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ABSTRACT 

Ambient inclusion trails (AITs) are tubular microstructures thought to form when a 

microscopic mineral crystal is propelled through a fine-grained rock matrix. Here we 

report a new occurrence of AITs from a fossilized microbial mat within the 1878 Ma 

Gunflint Formation, at Current River, Ontario. The AITs are 1–15 m in diameter, 

have pyrite as the propelled crystal, are infilled with chlorite, and have been propelled 

through a micro-quartz (chert) or chlorite matrix. AITs most commonly originate at 
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the boundary between pyrite- and chlorite-rich laminae and chert-filled fenestrae, with 

pyrite crystals propelled into the fenestrae. A subset of AITs originate within the 

fenestrae, rooted either within the chert, or within patches of chlorite. 

 

Sulfur isotope data (34S/32S) obtained in situ from AIT pyrite have a 34S of -8.5 to 

+8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic 

seawater sulfate (34S ≈ +20 ‰). Organic carbon is common both at the outer margins 

of the fenestrae and in patches of chlorite where most AITs originate, and can be 

found in smaller quantities further along some AITs towards the terminal pyrite grain. 

 

We infer that pyrite crystals now found within the AITs formed via the action of 

heterotrophic sulfate-reducing bacteria during early diagenesis within the microbial 

mat, as porewaters were becoming depleted in seawater sulfate. Gases derived from 

this process such as CO2 and H2S were partially trapped within the microbial mat, 

helping produce birds-eye fenestrae, while rapid micro-quartz precipitation closed 

porosity. We propose that propulsion of the pyrite crystals to form AITs was driven 

by two complementary mechanisms during burial and low grade metamorphism. 

Firstly, thermal decomposition of residual organic material providing CO2, and 

potentially CH4, as propulsive gases, plus organic acids to locally dissolve the micro-

quartz matrix. Secondly, reactions involving clay minerals that potentially led to 

enhanced quartz solubility, plus increases in fluid and/or gas pressure during chlorite 

formation, with chlorite then infilling the AITs. This latter mechanism is novel and 

represents a possible way to generate AITs in environments lacking organic material. 
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INTRODUCTION 

Ambient inclusion trails (AITs) represent a specific class of microtubular structure 

that results from the propulsion of small mineral crystals through a rock matrix. They 

possess a number of defining morphological characteristics that permit their 

discrimination from superficially similar filamentous microfossils, endolithic 

microborings, and mineral filaments (Wacey et al., 2008a,b; Mcloughlin et al., 2007, 

2010). These features include: the presence of a mineral crystal at the terminal end of 

the microtube; a polygonal cross section mirroring the crystal geometry of the 

propelled grain; and striations along the length of the microtube caused by the angular 

facets of the propelled grain. Further common, but not necessarily diagnostic, 

morphological features include assemblages of AITs arranged in radial starburst 

patterns, AITs possessing side-branches of a smaller diameter where the propelled 

grain has become fragmented, and an increase in curvature toward the terminal end of 

an AIT (Wacey et al., 2008a). 

 

AITs were first reported over half a century ago from the Palaeoproterozoic  

 Gunflint Formation of North America (Tyler and Barghoorn, 1963), though their 

history may arguably be traced back decades further when structures resembling AITs 

were mistakenly thought to be evidence for algal life in the Archean (Gruner, 1923). 

Despite this half-century or more of study, there remain only a handful of reports of 

AITs and their formation mechanism is still relatively poorly understood. Here we 

will provide a brief summary of previous reports of AITs before describing a new 
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occurrence associated with a microbial mat from the 1878 Ma Gunflint Formation of 

Ontario. We then use a combination of high spatial resolution in situ techniques 

including transmission electron microscopy (TEM), nano-scale secondary ion mass 

spectrometry (NanoSIMS) and laser Raman to characterize these new AITs and test 

possible formation mechanisms. 

 

Previous reports and current understanding of AITs 

Although still a rare phenomenon, AITs have been reported from rocks up to 3500 Ma 

in age, from a range of geological environments, and with a variety of propelled 

crystals, tubular infillings and host matrices. The oldest AITs come from two chert 

units of the ~3500-3450 Ma Warrawoona Group of Western Australia (Awramik et 

al., 1983; Buick, 1990; Wacey et al., 2008b). These are 1-5 m in diameter, several 

10’s m in length, have been propelled through a microcrystalline quartz matrix, and 

infilled with micro-quartz, iron phosphate or iron oxide. Where terminal crystals are 

present they are hematite, interpreted as a replacement pseudomorph of pyrite 

(Awramik et al., 1983).  

 

AITs are also common in slightly younger silicified sediments of the 3430 Ma 

Strelley Pool Formation and 3240 Ma Kangaroo Caves Formation, Western Australia 

(Wacey et al., 2008a,b). The former are 1-15 m in diameter and up to 300 m in 

length (Fig. 1a), have pyrite as the propelled grain, occur in a microcrystalline quartz 

matrix and are infilled with micro-quartz, iron phosphate, aluminum phosphate or 

jarosite (iron potassium sulfate). The latter are 15-100 m in diameter and up to 100 

m in length, almost always have a terminal pyrite crystal, occur in a microcrystalline 

quartz matrix and are infilled with chlorite or micro-quartz (Fig. 1b). The smallest 
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AITs so far reported come from the ~2700 Ma Fortescue Group, found within a chert 

at the base of the group (Knoll and Barghoorn, 1974). These are < 1m in diameter 

but can be up to 60 m in length. These are the type example for growth as starburst 

patterns away from central masses of organic material, occasionally have terminal 

pyrite crystals, are infilled with iron carbonate, and hosted in a microcrystalline quartz 

matrix (Fig. 1c). 

 

AITs have also been found in Archean volcanic rocks, including pyroclastic tuff from 

the 2720 Ma Tumbiana Formation (Lepot et al., 2011) and basalt from the 2700 Ma 

Maddina Formation (Lepot et al., 2009), both from the Fortescue Group of Western 

Australia. AITs in the former comprise quartz filled microtubes (up to 20 m 

diameter) in volcanic glass and have terminal pyrite crystals. Those in the latter are 

arranged in a starburst pattern with diameters of 0.5-5 m and lengths up to 200 m. 

They occur in a micro-quartz matrix and are uniquely infilled by andradite garnet with 

terminal carbonaceous (rather than mineral) grains. Further occurrences in basalt 

come from the Palaeoproterozoic (~2,000 Ma) Pechenga greenstone belt, Russia 

(McLoughlin et al., 2013). These AITs comprise small tubes, less than 10 m in 

diameter and generally less than 100 m in length, that radiate into chlorite from a 

quartz-carbonate interpillow matrix. They possess terminal inclusions of an unknown 

sulfide mineral. Some AITs in metavolcanic rocks (e.g., types 3 and 4 of Lepot et al., 

2011) have been compared to and interpreted as dendrites, crystals grown along 

preferential axes via diffusion controlled processes during metamorphism (Vernon, 

2004). 
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Also in the Palaeoproterozoic, AITs have been reported from the coeval ~1900 Ma 

Gunflint Formation, Ontario and the Biwabik Formation, Minnesota (Tyler and 

Barghoorn, 1963). Here, iron carbonate-filled AITs are up to 10 m in diameter and 

100 m in length, whereas quartz-filled AITs are particularly large, up to 1.4 mm in 

diameter and 3 mm in length. In both cases pyrite is the propelled crystal and the 

matrix is microcrystalline quartz. Chlorite-filled trails of ~30 m diameter were also 

observed from iron formations of similar age in Michigan (Tyler and Barghoorn, 

1963); here hematite (likely pseudomorphing original pyrite) had been propelled 

though an iron-rich microcrystalline quartz matrix. 

