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Abstract

Previous studies into direct-spring pressure relief valves connected to a
tank via a straight pipe are adapted to take account of liquid sonic velocity.
Good agreement is found between new experimental data and simulations
of a coupled fluid-structure mathematical model. Upon increasing feed mass
flow rate, there is a critical pipe length above which a quarter-wave instabil-
ity occurs. The dependency is shown to be well approximated by a simple
analytical formula derived from a reduced-order model. Liquid service valves
are found to be stable for longer inlet pipes than for the gas case. How-
ever, the instabilities when they do occur are more violent and the valve
is found to jump straight into chatter, in which it impacts repeatedly with
its seat. Flutter-type oscillations are never observed. These observations
are explained by finding that the quarter-wave Hopf bifurcation is subcrit-
ical. Water hammer effects can also be observed, which result in excessive
overpressure values during chatter. In addition a new, Helmholtz-like insta-
bility — not encountered in gas service — is identified for short pipes with
small reservoir volumes. This can also be predicted analytically and is shown
to explain a valve-only instability found in previous work that incorporated
significant mechanical damping.

Keywords: pressure-relief valve, reduced order modeling, instability,
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1. Introduction

This paper continues the previous work by the present authors in Hős
et al. (2014, 2015) on practical considerations of mechanisms of instability
in direct spring operated pressure relief valves (PRVs). Here we specifically
consider valves in liquid, rather than gas, service. Current guidelines (such as
the API RP520) for avoiding valve flutter and chatter in both gas and liquid
cases, refer to the need to avoid inlet pressure losses due to pipe friction of
more than 3% of the set pressure of the valve. The logic of this criterion is to
avoid so-called rapid cycling motion, in which pressure loss causes the valve
to shut prematurely, only to open again soon afterwards. The believed suffi-
ciency of this criterion can be traced back to work of Frommann and Friedel
(1998) who studied valve vibrations in pneumatic systems both numerically
and experimentally. However, as shown in Hős et al. (2014) for gas and in
Figs. 3 and 4 below for liquids, this criterion does not seem to capture the
correct parameter trends especially for low mass flow rates.

Instead, in Hős et al. (2015) we found an accurate stability criterion
which we tested against experimental results for three different commercially
available gas service PRVs. The key is to recognize that the fundamental in-
stability causing valve flutter is a flow-induced Hopf bifurcation caused by an
interplay between the valve natural dynamics and the fundamental quarter-
wave acoustic vibration mode in the pipe. Effectively, the valve can supply
negative damping to the acoustic mode; which is an explanation that does
not rely on there being any internal resonance. The trend for this instability
was found to be such that for each mass flow rate up to full capacity, there
is a critical inlet pipe length beyond which the valve is unstable, with an
approximately square-root dependence between the critical pipe length and
the mass flow rate. For a yet longer pipe, the limit-cycle flutter behavior
will undergo a transition into large-amplitude chatter motion in which the
valve impacts with its seat. Moreover, through reduced-order modelling, in
Hős et al. (2015) we were able to produce a close analytical approximation to
this curve which depends only a few pipe and valve parameters. In addition,
specific features of the valve geometry can cause static jumps, or fold bifurca-
tions, but these do not necessarily lead to flutter and shall not be considered
in the present work.

The purpose of this paper is to extend that work to deal with the case
of liquids. The paper Hős et al. (2014) contains a comprehensive literature
review on instabilities of pressure relief valves, focusing mostly on the case
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of gas pipes. We give here only additional references relevant to the liquid
case.

Licsko et al. (2009) assembled a simple system of ordinary differential
equations describing the motion of a valve connected to a hypothetical hy-
draulic chamber. They performed linear and non-linear stability analyses and
found parameter ranges where flutter-induced limit cycles turn into chatter-
ing motion through grazing bifurcations. At the opposite end of the spectrum
of computational complexity, Song et al. (2010), produced a 3D CFD model
with deforming mesh for investigating the precise flow physics of transient
valve motion at instability. Moussou et al. (2010) investigated both static
and dynamic instabilities through a mixture of analytical calculations, CFD
and experiments. They also introduced the concept of what is referred to in
our work as the effective area of the valve at a given lift (called the equivalent
surface by Moussou et al. (2010)) and investigated the appearing limit cycle.
Similar concepts were developed by Viel and Imagine (2011) who studied
stability with the help of Nyquist plots, and by Beune et al. (2012) who cal-
culated flow force versus displacement using more computationally efficient
2D CFD. Further developments in full CFD simulations for liquid service
PRVs have been undertaken by various authors showing just how complex
the flow field can be, depending on the valve geometry and turbulence model
adopted: see Dossena et al. (2013); Qian et al. (2014); Song et al. (2014,
2013); Wu et al. (2015).

