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Abstract

The paper describes a vibroacoustics analysis of auxetic gradient honeycomb
composite structures with hexagonal configurations. We examine two classes of
gradient cellular layout - one with continuously varying internal cell angle, the
other with gradient cell wall aspect ratio across the surface of the honeycomb
panel. The structural dynamics behaviour of the two gradient honeycomb con-
figurations is simulated using full-scale Finite Elements and Component Mode
Synthesis (CMS) substructuring. Samples of the gradient honeycombs have
been manufactured by means of 3D printing techniques, and subjected to modal
analysis using scanning laser vibrometry. We observe a general good comparison
between the numerical and the experimental results. A numerical parametric
analysis shows the effect of the gradient topology upon the average mobility and
general vibroacoustics response of these particular cellular structures.
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1. Introduction

Sandwich structures are still widely used in a variety of airframe structures
such as fixed and rotary wing designs, as well as in spacecraft constructions.
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The core of sandwich panels is mainly represented by honeycombs with regu-
lar hexagonal or overexpanded configurations, although different layouts have
been introduced in the market during the last twenty years, notably flexcores
and toroidal honeycombs [1, 2]. As a subset of cellular structures, auxetic
(i.e. negative Poisson’s ratio - ν < 0) honeycombs have also received some in-
terest within the research community, due to their peculiar mechanical charac-
teristics like sinclastic curvature, general increase of transverse shear modulus,
indentation and flatwise compressive stiffness at low relative densities [3, 4, 5].
Honeycomb tessellations that exhibit in-plane negative Poisson’s ratio (NPR)
values have been developed from re-entrant configurations based on the classical
hexagonal butterfly honeycomb geometry [6], which have been also expanded in
the domain of zero Poisson’s ratio with the accordion honeycomb configuration
[7]. The modal and sound transmissibility properties of these auxetic honey-
combs have been evaluated in [8], and their viscoelastic dissipation properties in
[9, 10]. Other honeycomb auxetic configurations have also been produced from
non-centre-symmetric chiral topologies [4, 11, 12] and star-shaped layouts [13].
The vast majority of the honeycomb configurations described in open literature
are characterised by a single unit cell with fixed geometry, repeated in two di-
mensions along a periodic pattern across the surface of a panel. These fixed
configurations allow to reach a single set of radiuses of curvature when a honey-
comb panel is bent, the anticlastic (saddle-shaped) for positive ν, cylindrical for
ν = 0, or sinclastic (dome-shaped) for ν < 0. The presence of a continuous vary-
ing (or gradient) pattern of unit cells across the honeycomb panel surface would
however allow more complex combinations of localised curvatures during defor-
mation, making also possible to produce sandwich panels and shells adapted
to complex shapes. A pioneering concept of gradient honeycomb was proposed
by Lim in 2002 [14], with a gradient distribution of internal cell angles that
provides an in-plane shearing effect during loading. Some of the authors of this
paper have also developed another gradient geometry based on a continuous
varying thickness distribution of the horizontal ribs in centre-symmetric cells
[15]. This gradient configuration shows an increased shear modulus per unit
weight compared to the pristine layout (where the thickness of the horizontal
ribs is fixed), and a reduction of the honeycomb anisotropy along preferential
directions. Material properties of functionally graded Voronoi cellular struc-
tures based on gradients of density and subjected to uniaxial and biaxial stress
state have been discussed by Ajdari et al [16]. The authors have shown that
the overall effective elastic modulus and yield strength of these particular cel-
lular tessellations increase by increasing the density gradient, and that cellular
configurations with higher density gradient exhibit lower steady-state creep rate
compared to tessellations with lower density distributions. Cui et al. [17] have
observed that a functionally graded foam can exhibit superior energy absorption
capabilities compared to a uniform foam topology layout having the same mass.
The energy absorption of functionally graded regular hexagonal honeycombs
has been observed to be highly sensitive to the type of gradient topology used,
especially under very high dynamic compressive loading and during the early
stages of crushing [18]. Gradient and graded-type open cell foams produced and

2



characterised by Alderson et al. have shown overall unusual deformation mech-
anisms under tensile loading [19]. Gradient cellular tessellations with graded
cell-wall aspect ratios and internal cell angles have been studied by Hou et al.
as potential fillers for sandwich beams subjected to three-point bending tests
[20]. Always in terms of energy absorption under dynamic loading, graded
auxetic-conventional honeycombs produced with Kirigami (Origami plus cuts)
techniques have exhibit significant absorption properties under edgewise load-
ing, with different deformation mechanisms occurring whether the loaded side
of the honeycomb was the conventional or the auxetic one [21]. The tuning and
control of the thermal conductivity and transport properties through gradient
centresymmetric cellular structures has been also proposed by Zhang et al. [22].