 

In the Ediacaran period, AITs occur in the ~570 Ma Doushantou Formation of China 

(Xiao and Knoll, 1999; Xiao et al., 2007; She et al., 2013). Two separate AIT 

occurrences have been reported: firstly, from phosphatic spheroidal fossils, 

interpreted to be animal embryos, in the upper Doushantuo Formation at Weng’an 

(Xiao and Knoll, 1999; Xiao et al., 2007); and secondly, from granular phosphorites 

in the lower portion of member II of the formation near Yichang (She et al., 2013). In 

the former, AITs are 10-80 m in diameter and may be up to 1mm in length, 

possessing terminal pyrite crystals, longitudinal striations and are not infilled (Fig. 

1d). In the latter, rare AITs are around 20 m in diameter, 100’s m in length, have 

terminal pyrite or hematite crystals and have been propelled through a calcium 

phosphate matrix. Moving over the boundary into the Cambrian, large AITs have 

been reported from the Soltanieh Formation of Iran; these are up to 80 m in diameter 

and both the host matrix and infilling is calcium phosphate (Wacey et al., 2008a).  
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Further AITs have recently been found in the phosphatised valves of crustaceans from 

the upper Cambrian of Poland and the lower Devonian of The Ukraine (Olempska and 

Wacey, 2016). These range in diameter from 1-20 m and can approach 100 m in 

length (Fig. 1e). Most of these AITs have terminal pyrite crystals but the microtube 

behind the crystals is commonly empty so that longitudinal striations are clearly 

visible along the inner microtube walls. The youngest AITs so far reported come from 

fish scales within the 390 Ma Achanarras limestone of Northern Scotland (Wacey et 

al., 2008a). These are 5-12 m in diameter and up to 150 m in length and have 

curved, looped and twisted morphologies. Terminal crystals, where present, are pyrite 

and organic material is frequently preserved within the microtubes (Fig. 1f). Both the 

host matrix and microtube infillings are phosphatic. AITs may be much more 

common than this handful of reported occurrences suggest; for example, reanalysis of 

several sets of microtubular structures previously interpreted as endolithic borings or 

‘predatory trace fossils’ (e.g., Conway Morris and Bengston, 1994; Stockfors and 

Peel, 2005; Zhang and Pratt, 2008) suggests that these may be more plausibly 

interpreted as AITs (Xiao and Knoll, 1999; Olempska and Wacey, 2016). Some 

problematical Precambrian microfossil-like filaments may also be AITs (Grey, 1986).  

 

This brief summary of AIT occurrences in the geological record shows that they are 

most common in Precambrian silicified sediments, while in younger rocks phosphate 

appears to be the preferred host matrix. This may reflect changing ocean chemistry 

and its effect on the type of mineral phases that form during early diagenesis. 

Terminal crystals are almost always pyrite (or oxidized products of pyrite) but this 

may not be ubiquitous (cf. Lepot et al., 2009). The most variable feature of AITs is 

the mineralogy of the microtube; some remain empty, while quartz, iron carbonate, 
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calcium/iron/aluminium phosphate, iron-potassium sulfate, garnet, chlorite, and iron 

oxide may all precipitate behind the moving pyrite crystal. A common association of 

organic matter and AITs has led to the hypothesis that AITs are formed by degassing 

of decomposing organic material attached to pyrite (or similar) grains within an 

impermeable rock matrix during heating associated with late-stage diagenesis and/or 

metamorphism (Knoll and Barghoorn, 1974; Wacey et al., 2008b; McLoughlin et al., 

2010). Questions remain, however, regarding the extent of biological participation in 

this formation mechanism, the origin of the pyrite crystals and whether other 

formation mechanisms might also be viable.  

 

This contribution looks at a new occurrence of AITs from the 1878 Ma Gunflint 

Formation, using high-spatial resolution in situ techniques to characterize both the 

pyrite and microtube at the nano-scale, and to enhance our understanding of AIT 

formation. 

 

METHODS 

Focussed ion beam (FIB) preparation of TEM samples  

Prior to FIB preparation, standard polished geological thin sections were examined by 

optical microscopy, using Zeiss Axioskop 2 and Nikon Optiophot-pol microscopes, 

and scanning electron microscopy (SEM), using a Zeiss Supra 1555 SEM in order to 

gain an understanding of AIT distributions and morphologies, and to select the most 

appropriate targets for detailed study. A dual-beam FIB system (FEI Nova NanoLab) 

at the University of New South Wales was then used to prepare AIT TEM samples 

from the thin sections coated with ~30 nm of gold. Electron beam imaging within the 

dual beam FIB was used to identify microstructures of interest in the thin sections 
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allowing site-specific TEM samples to be prepared. The TEM sections were prepared 

by a series of steps involving different ion beam energies and currents (see Wacey et 

al., 2012 for details), resulting in ultrathin wafers of c. 100 nm thickness. These TEM 

wafers were extracted using an ex-situ micromanipulator and deposited on 

continuous-carbon copper TEM grids. FIB preparation of TEM sections allows 

features below the surface of the thin sections to be targeted, thus eliminating the risk 

of surface contamination producing artefacts.  

 

TEM analysis of FIB-milled wafers  

TEM data were obtained using a FEI Titan G2 80-200 TEM/STEM with ChemiSTEM 

Technology operating at 200 kV, located in the Centre for Microscopy 

Characterisation and Analysis (CMCA) at the University of Western Australia. Data 

obtained included bright-field TEM images, HAADF (high angle annular dark-field) 

STEM images, EDS (ChemiSTEM) maps, and selected area electron diffraction 

patterns (using a 40 m aperture that selected a 600 nm field of view) for mineral 

identification. 

 

SEM-EDS 

Elemental analysis and mapping over several millimeters of a Current River thin 

section was performed on a FEI Verios 460 SEM equipped with an Oxford 

Instruments X-Max 80 energy dispersive X-ray spectroscopy (EDS) system and 

Oxford Instruments AZtec 3.0 nano-analysis software, located at CMCA. 

 

NanoSIMS sulfur isotope analysis 
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Sulfur isotope ratios (34S/32S) from individual pyrite grains were determined using a 

CAMECA NanoSIMS 50, located at CMCA. The analyses were performed using a 

Faraday Cup (FC) detector for the 32S signal and an electron multiplier (EM) for the 

34S signal, with a primary beam current of ~3.5  pA, with the NanoSIMS in ‘isotope 

analysis’ mode. NanoSIMS parameters were configured to give a workable amount of 

signal for the 34S isotope (for example, ES=2, AS=0, Ens=10%, D1=2 gave c. 70,000 

counts per second for 34S). Charge compensation was not necessary in this case. 