Bazsó and Hős (2012) investigated the need for unsteady CFD for pre-
dicting the point of onset of the instability by, comparing 2D simulations
with full 3D deforming mesh computations for a simple conical valve body.
They found that both were able to capture the same point of instability, even
reaching agreement on the nature of the appearing limit cycle, sufficiently
close to the instability point. These predictions were also found to match
well with experiments. Furthermore, recent work by Erdődi and Hős uses
2D CFD computations with both stationary and moving meshes to justify
the use of simple effective-area-versus-lift curves and single discharge coeffi-
cients. Those results appear to justify the use of reduced-order modelling for
instability prediction, even for liquids where the unstable motions tend to be
much more violent than for gas flows. This violence is due to the significant
additional momentum in the fluid, which would otherwise be dissipated in
compressible fluids.

Such reduced-order models were studied in a series of papers: Hős and
Champneys (2012); Bazsó et al. (2015, 2014). These works produce a simple
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dimensionless models of liquid service PRVs without fitting parameters to a
particular set of test valves. Another form of Hopf bifurcation also leading to
flutter and chatter was discovered, referred to as a valve only or Helmholtz-
like instability. This instability was found to occurs for finite mass-flow rates
even in the limit that the pipe length tends to zero. It is of important to
note though that that those studies assumed significant mechanical valve
damping, which is unrealistic for commercial valves.

The rest of this paper shall follow a similar approach to that in Hős et al.
(2014) and Hős et al. (2015). In Sec. 2 we present the results of dedicated
tests of valves in liquid service connected to a reservoir via a straight pipe of
variable length to document cases that lead to instability, and the nature of
the instabilities observed. Then, Sec. 3 presents our previous mathematical
models and their modification to the problem at hand. We also present a new
analysis on the cause of the Helmholtz-like instability. Sec. 4 presents numer-
ical simulations of the model, along with parameter studies and comparison
with both experiments and the analytical predictions of the quarter-wave and
Helmholtz-like instabilities. Finally, Sec. 5 draws conclusions and discusses
practical significance of the work.

2. Experimental results

2.1. Test procedure

A series of tests were conducted in the Pentair test facility using the rig
depicted in Fig. 1 in which pressurized water is connected to a valve via a
straight inlet pipe. The length of the pipe can be varied from 0 to 12 feet by
carefully fitting together pipe segments of different lengths. The pressure in
the feeder tank is closely controlled by means of a supply from a larger tank
whose pressure can be increased via a drive of nitrogen gas. A nitrogen vent
can be opened in order to reduce the tank pressure. Two different industry
standard valve types were used, a 2J3 and a 1E2. It should be stressed that
neither of these valves were fitted with specific liquid trims. The gas trim
used was identical to that used for the gas-service tests Hős et al. (2014), so
as to enable a direct comparison.

A total of over fifty tests were performed for different pipe lengths and
different desired mass flow rates. In each run, the drive pressure (labelled PD
in Fig. 1) was slowly ramped up to a fixed value that enables a mass flow rate
of the desired percentage of the valve’s capacity. The drive pressure was held
steady for about 20 seconds before the nitrogen valve was opened and the
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Figure 1: The liquid test rig. Each abbreviation inside a circle depicts a point at which
measurements were taken. See text for details.

pressure ramped down. All tests were performed with a nominal opening set
pressure of 120 psig (8.27 bar). The actual opening pressure was measured
from the data at the valve inlet (labelled VI), at the instant when the lift
first reaches 1% of its maximum possible lift. This pressure was typically
found to be within a few percent of the nominal set pressure. Blowdown
pressure was nominally set to be 114 psig (7.86 bar, or 5% of set pressure),
but was similarly measured as the VI pressure at which the lift falls beneath
1% after the valve has been open for at least 1 second. However, as can
be seen from the example time traces in Fig. 2 below, the measurement of
blowdown in particular was found to be problematic due to the noisy nature
of the pressure response in the pipe.

The capacity (flow rate at full lift and 10% above set pressure) of the two
valves was nominally 400 USgpm (25.23 kg/s) for the 2J3 and 70 USgpm
(4.41 kg/s) for the 1E2 valve. These values and measurements of the rate
of pressure loss at capacity allowed us to determine the discharge coefficient
Cd corresponding to the curtain area Dboreπxvalve of each valve. We thus
obtained Cd-values of 0.36 and 0.32 respectively for the 2J3 and the 1E2
valves.

