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ABSTRACT  

 

Background: Quantitative T2 (qT2) relaxation Magnetic Resonance Imaging (MRI) allows 

estimation of stroke onset time.  

 

Aims: We aimed to examine the accuracy of quantitative T1 (qT1) and qT2 relaxation times 

alone and in combination to provide estimates of stroke onset time in a rat model of 

permanent focal cerebral ischaemia and map the spatial distribution of elevated qT1 and qT2 

to assess tissue status. 

 

Methods: Permanent middle cerebral artery occlusion (MCAo) was induced in Wistar rats. 

Animals were scanned at 9.4T for qT1, qT2 and Trace of Diffusion Tensor (Dav) up to 4 hours 

post MCAo. Time courses of differentials of qT1 and qT2 in ischaemic and non-ischaemic 

contralateral brain tissue (∆T1, ∆T2) and volumes of tissue with elevated T1 and T2 relaxation 

times (��	, ��	)  were determined. TTC staining was used to highlight permanent ischaemic 

damage. 

 

Results: ∆T1, ∆T2,��	, ��	 and the volume of tissue with both elevated qT1 and qT2 (V
Overlap

) 

increased with time post MCAo allowing stroke onset time to be estimated. V
Overlap

 provided 

the most accurate estimate with an uncertainty of ±25 minutes.  At all times-points regions 

with elevated relaxation times were smaller than areas with Dav defined ischaemia. 

 

Conclusions:  Stroke onset time can be determined by qT1 and qT2 relaxation times and tissue 

volumes. Combining qT1 and qT2 provides the most accurate estimate and potentially 

identifies irreversibly damaged brain tissue.  
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INTRODUCTION  

 

A growing body of evidence shows quantitative 
1
H MRI is sensitive to changes in brain 

tissue that occur during early moments of an ischaemic stroke and can enable identification of 

patients with an unknown onset time who may be eligible for drug therapies (1–3). Research 

from preclinical stroke models and stroke patients suggest MRI can provide an estimate of 

stroke onset time (1–4) and a means for assessing tissue status (4–6), two methods that could 

aid stratification of patients to treatment. 

 

Within minutes of ischaemia onset, the apparent diffusion coefficient (ADC by quantitative 

diffusion MRI) has been shown to decrease to approximately 60% of physiological values in 

brain parenchyma, enabling ischaemic tissue to be identified  (7–10), thereafter 

stabilizing(14) (15). This early ADC decrease is attributed to energy failure and cytotoxic 

oedema (7,8) and is often assumed to represent the irreversibly infarcted core (11), however 

preclinical (12) and clinical (13) studies suggest greater complexity. 

 

Within regions of decreased ADC in rat focal ischaemia, quantitative T2 relaxation times 

(qT2) also decrease due to metabolic changes (6,16) and cytotoxic oedema (17). The decrease 

is followed by a quasi-linear increase over time (2,4) caused by altered hydrodynamics and 

tissue degradation (17,18). This relationship between qT2 and time from stroke onset has 

enabled estimates of stroke onset time in rat models of ischaemia with good accuracy (2,4). 

Interestingly, a quadratic dependency of qT2 and time from symptom onset was also reported 

in acute stroke patients suggesting clinical applicability of qT2 MRI (3). Over time, the qT2 

increase will have inevitable contributions from vasogenic oedema, which coincides with the 

transition to irreversible tissue damage (6,9,14).  

 

The time-dependency of quantitative T1 relaxation times (qT1) in the ischaemic brain is less 

well characterized. qT1 increases gradually over time from stroke onset within regions of 

decreased diffusion (16,9). Pathophysiological mechanisms thought to underlie this qT1 

increase are similar to qT2, including altered water dynamics and content in ischaemic tissue 

(14,19) qT1 is additionally sensitive to changes in cerebral blood flow and volume (16,20), 

temperature (21), pH (22) and tissue oxygen tension (16). Thus, by combining data from time 

courses of qT1 and qT2 in the ADC lesion, one would expect to obtain a fuller picture of 
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ischaemic pathology in brain tissue, which may aid in the estimation of stroke onset and 

assessment of tissue viability. 

