we note that any example of the kind constructed above also gives rise to a bad
colouring for 5-APs. Similarly to [37], we can write

mFn
5 ,5−AP (A,AC) = Ex,d

4∏
j=0

1A(x+ jd) + Ex,d
4∏
j=0

1AC (x+ jd)

as

−
4∑
i=0

tFn
5 ,5−AP (i)(A) +

∑
{i,k}∈{0,1,2,3,4}(2)

tFn
5 ,5−AP (i,k)(A)−

(
5

2

)
α2 + 5α− 1,

where we have written tFn
5 ,5−AP (i)(A) for the expression Ex,d

∏4
j=0 fj(x+jd) where fj = 1 when

j = i, and fj = 1A otherwise, and tFn
5 ,5−AP (i,k)(A) for the expression Ex,d

∏4
j=0 fj(x + jd)

where fj = 1 when j = i or j = k, and fj = 1A otherwise. Notice that since we are
working over F5, the configurations defined by 5 − AP (i) are still 4-term progressions, while
the configurations defined by 5−AP (i, k) are all 3-term progressions.5

Writing further d4 = tFn
5 ,4−AP (A) − α4 and d3 = tFn

5 ,3−AP (A) − α3 for the deviation from
the expected number, we find after some rearranging that

mFn
5 ,5−AP (A,AC) = α5 + (1− α)5 − 5d4 + 10d3.

It follows as in [37] that a set A which is uniform (implying that d3 = o(1)) and which contains
fewer than the expected number of 4-APs (meaning d4 ≤ −c for some positive constant c)
gives rise to a colouring that contains fewer than the expected number of 5-term arithmetic
progressions. Again, cancellation has come to the rescue.

While perhaps not entirely unexpected, the fact that the bad colouring for 4-APs is also
bad for 5-APs bears emphasising as we had no a priori information about the number of 5-APs
in A. It also illustrates the power of the quadratic Fourier analysis approach, as the purely
computational one would have required us to start our calculations again from zero. The
following question naturally arises.
Question 3.6. Is it true that every linear configuration containing a 4-AP is uncommon?

Even though we expect the answer to be positive, it does not seem to follow immediately
from the above observations. In graph theory the analogous result is known [22]: any graph
containing a K4 is uncommon.

We may dig deeper yet. To start with we recall a definition from [15].
Definition 3.7 (Square independence). A linear configuration defined by m linear forms
L1, L2, . . . , Lm in d variables with integer coefficients is said to be square independent over Fp
if the quadratic forms LTi Li, i = 1, 2, . . . ,m, are linearly independent over Fp.

4A similar argument can be made in the case of Z/NZ, but since the statement of the U3 inverse theorem is
less clean in that setting we omit the details.
5This is not true in Z/NZ, but the argument that follows can be adapted.
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In [15, 16] Gowers and the second author proved that a linear configuration defined by linear
forms L1, L2 . . . , Lm is square independent if and only if it is controlled by Fourier analysis in
the sense that for any ε > 0, if f : Fnp → C is any function satisfying ‖f‖∞ ≤ 1 and ‖f‖U2 ≤ ε,
then

|Ex1,x2,...,xd
m∏
i=1

f(Li(x1, x2, . . . , xm))| < c(ε)

for some function c(ε) which tends to zero as ε tends to zero.
This suggests that if a square-independent configuration is uncommon, it suffices to look

for bad colourings that exhibit a linear bias (see the discussion following Example 4.1 below).
To illustrate this phenomenon we give just one of numerous possible examples here.

Example 3.2 (A square-independent configuration). Let Z = Fn5 . Consider the configuration
SI given by the system of equations

x+ y = 2u
x+ y + z = 3v

,

which can easily be verified to be square independent over F5. Let V 6 Fn5 be a subspace of
codimension 1. Let A be the union of the +1 and -1 cosets of V in Fn5 , together with half the
elements of V chosen at random. Then with high probability the density of A is 1/2, and it
is not difficult to compute that

mFn
5 ,SI

(A,AC) = 0.0525 < 2 ·
(

1

2

)5

.

This is in stark contrast with the situation for square-dependent patterns (such as 4-term
arithmetic progressions) which require the construction of bad colourings with genuinely quad-
ratic structure.