Accurate measurement of sonic velocity is important for matching with
simulations, because it plays a crucial role in the dynamic interaction between
the pipe and the valve. The standard value for fresh water in an infinitely
rigid pipe or reservoir would be about 4700ft/s (1430m/s) but both pipe wall
elasticity and air content within the water reduce this value in practice. We
measured sonic velocity using the following procedure. Upon valve closing,
pressure waves are generated in the pipe, which are then reflected back from
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the reservoir end of the pipe. The time needed for one full cycle is

Tpipe =
2L

a
, (1)

with a being the sonic velocity and L the length of the pipe. By recording
the time needed for 10 such reflections to occur, and averaging over several
tests, we were able to estimate the actual sonic velocity to be

a = 2811 feet/s = 857 m/s

Due to the relatively long pipe lengths, pressure loss due to pipe friction
was found to be significant. Friction loss can be computed as

∆p = λ
L

D

ρ

2
v2. (2)

Here λ is a friction coefficient (with 0.02 being a standard value), L is pipe
length, D stands for pipe diameter, ρ is the density of the liquid and v is
the average flow velocity in the pipe. Using this formula we found that
the pressure loss at capacity was typically about 1% per foot of pipe and
considerably less than that for lower flow rates. We have used this calculation
to compute the 3% inlet line criterion mentioned in the Introduction. Because
the pipe was mounted vertically, we also calculated hydrostatic pressure loss,
but this was found to be almost negligible in comparison.

2.2. Typical time histories

During the measurements we observed three types of dynamics: either the
valve was fully stable during the whole process; or it was found to be unstable
during closing (i.e. during ramp down) and occasonally during opening also;
or the valve was found to be fully unstable during the entire opening and
closing cycle. sometimes also upon opening). Examples of each kind of
behaviour are depicted in Fig. 2.

An example of a fully stable test is depicted in Fig. 2(a), (b). In all such
tests, it was generally experienced that the valve opens in a modulated way.
That is, with increasing tank pressure, the valve lift increases continuously
up to 5-10% of full lift, and then jumps to an upper lift position. This jump
is an example of a static instability (fold bifurcation) presumably due to a
nontrivial effective area versus lift curve, as analyzed in Hős et al. (2014).
Note from the inset to the lift plot that the valve lift is initially very gen-
tle. During ramp down of the pressure, the valve closes through an initially
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Figure 2: Plots of the valve lift (left), expressed as a percentage of full lift, and the pipe
pressure at the valve inlet (right) for representative test runs on the 2J3 valve for different
pipe lengths L and mass flow rates q (expressed as percentage of capacity flow rate).
(a),(b) L = 0 and q = 100%; the inset in (a) shows the onset of non-zero lift at around 10
seconds). (b),(c) L = 4 foot (1.22m), Q = 85%. (e),(f) L = 6 foot (1.83m), Q = 30%; (g),
(h) L = 6 foot, Q = 20%. Valve lift in (e) and (g) more than 100% indicates where the
displacement sensor became detached due to the violence of the valve hitting its upper
stop.
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modulated phase followed by a sudden jump into a fully closed position. A
particular contrast with the measurements in gas service presented in Hős
et al. (2014) though is that, even in this stable opening case, once the flow
builds up, significant pressure peaks can be observed whenever the valve lift
jumps, in addition to pressure “noise” at the valve inlet even when the lift
remains fairly static. Such pressure variations are typically of all stable runs,
and were found to be equally well pronounced in the readings taken at pres-
sure sensors PU, PL, yet the tank pressure measurement TK was relatively
smooth (results not shown).

Fig. 2(c),(d) shows a relatively rare case where there is an instability upon
opening that quickly stabilizes during the initially modulated phase before
the dynamic jump to the upper equilibrium lift. This is matched by another
brief instability as the valve closes. Much more common among the unstable
cases is the example shown in Fig. 2(e),(f). Here, as soon as the instability
occurs, it is particularly violent and almost immediately chatter ensues, in
which the valve impacts with its seat (and also with its upper stop at 100%
full lift). Unlike in gas service, in no case were we able to observed sustained
valve flutter, that is rapid periodic valve motion without impacts.

Note how, even though for static lift the blow down for this valve was
just 5%, for this unstable case, the tank pressure had to go well below the
reseat pressure (perhaps by as much as 25%) to stop the chattering and close
the valve again. In fact, during the initial chatter, the pressure in the pipe
appears to drop, although the tank pressure continues to rise. This may be
an artifact of the pressure measurement protocol during this violent motion.
Later during the chatter phase, notice how the measured pressure in the pipe
significantly exceeds the set pressure, by over 300%. These observations are
typical of every time that chatter was seen. It would seem that these high
pressure peaks are due to the well known phenomenon of water hammer
(Wylie and Streeter (1993)) in hydraulic systems. That is, when the valve
opens or closes quickly, it has to rapidly change the momentum of the fluid
column inside the pipe. To quantify this effect, we suppose the valve closes
in a time ∆t and calculate the pressure force F that decelerates the fluid. If
the valve closure is sufficiently slower than the timescale of reflected waves,
∆t� Tpipe given by (1), then

F = A∆p = m
dv

dt
= ρV

dv

dt
≈ ρAL

∆v

∆t
→ (∆p)slow = ρL

∆v

∆t
, (3)

If the valve closing is particularly rapid though, one has to use the Joukowsky
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equation, which gives
(∆p)sudden = ρa∆v, (4)

Using (3) and (4) we can estimate the pressure amplitudes corresponding
to different closure times. Taking the case of a 2J3 valve at capacity flow
rate in a 2-inch diameter pipe we have ∆v = 40.9 feet/s = 12.5m/s and an
8ft pipe the characteristic time of wave reflection is Tpipe = 2L/a = 0.0058s.
Hence we can calculate the pressure peaks for different valve closure times,
see Table 1. In the experiments, we were not able to resolve the precise
timescale of valve closure to the accuracy required, but the values in the
table offer a convincing explanation of why pressure fluctuations of the order
of several hundred psi were recorded during valve chatter.