 

The current study was undertaken to determine time-dependent changes in qT1 and qT2 

relaxation times in ischaemic brain tissue and to compare their abilities in estimating time 

since stroke onset.  The second aim was to map the spatial distributions of elevated qT1 and 

qT2 relaxation times within regions of decreased ADC with a view to assessing tissue status.  

Given that these MRI parameters are influenced by the same and different pathophysiological 

changes during stroke, ischaemic areas with combinations of qT1 and qT2 signatures were 

also identified.  Previous research (4,9,17,23) has shown that the volume of tissue with 

elevated relaxation times increase with time.  Therefore we also quantified the volumes of 

tissue with elevated qT1 and qT2 in the ADC lesion as a function of time.   
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METHODS 

 

Animal Model 

Animal procedures were conducted according to the principles of Three Rs and European 

Community Council Directives 86/609/EEC guidelines and approved by the Animal Care and 

Use Committee of the University of Eastern Finland.   

 

Five male Wistar rats (300 – 400 g, Animal Resource Facility, University of Eastern Finland, 

Kuopio, Finland) underwent permanent middle cerebral artery occlusion (MCAo) (24).  All 

rats were anesthetized with isoflurane through a facemask (maintained at 1.5 – 2.4%) for the 

duration of the operation and MRI. Before MRI arterial blood gases and pH were analysed (i-

Stat CO, East Windsor, NJ). During MRI breathing rate and rectal temperature were 

monitored. Core temperature was maintained close to 37°C using a water heating pad under 

the torso.  

 

One rat died during MRI (~ 3.5 hours post MCAo) and others were sacrificed five hours after 

MCAo by decapitation in deep isoflurane anaesthesia. Following decapitation, the brain was 

extracted, placed in refrigerated 0.01M phosphate buffered saline and sectioned into 1mm 

axial slices. Immediately after sectioning, a Triphenyletrazolium chloride (TTC 0.5% or 1% 

in phosphate buffered saline) staining method (25) was used to confirm ischaemic damage to 

brain tissue. 

 

Magnetic Resonance Imaging 

MRI data were acquired using a 9.4T/31cm horizontal Varian magnet interfaced to a Direct 

Drive console (Agilent Inc., Palo Alto, CA, USA) and equipped with an actively decoupled 

linear volume transmitter and quadrature receiver coil pair (RAPID Biomedical GmbH, 

Rimpar, Germany).  Immediately after MCAo rats were secured in a cradle at the centre of 

the magnet bore.  Protocol included twelve axial slices of: the trace of diffusion tensor (Dav= 

1/3 trace [D]) with three bipolar gradients along each axis, three b-values (0, 400 and 1400 

s/mm
2
), TE = 36 ms, TR = 4000 ms and acquisition time = 7.36 minutes, a Carr-Purcell-

Meiboom-Gill T2 sequence with 12 echoes (echo-spacing = 10 ms, TR = 2000 ms, acquisition 

time = 4.20 minutes) and Fast Low Angle Shot (FLASH) for T1, where the time from 

inversion to the first FLASH sequence (T10) was 7.58 ms, TI = 600 ms, TR = 5.5 ms, time 

between inversion pulses (Trelax) = 10 s and acquisition time = 8.20 minutes. MRI data were 
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congruently sampled with slice-thickness = 1 mm, slice-gap = 0.5 mm, field-of-view = 2.56 x 

2.56 cm
2
, matrix = 128 x 128. MRI data were acquired sequentially at 60, 120, 180 and 240 

minutes after MCAo. 

 

Image Post-processing and Data Analysis 

 

Data analysis was performed using Matlab (MathWorks, Natick, Massachusetts, USA) scripts 

written in-house and MRI software ‘Mango’ (Research Imaging Institute, UT Health Science 

Center at San Antonio, Texas, USA) and ‘FSL’ (FMRIB, Oxford UK). See Supplementary 

Materials for specific details of methods and criteria used.  

 

Quantitative maps were computed using a mono-exponential fit in a logarithmic space (26). 