4. Free variables skew densities

We continue our exploratory journey through the arithmetic forest, returning to a much
simpler configuration. Again, the authors were inspired by an example in graph theory when
considering the slightly odd-looking set-up below, in which we have an unconstrained variable.

Example 4.1 (3-AP with a free variable). Let Z = Fn3 , and let TP be the set of solutions
(x, y, z, w) to the equation x+ y = 2z. Then there exists A ⊆ Fn3 such that

mFn
3 ,TP

(A,AC) ≈ 0.12463884 < 2

(
1

2

)4

.

In other words, TP is uncommon in Fn3 .
In order to construct A, take eight linearly independent vectors u, v1, v2, w1, w2, y1, y2,

y3, and let U , V , W and Y be subspaces of codimension 1, 2, 2 and 3, respectively, whose
orthogonal complements are spanned by the correspondingly labelled vectors. Let A be the
union of U , V , W and Y . It is not too difficult to compute, using inclusion-exclusion, that

|A| ≈ 0.49276024|Fn3 |

and with considerably more effort that

mFn
3 ,TP

(A,AC) ≈ 0.12463884,
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as desired. The latter calculation can be carried out in any number of ways: by brute-
force computation; using the Fourier-coefficients of the function 1A, which are reasonably
straightforward to write down; or carefully counting the number of 3-APs by hand, using
inclusion-exclusion. We leave the details to the energetic reader.

Much more interesting than the construction itself is the sequence of observations that led
to it, which we shall briefly record here. It follows from the definitions that for any set A ⊆ Fn3

mFn
3 ,TP

(A,AC) = αtFn
3 ,3−AP (A) + (1− α)tFn

3 ,3−AP (AC),

which, since tFn
3 ,3−AP (A) + tFn

3 ,3−AP (AC) = α3 + (1− α)3, means that

(4.1) mFn
3 ,TP

(A,AC) = α4 + (1− α)4 + (2α− 1)(tFn
3 ,3−AP (A)− α3).

This immediately tells us that we are guaranteed to get the count of configurations expected
in the random case whenever the set A is of density 1/2. Therefore, if we wish to show that
the configuration TP is uncommon we need to look for sets whose density differs from 1/2
very slightly, as any large deviation will ensure that the term α4 + (1 − α)4 takes control,
undermining any hope of obtaining a lower than expected count. In addition, note that
mFn

3 ,TP
(A,AC) depends on the deviation of the 3-AP count in A from the expected value. We

are therefore led to searching for a set whose density is slightly below 1/2 but which contains
many more than the expected number of 3-APs. An obvious candidate for the latter is a
subspace, and in Example 4.1 the codimensions were simply chosen so as to bring the density
of the union as close to 1/2 as possible.

These remarks also immediately lead us to an analogue of Example 4.1 in Z/NZ. Indeed,
Green and Sisask [19] constructed for any 1/3 < α < 2/3 a set A ⊆ Z/NZ (consisting of
a union of arithmetic progressions, the Z/NZ-analogue of subspaces) of density α with the
property that

tZ/NZ,3−AP (A) ≤ 2− 12α+ 21α2

12
.

An optimisation yields set A ⊆ Z/NZ of density α ≈ 0.50693243 such that

mZ/NZ,TP (A,AC) ≈ 0.12485549 < 2

(
1

2

)4

.

More can be said on the basis of Equation (4.1). Notice that if mFn
3 ,TP

(A,AC) < 2(1/2)4 − δ
for some constant 0 < δ < 1/8, then the 3-AP count of A must deviate significantly from
its expectation. Using standard Fourier-analytic arguments from the proof of Meshulam’s
theorem [25], for example, it can be shown that in this case there exists an element t ∈ Fn3 ,
t 6= 0, such that |Ex1A(x)ωx·t| ≥ δ/α(1 − 2α). From this it follows, again via a routine
argument, that the set A must have linear structure in the sense that it is strongly biased
towards a very large (potentially affine) subspace. Indeed, it is precisely a set with this
property which gave us the construction in Example 4.1 in the first place. Our conclusions
here are again merely of a qualitative nature, but should be compared with the structural
information in Lemma 3.5, which stated that a bad colouring for 4-APs must be quadratically
(and not just linearly) structured. This means that configurations can be uncommon for at
least two genuinely distinct reasons, a point which we shall return to in Section 6.

