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Ru-Catalysed C-H Silylation of Unprotected Gramines, 
Tryptamines and their Congeners 

K. Devaraj,a C. Sollert,a C. Juds,a P. J. Gates,b and L. T. Pilarskia* 

Selective Ru-catalysed C2-H silylation of heteroarenes is presented. 

The transformation works with or without directing group 

assistance and requires no protecting groups. Gramines and 

tryptamines may be converted efficiently whilst avoiding 

deleterious elimination side-reactions. Mechanistic studies reveal 

an unusual activation of the indole C4-H bond by an electron-rich 

metal. 

Catalytic activation of C-H bonds offers new transformations, 

new selectivity modes and expedited synthetic routes to various 

bioactive1 and functional molecules.2 Growing interest in the 

utility of (hetero)arylsilanes in synthesis,3 medicinal chemistry4 

and materials science5 has fuelled the development of powerful 

C-H silylation methods,6,7 as exemplified by recent work on 

indole substrates (Figure 1). Rh-7b,  Ir-8 and even tBuOK-

catalysed9 reactions have been shown to deliver C2-silylated 

indoles selectively, whilst C3-H silylation has been achieved 

using more specialised Ru complexes.10 Our interest in 

(hetero)arene C-H functionalisation11 led us to consider a 

complementary strategy using the exocyclic amine substituents 

of naturally-occurring indole compounds to direct 

regioselective C-H silylation. Beyond circumventing the 

protecting group requirements and directing group (DG) 

installation,12 such a development would open up previously 

intractable/under-explored substrates to catalytic C-H 

functionalisation.  

Gramine (1a) is a cheap, synthetically versatile, naturally-

occurring alkaloid able to deliver the indole or skatole nucleus.13 

To the best of our knowledge, only a single report exists on its 

use in catalysis, which shows that in the presence of 

electrophilic metal species the exocyclic amine is cleaved, 

making it ineffective for directing C-H bond activation.14 

Tryptamine C-H functionalisation is also rare, and typically 

reported only on protected substrates.15 We reasoned that the 

use of an electron-rich metal centre could give efficient C2-H 

functionalisation of such unprotected substrates for the first 

time without inducing competitive elimination processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Previous work on indole C-H silylation and the work presented herein. 

 

To probe the feasibility of this idea, we tested the reaction 

between 1a and H-SiMe2Ph with a variety of catalyst precursors 

and norbornene (nbe) as the hydrogen scavenger (Table S1). No 

conversion was observed using the Ir-catalysed approach 

previously reported by Falck for 2,3-unsubstituted indoles,8a or 

under Rh-catalysed conditions described for the C-H silylation 
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of 2-arylpyridines.16 Ru3(CO)12 was also ineffective, but Ru(II) 

precursors able to undergo reductive activation17 worked well, 

giving 2a in 85% yield under optimised conditions (see Table S1 

for full details). This reaction could be scaled up to 3g of 1a 

without significant loss in yield (Scheme 1). Exploration of the 

silane scope revealed triaryl, trialkyl and mixed alkyl/aryl silanes 

to be effective, and afforded 2a-e in good to excellent yields, in 

line with their respective steric profiles. Silane sterics were less 

closely correlated to the yields for other (hetero)arenes (see 

below). The electronic perturbation to H-SiMe2C6F5 or H-

Si(OMe)Me2 proved detrimental (2f,g). Activity did not extend 

to hexamethyldisilane (2h), nor to H-GeEt3 (2i) as an analogue 

of H-SiEt3.18 

 

 

 

 

 

 

 

 

 

 

Scheme 1.  a 3 g (17.2 mmol) scale of 1a.  b Modified conditions: Me3Si-SiMe3 used 
as the silane source. 

 

Importantly, we discovered no requirement to protect exocyclic 

amine directing groups. Thus, 3 and C2-silylated tryptamines 4 

were delivered in good to excellent yield. A longer tether 

(product 5) and/or weaker19 σ-donating directing  groups 

(products 6 and 7) gave lower yields and led to competitive 

silylation at the pyrrolic nitrogen, presumably via an 

intermolecular pathway; a reaction between unsubstituted 

indole and D-SiEt3 in the presence of HNEt2 also resulted in 

indole N-silylation (see SI for details). N-methyl, N-tosyl and N-

(2-pyrimidyl) indoles gave no conversion (8a-c); N-acetyl and N-

Boc indoles gave complex mixtures (8c-d). Silylation at C2 

therefore proceeded most efficiently with unconjugated, strong 

σ-donor DGs,20 which presumably favours an oxidative addition 

by Ru species into the C-H bond.  

The scope was expanded to a range of gramine derivatives (2j-

p), although nitro and ester substituents (2q,r) shut down the 

reaction (Scheme 2B). No C-H silylation of the benzenoid ring 

was detected (2r and 9). Silylated N-methyl tryptamine 10 and 

serotonin derivative 11a were obtained in good yields. Furan, 

pyrrole and thiophene derivatives were also amenable to the C-

H silylation (products 14 and 15, Scheme 2B-C). A lowered 

temperature and extended reaction time favoured the selective 

formation of mono-silylated thiophene 15a. 