Isotope data were acquired by rastering the primary beam across areas measuring 5x5 

m with 25% blanking, and 3x3 m for smaller grains, collecting 100 measurement 

cycles (10 blocks, 10 measurements per block). Secondary ion beam and EOS 

centering were automatically conducted at the beginning and end of each analysis. All 

sample analyses were bracketed by analyses of the in-house SON-3 pyrite standard 

(see Farquhar et al., 2013 for details of the standard). 

 

Yield, dead-time and background corrected 34S/32S raw ratios (Rraw) were drift corrected 

using a linear regression: 

      Rdrift = Rraw -mx          (1) 

where m is the slope of the regression and x is the analysis number for the session, 

scaled to ensure that the intercept (c) crosses the x-axis at x = 0. The drift corrected 

ratios were expressed as raw delta values (V-CDT) using: 

       d 34Sdrift =1000
Rdrift

0.0450045
-1

æ

è
ç

ö

ø
÷       (2) 

Instrumental mass fractionation ( was then calculated as the drift
-2 weighted average 

of all estimates i of the 34Sdrift values for the bracketing standards: 
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1+

d 34Sdrift
1000
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1000

         (3) 
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where 34Sstd is the 34SV-CDT of the SON-3 pyrite standard (+1.61 ± 0.08 ‰).  Finally, 

single sample analyses were corrected to V-CDT using: 

        
d 34Ssample = 1+

d 34Sdrift
1000

æ

è
ç

ö

ø
÷ a -1

é

ë
ê

ù

û
ú*1000      (4) 

 

Error propagation followed the protocol outlined in McLoughlin et al. (2012) and 

includes uncertainties associated with instrumental precision, drift correction, and the 

reference value for the SON-3 standard. Correction for quasi simultaneous arrivals is 

not required when a Faraday Cup rather than an electron multiplier is used to detect the 

more abundant 32S isotope. All samples were confirmed as pyrite using laser Raman 

micro-spectroscopy and EDS so no corrections for matrix effects between the samples 

and our SON-3 pyrite standard were required. Post analysis, all analysis craters were 

checked to ensure that they were entirely within pyrite grains and no non-pyritic matrix 

had been included in the sputtering process. All analyses were completed in a single 

analytical session and the uncertainty on bracketing 34S standard analyses for this 

session was 1.3 ‰ (n = 19). Propagated errors for individual analyses (1) are listed in 

the final column of Table 1. 

 

Laser Raman microspectroscopy 

Confocal laser Raman microspectroscopy was performed on a WITec alpha 300RA+ 

instrument with a Toptica Photonics Xtra II 785 nm laser source at CMCA. The laser 

was focused through either a 20x/0.4, 50x/0.5 or 100x/0.9 objective, the latter 

obtaining a spot size of smaller than 1 m, and the laser excitation intensity at the 

sample surface was in the 1-5 mW range.  Spectral acquisitions were obtained with 

600 l/mm grating and a peltier-cooled (-60 °C) 1024 x 128 pixel CCD detector. Laser 
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centering and spectral calibration were performed daily on a silicon chip with 

characteristic Si Raman band of 520.4 cm-1. Count rates were optimised prior to point 

spectra acquisition or hyperspectral mapping using the dominant quartz Raman band 

of 465 cm-1. Spectra were collected in the 100-1800 rel. cm-1 region in order that both 

1st order mineral vibration modes and 1st order carbonaceous vibration modes could 

be examined simultaneously. Raman maps were acquired with the spectral centre of 

the detector adjusted to 944 cm-1, with a motorised stage allowing XYZ displacement 

with precision of better than 1 m. Spectral decomposition and subsequent image 

processing were performed using WITec Project FOUR software, with baseline 

subtraction using a 3rd or 4th order polynomial. Carbon maps were created by 

integrating over the ~1600 cm-1 ‘G’ Raman band, quartz maps using the ~ 465 cm-1 

Raman quartz peak and chlorite maps using ~680 cm-1 (and confirmed by the 550 cm-

1) Raman chlorite peak. All analyses were conducted on material embedded below the 

surface of the thin section to avoid artefacts in the Raman spectra resulting from 

polishing and/or surface contamination. 

 

RESULTS 

Sample overview and mineralogy 

The new occurrence of AITs is found in the 1878 Ma Gunflint Formation (Fralick et 

al., 2002), at the Current River Locality, north of Boulevard Lake, Thunder Bay, 

Ontario (grid reference N 48°28’08”, W 089°12’04”). The AITs occur in a 

ferruginous phosphatic chert-carbonate (Fig. 2), bedding surfaces of which show 

microbially induced sedimentary structures (MISS) including wrinkle mats (Fig. 2a) 

and irregular craters suggestive of collapsed biosedimentary domes in microbial mats 

(Fig. 2b). The ~60 cm thick unit is composed of two main types of sediment: a very 
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fine-grained ferruginous organic-rich chert; and a coarser iron carbonate, with the 

chert component predominating (McMahon, 2010). Towards the top of the unit, pyrite 

and organic material forms conspicuous wavy laminae intercalated with granular 

phosphate (Fig. 2c). Irregular chert-filled cavities are also common at this level (Fig. 

2c). These cavities closely resemble, and are here interpreted as, birds-eye fenestrae 

formed by gas entrapment within the sediment. Fenestrae are particularly common in 

microbial carbonate sediments where they are caused by the decay of voluminous 

organic material; they may also be caused by the drying out of microbial mats 

resulting in shrinkage and the lifting of part of the mat away from the underlying 

sediment (Flugel, 2004). Silicified crusts and rip-up clasts indicate that silicification 

was likely syn-depositional (Simonson, 1987; Pufahl and Fralick, 2000). AITs are 

found in the chert-filled fenestrae, most commonly at the edges of fenestrae bordered 

by pyrite, chlorite and organic material, and more rarely enclosed within fenestrae 

where they often radiate away from patches of chlorite. Elemental mapping of a 

transect through a fenestra confirms a relatively pure micro-quartz (chert) 

composition (Fig. 2d, orange), plus numerous tiny pyrite grains (Fig. 2d, pink) and 

patches of Mg-Fe-rich silicate minerals (Fig. 2d, green; chlorite, see below for 

identification). The fenestra is enclosed by the pyrite- and chlorite-rich sediment and 

clusters of pyrite are observed along the margins of the fenestra; underlying granular 

phosphate (Fig. 2d, blue) also contains significant pyrite but no fenestrae. 

 

Previous reports of AITs from the Gunflint Formation (Tyler and Barghoorn, 1963; 

Knoll and Barghoorn, 1974) contain little locality information but the AITs therein 

differ in morphology and infilling mineralogy to those described here, and are shown 

to occur in close proximity to ooids. Hence, we infer that they come from oolitic 
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cherts at the Schreiber locality in the lower member of the Gunflint Formation 

(samples that Tyler and Barghoorn investigated in some detail in the 1950’s and 

1960’s), some 150 km to the east of our sample. 