Ischaemic tissue was identified and ischaemic volumes of interest (VOI) were generated by 

applying Knight et al.’s (17) automatic lesion detection method to reciprocal Dav images 

(1/Dav).   Reflecting ischaemic VOIs about the vertical axis identified homologous regions in 

the non-ischaemic hemisphere.  To quantify changes in relaxation times, the percentage 

difference in mean qT1 and qT2 between ischaemic and non-ischaemic VOIs were calculated 

(∆T1 and ∆T2). To picture the spatial distribution of elevated relaxation time changes within 

ischaemic VOIs, voxels with high qT1 or qT2 and voxels with both high qT1 and qT2, termed 

T1 & T2 Overlap, were colour-coded. Voxels were high if relaxation times exceeded the 

median relaxation time of the non-ischaemic VOI by more than one half-width at half 

maximum. To determine the size of the lesion according to T1 and T2, parameter �, as 

introduced by Knight et al. (17) was computed. Where  ��	 and ��	 represent the number of 

voxels with high T1 or T2 (respectively) as a percentage of the size of the ischaemic VOI. The 

extent of T1 & T2 Overlap was determined by calculating the volume of T1 & T2 Overlap 

(V
Overlap

) as a percentage of whole-brain volume.  

 

 

Statistical Analysis 

Statistical analysis was performed using Matlab and IBM Statistical Package for the Social 

Sciences (SPSS) Version 21 (Armonk, NY: IBM Corp) on pooled rat data. To compare lesion 

sizes, one-way related ANOVAs and Fisher’s least significant difference post-hoc were 

conducted on the average number of voxels in ischaemic VOI and with high qT1 and qT2. 

Differences were considered significant at p < .05. Linear least square regression analyses 
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were performed to determine whether time since stroke onset could be predicted by 

quantifying a parameter of interest (∆T1, ∆T2, ��	, ��	, V
Overlap

) at a single time-point. The root 

mean square error (RMSE) was used to assess the accuracy of onset time estimates. To 

compare the magnitude of ∆T1 and ∆T2, average ∆T1 and ∆T2 at 3 hours post MCAo were 

estimated using trend-line equations. 

 

 

RESULTS 

 

Across rats the blood gas profiles were: SO2 = 95.8±3.2%, PaCO2 = 51.6±2.9 mmHg and pH 

= 7.30±0.04. In agreement with previous reports at 9.4T (33), mean qT1 and qT2 of the non-

ischaemic VOI were 2,023±116 ms and 47±1 ms respectively. Figure 1 shows a central 1/Dav, 

qT2 and qT1 MRI slices of a representative rat at each time-point and a TTC slice. It should 

be pointed out that both in qT2 and qT1 MR images ischaemic stroke causes increased 

brightness with time, whereas in T2 and T1-weighted images stroke lesion becomes brighter 

and darker, respectively. TTC staining verified irreversible ischaemic damage located 

predominantly in gray matter in all rats.  

 

Figure 2 shows the spatial distribution of elevated relaxation times within ischaemic VOIs 

during the first four hours of ischaemia. As seen, the extent of T1 & T2 Overlap increases 

with time and at all time-points regions with high qT1 and qT2 appear smaller than the 

ischaemic VOI.  Regions of high qT1 also appear larger than and occur in different regions to 

high qT2 areas. 

 

At one and two hours post MCAo, regions with high qT1 were significantly larger than high 

qT2 and the ischaemic VOI was larger than high qT1 and high qT2 although this latter 

difference just missed significance for qT1 at two hours (p = .058). There was no difference 

between lesion sizes of all parameters at three hours post MCAo and at four hours, the 

ischaemic VOI was significantly larger than high qT2. Overall, in the initial hours of 

ischaemia, regions of decreased diffusion (1/Dav Ischaemic VOI) were larger than regions 

with high qT1 and qT2 and regions with high qT1 were larger than regions with high qT2 but 

converged with time.   

As shown in Figure 3, all parameters (∆T1, ∆T2, ��	, ��	 , V
Overlap

) were significant predictors 
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of tMCAo (p < .001), which enabled estimates of stroke onset time using linear trend-line 

equations (see Figure 3).  ���	
��
 was the strongest predictor (R
2
 = 0.87) and provided the 

most accurate estimate of time since stroke onset, with an uncertainty of  ± 25 min. ��	 (R
2
 = 

0.82) and ∆T2 (R
2
) = 0.75, had uncertainties of ±34 and ±28 minutes, respectively. The 

increase in ∆T1 (R
2
 = 0.71) and	��	 (R

2
 = 0.53) over time were more gradual than other 

parameters and thus uncertainties were higher, at ±37 minutes and ±47 minutes for 

��	respectively.  At 3 hours post MCAo the average ∆T1 was +6% and ∆T2. +5%. 