All the above cited papers related to gradient cellular structure concern
the mechanical and multiphysics performance of these peculiar cellular topolo-
gies. However, little has been done about the evaluation of the vibrational
performance of these gradient configurations. Graded hexagonal honeycomb se-
quences have been also used to minimise the dynamic deformation of aeroengine
fan blades for the first three modes (flexural and torsional) [23]. Xu et al. have
observed a significant reduction of the vibration transmissibility under in-plane
dynamic forced vibration when using gradient tri-chiral honeycomb concepts
[24], demonstrating that the gradient cellular configuration creates a significant
disruption of the pass-stop band wave propagation behaviour typical of the peri-
odic pattern observed in other centresymmetric auxetic and chiral configurations
[25]. While the modal properties and dynamic response of general fixed unit
cell geometry honeycomb structures have sufficiently well investigated [26, 27],
no similar analysis has been attempted so far to evaluate the vibroacoustics
response of gradient centresymmetric cellular structures with auxetic charac-
teristics, both from the numerical and experimental point of view. This paper
aims at filling this gap existing in open literature. The focus of the paper is also
about the vibroacoustics performance of these peculiar cellular configurations,
and not about considering the effect of the presence of skins like in classical
sandwich configurations, which leads to the transverse shear deformation of the
core dominating the lower modes [28, 29].

In this work the modal and structural dynamics response of cellular panels
made of auxetic gradient honeycombs with centresymmetric unit cells is evalu-
ated using numerical and experimental techniques. From the numerical point of
view the gradient panels are modeled using both reduced order models based on
Component Mode Synthesis (CMS) and full-scale Finite Element models. The
CMS method allows in theory to substructure in an efficient manner the gradi-
ent geometry, sampling each supermodel unit as a single column of the gradient
honeycombs and making therefore a parametric design less computationally ex-
pensive for these complex structures. As it will be demonstrated, the CMS
approach applied to these particular complex cellular structures demonstrates
his reliability in terms of predictions of the fundamental modes of the cellu-
lar panel, however the type of core material adopted (isotropic or orthotropic)
does affect the efficiency of the CMS simulations. Full-scale Finite Element and
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CMS models do however show a good comparison with experimental results
conducted on gradient panel samples produced with 3D printing techniques. A
parametric analysis is also carried how to understand the effect of different ge-
ometry parameters of the gradient topologies over the average mobility of the
cellular panels, an indication of the modal density behaviour of these structures.
To the best of the Authors’ knowledge this is the first time that a combined
numerical and experimental work has been carried out about the modal and
dynamic properties of these gradient cellular structures.