∆t� Tpipe ∆t = 3Tpipe ∆t = 10Tpipe

=0.0058s =0.0174s =0.058s

∆p [bar] 105 17.6 5.27
∆p [psi] 1528 255 76.4

Table 1: Calculated water hammer pressure peaks for different valve closure times in the
case of a 2J3 valve connected to an 8-foot pipe.

Fig. 2(g) and (h) show an example of measurement in which the valve is
found to become immediately unstable upon opening. Curiously though in
this case there is a short window of time (at around 25 seconds), in which
the valve seems to stabilize, before quickly becoming unstable again. Given
that the tank pressure and mean flow rate do not change significantly during
this time interval, this would seem to be evidence that there is bistability
between violent chattering motion and stable valve lift. We conjecture that
this behaviour is due to the fact that this measurement is close to the sta-
bility boundary (in fact, just within the stability region) and, as will be
confirmed later, the Hopf bifurcation marking the stability boundary is in
fact subcritical, meaning that the stable equilibrium is surrounded by an un-
stable limit cycle. Transient effects can cause vibrations that go beyond the
unstable boundary and jump into chatter. Similarly, transient perturbations
to chatter can cause jumps into the stable equilibrium.

2.3. Stability charts

We can summarize the results of the tests in the form of stability charts.
In each case we depict each measurement point according to two parameters
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Figure 3: 2J3 test results. Different symbols represent the measurement points: (red, color
online) triangles show test runs that were fully unstable, (blue) asterisks are unstable on
closing, (green) circles are fully stable. Two theoretical predictions are presented for
completeness, the (red) dashed line shows the critical pipe length corresponding to the 3%
rule, and the (black) solid line is the analytical prediction for the quarter-wave instability
(see text for details). In both cases, the stability criterion is that the measurements should
lie beneath these curves.

of the test; the steady flow rate reached upon ramping up (given as a per-
centage of capacity) along the horizontal axis, and pipe length on the vertical
axis.

Figure 3 depicts the results for the 2J3 valve. Also plot are two different
analytical criteria that have been used to predict instability thresholds. The
solid line depicts the analytical estimate of the quarter-wave model (QWM);
see Sec. 3, specifically equation (15) below. The dashed line represents the
‘3% rule’ that friction loss in the inlet pipe (calculated according to (2))
should be no more than 3% of the set pressure. Notice how the 3% rule
has exactly the wrong trend. Many unstable points (for low flow rates in
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particular) are beneath this curve. In contrast, the quarter-wave instability
prediction provides a good explanation of the threshold of instability observed
in the experiment, with a couple of exceptions.

The first exception is the fully unstable point at 30% capacity with a
6ft pipe. Note however, that this is case shown in Figure 2, which shows
bistability and we already indicated could point to being just inside a stability
threshold (see the discussion on subcriticality of the Hopf bifurcation in Sec. 4
below).

The other exception is the cluster of points that are depicted as being
unstable on closing for a 6ft pipe at close to 100% capacity. Note that
these cases were found to trigger instability only as the flow rate drops from
its maximum. The flow rate at the point the instability occurs is hard to
accurately measure, but in reality it will be significantly less than the capacity
flow rate and so these points really represent flow rates that are significantly
further to the left in the figure.

Figure 4 depicts results for the 1E2 valve. Again the results are consistent
with the quarter-wave instability prediction and inconsistent with the 3%
rule. Note that for a 12ft pipe, the vibrations were so violent that it was
impossible to reach the capacity flow rate. This would be worrisome in
practice as the desired pressure could not be relieved in this case.

Finally, looking at both Figs. 3 and 4 and comparing with the equivalent
results for the same valves with nitrogen gas (Hős et al., 2014, Figs. 15 and
16), we find that the critical pipe length for instability is almost five times
longer.

3. Mathematical modelling

We present here the necessary adaptations for dealing with liquids, to
the gas-dynamic model in Hős et al. (2014). This leads to a simpler form
of reduced model, as was first shown by Bazsó et al. (2015). It is useful
here to present this model liquid model again, as we shall perform a different
nondimensionalization in which flow rates are expressed as percentages of
valve capacity. All physical constants are defined in Table 2, together with
their values for the two valves tested.

