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Orthodontic pain trajectories in adolescents: Exploring the between- and within-subject 

variability in pain perception  

 

Abstract  

Introduction: The objective of this study was to assess the effect of age, sex and age-sex 

interaction effects on mean pain trajectories and individual variation in the pain experienced 

by adolescents after orthodontic separator placement. 

Material and methods: 115 subjects (mean age 14.99, SD ±1.90; males 56, 48.7%; females 

59, 51.3%) were included in this study. Orthodontic separators were placed in the mesial and 

distal contact point of maxillary and mandibular first molars. A 100 mm Visual Analogue Scale 

(VAS) was used for pain assessment over 11 pre-specified time points: 1 hour, 2 hours, 4 hours, 

12 hours, 24 hours, 36 hours, 48 hours, 72 hours, 96 hours, 120 hours, 144 hours. A “mixed-

effects location scale model” was used for the data analysis to directly model between-subject 

(BS) and within-subject (WS) variability in pain in addition to the usual modelling of mean 

pain as a function of age, sex and time. 

Results: Mean initial pain after 1 hour of separator placement for 12-15 year male group was 

13.52 mm on VAS scale, which initially increased rapidly (linear estimate 9.16; p 0.000; 95% 

CI -8.65 to 9.67), but decelerated with time (quadratic estimate -0.95; p 0.000; 95% CI -1.0 to 

-0.90), suggesting an inverted ‘U’ shaped mean pain trajectory. Age, sex and age-sex 

interaction effects did not significantly influence initial pain. Compared to 12-15 year male 

group, 15-18 year female group reported the steepest rise in the pain (estimate 8.55; p 0.00; 

95% CI 7.40 to 9.70), and as a result, experienced the most overall pain. 12-15 year male group 

reported minimum BS variation (SD ±4.6 mm) as well as the WS variation (SD ±5.5 mm). The 

BS variation was highest for the 12-15 year female group (SD ±9.8 mm) whereas the WS 

variation was highest for the 15-18 year female group (SD ±10.1 mm).  

Conclusion: 12-15 year males reported the least mean average pain intensity as well as the 

minimum subjective variation in terms of BS variance and WS variance. 15-18 year females 

experienced maximum mean pain intensity as well as the highest daily fluctuation in pain 

intensity. 12-15 year females were most different from one another in terms of their overall 

pain experience. 
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Introduction  

Orthodontic force application during tooth movement induces complex biological 

response in and around the periodontium resulting in release of inflammatory mediators such 

as prostaglandin-E2 (PGE2), interleukin 1-beta (IL-1β) and substance P (SP). These substances, 

which are essential for bone remodelling during tooth movement, also result in pain.1,2   

Pain is both patient and time dependent resulting in substantial heterogeneity in 

patients’ reported pain trajectories over time.3 Put differently, pain is both a between-subject 

(BS) and within-subject (WS) phenomenon. Evidence shows that most orthodontic patients 

report that pain commences during the first couple of hours of orthodontic force application, 

reaches peak intensity level after one day, and then eventually declines to normal levels after 

7 days.4-7  

Bergius et al5,6 report that the experience of pain varied substantially among subjects 

after elastic separators placement, suggesting BS variation in orthodontic pain perception. The 

authors further report that patient gender had a significant influence on orthodontic pain 

perception. A recent study highlighted the fact that patients’ age and sex also have strong 

interaction as well as direct effects on orthodontic pain perception.4 

Describing pain trajectories would improve understanding of how orthodontic pain 

conditions develop over time; and whether individuals differ in pain perception. This 

understanding would then enable better management of orthodontic pain. In orthodontics, no 

study has ever been undertaken in this direction to understand pain trajectories. Importantly, 

previous studies have largely ignored BS and WS variation of pain and how these distinct 

sources of variation may themselves depend on patients’ characteristics. For example, do 

younger subjects tend to vary more in the overall average pain they experience (i.e., BS 

variation) than older subjects? Do females tend to report more fluctuating (i.e., erratic or 

volatile) pain trajectories (i.e., WS variation) than males? 
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Mixed-effects models, also known as multilevel models and hierarchical linear models,  

can be used to analyse the evolution of subjects’ individual outcome trajectories over time and 

to relate variation in these trajectories to subjects’ time-invariant characteristics.8,9 Mixed-

effects models can also incorporate time-varying subject characteristics to model occasion-to-

occasion deflections to or departures from subjects’ trajectories. Thus, mixed-effects models 

provide a popular way to not only estimate overall mean relationships, but to additionally 

quantify and then explain the degree of BS and WS variation in individuals’ outcomes over 

time.8,9  

Recently, Hedeker et al.10,11 extended the standard two-level random-intercept mixed-

effects model to additionally model as a function of the covariates both the BS variation in 

subjects’ trajectories about their overall mean trajectory and the WS variation in their observed 

measurements about their own trajectories. They term their model the “mixed-effects location 

scale model” where “location” refers to the usual modelling of the mean response, while 

“scale” refers to the new direct modelling of the BS and WS response variability. They 

implement their model in the stand-alone program MIXREGLS.11 

The objective of this clinical research work was to evaluate the overall mean 

orthodontic pain trajectory and the BS and WS variation about this over a week’s time period 

following orthodontic separator placement; and to examine the influence of age, sex and age-

sex interaction effects on the overall mean, and BS and WS variances using mixed-effects 

location scale models. 