2. Gradient topologies, simulations, manufacturing and testing

The aspect-ratio topology (coded as #1 [20]) consists in a continuous vary-
ing horizontal rib length h for each row (Fig. 4). The base configuration is
represented by a re-entrant unit-cell with parameters α = h0/l0 = 1 (l0 = 10
mm) and angle θ0 = −10◦. The vertical span d = l0 cos(−10◦) is kept constant
along the global y-direction. From the starting position the horizontal length h
is varied as h1, h2, ..., h11 with a fixed increment ∆h = 0.05h0. The horizontal
span of each column dx = 2 (l0 sin θ0 + h0) and the cell-wall thickness t = 0.5
mm are fixed in the present configuration. The fundamental re-entrant shape of
the cells is kept along the y-direction, with the gradient providing a dilation of
the "butterfly" units, which translates into an increasing aspect ratio α = h/l
along the y-direction. The panel core depth b is constant, equal to 37 mm for
the test case considered. As observed in other gradient cellular structures, the
number of cells used in each panel (7 X 8) allows to obtain a mechanical be-
haviour close to the asymptotic (first order) homogenised one [15]. The other
graded topology (coded as #2 [20]) consists instead in a continuously varying
aspect ratio α = h/l versus the internal cell angle θ. The cell-wall length l0
is fixed over the whole surface of the cellular panel, and the internal angle θ
is continuously varied along the y-direction, with θ = −25◦ and θ = 30◦ as-
sumed as angular limits at the bottom and top sides of the panel respectively
for the test case considered (Fig. 4). A gradient law can be mathematically
expressed as θ = −25◦ + θξ · ξi, where the non-dimensional coordinate ξ = [0, 1]
along y-direction is introduced. The present angle-graded topology reported in
Fig. 4 has a linear gradient progression (i.e. i=1). The cell wall slenderness ratio
β = t/l0 is constant through the panel, whereas the aspect ratio α = 1 assumed
at the bottom row for θ = −25◦ progressively reduces with increasing θ. The
variation from positive to negative internal cell angles leads to an increase of
the local relative density. The two graded panels have common value of base
cell-wall length l0, cell-wall thickness t and panel depth b.

Full-scale finite-element models of the test case graded topologies have been
developed using the commercial Finite Element code ANSYS 11.0. The elements
used are 8-node structural elastic shells (SHELL93) with six nodal degrees of
freedom (translations and rotations along the three Cartesian axis). After a con-
vergence analysis on the modal frequencies of the samples, an average element
size equal to b/5 has been employed for all the models. Reduced order models of
the gradient lattices have been developed using a Component Mode Synthesis
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(CMS) free-free interface approach (Fig. 4) [30, 31]. The gradient substructures
shown in Fig. 4 can be assembled in a linear chain, making possible to calculate
the natural frequencies of the whole gradient honeycomb. The simulations per-
formed in this work involve the use of 2, 10 or 100 modes to calculate the basis
[ΦN] for the CMS approach [30]. In order to mimic the experimental setup, the
FE nodes below the region of the clamp were constrained on the front and back
surface of the samples in order to simulate the influence of the two washers and
their potential influence on the structural dynamic response. The frequency
response functions (FRFs) were calculated from the FEA models in the same 24
point locations used within the experiment. Fig. 4 - 4 illustrate the measuring
locations and the clamp positions for both samples. The FEA FRFs have been
used to extrapolated the average mobility of the gradient cellular configurations
for the parametric analysis.

The gradient lattice samples have been manufactured using a Fusion Depo-
sition Moulding (FDM) 3D printing technique (Stratasys Dimension Elite® -
Serial number 067557). The samples made from ABSPlus® polymer had uni-
form nominal cell-wall thickness of 0.5 mm (minimum allowed thickness of 0.5
mm). The core material properties of the lattices were determined from ten-
sile ASTM D638-08 tests on dog-bone specimens produced with the same FDM
technique along the layer-wise and transverse directions used by the 3D printing
manufacturing process. The ABS dog-bone specimens showed a quasi special or-
thotropic behavior [2], with Young’s moduli Ey = 2.02 GPa and Ez = 1.54 GPa.
The Poisson’s ratios, determined using a video-estensometer technique based on
edge detection method (Messphysik GmbH), were νyz = 0.43 and νzy = 0.41
respectively. The shear modulus was estimated using an equivalent isotropic
material made by the geometric mean of the Young’s moduli and Poisson’s
ratios Eeq =

√
EyEz and νeq =

√
νyzνzy, and using the classical definition

Geq = Eeq/2/ (1 + νeq), leading to a shear modulus value of 618 MPa. The use
of an equivalent isotropic material model has yielded satisfactory comparison
between numerical and experimental mechanical static results for similar types
of 3D printed cellular structures [15], and it would be interesting to observe
if the adoption of an isotropic material model for the core could still provide
an acceptable approximation to represent the gradient cellular structures. An
estimation of the hysteretic loss factor of the ABS plastics material has been
obtained using a Dynamic Mechanical Analyser (Metravib RDS VA2000) under
3-point bending loading at room temperature and 1.5 Hz of excitation (constant
dynamic strain of 10−4). The measured loss factor (η = 0.02) has been consid-
ered as constant within the frequency range of the bandwidth excitation in the
full-scale Finite Element models used in the frequency response simulation.