The model considers the configuration shown in Fig. 5, with unknowns
being the valve lift xv(t), reservoir pressure pr(t) and fluid velocity and pres-
sure v(s, t) p(s, t), where s = 0 corresponds to the reservoir end of the pipe
and s = L to the valve end. The equations of motion can be written in the
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Figure 5: Definition sketch of the mathematical model developed in Hős et al. (2014)

Quantity Symbol 1E2 2J3 Units

Mass flow rate ṁr,in 0-3.8 0-23.4 kg/s
Pipe length L 0-3 0-3 m
Pipe diameter (nom. inner) D 0.0266 0.0525 m
Effective pressure diameter Deff 0.0161 0.0444 m
Seat diameter Dseat 0.0161 0.0407 m
Reservoir volume V 10.6 10.6 m3

Total effective moving mass m 0.4392 1.43 kg
Spring constant sv 1.69 4.79 kN/m
Damping coefficient % of kcrit 0% 0% -
Set pressure pset 6.9 8.27 bar
Spring pre-compression xp 9.2 23 mm
Coefficient of discharge Cd 0.32 0.36 -
Coefficient of restitution r 0.8 0.8 -
Maximum lift xmax 5.2 12 mm
Sonic velocity a 890 890 m/s
Ambient pressure p0 1 1 bar
friction factor f 0.02 0.02 -

Table 2: Default parameter values used for each of the two valves.
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form

mẍv + kẋv + sv(xp + xv) = (pv − pb)Aeff(xv), for xv > 0 (5)

ṗr =
a2

V
(ṁin − ṁout) , (6)

0 =
∂p

∂t
+ ρa2∂v

∂s
+ v

∂p

∂s
, (7)

0 =
∂v

∂t
+ v

∂v

∂s
+

1

ρ

∂p

∂s
− λ 1

2Dpipe

v2, (8)

where m is the mass of the moving parts (valve body plus 1/3 spring mass),
k is viscous damping, xp stands for spring precompression, pv(t) = p(L, t)
is the pipe pressure at the valve end and pb is the backpressure. Aeff =
Ffluid/(pv − pb) is the valve’s effective area as a function of lift, which is
typically empirically determined from valve measurements. In equation (6)
pr is the reservoir pressure, a stands for sonic velocity, V is the volume of
the reservoir, ṁin is the constant mass flow rate entering the reservoir and
ṁout is that leaving (and entering the pipe), given by

ṁout = Apipeρv(0, t).

At the reservoir end of the pipe, we assume ideal inflow from the reservoir
which gives

pr(t) = p(0, t) +
ρ

2
(v(0, t))2 .

At the valve end of the pipe, the continuity equation implies

v(L, t)Apipeρ = CdAftxv

√
ρ

2
(p(L, t)− pb). (9)

A Newton restitution law is assumed at xv = 0 with ẋv < 0: ẋ+
v = −rẋ−v .

Note how the equations are simpler than the gas case, cf. (Hős et al., 2014,
eq. (11)), because we are able to assume linearized (slightly compressible)
equations of for the pressure p(s, t) and velocity v(s, t). Also, we do not have
to assume choked flow upon discharge.
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3.1. Nondimensionalization
In order to simulate and analyze the coupled system of equations (5)–(9)

it is helpful to first introduce a dimensionless version. See Table 3 which gives
the reference pressure, displacement, frequency, velocity and mass flow rate,
together with various natural dimensionless parameters that appear in the
equations. Note that we assume there to be no back-pressure so that reference
pressure is ambient. The reference mass flow rate ṁcap is the capacity of the
valve, that is the mass flow rate at pressure 10% above set pressure and full
lift.

Note that with this rescaling, the main driving parameter q measures
the mass flow rate entering the reservoir as a fraction of the valve capacity.
Then an additional parameter µ arising during the nondimensionalization
represents a ratio of two mass flow rates

µ =
Apipeρωxref

ṁcap

, (10)

and

σ =
c2xref

√
ρpref

Apipeρxrefωv
. (11)

parameterizes the ratio between valve and fluid velocity scales.
We now define dimensionless variables via s = xrefξ, t = τ/ωv, letting

′ = d
dτ

, and xv = xrefy1, ẋv = ωvxrefy2, pr = prefy3, p(s, t) = pref p̃(ξ, τ)
and v(s, t) = ωvxrefv(ξ, τ) and rewrite system (5), (6), (7) and (8). The
meaning and definition of each of dimensionless parameters appearing in
these equations are given in Table 3. An additional parameter appearing is
Λ is a length scale that measures the importance of the nonlinear, convective
terms. It can expressed as

Λ =
xref

L
:=

να

γ
. (12)

Here we find a key difference between gas flows and liquid flows: in Hős et al.
(2015), we found that Λ is related to Mach number and can become O(1)
close to capacity flow rates. Here however, we find that from Table 3 that
Λ = O(10−2) and so is largely unimportant, compared with fluid-structure
interaction nonlinearities.