 

 

 

DISCUSSION 

 

Both ∆T1 and ∆T2 relaxation times provided estimates of stroke onset time where ∆T2 was 

superior to ∆T1.  The volume of tissue with elevated qT1 and qT2 (��	, ��	) also increased with 

stroke duration and quantification of V
Overlap

 enabled estimates of onset time with better 

accuracy than individual measures. The ability to estimate stroke onset time by 
1
H MRI is 

regarded beneficial for patients with unknown onset, as currently they are ineligible for 

thrombolytic therapy (27). The fact that the volume of elevated relaxation times was smaller 

than regions of reduced Dav indicates MRI relaxometry may also be informative of tissue 

status in hyperacute stroke.  

 

The increase in qT2 with tMCAo and its utility in estimating stroke onset time agrees with 

preclinical studies using single-slice MRI data acquisition (2,4) and a clinical study with 

multi-slice acquisition (3).  Previous studies have reported a qT1 increase in hyperacute 

ischeamia (16,9) but this study is the first to identify qT1 as a significant predictor of time 

from ischaemia onset and thus, a potential proxy for stroke timing. We introduce ��	 and ��	 

parameters as indices for abnormal qT1 and qT2 relaxation times in the ischaemic tissue to 

eliminate MRI technical shortcomings, including magnetic field variation within the lesion 

(17). A combination of these parameters, V
Overlap

, provided the most accurate estimate of 

stroke duration thus motivating further exploration as a proxy for onset time.  

 

While both qT1 and qT2 enabled stroke onset time to be estimated, qT1 had higher levels of 

uncertainty, which is likely to be due to the shallow slope of ∆T1 vs. time plot (Figure 3D).  

Previous studies showed within the ADC lesion, qT1 and qT2 (5,6) change in opposite 
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directions in the early moments of ischaemia; qT1 increases within the first minute (20) and 

qT2 decreases for about an hour (5,6). Recent data point to two-phase response of qT1 upon 

ischaemia onset; in complete forebrain ischaemia the fast response levels by two minutes (20) 

whereas in the core, the rapid increase lasts up to 25 minutes post MCAo (16). A further issue 

to be considered is that inherent qT1 and qT2 change with magnetic field strength. For 

example a previous study found after 10 minutes of ischaemia the ∆T1 was approximately 

two-fold greater at 9.4T than 4.7T (20).  However at three hours post MCAo, ∆T1 of a similar 

magnitude has been determined; at 4.7T the ∆T1 was +9% (8) and here at 9.4T, it was +6%. 

In contrast to ∆T1, in the early moments of ischaemia ∆T2 is negative in the core (2,6) and 

becomes positive after an hour at both 4.7T (2,4) and 9.4T. The initial negative ∆T2 is likely 

to be due to combined effects of deoxyhaemoglobin build up (6) and cytotoxic oedema (17). 

However, at three hours of MCAo ∆T2 are similar at 4.7T (+5%) (2) and 9.4T (+5%) (Figure 

3E) in the core of ischaemia. These observations indicate that while the polarity of early 

changes and time-dependent kinetics of qT1 and qT2 differ in stroke tissue, the increases in 

both relaxation times at clinically relevant time-points are comparable and independent of 

magnetic field strength.  

 

The spatial distribution of elevated relaxation times (Figure 2) and the	��	and ��	 parameters 

revealed that the volume of tissue with elevated qT1 is initially larger than the volume of 

tissue with elevated qT2, but these volumes converge with time.  This observation agrees with 

a recent report (23), where at 70 and 150 minutes post MCAo the qT1 lesion area was 

significantly larger than the qT2 lesion, but comparable at 24 hours.  Anatomical differences 

in volumes with elevated qT1 and qT2 may reflect the fact that these relaxation times probe 

different factors of early stroke pathophysiology, yet some of the same mechanisms during 

later stages of ischaemia (18). In line with earlier studies (4,9), volumes of tissue with 

elevated qT1 and qT2 were smaller than those with low diffusion during the initial hours of 

ischaemia.  Close to normal qT1 and qT2 values are observed in early moments before 

transition to irreversible ischaemia (14). Thus present findings support current notions that 

diffusion MRI overestimates the true extent of the ischaemic core (4,12,13). Combining qT1 

and qT2 and ADC data may provide a method for identifying salvageable tissue, where 

‘normal’ qT1 and qT2 in the presence of decreased ADC could indicate tissue viability.  