We also tested the undirected heteroarene C2-H silylation,7b, 8a 

which is unprecedented in Ru catalysis. Indeed, undirected Ru-

catalysed C-H functionalisation is altogether very rare.21 Whilst 

H-SiMe2Ph proved ineffective for this transformation, H-SiEt3 

gave variously substituted indoles 16b-e and benzofuran 17a in 

moderate to excellent yields (Scheme 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Heteroarene scope and regioselectivity control. a Catalyst loading = 6 
mol%. b4.5 mmol scale. c 100 °C  d 10 equiv. HSiMe2Ph, 10 equiv. nbe. e General 
conditions for undirected C-H silylations: RuH2(CO)(PPh3)3 (5 mol%), silane (10 
equiv.), nbe (10 equiv.) 150 °C, 20 h. f Conditions: RuH2(CO)(PPh3)3 (5 mol%), silane 
(5 equiv.), nbe (5 equiv.) 135 °C, 20 h. 
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To date, mechanistic work on C-H silylation has been rare.6a We 

obtained insights for our reaction from C-H/D exchange 

experiments. Reactions using C2-deuterogramine (1a-d) as the 

substrate and/or D-SiEt3 as the silane gave 2e/2e-d and 3-

methylindole (19/19-d), as exemplified in Scheme 3 by the 

reaction between two deuterated coupling partners (see SI for 

the full details). Partial C-H/D exchange was observed at C2 in 

19 and the C3-methylene/methyl positions of 2e and 19, as well 

as the C4 and C7 positions in both. 

Catalytic indole C4-H activation is very rare22 and reported only 

for electrophilic metal species. 40% of C4-D incorporation was 

observed in product 2e obtained from the reaction between 1a-

d and D-SiEt3 (Scheme 3A). The corresponding reaction using 

only one deuterated substrate gave 15-19% C4-D incorporation 

(Table S2). These values are consistent with the intermediacy of 

C or F (or corresponding deuterides) in our proposed 

mechanism for the silylation of gramine (Figure 2). The 

necessarily high strain and/or steric demand in C and F also 

explains the absence of C4-H silylated products. No C4-H/D 

exchange occurred when tryptamine or indole23 (20H) was used 

instead of 1a, implicating the methanamine directing group in 

C4-H activation in 1a. 

Catalytic indole C7-H activation is also rare.24 Commonly, the 

corresponding functionalisation is carried out on indolines prior 

to their oxidation.25 The extent of C7-H/D exchange was 

invariably greater in 19/19-d than in 2e/2e-d and no 2-silyl-3-

methylindole was observed. This suggests C7-H activation via 

coordination of Ru to the pyrrolic nitrogen prior to C2 silylation; 

the steric bulk of a 2-silyl substituent presumably inhibits 

coordination to N1. Moreover, without amine DGs present on 

the substrate (e.g. indole, 20H) C7-H/D exchange was not 

observed, unless an amine additive was included separately 

(Scheme 3B). Thus, C7-H/D exchange observed in 2e and 19 may 

be effected by Ru species bearing nitrogen ligands obtained 

from the cleavage of the methanamine DG during the formation 

of 19. C7-H activation therefore seems to require unimpeded 

coordination to N1 and the availability of alkyl amine ligands for 

Ru. Finally, N-methylindole (20Me) did not undergo C7-H/D 

exchange but did undergo exchange at the C2 position (see SI 

for more details). This supports the viability of a truly 

intermolecular C-H activation without any requirement for 

directing groups. 

Disilane by-products 21 formed in the Ru-catalysed reactions, 

suggesting [Ru](SiR3)2 intermediates G, although at this time a 

metathesis mechanism involving A cannot be ruled out.26 That 

hexamethyldisilane proved ineffective during our survey of 

silylating reagents (Scheme 1, 2h) means Si-Si bond formation is 

probably irreversible under our conditions, in contrast to 

previously reported Rh-16 and Pd-catalysed27 processes. A 

crossover reaction between D-SiEt3 and H-SiMe2Ph in the 

presence of [RuH2(CO)(PPh3)3] led to extensive Si-H/D exchange 

(Scheme 3C), even at room temperature (entry 2), consistent 

with fast Si-H bond activation, as reported for Ir-catalysed C-H 

silylations.28 No such exchange occurred in the absence of 

catalyst (entry 3).  

Figure 2 shows a proposed mechanism. Insertion of Ru0 into the 

H-SiR3 bond affords A, whose strongly σ-donating hydride and 

silyl ligands presumably activate the metal centre towards 

oxidative addition into the C-H bond after substrate 

coordination (B). The formation of D is probably favoured over 

that of C on the basis of lower ring strain. Reductive elimination 

gives E and reduction of nbe and release of 2 restores Ru0. The 

bulky silyl group in E presumably forces the coordinated Ru 

centre towards C4-H, encouraging the formation of F.  

Our mechanistic experiments (see SI for full details) are 

consistent with an analogous catalytic cycle for substrates 

without DGs. Thus, A may be active towards intermolecular C-H 

activation (e.g. of indole); the slightly harsher conditions for the 

undirected C-H silylations may result from the absence of a DG 

to organise the system prior to the C-H bond-breaking step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3: A-B: Selected C-H/D exchange experiment using gramine and indole 
substrates and D-SiEt3. The full complement of combinations is described in the 
SI. C. Si-H/D exchange between two silanes. aReaction conducted at rt. b 
RuH2(CO)(PPh3)3 excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Proposed mechanism for the C2-H silylation of gramine. 
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In summary, we have demonstrated the selective, Ru-catalysed 

C-H silylation of heteroarenes, which can proceed with or 

without directing group assistance and no protecting groups. 

We also report the first C4-H activation by an electron-rich 

metal centre. Work on the application of this methodology in 

more complex synthetic contexts and more detailed 

mechanistic studies are ongoing.  

We thank the Swedish Research Council (Vetenskapsrådet) for 

funding and Dr Johanna Larsson for manuscript proof-reading. 
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