To simulate the above equations, we discretize using the method of charac-
teristics, see Wylie and Streeter (1993) for details. Computations are carried
out in dimensionless units, but for comparison with experimental results, all
results are presented using dimensional variables.
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Quantity Symbol Definition 2J3 1E2

Reference pressure, bar pref pb = p0 1 1

Reference displacement, mm xref
Aeffpref

s
1.78 3.29

Reference frequency, rad/s ωv
√
s/m 201.3 180.5

Capacity mass flow rate, kg/s ṁcap see text 3.8 23

Mass flow rate ratio, - µ eq. (10) 0.0538 0.05459

Driving mass flow-rate, - q ṁin

ṁcap
0-1 0-1

Spring pre-compression, - δ svxp
Aseatpb

5.17 6.9803

Pipe length parameter, - γ Lω
a

varied varied

Reservoir-size parameter, - β a2

V

ṁcap

prefω
varied varied

Valve damping, - κ κ = k
m

√
m
s

0 0

Velocity-to-mass flow rate par., - σ eq. (11) 2.352 1.668

Ambient pressure, - ν p0

ρa2 0.000126 0.0027

Velocity-to-sonic velocity par., - α ρAeffa
mω

= 1
ν
vref

a
3.186 5.2917

Friction factor, - φ f xref

2Dpipe
0.00064 0.00063

Table 3: Reference scales and dimensionless parameters together with their values for the
2J3 data in Table 2.
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3.2. Model reduction and quarter-wave instability analytical prediction

In Hős et al. (2014) we performed a spectral decomposition of the equa-
tions of motion in the case of gas, by expanding the pipe pressure and velocity
into a finite number N of acoustic modes in the pipe. We showed that insta-
bilities are always well ordered, in that the first instability to be encountered
upon increasing pipe length for a fixed flow rate is always due to a coupled in-
stability between the valve motion and the first acoustic mode, the so-called
quarter-wave mode, with (dimensional) wavelength 4L. Thus to predict in-
stability, we can assume that all acoustic energy is contained in this mode.
Setting Λ = 0 we thus assume

p̃(ξ, τ) = y3(τ) +B(τ) sin
(π

2
ξ
)

(13)

ṽ(ξ, τ) = σy1

√
y3(τ) +B(τ) + C(τ) cos

(π
2
ξ
)

(14)

and applying a 1-point collocation technique to obtain closed form equations
for B′ and C ′ (see Bazsó et al. (2015) for details). Thus the instability can
be predicted by just solving the five ordinary differential equations for y(t),
y′(t), p(t), B(t) and C(t), which is known as the quarter-wave model for
liquids. Note that this is a simplification of the quarter-wave model for gas
presented in Hős et al. (2015) because the nonlinear convection effects and
inlet pressure loss terms can be ignored.

In fact, in Hős et al. (2015) it was further shown that by analyzing the
quarter-wave model without inlet pressure loss and convection terms, then
in certain asymptotic limits an analytic expression can be derived for the
quarter-wave instability. The asymptotic limits in question are

βµ� 1,
α

γ
, and q � 1

σµ
,

which can readily be seen to be satisfied in the liquid case too, (see Table 3).
Thus the analytical estimate derived for the quarter-wave instability in gas
service is still valid, namely (Hős et al., 2015, Eq. (48))

instability for q < 2
(1 + δ)3/2

ω2
1 − 1

µσ, (15)

where ω1 = π
2γ

is the dimensionless quarter-wave frequency. This formula
leads to a square root expression for the critical pipe length as a function
of flow rate for sufficiently small flow rates, and is the formula plotted as a
solid curve in the Figs. 3 and 4.
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3.3. Analytical prediction of a Helmholtz-like instability

Our simulations have shown that there can be another instability for
very short pipe lengths that was not apparent for pipes in gas service. This
is a Helmholtz-like instability where the fluid in the pipe undergoes plug-like
motion in phase with the valve. In contrast to the quarter-wave instability,
we have found the Helmholtz-like instability to occur if the inlet pipe is short
enough. In theory this instability is always present in any form of fluid,
but for gas flow with realistic tank volumes it would only occur for pipe
lengths of less than a thousandth of an inch, which is clearly both practically
unobservable and also well outside the range of validity of any model.

To show how this form of instability can arise we start with the quarter-
wave model, which ignoring valve damping, friction and convection effects in
(Hős et al., 2015, Eqs. (34),(35)) can be written in dimensionless form as

y′′ = (p+B − 1)− (δ + y)− ky′, (16)

p′ = β
[
q − µ(σy

√
p+B + C)

]
, (17)

B′ =
π

2

α

γ
C −
√

2p′, (18)

C ′ = −π
2

1

αγ
B −

√
2σ

d

dτ
y
√
p+B. (19)

Furthermore, we change variables such that the equilibrium (y, p, B,C) =
(y0, p0, 0, 0) moves to the origin. That is, we set

y = y0 + Y, p = p0 + P,

so that the valve equation (16) reads

Y ′′ = (P +B)− Y.