The dynamic tests have been carried out with a random broadband excita-
tion between 5 Hz and 2 kHz. A central clamp was manufactured using two
washers linked by a rod, and placed in the middle of the cellular panel (Fig. 4 -
4). The washers were placed on the top and bottom of the cellular panels, and
the joining rod was passing through the void on the central cell. Two nuts
were fixing the rod to the washers. The central clamp was connected to a PCB
208C03 force transducer (SN 21535), linked to a LDS V406 electrodynamic
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shaker through a steel stinger rod. The shaker was driven by a DSP Technology
Inc. Siglab 20-42 through a LDS PA100E power amplifier. Each sample was
scanned in 24 locations using a Polytec PSV-300F Scanning Laser Vibrometer
(SLV). The mobilities detected by the SLV were post-processed using a DFT-
based software, in which the structural velocities signals were sampled at 5.1
kHz using 1600 spectral lines, with the time domains filtered using Hanning
windows and the FFT computed with 10 complex averages and 50 % of overlap.
The operational mode shapes of the gradient cellular structures have been iden-
tified from the peaks of the average mobility indicator H1. Natural frequencies
and mode shapes have been extracted using the ICATS modal analysis software.
The experimental modal damping ratios were measured with each FRF curve-fit
with a Line-Fit algorithm [32].

When the system is subjected to an harmonic excitation f = f0e
iωt the re-

sulting velocity profile is harmonic due to the assumption of the system linearity
assumption, and can be expressed as v = v0e

iωt. Assuming given excitation fre-
quency ω, the generalized mobility is defined as the ratio of the complex velocity
v measured at point i to the complex force f measured at point j :

Yij(ω) =
v0(ω)

f0(ω)
(1)

Where the subscripts i, j indicate point locations. When both force and
velocity are measured at the same location and along the same direction in a
structural system under harmonic excitation, the resulting mobility is named
driving-point mobility Yij (i = j). If the measuring locations are different, the
resulting mobility is named transfer mobility Yij (i 6= j) [33]. The average
mobility can be defined as:

| ẇ
f
| = 1

S

ˆ
i,j

Yij (ω) dSij (2)

In (2) S is the overall surface of the cellular panel and dSij is the infinitesi-
mal surface around which the driving point mobility is calculated. The rationale
behind the use of the average mobility is its proportionality to the modal density
of sandwich panels [34, 35]. In the present study the mobility of different point
locations on the panel have been measured by fixing the location of the excita-
tion force at the geometrical centre of each panel top surface. The calculated
mobilities are then transfer mobilities measured in 24 different point locations
on the panel top surfaces and then used to calculate the average mobility char-
acterizing of the cellular gradient panel. In order to mimic the experimental
setup, the nodes below the region of the clamp were constrained on the front
and back surface of the samples to simulate the influence of the two washers and
their potential influence on the structural dynamic response. The frequency re-
sponse functions were also calculated for the full-scale FE models in the same 24
point locations adopted in the experiment. Figs. 4 - 4 illustrate the measuring
locations and the clamp positions for both specimens.
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3. Results and discussions

3.1. Comparison between experimental and numerical results
Tables 4 and 4 show the direct comparison between the full scale FE and