 

Increased qT2 and low ADC represents irreversible tissue damage (5,6,10,14). The viability 
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of tissue with elevated qT1 is unknown, but it was previously reported that in transient MCAo 

of 90 minutes, qT1 normalised in the striatum and core upon reperfusion, but the striatum 

proceeded to infarction two days later (20). We therefore speculate that volumes with both 

elevated qT1 and qT2 relaxation times, V
overlap

, represent irreversibly damaged tissue. This 

conclusion is supported by the fact that prolonged qT1 and qT2 times in ischaemic brain were 

shown to signify transition to necrosis by histological methods (14). We believe that V
Overlap

 

represents tissue with irreversible vasogenic oedema and thus, increased total water content 

as both qT1 and qT2 are influenced by total tissue water content (19). 

 

To conclude, the present study indicates that quantification of absolute T1 and T2 relaxation 

times and V
overlap

 could provide information about tissue status and onset time that would be 

invaluable for treatment stratification of acute stroke patients with unknown onset.  
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Legends to Figures:  

 

Figure 1 (colour). A single representative slice from a typical rat shown as 1/Dav, qT2 and 

qT1 images over tMCAo and a TTC stained slice from the same rat verifying irreversible 

ischaemic damage five hours post MCAo.   

 

Figure 2 (colour). A central 1/Dav slice from the same representative rat in Figure 1 shown 

over tMCAo. The image remains the same in the x direction and is overlaid with colour-

coded regions depicting the 1/Dav defined ischaemic VOI, areas with high qT2, high qT1 and 

T1 & T2 Overlap.  

 

Figure 3 (colour). MRI parameters as a function of tMCAo.	∆T1 and ∆T2 represent the 

percentage difference between the ischaemic and non-ischaemic hemispheres.  A: f�	, where 

tMCAo = 13.16 (±6.40) *f�	 – 999.15 (±558.5). B:	f�	, where tMCAo = 3.449 (± 0.817) * f�	 – 

110.90 (± 64.00). C: V
overlap

, where tMCAo =37.41 (± 14.92) * V
overlap

 + 50.52(± 22.47). D: 

∆T1, where tMCAo = 42.83 (± 13.88) * ∆T1 – 93.03 (± 83.17). E: ∆T2 where tMCAo = 24.41 

(± 7.2) * ∆T2 + 64.74 (± 30.86). 
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Figure 1 (colour). A single representative slice from a typical rat shown as 1/Dav, qT2 and qT1 images over 
tMCAo and a TTC stained slice from the same rat verifying irreversible ischaemic damage five hours post 

MCAo.    
22x16mm (300 x 300 DPI)  
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Figure 2 (colour). A central 1/Dav slice from the same representative rat in Figure 1 shown over tMCAo. The 
image remains the same in the x direction and is overlaid with colour-coded regions depicting the 1/Dav 

defined ischaemic VOI, areas with high qT2, high qT1 and T1 & T2 Overlap.  
19x12mm (300 x 300 DPI)  
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Figure 3 (colour). MRI parameters as a function of tMCAo. ∆T1 and ∆T2 represent the percentage difference 
between the ischaemic and non-ischaemic hemispheres.  A: f_(1 ), where tMCAo = 13.16 (±6.40) *f_(1 ) – 

999.15 (±558.5). B: f_(2 ), where tMCAo = 3.449 (± 0.817) * f_(2 ) – 110.90 (± 64.00). C: Voverlap, 
where tMCAo =37.41 (± 14.92) * Voverlap + 50.52(± 22.47). D: ∆T1, where tMCAo = 42.83 (± 13.88) * 

∆T1 – 93.03 (± 83.17). E: ∆T2 where tMCAo = 24.41 (± 7.2) * ∆T2 + 64.74 (± 30.86).  
58x44mm (300 x 300 DPI)  
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