We notice that if the term (P + B) is small then this can be regarded as a
form of nonlinear damping (note (17) that P ′ contains a term proportional
to Y , so that P (t) will involve components that are ±π/2 out of phase with
Y ). Moreover, if this term were to precisely vanish, then we would have
a completely undamped oscillator. Thus if we smoothly vary a parameter
through a value where (P +B) vanishes, in general we will have a transition
from positive (dissipative) damping to negative (excitatory) damping. Thus
we can view the vanishing of (P + B) as representing a point of instability
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of the valve motion. In fact, numerical simulation has shown that negative
damping occurs for shorter pipes, whereas there is dissipation of the valve
motion via this process for longer pipes. Hence we can seek an instability
threshold in which

P (t) ≡ −B(t), for all time. (20)

which would lead to an instability upon reducing the pipe length.
Suppose parameter values can be found for which (20) is satisfied, then

the valve equation becomes completely linear Y ′′ = −Y which has solution
Y (t) = A cos(t+ψ) for an arbitrary amplitude A and phase ψ. We also note
that a remarkable thing happens to the other equations, they also become
completely linear:

P ′ = −βµ(σY
√
p0 + C), (21)

B′ =
π

2

α

γ
C −
√

2P ′, (22)

C ′ = −π
2

1

αγ
B −

√
2σ
√
p0Y

′. (23)

Hence we shall seek a coupled linear solution in which all variables are all
oscillating at the same (valve natural) frequency. That is,

P (t) = −B(t) ∼ cos(t), Y (t) ∼ cos(t+ ψ), C(t) ∼ cos(t+ φ), (24)

for some unknown phases ψ and φ.
It remains to find parameter conditions in which the linear equations

(21)–(24) are consistent. To find such conditions we first set B′ = −P ′ from
(21) and (22) we get two different expressions for B′ which must be set to be
equal, leading to the condition

a11Y + a12C = 0, where a11 = βµσ
√
p0, a12 =

(
βµ+

απ

2γ(
√

2− 1)

)
(25)

Similarly we can differentiate (23) with respect to τ , use C ′′ = −C and
Y ′′ = −Y from (24) and eliminate B′ using (21) (after setting P ′ = −B′).
The resulting equation can again be written as a linear condition between C
and Y :

a21Y +a22C = 0, where a21 = σ
√
p0

(√
2− βµπ

2αγ

)
, a22 = 1+

βµπ

2αγ
. (26)
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For (25) and (26) to be consistent, we must have that

a11a22 − a12a21 = 0, (27)

which can be expressed as a cubic equation in 1/γ with a single positive root
(1/γ) = (1/γc). Then instability would occur for γ < γc.

In the case that α/(βµ) � 1 (according to table 2, this ratio is O(102))
then we can write the solution to (27) in the form

βµπ

2αγc
=
√

2 +O([βµ/α]2).

Using this value for γc we find the criterion for instability to be

γ < γc =
πβµ

2
√

2α
+O((µβ/α)3). (28)

In summary, we have an instability for dimensionless pipe lengths γ less
than the critical length given by (28), independent of the mass flow rate
q. The form of the instability is such that the motion is at the valve’s
natural frequency (angular frequency 1 in dimensionless units) and the pipe
velocity, tank pressure, pipe pressure and pipe velocity are all synchronous,
with the tank pressure and pipe pressure variations being precisely out of
phase; B = −P . Note from the form of (28) that this condition can be
written in terms of the Helmholtz resonance condition

ω2
v =

π

2
√

2
ω2
H

where ωH is the Helmholtz resonance frequency of the tank and pipe.

4. Simulation results and parameter trends

Extensive runs of the full simulation model were undertaken under both
steady inlet conditions and ramped pressure variation as in the experiments.
The simulation model was found to agree well with experimental results in
all cases. We show a summary of the steady results for the 2J3 valve in Fig. 6
for a grid of values of flow rate and pipe length. Similar results were found
for the 1E2. In the figure we have indicated by a green circle the parameter
values for which stable operation was found, and by a red cross those values
that were found to be unstable. In almost all cases where instability was
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Figure 6: Summary of the computation results for the 2J3 valve with a large reservoir,
V = 375 ft3, β = 0.097. The dashed line depicts the analytical estimate (15) of the
quarter-wave stability boundary. Crosses (red - color online) depict simulations for which
the valve was found to be unstable, and (green) circles depict points for which the valve
was computed to be stable.

22



found, the valve was found to quickly transition into chatter after very few
cycles. We have also plot the stability condition (15), which is the same
curve as the solid black line in the experimental results of Fig. 3.

Furthermore, we were able to run the reduced-order model to perform
precise computation of the quarter-wave instability boundary and to con-
tinue this as a curve in pipe length versus flow rate. It was found to differ
from the analytic approximation by only a few percent. Moreover, the Hopf
bifurcation represented by this instability curve was found to be sub-critical
for all but the very lowest flow rates. This would seem to explain why a sta-
ble flutter limit cycle was virtually never observed, with the valve jumping
straight into chatter instead.

set pressure spring rate δ α σ µ β Lref

psi N/mm m
100 84.6 4.90 6.142 1.817 0.0585 0.0957 4.47
250 236.2 11.36 3.019 0.893 0.0189 0.0716 2.20
500 483.7 22.72 2.110 0.624 0.0093 0.0707 1.54
750 702.4 34.08 1.751 0.518 0.0063 0.0719 1.27
1000 939.7 45.44 1.514 0.448 0.0047 0.0718 1.10

Table 4: Dimensionless parameters for several set pressures for the 2J3 valve.