 

AIT morphology and distribution 

Microtubular structures are found in multiple chert-filled fenestrae within a pyrite-rich 

microbial mat (Figs. 3-5). These microtubes are here classified as AITs due to the 

frequent occurrence of terminal pyrite grains (Figs. 3a-c, 4c-d), occasional 

longitudinal striations along the microtubes (Fig. 4a), polygonal cross sections (see 

Fig. 8 below), and close comparison to previously reported AITs in Precambrian 

rocks (cf. Wacey et al., 2008b). The AITs range in diameter from ~1 m up to 15 m 

and can be 200 m or more in length, though most are in the 20-100 m range (Figs. 

3-5). They have a wide range of morphologies from almost straight (e.g., Fig. 4b, d), 

to gently curved (e.g., Figs. 3b, 4e), twisted in multiple directions (e.g., Figs. 3a, 4a), 

and tightly coiled (e.g., Figs. 3c, 4c). A number of examples have both a terminal 

pyrite grain and fragments of pyrite scattered further back within the microtube (Fig. 

4c). Some AITs also have particularly dark walls that may indicate further 

concentrations of nano-grains of pyrite or organic material (Fig. 4e). Most AITs have 

a continuous, rather homogenous mineral infill, but rare examples exhibit a 

segmented habit (Fig. 4b, arrow). 

 

The presence and quantity of AITs in a given chert fenestra is highly variable. Some 

fenestrae have hundreds of AITs enclosed within, while others may have single figure 

occurrences or none at all. The size of the fenestra does not appear to be a primary 

controlling factor here, though clearly there is more volume for a greater number of 
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AITs in larger fenestrae. Rather, it appears that the abundance of pyrite (and 

potentially also organic material and chlorite) along the boundary of the fenestra is the 

primary factor in controlling AIT numbers; this is evidenced in some fenestrae by the 

concentration of AITs along only the boundary edges that are particularly dark and 

pyrite-rich (e.g., Fig. 3a-b). This pattern is complicated within some fenestrae by 

significant patches of chlorite, in which numerous AITs are rooted and radiate away 

into chert (Figs. 3d, 4b). Not all patches of chlorite are foci for AITs; those that are 

appear rather dark in nature and show some evidence for residual dark brown organic 

material and/or pyrite (Fig. 3d-e). 

 

Microtubular structures also occur entirely within some patches of chlorite (Figs. 3e, 

4d). Identification of these as bona fide AITs is complicated by their rare occurrence 

and, hence, lack of defining morphological characteristics. In addition, platy chlorite 

crystals viewed in cross section can superficially resemble AITs, though these crystals 

are generally sub-micron in size and are pointed at both ends. In spite of these 

difficulties, the presence of a terminal pyrite crystal in one occurrence of a microtube 

within chlorite (Fig. 4d) and their strong morphological resemblance to AITs nearby 

in the chert, lead us to interpret these microtubes as AITs. These AITs occur at the 

boundary between chlorite patches and chert within the fenestrae and do not cross this 

boundary (Figs. 3e, 4d). The single example with a terminal pyrite grain serves as 

evidence that pyrite propulsion was into the chlorite from the chert-chlorite boundary 

(Fig. 4d), although we cannot be certain that this is the case for all such examples. 

 

Geochemistry of AITs 

Organic material 
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Laser Raman micro-spectroscopy combined with TEM revealed the nature and 

distribution of carbon in and around the AITs. Raman spectra show well developed 

carbon ‘D’ and carbon ‘G’ peaks at ~1350 cm-1 and ~1600 cm-1 respectively that are 

characteristic of organic kerogenous carbon (Supp. Fig. 1). The width, position and 

relative intensities of these peaks are consistent with kerogen of moderate thermal 

maturity (Wopenka and Pasteris, 1993; Yui et al., 1996) that has undergone the 

prehnite-pumpellyite to lower greenschist facies metamorphic heating experienced by 

these Gunflint rocks (Gross, 1964; Pufahl et al., 2000). Hence, the carbon is not a 

modern contaminant phase. Organic carbon is common both at the edges of the 

fenestrae (Fig. 5c) and within patches of chlorite interior to the fenestrae (Fig. 5b, d), 

concentrated in zones that serve as the points of initiation for many of the AITs. 

Carbon also occurs within individual AIT microtubes; here, the quantity of carbon is 

quite variable, ranging from rare, isolated blebs at the outer margin of a microtube 

(Fig. 5d-e) to more coherent masses infilling parts of the microtube or concentrated 

along microtube walls (Fig. 5b). Some AITs do not appear to have any carbon closely 

associated with them (Fig. 5a). However, entire AITs are rarely found within the 

plane of the thin section so it is not possible to be sure whether carbon is completely 

absent from any AITs. Two AITs were examined at higher spatial resolution using 

TEM (Figs. 6-8); very minor amounts of carbon were detected along the edge of a 

propelled pyrite grain (Fig. 7f) but no enrichment of carbon was seen along AIT walls 

(Figs. 7-8). 

 

Elemental and mineralogical analysis 

All studied examples of AITs appear to have minerals infilling their tubular 

appendages. In petrographic thin sections these minerals range in colour from very 
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pale green to pale brown and olive green (Figs. 3-5).  We have characterised the 

minerals from two AIT appendages at the nano-scale (Figs. 6-8) using transmission 

electron microscopy (TEM). Figure 6 shows part of a propelled grain (dark grey) 

sitting at the terminal end of a microtube that is infilled by a mineral (medium grey) 

whose chemical composition is clearly different to the quartz matrix (light grey) 

through which the grain has been propelled. Elemental mapping in the TEM shows 

that the propelled grain is pyrite and the mineral infilling the microtube is an iron- and 

magnesium-rich aluminosilicate (Fig. 7). The proportions of Fe, Mg in the 

aluminosilicate are spatially variable. Analysis of a second AIT microtube (Fig. 8; 

note that the terminal pyrite grain is out of the plane of view on this occasion) again 

reveals a Fe-Mg-aluminosilicate as the infilling mineral phase, and emphasizes the 

polygonal cross sectional morphology of the microtube. The proportions of Fe and 

Mg are again somewhat variable with Fe-rich grains restricted to the upper right hand 

domain of the microtube (Fig. 8f arrow). The bright-field TEM image (Fig. 8a) shows 

that the microtube infill comprises multiple sheet-like aluminosilicate grains, aligned 

approximately parallel to the sides of the microtube. The morphology of these grains 

suggests a phyllosilicate mineral and this is confirmed by selected area electron 

diffraction (SAED) in the TEM (Fig. 8b). These data show a series of arcs, with the 

arcs nearest the centre of the pattern representative of a set of closely aligned 2:1 

phyllosilicate crystals viewed along the <100> zone axis. The d-spacings of 1.42 nm, 

and 0.46 nm match the {001} plane and {020} plane respectively of a monoclinic 

chlorite (Zanazzi et al., 2007). This, together with the variable elemental chemistry 

suggests that the minerals infilling the microtubes are a mixture of chlorites from the 

clinochlore (Mg-rich) to chamosite (Fe-rich) solid solution series (Deer et al., 2009). 