substructured CMS models for the two gradient topologies with the two ma-
terial models. The topology #2 shows a significant increase of the resonances
across the modal spectrum considered, with the first natural frequency 49 %
higher than the analogous one belonging to the sample with gradient topology
#1. When the isotropic material model is adopted, the CMS approach is com-
puted with 10 internal modes only. A convergence analysis using 2, 10 and 100
modes has been performed for the orthotropic core material case. The gradient
type #1 presents a first natural frequency of 61 Hz with an equivalent isotropic
material, and an increase of 3.2 % for the fundamental frequency is observed
when the orthotropic material model is adopted. A similar trend is observed
when the topology #2 is considered, with the error now varying between 1 %
and 4 % for all the other modes considered. The use of an isotropic material
model for the core does clearly provide a conservative estimation, and quite
interestingly does not represent an approximation as satisfactory as in the case
of the transverse shear static load [36, 37]. It is also worth noticing that the
use of an equivalent isotropic core material in the CMS models does not provide
any noticeable difference from the full-scale FE case. The situation is different
when the orthotropic solid case is considered. Although no sizable difference
within the CMS-generated results can be observed when using different internal
modal basis, the CMS tends to overestimate consistently all the natural frequen-
cies associated to topology #1 by 6.3 % on average compared to the isotropic
case, and it is in line with the predictions provided by the full-scale orthotropic
models. Sample with gradient #2 shows also a stiffening effect when using the
CMS approach by 6.3 % on the fundamental frequency, the other eigenvalues
differing between 5.2 % and 7 % compared to the full-scale case. It is also ap-
parent that the different response provided by the CMS approach between the
two topologies can be ascribed to the geometries of the samples involved. Al-
though having gradient aspect ratios, sample #1 has always the same re-entrant
(butterfly) structure, and the different nodes at the interfaces of the substruc-
tures tend to undergo similar rigid body modes. This feature however is not
present in sample #2, with the first rows having a butterfly shape that changes
into a convex overexpanded honeycomb in the final ones. The interface rigid
body modes are different in the various cases, and the number of fixed interface
nodes used in the CMS model may be not sufficient to represent in an adequate
manner the deformation of the substructured units [30].

The experimental and numerical results for the aspect-ratio topology with
a linear gradient are reported in Fig. 4 where the magnitude of the average
transfer mobility from 24 sampling locations on the panel is plotted against
the excitation frequency bandwidth [50 Hz - 1200 Hz]. Four transmissibility
(H1) peaks for sample #1 have been identified experimentally at 76 Hz, 87
Hz, 94 Hz and 390 Hz (Fig. 4). A good correlation between the experimental
and numerical predictions is observed up to 400 Hz. In Table 4 the numerical
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predictions and the experimental results shows also a good comparison also in
terms of mode shapes and frequencies, with relative errors for the resonance
values ranging between 1.1 % and 6.8 % maximum. The difference between
the numerical and the experimental findings can be mainly associated to the
uncertainties provided by the introduction of the nodal constraints on the top
and bottom surfaces in the finite element models to simulate the presence of
the two washers in the experimental setup. For the present full-scale models
all degrees of freedom of the nodes laying below the region of the clamp on
the front and back surface of the structure were constrained, with exception
for the DOFs along the excitation direction z. This assumption about the
boundary conditions may too conservative and lead to a stiffening effect on the
modal behaviour. Moreover, it is important to notice that the use of an average
constant loss factor η = 0.02 introduced in the harmonic analysis based on
modal superposition is also an approximation.

The experimental and numerical results for the angle-graded topology with
a linear gradient are reported in Fig. 4, in which the average transfer mobility
magnitude from 24 sampling locations on the panels is calculated again within
the frequency bandwidth [50 Hz - 1200 Hz]. For this type of gradient config-
uration it is possible to observe three transmissibility peaks at 90 Hz, 169 Hz
and 340 Hz (Fig. 4). The Finite Element model provides a quite close pre-
diction with errors of 3%, 3% and 0.3% respectively. Differences between the
predicted and measured transmissibility tend to increase above the 400 Hz, in
which a higher modal content is observed for the experimental model (Fig. 4).
In Table 4 the modal shapes predicted by the Finite Element full-scale modal
analysis are compared to the experimental ones. A good correlation can be
found for the first three mode shapes, with a more distorted flexural third mode
at 341 Hz. It is worth commenting about this particular mode, because it is
possible to observe the presence of the two opposite curvatures (positive and
negative) when the sample is undergoing a global bending deformation. The
presence of the curvatures is related to the gradient transition from the aux-
etic (butterfly/re-entrant) and convex hexagonal cell configuration through the
surface of the panel.

The modal damping ratios (Tables 4 and 4) are very similar for the two sets
of gradient configurations, with values ranging from 1.16 % to 5.83 %. It is
worth to observe that the highest modal damping ratios occur for the torsional
modeshapes, which involve a transverse shear dissipation. Auxetic composite
structure do tend to dissipate energy through shear deformation often coupled
to tensile loading, as it has been observed in through-the-thickness composites
under cyclic high-cycle fatigue loading [38] and earlier on in negative Poisson’s
ratio cellular materials [39]. Dissipation of shear waves is also responsible for
wave attenuation in auxetic foams and the high force absorption during drop-
tower impact tests in edgewise auxetic honeycombs [21]. The torsional modes
involve the highest levels of modal strain energy dissipation in the cellular pan-
els between the centres and the edges of the honeycomb structures. The other
modes show a much more localised distribution of the deformation, with their
other modal damping ratios being more or less on line with the hysteretic damp-
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ing of the core ABS material, as it is expected in cellular structures made from
single phase materials [2].