It is of course possible to add unconstrained variables to other configurations. We record a
natural question posed to us by Noga Alon.
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Question 4.1. Is it true that adding sufficiently many free variables makes any linear config-
uration uncommon?

As before, a suitable version of such a statement is true for graphs (see Theorem 4 in [22]).
We already noted in the introduction that the Cayley graph construction can be used to

transfer a bad colouring from the arithmetic to the graph setting. For this to work, however,
the bad colouring found in the arithmetic case must be symmetric (that is, if x is coloured red
then so is −x), and the coefficients in the linear system must all equal plus or minus 1. Below
we give an example of one situation in which such a transfer can be carried out successfully.

Example 4.2 (Triangle with a pendant edge). The construction in Example 4.1 gives a new
proof that the graph T ′ consisting of a triangle with a pendant edge is uncommon, a fact
originally proved by Sidorenko [29].

Note that since the set A ⊆ Fn3 in Example 4.1 is defined as a union of subspaces, it is
symmetric. It follows that we can define a Cayley graph Γ = Γ(Z;A) on vertex set V (Γ) = Fn3
with uv being an edge if and only if u − v ∈ A. Any quadruple (x, y, z, w) ∈ A4 satisfying
x + y + z = 0 thus corresponds to a triangle uv, vs, us with a pendant edge ut in Γ, which
can be seen by setting x = u− v, y = v − s, z = s− u and w = u− t.

In fact, it is interesting to compare the structure of our colouring with that of Sidorenko’s
(who obtained a better constant).

In the other direction, it is not difficult to convince oneself that any proof showing that
a given graph H is common can be adapted to show that an associated linear configuration
is common. The reason is that essentially all known such proofs are based on the Cauchy-
Schwarz inequality. A relatively large number of linear systems can be shown to be common
in this way. It is impossible to give an exhaustive list, but systems of equations associated
with triangular edge- or vertex-trees, or those associated with square wheels and other regular
grid structures (see Chapter II of [21]), fall in this category.

5. One equation in an even number of variables

We return to the case of configurations defined by a single equation. In Section 2 we
established that for an odd number of variables, the configuration is not only always common,
but that in fact an exact formula for the number of monochromatic solutions can be given
in terms of the density of the colour classes. An identical argument exploiting cancellation,
written down by Cameron, Cilleruelo and Serra in [3], shows that in the case of an even
number of variables, the difference between the number of red solutions and the number of
blue solutions is given by an exact formula in terms of the respective colour densities. When
the colours are exactly balanced, one concludes that the number of red and the number of blue
configurations is in fact the same. However, the formula for the difference rather than the sum
of monochromatic solutions does not address the question of whether such a configuration is
common, and indeed the case of one equation in an even number of variables remains one of
the most mysterious.

For simplicity we shall initially restrict our attention to translation-invariant equations over
F5 in 4 variables. It does not take long to check that there are only four genuinely distinct
configurations.

(1) The additive quadruple, denoted by AQ (see Example 1.1). It is given by the equation
x+ y = z + w.

(2) The heavy quadruple, denoted by HQ. It is given by the equation x+ 2y = z + 2w.
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(3) The heavy cycle, denoted by HC. It is given by the equation x+ y + z = 3w.
(4) The skew quadruple, denoted by SQ. It is given by the equation 2x+ 2y = 3w + z.

We already saw in the introduction that AQ is common. By an identical argument, so is the
heavy quadruple HQ. What about the remaining two configurations?
Example 5.1 (The heavy cycle and the skew quadruple). Both HC and SQ are uncommon
in Fn5 , and in fact it turns out that the same construction works for both configurations. As
in Example 3.2, let V 6 Fn5 be a subspace of codimension 1, and let A be the union of the +1
and -1 cosets of V in Fn5 , together with half the elements of V chosen at random. Then with
high probability the density of A is 1/2, and it is verified (in a rather tedious manner) that

mHC(A,AC) = 0.105 < 2 ·
(

1

2

)4

.

Indeed, the calculation reduces to showing that there are comparatively few solutions in
{+1,−1} to x + y + z = 3w and 2x + 2y = 3w + z, respectively. Since it is imperative
that the density of A be (at least close to) 1/2, we add half of the trivial coset at random,
which keeps the total solution count below the expected value. Moreover, the same holds for
AC by the remarks in the introductory paragraph of this section.