Laser Raman analysis of fifteen further AITs (e.g., Fig. 5) provided corroboration of 
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the overall chloritic mineralogy of the microtubular appendages, with dominant 

Raman peaks at ~550 cm-1, ~680 cm-1 and 355 cm-1 (cf. RUFF database ID R060725; 

http://rruff.info/clinochlore/display=default/R060725), and also confirmed that the 

fenestral matrix was quartz.  

 

Isotopic analysis 

Propelled pyrite grains within some of the larger AITs, plus pyrite bordering the 

chert-filled fenestrae were analysed in situ for their sulfur isotope composition using 

NanoSIMS (Table 1; Fig. 9). Twenty one pyrite grains were analysed and these have a 

range of 34SV-CDT values from -8.5 ‰ to +8 ‰ (mean = -0.1 ‰; n=21). Uncertainties 

on individual data points are between 0.6 ‰ and 1.5 ‰ (1). The most negative 

values equate to a maximum fractionation of around 30 ‰ from Palaeoproterozoic 

seawater sulfate (34SV-CDT = +20 ‰ +/- 2 ‰; Canfield and Raiswell, 1999). 

 

DISCUSSION 

This is the first report of AITs from within a microbial mat and the first report of 34S 

data directly from pyrite grains within AITs, allowing the mechanism of formation of 

the propelled pyrite grain to be tested and evaluated. We first discuss potential pyrite 

formation mechanisms and then go on to discuss possible formation mechanisms and 

timing for the AITs.  

 

Pyrite formation mechanism 

The sulfur isotope data, together with the observed mineral assemblage and 

interpreted geological setting, can be used to determine possible pyrite formation 

mechanisms. One such mechanism is pyrite formation via microbial sulfate reduction 
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(MSR). During MSR, the lighter 32S isotope is more rapidly reduced than 34S (e.g., 

Kaplan and Rittenberg, 1964). Hence, dissolved sulfide becomes enriched in 32S and 

this is incorporated into early-formed pyrite. If the site of pyrite formation remains 

open to the sulfate source then the resultant pyrite will have a narrow range of rather 

light 34S values. The exact magnitude of the fractionation will be dependent on 

factors such as sulfate concentration (Habicht et al., 2002), sulfate reduction rate 

(Chambers et al., 1975), supply of electron donors reflecting to the type and quantity 

of organic material present (Sim et al., 2011, 2012), and species of sulfate reducing 

bacterium (Detmers et al., 2001), but it is the narrow range of 34Spyrite that typically 

characterizes an open system (e.g., Faure, 1986). In contrast, if the pore-waters 

become isolated from the overlying seawater sulfate source, the residual pore-water 

sulfate becomes progressively enriched in 34S as MSR proceeds (cf. Wacey et al., 

2007) and leads to later-formed pyrite with heavier 34S signatures. Following this 

model, our 34Spyrite range of -8.5 ‰ to +8 ‰ would suggest that MSR was initially 

taking place within microbial mat porewaters open to moderate concentrations of 

seawater sulfate (cf. Rickard et al., 2007), and with MSR fractionation factors up to 

30 ‰.  This quickly could have evolved to a state of sulfate limitation due to low 

porosity in the microbial mat supplemented by occlusion of pore-space by 

contemporaneous silicification, and would have resulted in the variable 34S values 

observed here. 

 

The sulfur isotope data are not, however, uniquely attributable to MSR. Most abiotic 

pyrite-forming mechanisms result in 34Spyrite values that are less variable and cluster 

closer to 0 ‰ than those observed herein (e.g., Seal, 2006) but there are exceptions. 

For example, sulfides precipitated in epithermal hydrothermal systems can show a 
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range in 34S from about -7 ‰ to +7 ‰ (Seal, 2006), H2S emanating from seafloor 

hydrothermal systems has been reported to be as negative as -5.7 ‰ (Gamo et al., 

1997), and some sulfides from such deposits as heavy as +8.3 ‰ (Alt and 

Chaussidon, 1989). Furthermore, pyrite precipitated hydrothermally in veins within 

Martian meteorites has been reported to have 34S extremes of -6.1 ‰ (Greenwood et 

al., 2000) and +7.8 ‰ (Shearer et al., 1996). Hence, an alternative explanation could 

be that the AIT pyrite has a hydrothermal source, since the Animikie basin was 

tectonically and volcanically active during deposition of the Gunflint Formation, 

evidenced by minor mafic flows (Goodwin, 1956) and extensive tuffaceous horizons 

(Fralick et al., 2002). 

 

An additional complication in the interpretation of our 34S data is caused by the scale 

at which the analyses were performed. Most previous sulfur isotope data have come 

from bulk rock or bulk fluid measurements (i.e. millimeter to centimeter scale). In 

comparison, our data come from the micrometer to millimeter scale. While 

(Nano)SIMS has the advantage of being able to detect spatial variations in isotopic 

data that were previously unresolvable, and is the only way in which <15 m diameter 

pyrites within AIT could be analysed, it is a relatively new technological advance and 

there are limited datasets that can serve as reference points for data interpretation. 

This problem is highlighted when the mean value of our data is considered (34Spyrite = 

-0.1‰; n=21). A traditional bulk isotopic analysis from this sample may have only 

resulted in a single data point close to this mean value, leading to an interpretation 

that the pyrite formed from fluids derived from a purely magmatic/hydrothermal 

source (34S = 0.3 ‰ +/-0.5 ‰; Sakai et al., 1984). Furthermore, twenty-one spot 

analyses may not be representative of the bulk pyrite within this rock, serving to 
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further complicate subsequent interpretations. 

 

Nevertheless, our interpreted formation mechanism for the AIT pyrite is via MSR, for 

the following reasons. Firstly, the isotopic data, having a spread of 16.5 ‰, are 

entirely consistent with the model of MSR operating in conditions evolving to sulfate 

limitation described above. Secondly, such a spread in 34Spyrite values over small 

spatial scales compares well with other recent NanoSIMS data from the Gunflint 

Formation, where pyritised microfossils from the stromatolitic Schreiber Beach 

locality have a 15 ‰ spread in 34Spyrite over spatial scales of only a few millimeters 

(Wacey et al., 2013). Those data (34SV-CDT of 6.7 ‰ to 21.5 ‰) were interpreted as 

indicative of a pyrite forming via MSR in a system initially open to seawater sulfate 

but rapidly evolving to sulfate limitation due to early silicification (Wacey et al., 

2013). In contrast, a hydrothermal fluid is unlikely to have such variable 34S on the 

micrometer to millimeter scale, although we acknowledge that this is not impossible. 

For example, Alt and Chaussidon (1989) reported just over a 12 ‰ variation in 34S at 

the millimeter to centimeter scale between and within hydrothermal sulfides from the 

Costa Rica Rift; further analyses of abiogenic sulfides by (Nano)SIMS are required in 

order to fully understand the isotopic variability possible at this scale. Thirdly, the 

geological setting within a microbial mat combined with a biosedimentary mineral 

assemblage of phosphate, carbonate and pyrite is more consistent with a MSR model 

than with an abiogenic hydrothermal model of pyrite formation. 