3.2. Parametric analysis
The benchmarked full-scale Finite Element model has been used to per-

form a parametric analysis to evaluate the influence of the different gradient
configurations on the average mobility response of the two gradient topologies.
For sample #1 the baseline periodic tessellation with ∆h = 0 and two graded
configurations with ∆h = 0.03h0 and ∆h = 0.06h0 are compared in Fig. 4.
The aspect-ratio gradient allows for a dilation of the auxetic "butterfly" unit
with an increasing aspect ratio α along the y-direction. The overall density is
only weakly affected by the gradient because the parameters d and the column
width dx are fixed in this topology. In the simulation the differences in terms
of average mobility for the three different cases are minimal, with a maximum
discrepancy of 15 % in terms of magnitudes above 800 Hz, slight variations of
the peak magnitudes of the first three/four natural frequencies (Fig. 4). Above
880 Hz, the amplitude of the average mobility also tends to increase slightly
with the level of ∆h/h0 used in the gradient topology. These results can be ex-
plained by considering that all topologies have approximately the same weight
and are almost iso-volume [40]. The nature of the gradient does not change the
main topology of the unit cell, which is fixed to the "butterfly" geometry with
internal angle θ = −10◦, without significant changes to the the unit-cell stiffness
along the Cartesian principal directions [20].