By an argument similar to that outlined at the end of Section 4, it can be shown that a
bad colouring for either of the above two configurations must have a large Fourier coefficient.
This means that the colour distribution must exhibit a strong linear bias, i.e. be concentrated
on a coset (or several) of a low-codimensional subspace. So again, in a qualitative sense the
construction in Theorem 5.1 incorporates the true reason for HC and SQ being uncommon.

It is crucial at this point to try and understand what distinguishes AQ and HQ from HC
and SQ. Clearly the former two equations exhibit some symmetry that is absent in the latter
two. To make this precise we turn to a definition due to Ruzsa [26].6

Definition 5.1 (Genus). Let Z = Fnp , and let m ≥ 2 and g ≥ 1 be integers. A translation-
invariant equation of the form

b1x1 + b2x2 + · · ·+ bmxm = 0

with variables xi ∈ Fnp and integer coefficients bi is said to have genus g over Fp if g is the
largest integer such that there is a partition of {1, 2, . . . ,m} into g disjoint non-empty subsets
I1, I2, . . . , Ig with the property that ∑

i∈Ij

bi = 0

for every j = 1, 2, . . . , g.
We immediately point out that of course this definition of genus is, just like the notion of

translation invariance itself, dependent on the characteristic. It is easy to see that AQ and
HQ have genus 2 over F5 (and any field of larger characteristic), while HC and SQ have genus
1. After a little thought this observation leads to the following conjecture.
Conjecture 5.2. Let k ≥ 2 be an integer. A linear configuration given by a single equation
of the form

(5.1) a1x1 + a2x2 + · · ·+ akxk = ak+1xk+1 + ak+2xk+2 + · · ·+ a2kx2k

is common in Fnp if and only if it has genus k over Fp.

6Ruzsa made this definition over the integers, but we use it over a finite field Fp here.
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In one direction Conjecture 5.2 is easily seen to be true. Indeed, both the Fourier- and the
Cauchy-Schwarz argument in Example 2.1 generalise to yield the result that any equation of
genus k of the form (5.1) defines a common configuration. To test the reverse direction, we
numerically investigated the case of translation-invariant equations in six variables over F5, of
which only five are genuinely distinct.

x+ y + z = u+ v + w(5.2)
x+ y + 2z = u+ v + 2w(5.3)

x+ y + z + w = 2u+ 2v(5.4)
x+ y + z + w + 2u = v(5.5)
x+ y + z + 2w + 2u = 2v(5.6)

The first two equations, (5.2) and (5.3), have genus 3 over F5, the remaining three equations
have genus 2.7 By the discussion above, configurations defined by either of the first two
equations are therefore clearly common.

Example 5.2 (Genus < 3 in six variables over F5). The configurations defined by any of the
equations (5.4), (5.5) and (5.6) above are uncommon over F5. To see this for (5.5) and (5.6),
use the cosets 1 + V and −1 + V of a subspace V 6 Fn5 of codimension 1 as before, and add
half the elements of V independently at random. For (5.4) we use 1 + V and −2 + V instead.

Since there are no equations of genus 1 in six variables over F5, we also tested all fourteen
translation-invariant equations in six variables over F7, of which five are of genus 3, eight are
of genus 2 and one is of genus 1. All our results are consistent with Conjecture 5.2 above.

6. Concluding remarks

Having examined a reasonable number of examples, let us conclude by summarising the
different behaviours we have encountered. We have witnessed that a linear configuration can
be

(1) common because of cancellation (3-APs);
(2) common because of symmetry (AQ, HQ);
(3) uncommon because of skewed density (TP );
(4) uncommon because of pure linear bias (HC, SQ, SI);
(5) uncommon for quadratic reasons (4-APs, 5-APs).

Any reasonable conjecture concerning the classification of linear patterns as common or un-
common must take into account all of these possibilities.

Question 6.1. Formulate an arithmetic analogue of the Burr-Rosta conjecture.

Even though the analogy between the arithmetic and the graph setting is not perfect, this
diverse array of underlying reasons may go some way towards explaining why the analogous
graph-theoretic problem remains wide open despite having been studied for many years.
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