 

Potential AIT formation mechanisms 

The data and discussion presented above suggest that the pyrite grains within the 

AITs were formed via the activity of sulfate reducing bacteria. We now go on to 
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discuss the potential mechanisms by which these pyrite grains were propelled through 

the chert fenestrae to form the AITs, plus the relative timing of these events.  

 

A biologically-mediated mechanism has previously been invoked for the propulsion 

of some pyrite crystals to create AITs (e.g., Knoll and Barghoorn, 1974; Wacey et al., 

2008a, b). This has largely been based upon the presence of organic material in and 

around the AITs. Organic material has been reported at the terminal end of AITs 

(Knoll and Berghoorn, 1963; Lepot et al., 2009), along AIT walls (Wacey et al., 

2008b), or disseminated within AIT microtubes (Wacey et al., 2008a; Lepot et al., 

2011). Organic material also commonly occurs as patches/clots from which AIT 

microtubes radiate away (Knoll and Barghoorn, 1974; Buick, 1990; Wacey et al., 

2008a; Tiwari and Siddaiah, 2012), or more generally in close proximity to the origin 

of an AIT microtube (Lepot et al., 2011). In addition, some AITs occur in micro-

environments where plentiful biological material would have initially been present, 

for example in animal embryos (Xiao and Knoll, 1999), in fish scales (Wacey et al., 

2008a), or in crustacean body cavities (Olempska and Wacey, 2016). However, some 

AIT occur in lithologies where biology is unlikely to have been present and in these 

cases it must be assumed that any organic material was of abiotic origin (e.g., Lepot et 

al., 2009, 2011), and there are also rare cases where organic material is not observed 

associated with AITs (McLoughlin et al., 2013). 

 

This new suite of Gunflint Current River AITs occur within a microbial mat, are 

frequently associated with organic carbon, and contain pyrite interpreted to have 

formed via the action of sulfate reducing bacteria. The distribution of organic material 

shows some minor differences to that reported previously for AITs. It most commonly 
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occurs at the margins of the fenestrae close to the origins of many AITs, and on a few 

occasions as small clumps within AITs. Previous observations showing organic 

carbon enrichment in narrow zones along AIT walls (e.g., Wacey et al., 2008a) are 

only rarely repeated here, while reports of organic material on the leading edge of 

terminal grains (Barghoorn and Tyler, 1963) are not confirmed here. This could 

suggest that a larger volume of organic material was attached to pyrite grains in those 

previous settings. Alternatively, those previous observations could reflect passive 

accumulation of organics as the pyrite crystal was propelled through a chert matrix 

already rich in organic matter. This latter explanation is supported by reports that 

longer AITs had thicker organic films on the leading edge of the propelled pyrite 

crystal (Tyler and Barghoorn, 1963). 

 

In the Current River microbial mats we propose that AIT formation commences with 

pyrite precipitation via the action of heterotrophic sulfate-reducing bacteria (SRB) 

decomposing preformed organic material. Sulfur isotope data suggest that this process 

was syngenetic to very early diagenetic, occurring within the microbial mat as 

porewaters were becoming isolated from overlying seawater and hence depleted in 

seawater sulfate. The activity of SRB (and potentially other anaerobes) would have 

produced gaseous products such as CO2 that may have helped to produce the 

characteristic birds-eye fenestral fabrics now observed in thin section. 

Contemporaneous silicification of Gunflint sediments (cf. Simonson, 1987) would 

have resulted in silica precipitation in pore spaces, in particular within the fenestrae, 

further reducing porosity. 
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It is possible that these metabolic gases provided the propulsive force for the 

movement of newly formed pyrite crystals at a syngenetic to early diagenetic stage 

(cf. Zhang et al., 2015). However, there are potential problems with such a model. For 

example, it is difficult to conceive how sufficient gas pressure can build up in a 

microenvironment that supports active metabolism. A build up in gas pressure 

requires the closure of porosity, but such a closure is highly likely to cease 

metabolism due to exclusion of nutrients and accumulation of toxic waste products. In 

addition, the ferruginous nature of Gunflint samples suggests that Fe2+ was not 

limiting and so H2S would likely have reacted with aqueous Fe2+ to form pyrite, while 

CO2 could have dissolved in residual water and formed carbonates (which are readily 

observed in surrounding Gunflint sediments). Hence, AIT formation is unlikely to 

have occurred during this syngenetic to early diagenetic phase. 

 

Previous models of AIT formation (e.g., Knoll and Barghoorn, 1974) have suggested 

that AITs are formed rather later in the diagenetic (or metamorphic) history of the 

rock, largely initiated by heating and thermal decomposition of residual organic 

material. Such thermal decomposition of organic material produces gases (e.g., CO2, 

CH4) that in turn lead to localized pressure build up in a rock matrix whose porosity is 

now completely closed. This provides the propulsive power to move crystals of higher 

hardness and lower solubility through a more soluble matrix, via a pressure-solution 

process (Knoll and Barghoorn, 1974). In this model, the organic material may aid the 

dissolution of the quartz rock matrix by providing a localized build-up of organic 

acids around the propelled crystal; this may increase the dissolution rate of quartz by 

up to ten times compared with pure water, even at  low temperatures (Bennett et al., 

1988). This formation mechanism is largely consistent with observations from the 
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Current River AITs described here. However, the ubiquitous presence of chlorite at 

fenestra margins, the infilling of AITs by chlorite, plus the observation of AITs 

originating at patches of chlorite encased within fenestrae (e.g., Figs. 3d, 4b) deserves 

further consideration, and leads us to suggest an additional contributing factor to AIT 

formation in this setting. 

 

This additional mechanism involves mineral phase change reactions during burial 

diagenesis and low grade metamorphism. A number of possible reactions may 

account for the formation of chlorite in fine-grained sediments during diagenesis and 

low-grade metamorphism. These include: the alteration of Fe-rich clay minerals such 

as berthierine; the alteration of mafic minerals such as biotite; progressive reaction of 

smectites via corensite to chlorite; as a by-product of the smectite to illite reaction; via 

the breakdown of kaolinite; and via reactions of dioctahedral clays with carbonates 

(e.g., Hurst, 1985; Hillier, 2003). Some of these reactions lead to a fluid volume 

increase due to the release of water. For example, there is a 5-10 % volume increase 

during the transformation of smectite to illite (Bjørlykke, 1993), that could potentially 

increase local fluid pressures in an impermeable sediment, help provide a mechanism 

for pyrite movement, and maintain the necessary aqueous film around the pyrite for 

pressure dissolution of the matrix. Other chlorite-forming reactions produce CO2 as a 

by-product, for example the reaction of dolomite or ankerite with kaolinite or illite 

(e.g., Muffler and White, 1969; Hutcheon et al., 1980). This reaction may occur at 

temperatures as low as 120°C (Hillier, 1993), well within the range of temperatures 

experienced by these rocks, and produce relatively large quantities of CO2. Hillier 

(1993) calculated that reaction of 20 wt% dolomite to form chlorite would produce 

approximately 1 mole of CO2 per kilogram of rock – roughly 10 times the CO2 
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produced by decarboxylation of organic matter in organic rich shales (Bjørlykke, 

1988). Localised trapping of CO2 released from such chlorite forming reactions could 

then drive AIT formation, consistent with the observed pattern of AIT radiating away 

from patches of chlorite.  