Figure 7 shows the trend of the quarter-wave instability upon varying
set pressure (using stiffer springs) – see Table 4 for how we calculated the
set pressure based on the dimensionless parameters. We find that the liquid
service valve behaves in the same way as the gas valve did in Hős et al.
(2015). That is, the higher the set pressure, the lower the critical pipe
length for stability. This trend was also found in experimental tests (results
not shown). We also depict in figure 7 the critical pipe lengths computed
according to the 3% rule. It is important to note that the 3% rule predicts
that the critical pipe length should increase with set pressure (because we
take the 3% of a higher set pressure) whereas the real tendency is just the
opposite.

Finally, Fig. 8 shows the result of a similar set of computations as in
Fig. 6 but with a reservoir volume that is significantly smaller than that
used in the experiments. Note here that the quarter-wave stability curve is
largely unchanged, but that the Helmholtz-like instability is now predicted
to occur up to a significant pipe length. This prediction is indeed borne out
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Figure 7: Effect of set pressure, computed by means of (15). Also plot for comparison as
dashed lines are the equivalent curves corresponding to the 3% rule.

by the simulations; there is an additional region of instability for pipe lengths
beneath that predicted by the formula (28).

Further parameter studies indicate that if we include significant valve
damping κ > 0, then we find that the Helmholtz-like threshold curves down-
wards in the flow-rate versus pipe length plane (q versus γ), eventually hitting
γ = 0. Additionally, the quarter-wave instability begins to curve upwards
significantly for moderate q values. Thus the two-parameter bifurcation dia-
gram becomes the one computed in (Bazsó et al., 2014, Fig. 8), in which the
zero-pipe-length case is once again stable for sufficiently large q. That study
was based on parameter values for a laboratory valve that had very different
characteristics than the commercial standard valves under investigation in
this paper.

5. Conclusion

In summary, this paper has extended the earlier experimental and simu-
lation results to cover the case of valves in liquid service. Use of the reduced-
order quarter-wave model derived in earlier work has enabled us to perform
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Figure 8: Summary of the computation results for the 2J3 valve with a small reservoir, V =
1.25 ft3, β = 29.23. The dashed line depicts the analytical estimate (15) of the quarter-
wave stability boundary, the dash-dot line depicts the critical pipe length corresponding
to the Helmholtz instability, given by (28). Crosses (red - color online) depict simulations
for which the valve was found to be unstable, and (green) circles depict points for which
the valve was computed to be stable.
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parameter studies showing dependence of instabilities on valve and inlet prop-
erties and to test the validity of the analytical formulae. We find both simi-
larities and differences from the gas service case.

First, we find a similar trend in the fundamental instability criterion,
namely that there is an approximately quadratic relationship between the
critical mass flow rate and inlet pipe length. Operation at points above this
curve will lead to instability. This curve is derived from an analytical approx-
imation to the condition for there to be a so-called quarter-wave instability,
which is a Hopf bifurcation caused by the interaction between the valve’s
dynamics and the fundamental acoustic mode in the pipe. In one sense we
find that liquid service valves are more stable; for similar valve parameters,
the critical pipe length for stability is generally almost five times longer for
the liquid used (water) than it was for the gas (nitrogen).

However, when the quarter-wave instability does occur it is far more
violent than it is for gasses. This we have found to be because the Hopf
bifurcation is subcritical. This means that instead undergoing stable limit
cycle motion (valve flutter), the post-instability motion will jump quickly to
fully chattering solutions in which the valve repeatedly impacts with its seat.
This chattering motion will lead to large pressure variations in the pipe due
to water hammer effects each time the valve impacts with its seat. Also,
subcriticality means that the predicted instability threshold is a pessimistic
bound because transient jumps in the sub-threshold region can also trigger
instability, with the size of the required transient shrinking to zero as the
threshold is approached.

Experimentally, we found cases where instability was sufficiently extreme
that transient pressures in the pipe could reach up to five times that of the
set pressure. We also found cases where upon ramping up the pressure, it was
not possible to reach mean mass flow rates that are sufficient to relieve the
overpressure. Thus the avoidance of instability for direct-spring operated
pressure relief valves in liquid service should be of critical importance in
practice.

Additionally for liquids, we found the decreased compressibility can cause
another instability to become significant. This is a Helmholtz-like instability
where the valve and tank pressure move in unison. Unlike the quarter-wave,
this instability occurs for inlet pipes that are too short, rather than too long.
It can also be predicted by an analytical formula, but is only likely to be
significant in practice if there is a small reservoir.
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