The angle-graded topology shows however a different behaviour for the three
different gradients described in Fig. 4 and characterised by the variation of the
nondimensional parameter ξi (i = 0.5, 1, 2). The quadratic gradient describes a
panel with negative internal angles θ spanning from ξ = 0 to ξ = 0.7. The aux-
etic region of the panel decreases when the linear gradient is used, and further
reduction of the fraction of re-entrant unit cells exists for a square-root gradient
law. The three topologies exhibit different overall weights, with the highest mass
belonging to the quadratic gradient topology (6.3 % more than the linear distri-
bution) and the lowest to the square-root gradient (4.5 % compared again to the
linear gradient) because of the reduction of regions with high aspect ratio α and
negative θs in the panel. The average transfer mobility within the 50Hz - 1200
Hz bandwidth for the angle-graded topologies is shown in Fig. 4. The angular
gradients do provide a significant local relative density distribution along the
y-direction and introduce a net change in the unit-cell topology, which moves
from auxetic to positive internal cell angle configurations with a subsequent
variation of the local unit-cell stiffness along the x, y and z directions [20]. The
square-root gradient exhibits the lowest average mobility at frequencies greater
than 400 Hz, whilst the quadratic gradient has the highest levels of mobility
between the gradient considered in this work (Fig. 4). At lower frequencies (50
Hz - 400 Hz) the quadratic and linear gradient show the maximum peak of their
responses at matching frequency, whereas the square-root response shows the
fundamental peak at a slightly higher frequency. The quadratic gradient pro-
vides an overall decrease of the modal density of the panel below 400 Hz. This
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decrease is even more significant above 500 Hz, with both the linear and root
square gradient providing an average an increase of the density of the H1 peaks
by a factor of three, in particular for the ξ0.5 gradient. The overall weight differ-
ence and stiffness variation between the three configurations has a net influence
on the peak magnitudes of the average mobility and respective frequencies at
which such peaks occur. It is interesting at this stage to consider the effect of a
different internal constant cell angles versus a given gradient configuration (the
linear gradient topology - θ ∝ ξ)) as shown in Fig. 4. In this case the two
constant internal cell angles (θ = −25◦ and θ = 30◦) correspond to the angles
at the extreme ends of the linear gradient configuration. The negative cell angle
value in this configuration is the limit one to avoid the opposite vertex of the cell
touching for the specific cell wall aspect ratio used [41]. All panels are charac-
terized by an equal depth b, approximately square aspect-ratio in x, y plane and
similar span along x and y-directions, with a maximum 9% difference between
the three case studies. The auxetic periodic topology exhibits a weight increase
of 19% when compared to the linear angle-graded case, whilst the positive-angle
periodic panel shows a 20% weight reduction. While the responses of the fully
auxetic and linear graded topologies show a similar trend in the lower frequency
range (below 250 Hz), a significant different behaviour is provided by the pos-
itive angle periodic topology, with a maximum mobility peak shifted by 40 %
to higher frequency and an overall 5 dB lower response when compared to the
auxetic solutions (Fig. 4). In general, above 200 Hz the angle graded con-
figuration provides a transition in terms of modal density between the richer
full auxetic configuration and the less resonant positive Poisson’s ratio uniform
cellular topology. Another way to compare the gradient angle topologies is to
normalise the mobility by the factor ([1/Mω]), in which M stands for the mass
of the panel, and to use the fundamental first peak frequency ω0 to make the
frequency bandwidth nondimensional. This nondimensional approach allows to
identify the cellular configurations that provide the lower modal density for a
minimum weight, a feature that is quite critical for lightweight and aerospace
applications. Also in this case of these simulations, the hysteretic loss factor
of the ABS material has been kept the same (η = 0.02). The results of this
normalisation process for the three cellular configurations are shown in Fig. 4.
The lowest normalised mobility is the one related to the hexagonal conventional
honeycomb (θ = 30o). The peak of the hexagonal regular configuration is also
~ 7 dB lower, while the full auxetic and the angular gradient configurations ex-
hibit similar values of peak mobility. The regular hexagonal configuration shows
overall a very low modal density, with only five peaks present within the range
0 < ω/ω0 <9. On the opposite, the full auxetic honeycomb panel shows both
the highest magnitudes of the mobility and a very rich modal density within the
whole normalised frequency bandwidth considered, with an increase of the num-
ber of peaks by a factor of 2.6 compared to the full hexagonal honeycomb panel.
The angle gradient topology tends to lower the normalised mobility and also de-
crease the modal density below ω/ω0 = 4, providing almost the same number of
nondimensional mobility peaks than the regular hexagonal configuration, albeit
with amplitudes between 15 dB and 20 dB higher. At higher nondimensional
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frequencies (ω/ω0 > 7) the auxetic and the gradient configuration tend however
to show a similar behaviour with a close modal density.

In terms of modal damping behaviour, the analysis from the single H1 mo-
bilities yields similar results to the ones observed from the experimental modal
analysis shown in Tables 4 and 4. Mobility peaks corresponding to global flexu-
ral modes have damping ratios between 1.5 %/2 %. The full auxetic and gradient
topologies have a modal damping ratio for the mobility average of 4 % and ~ 3
% for ω/ω0 ≈ 6.4, which corresponds to a higher order torsional mode (Figure
4). Because of the highest values of the natural frequencies for the hexagonal
case, no torsional mode is present in the H1 response of this panel within the
nondimensional frequency bandwidth considered. The flexural modes present
in the response of the hexagonal panel have damping ratios close to 1.3 %, quite
similar to the ones exhibited by the auxetic configurations.

4. Conclusions

The modal and dynamic behaviour of cellular panels with auxetic gradient
cellular structure has been studied using numerical FE and experimental mea-
surements. From the numerical point of view, the use of the Component Mode
Synthesis is an efficient approach to predict the vibroacoustics of these gradient
cellular panels, however the sensitivity of the results to the material properties
used for the core is an aspect to be taken into account, especially when new
types of composite and polymeric materials are used to produce these complex
configurations due to the advances of manufacturing and additive layer manu-
facturing techniques. The parametric analysis also shows that only a specific
gradient topology does exhibit a significant sensitivity of the dynamic properties
versus the change of the gradient geometry. When the mass of the honeycomb
panel is however taken into account, the gradient configurations (in particular
the angle gradient one) do exhibit a lower modal density compared to fully pe-
riodic auxetic configurations, but higher when compared to the classical hexag-
onal regular honeycomb structures. In a sandwich panel design the face skins
would constrain the core to deform principally under transverse shear, there-
fore the results shown in this paper are representative of a cellular panel and
not a sandwich configuration. Nevertheless, these gradient auxetic honeycomb
configurations constitute an interesting platform for the multidomain design of
sandwich structures from the static and vibroacoustics point of view.
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Table 1: Sample #1. Comparison of natural frequencies extracted using CMS and un-
substructured (full models), with isotropic and orthotropic material properties.