 

The question of why pyrite grains appear to have been propelled from a softer 

material (clay/chlorite) into a harder material (quartz) also requires discussion. A 

number of geological field studies have found that the presence of clay minerals 

enhances the dissolution of quartz (e.g., Fisher et al., 2000) and this has been 

corroborated by laboratory studies and numerical simulations (Dewers and Ortoleva, 

1991). In this scenario, increased volumes of water, held either between the clay 

platelets, or between clay and quartz (due to relatively large hydration forces of clays) 

promote dissolution. In addition, the dissolution of the clays themselves may release 

certain cations that increase the solubility of adjacent quartz (Dove, 1999). Hence it is 

plausible that clay minerals were both a source of enhanced chemical dissolution of 

quartz and a key reactant for the formation of chlorite, which is now observed 

infilling the AITs and overprinting inferred clay-rich zones within and around the 

fenestrae. This ‘chlorite-mediated’ AIT formation mechanism is also consistent with a 

number of other observations including: the proximity of chlorite and carbonate in 

some previously reported AIT lithologies (Lepot et al., 2009, 2011); chlorite 

interpreted as a replacement of carbonate in some previously reported Gunflint AIT 

(Tyler and Barghoorn, 1963); and the occurrence of primary carbonate both locally 

(McMahon, 2010) and more generally (e.g., Sommers et al., 2000) in the Gunflint 

Formation. Furthermore, this formation mechanism provides a plausible explanation 
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for the presence of AITs in rocks that have experienced little or no biological input 

(Lepot et al., 2009, 2011; McLoughlin et al., 2013). 

 

The exact timing of AIT formation at Current River is difficult to deduce with any 

certainty and there may have been more than one phase of crystal propulsion and 

more than one phase of chlorite growth. AITs could conceivably have begun forming 

as soon as silica had crystallised to an extent where localized regions in the vicinity of 

pyrite, clay and organic material became impermeable. However, the majority of 

AITs likely formed at elevated temperature where both thermal decomposition of 

organic material and clay mineral alteration to chlorite led to both increased fluid/gas 

pressure and enhanced chemical dissolution of quartz. The youngest AITs are 

probably those found entirely within chlorite (Figs. 3e, 4d); these appear to cross cut 

an early generation of chlorite (inferred to be crystalline at the time of AIT formation) 

and are infilled by further chlorite, though the time elapsed between these chlorite 

generations may not be long. 

 

CONCLUSIONS 

This contribution describes a new suite of ambient inclusion trails (AITs) from a 

pyrite- and phosphate-rich fossilized microbial mat at the Current River locality of the 

1878 Ma Gunflint Formation, Thunder Bay, Ontario. The AITs occur in chert-filled 

birds-eye fenestrae within the microbial mat, are 1-15 m in diameter and can be 

hundreds of micrometers in length. Those that terminate in the plane of the thin 

section have a pyrite grain at their distal end, and all have microtubular appendages 

filled with chlorite. Unique in situ sulfur isotope data from pyrite grains within AITs 

(34SV-CDT = -8.5 to +8.0 ‰) reveal that these grains were formed via microbial sulfate 
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reduction during early diagenesis. Thermal decomposition of organic material 

attached to pyrite grains during burial and low-grade metamorphism provided one 

potential propulsive force for AIT formation. A newly described occurrence of AIT 

radiating away from patches of chlorite, and sometimes confined entirely within the 

chlorite, suggests that mineral transitions (e.g., smectite to illite reaction and/or 

alteration of clay minerals and carbonate to chlorite) may provide sufficient localized 

increases in fluid/gas pressure and quartz dissolution rates to form AITs. At Current 

River it is likely that thermal decomposition of organics, plus chlorite formation, 

worked in tandem to form the AITs. However, the alteration of clay minerals to 

chlorite also provides a plausible single mechanism for the generation of AITs in 

organic-poor/abiotic environments. 
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FIGURES 

 

Figure 1. Characteristic morphology of AITs reported from the literature as context 

for this study. a) Multiple AITs infilled with jarosite and organic material from the 

~3430 Ma Strelley Pool Formation, Western Australia. b) Single AIT with terminal 

pyrite crystal and infilled with chlorite from the ~3240 Ma Kangaroo Caves 

Formation, Western Australia. c) Multiple AITs arranged in starburst pattern radiating 

away from a clump of organic material, from the ~2700 Ma Fortescue Group, 

Western Australia. Arrow indicates terminal pyrite crystal (from Knoll and 

Barghoorn, 1974). d) Single open AIT on the surface of a phosphatic microfossil from 

the ~570 Ma Doushantuo Formation, China, showing longitudinal striations on the 

microtube wall. e) Two unfilled AITs with terminal pyrite crystals in a fossilised 

phosphatic crustacean valve from the early Devonian (~415 Ma) of the Ukraine. f) 

Multiple AITs, many with terminal pyrite crystals in a phosphatic fish scale from the 

Mid-Devonian (~390 Ma) Achanarras limestone of Scotland. 
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Figure 2. Lithology containing the AITs from the 1878 Ma Gunflint Formation, 

Current River locality, Thunder Bay, Ontario. Ferruginous phosphatic chert-carbonate 

with bedding surfaces showing (a) wrinkle structures and (b) craters indicative of 

collapsed biosedimentary domes, both of which point towards the former presence of 

a microbial mat. Finger and car key for scale respectively. (c) Scan of typical thin 

section through the AIT host lithology showing a wrinkled pyrite-rich microbial mat 

overlying a granular phosphate. AITs occur in the quartz-filled fenestrae (yellow 

arrows). d) Four colour element overlay map of the region shown by the green box in 

(c). Sulfur (pink) represents pyrite, magnesium (green) represents clay minerals (now 

chlorite; see Figs. 5, 7-8), calcium (blue) represents calcium phosphate, and silicon 

(orange) represents quartz (and clay minerals when co-occurring with Mg). This 

confirms that the quartz-filled fenestrae containing AITs are surrounded by a pyrite-

and chlorite-rich sediment. Pyrite can be seen at the margins of the fenestra and small 

pyrite grains (pink dots), along with patches of chlorite, can also be seen within the 

fenestra. Pyrite is also common in the granular phosphate below suggesting that 

reducing conditions persisted throughout this depositional sequence. See 

Supplementary Fig. 2 for all of the individual element maps from this area. Scale bar 

is 200 m. 
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Figure 3. Petrographic overview of AITs from the Current River locality of the 1878 

Ma Gunflint Formation. (a-c) Abundant AITs are found in fenestrae of clear 

microcrystalline quartz (chert) within microbial mats rich in pyrite. AIT can be almost 

straight, curved, twisted or spiral (arrow in c). AIT may take sudden changes of 

direction and can attain lengths of several hundred micrometers (arrowed example in 

a). Many have terminal pyrite crystals in the plane of the thin section (arrowed 

examples in a-c). d) Multiple AITs radiating away from a patch of chlorite within a 

chert-filled fenestra. E) Four putative AITs (arrows) occurring within a patch of 

chlorite that is itself within a chert-filled fenestra. An ultrathin section extracted from 

the AIT arrowed in (b) was examined using TEM (see Figs 6-7) and captured the 

boundaries between the terminal pyrite crystal, infilled microtube and quartz matrix. 
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Figure 4. Detailed morphological features of AITs from the Current River locality. a) 

AIT with longitudinal striations (arrows) caused by movement of the propelled crystal 

through the silica matrix. The propelled crystal has moved out of the plane of view of 

the thin section. Note that boxed area is from a different focal plane to the rest of the 

image. b) Straight and gently curved AITs emanating from a zone of chlorite. Most 

AITs have a rather homogenous looking mineral infill at this spatial scale. The 

arrowed example, however, has a segmented morphology. c) A tightly curved AIT 

with a terminal pyrite grain and numerous fragments of pyrite within the microtube. A 

second, narrower AIT is seen cross cutting the first. It also has fragments of pyrite 

within it (arrows). d) An AIT within a patch of chlorite that exhibits a terminal pyrite 

grain. This appears to have been propelled away from the chlorite-chert boundary into 

the patch of chlorite. e) AITs with particularly dark longitudinal boundaries, 

suggestive of concentrations of carbon or pyrite along their margins. 
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Figure 5. Distribution of organic material in relation to Gunflint AITs. Panels (a-e) 

each show a petrographic image of one or more AITs plus Raman data from the area 

indicated by the dashed yellow boxes. Each Raman image shows quartz (blue), 

chlorite (green) and carbon G (red) maps overlain on one another (see key in panel c), 

demonstrating that the AITs are infilled with chlorite, the matrix is quartz, and carbon 

occurs in close proximity to most AIT. Carbon is usually found close to where the 

AITs originate (b-d), although carbon can also be found in significant amounts (b) or 

minor amounts (d-e) further along the AIT, usually at their outer margins. However, 

not all AIT have carbon associated with them (a). (f) Petrographic image plus Raman 

map showing large quantity of carbon (red) within the AIT in close proximity to 

pyrite (green). Black areas in this panel are chlorite. Note the different colour key in 

this panel compared to panels (a-e). 
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Figure 6. Bright-field TEM image of focused ion beam-milled ultrathin (~100 nm) 

wafer through the AIT indicated in Fig. 3b. This wafer captured part of the propelled 

mineral grain and part of the microtube, all set within a microcrystalline quartz 

matrix. Darker colours indicate higher atomic mass, hence the propelled grain has the 

highest mass, followed by the phase infilling the microtube, and finally the quartz 

matrix. The black band at the top of the image is the protective platinum strip 

deposited before cutting the wafer. Dashed box denotes area analysed in Fig. 7. 
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Figure 7. ChemiSTEM elemental maps of the boxed area indicated in Fig. 6. 

Elemental mapping confirms the propelled crystal as pyrite and the matrix as quartz. 

The microtube is infilled by an iron- and magnesium-rich aluminosilicate (see Fig. 8 

for identification of this phase), where the proportions of iron and magnesium vary 

across the microtube. There are minor accumulations of carbon along the edge of the 

propelled pyrite crystal and within a fracture in the pyrite (arrows in f). 

 

 

 

 

 

 

 

 

 

 

 

 



 47 

 

Figure 8. TEM analysis of a separate AIT, with the cross section extracted 

perpendicular to the direction of pyrite propulsion. a) Bright-field TEM image 

showing a typical polygonal cross sectional morphology. The infill of the microtube 

comprises multiple flaky grains of greater mass than the surrounding quartz matrix. b) 

Selected area electron diffraction pattern from the centre of the AIT encompassing 

several flaky grains; arcs towards the centre of the pattern come from a set of closely 

aligned crystals viewed along the <100> zone axis, and give d-spacings of 1.42 nm 

and 0.46 nm, representing the {001} and {020} crystallographic planes of monoclinic 

chlorite. c-f) ChemiSTEM elemental maps showing that the chlorite is dominantly 

Mg-rich (towards the clinochlore end member), but Fe-rich (towards the chamosite 

end member) in the top right portion of the AIT. 
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Figure 9. Overview of the mount used for NanoSIMS sulfur isotope analyses, 

showing locations and isotopic values, given as 34SV-CDT (‰), of analysis areas N1-

N21, plus the pyrite standard. Note, analyses N1-N6 are from larger pyrites adjacent 

to AIT, and N7-N21 are from pyrite grains actually within AIT. See Table 1 for 

complete sulfur isotope data set. 
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Table 1. NanoSIMS sulfur isotope results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis ID 34S counts  34SV-CDT  ±1 (‰) 

Standard x106   

S1_1 5.03 2.2 0.9 

S1_2 5.02 0.3 0.9 

S1_3 4.99 0.1 0.9 

S1_4 4.97 0.6 0.9 

S1_5 5.21 1.8 0.8 

S1_6 5.14 4.3 0.8 

S1_7 5.14 0.6 0.8 

S1_8 5.13 2.4 0.8 

S1_9 5.19 0.7 1.0 

S1_10 5.16 1.9 1.0 

S1_11 5.66 3.0 0.6 

S1_12 5.27 2.5 0.6 

S1_13 5.20 0.1 0.6 

S1_14 5.20 -0.4 0.7 

S1_15 5.59 3.9 0.9 

S1_16 5.27 2.2 1.0 

S1_17 5.23 1.8 1.1 

S1_18 5.19 0.3 1.2 

S1_19 5.17 1.7 1.3 

  Mean = 1.6  

  sd = 1.3  

    

Sample CBL10    

CBL_N1 3.71 2.3 0.9 

CBL_N2 3.70 2.0 0.9 

CBL_N3 3.85 5.2 0.8 

CBL_N4 3.03 5.0 1.0 

CBL_N5 3.55 4.5 0.9 

CBL_N6 3.55 2.0 0.9 

CBL_N7 3.58 -4.4 0.9 

CBL_N8 3.68 -5.5 0.9 

CBL_N9 5.00 4.4 0.8 

CBL_N10 4.69 8.0 0.8 

CBL_N11 6.48 1.8 0.8 

CBL_N12 3.85 -0.7 1.0 

CBL_N13 3.67 -0.3 1.0 

CBL_N14 3.61 0.5 1.0 

CBL_N15 1.54 -1.2 1.5 

CBL_N16 1.48 -3.7 1.5 

CBL_N17 3.64 -3.6 1.1 

CBL_N18 5.75 -7.2 0.6 

CBL_N19 5.52 1.6 0.7 

CBL_N20 5.48 -8.5 0.8 

CBL_N21 5.96 -3.9 0.8 
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Supplementary Figure 1. Typical Raman spectrum of kerogen from the edge of a 

Current River AIT.  
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Supplementary Figure 2. Full set of EDS element maps from the area indicated by 

the green box in Figure 2d. Sulfur and the brightest iron areas correlate with one 

another and are indicative of pyrite. Aluminium and magnesium correlate with one 

another, and with moderate amounts of silicon and iron, indicative of chlorite. 

Calcium and phosphorus correlate with one another and are indicative of calcium 

phosphate (apatite). The fenestra is labeled and has the highest amount of silicon, 

indicative of a quartz mineralogy. 