Full CMS Full CMS CMS CMS
10 modes 100 modes 2 modes

isotropic isotropic orthotropic orthotropic orthotropic orthotropic
[Hz] [Hz] [Hz] [Hz] [Hz] in [Hz]

61 61 67 67 67 67
78 78 81 81 81 81
90 90 95 98 98 98
115 115 119 127 127 127
126 126 130 139 139 139
133 133 138 145 145 145
162 162 168 179 180 179
201 201 211 223 224 223
212 212 220 234 235 234
219 219 227 240 240 240
220 220 228 242 243 242
229 229 238 250 250 250
244 244 255 270 271 270
274 274 294 303 303 303
284 284 302 313 315 313
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Table 2: Sample #2. Natural frequencies extracted from CMS and un-substructured (Full)
models with isotropic and orthotropic core properties.

Full CMS Full CMS CMS CMS
10 modes 100 modes 2 modes

isotropic isotropic orthotropic orthotropic orthotropic orthotropic
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

91 91 95 100 100 100
125 125 129 138 138 138
144 144 153 157 157 157
168 169 174 186 186 187
178 178 185 196 196 196
215 215 222 235 235 235
246 246 254 270 270 270
251 251 262 277 277 277
264 264 275 289 289 289
302 303 316 334 334 334
331 331 341 363 363 363
337 337 348 374 374 374
357 357 370 391 391 391
358 358 373 394 394 395
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FEA [Hz] Experimental [Hz] Modal loss factor [%] FEA modeshape Experimental modeshape

67 63 5.6

81 87 1.55

95 94 1.16

393 390 1.45

Table 3: Comparison between experimental and finite-element modeshapes for sample #1.
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FEA [Hz] Experimental [Hz] Modal loss factor [%] FEA modeshapes Experimental modeshapes

95 93 1.16

153 159 5.83

341 340 1.45

Table 4: Comparison between experimental and finite-element natural frequencies and mode-
shapes for sample #2.

19



h0

h1/2

h2

l0

h1/2

0d

d

d

y

x
z

Figure 1: Aspect-ratio graded topology #1 with linear gradient along the h parameter.
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Figure 2: Angle-graded topology with linear gradient in θ (#2). Oblique cell-wall length L1

is fixed with varying internal angle θ.
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Figure 3: Super elements for subtracturing in samples 1 and 2.
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Figure 4: Locations of the measurement points and central clamp for sample 1.
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Figure 5: Locations of the measurement points and central clamp for sample 2.

Figure 6: Comparison between experimental and numerical results for the magnitude of the
average mobility in sample #1 between the 50 Hz- 1200 Hz frequency bandwidth.
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Figure 7: Experimental results for the average mobility magnitude of sample #1 within the
50 Hz-1200 Hz frequency bandwidth.

Figure 8: Experimental and numerical results for the magnitude of the average mobility in
sample #2 within the 50 Hz - 1200 Hz bandwidth.
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Figure 9: Averaged mobility magnitude from different aspect-ratio in topologies #1 with
∆h = 0, ∆h = 0.03h0 and ∆h = 0.06h0.

Figure 10: Experimental results for the average mobility magnitude of sample #2 within the
50-1200 Hz bandwidth.

24



Figure 11: Gradient laws for the angle-graded topology #2.

Figure 12: Averaged mobility for different angle-graded topologies #2 with ξ, ξ0.5 and ξ2 as
gradient laws (Fig. 4).
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Figure 13: Averaged mobility magnitude of angle-graded linear topology (θ ∝ ξ) and periodic
topologies with θ = −25◦ and θ = 30◦.

Figure 14: Average normalised mobility for the angle-graded linear topology (θ ∝ ξ) and
periodic configurations with θ = −25◦ and θ = 30◦. Frequencies are normalised against ω0.
The mobility is normalized with the panel mass M and the excitation frequency ω.
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