Material and methods 

Sample size estimation 

Sample size calculation was based on a power analysis concept used in a recent study 

where the authors investigated the age-sex interaction effect on mean average orthodontic pain 

perception.4 Briefly, in this approach, which is based on the power analysis for a 2 x 2 factorial 
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design,12 sample size is estimated for either of the binary coded groups (e.g. sex or 

dichotomized age) assuming that interest lies in detecting the same effect size for each binary 

group, and then doubling the estimated sample size to detect the interaction effect.4,12 

The parameter estimates (including time function regression coefficients, and BS and 

WS variance etc.) required for the power analysis were obtained from the authors of the 

previous study.4 Based on these parameters, power analysis for the quadratic trend analysis was 

undertaken to determine the sample size, as recommended for the mixed-effect model for 

binary coded groups (e.g. male and female).13  The standardized Cohen’s d effect size for a 

mixed-effects analysis is defined as d= slope coefficient /√(BS variance + WS variance), where 

the slope coefficient may be for any polynomial function of time such as linear, quadratic etc.13 

Power analysis based on a study design with one baseline and 10 follow-up repeated 

measurements per subjects, an attrition rate of 10%, a moderate effect size (Cohen’s d=0.5) for 

the difference in slopes among the groups at a significance level of 0.05 and a power level of 

0.80, revealed that 60 participants (30 in each group) were required. Therefore, the total sample 

size required to detect the age-sex interaction effect on the mean response was 120 subjects (30 

in each of the four groups).   

The Cohen’s medium effect size for mean difference (d=0.5) value corresponds to the 

Cohen’s medium effect size for correlation (r=.30) which can be used to find matching values 

for the regression coefficients in terms of 9% (R2=.09) variance explained, which could be 

rounded off to approximately 10%.14 Therefore, sample size in this study was also calculated 

to be sufficient to detect a 10% difference in the variance among the groups.  
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Participants  

The participants were consecutive patients who visited the private office of the first 

author for orthodontic treatment, and were enrolled in the study if all the inclusion criteria were 

satisfied and informed consent could be obtained. In total, 120 orthodontic patients were 

included in this study. Study protocol was approved by the local Ethical Review Committee. 

The inclusion criteria were: (1) 12-18 year-old males and females who required fixed 

orthodontic treatment, (2) presence of erupted permanent first and second molars and absence 

of posterior open bite and interdental spaces, (3) no concurrent use of any anti-inflammatory 

drugs, (4) caries-free dentition with healthy periodontium, (5) voluntary participation in the 

study confirmed by signing the informed consent form. The exclusion criteria were: (1) medical 

condition / systemic diseases (e.g. epilepsy, juvenile diabetes etc.) that precluded the use of 

prospective fixed orthodontic appliance, (2) participants having any chronic pain or orofacial 

region/dental pain. 

Procedure and outcome assessment 

A previously established and standardized research model was used to assess 

orthodontic pain perception.5,6 In this model, orthodontic elastic separators are placed 

bilaterally, mesial and distal of the first molars in at least one jaw in adolescents (12-18 year 

male and female orthodontic patients) and then pain intensity is assessed over a one week time 

period by using a 100 mm Visual Analogue Scale. 

In our study, orthodontic elastic separators (3M Unitek, calif.) were placed in the mesial 

and distal contact point of both maxillary and mandibular first molars. For all participants, 

separators were placed in the evening, between 5pm to 7pm, though on different days. This 

was done to ensure that for all participants, pain assessment time would be the same to 
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minimize the influence of natural diurnal variation in the pain intensity level. On the day of 

separator placement, booklets comprised of the pain assessment scale and written instructions 

were provided to the participants.  

Pain was assessed by using a Visual Analogue Scale (VAS), which is a 100 mm long 

horizontal line where one end corresponds to “no pain” and the other end indicates “worst pain 

possible”. VAS is a valid and reliable scale for pain assessment.15 To better understand the 

orthodontic pain trajectories, especially the WS variance component, we decided to increase 

the number of pain assessment occasions as compared to the previously established model.5,6 

In our study, the number of occasions for pain assessment was eleven; which is more than 

double the pain assessment occasions (five) used in previous model.5,6 Pain was assessed at the 

following time periods (in hours) after orthodontic separator placement: 1 hour, 2 hours, 4 

hours, 12 hours, 24 hours, 36 hours, 48 hours, 72 hours, 96 hours, 120 hours, 144 hours. 

To alleviate any confusion regarding the actual time of pain assessment, we reported 

pain assessment time in hours instead of morning/evening time period of day. For example, 

since we inserted orthodontic separators in the evening, therefore the day 1 morning would be 

corresponding to 12 hours of pain assessment in contrast to notion usually practiced in 

orthodontic literature where it is assumed that day 1 morning represents 24 hour time period of 

pain assessment.  

A trained research assistant, who was blinded to study, was responsible for data 

collection. VAS score in mm was measured from the left margin of VAS scale to the nearest 

millimetre using metallic scale. To examine the reproducibility and reliability of VAS score 

measurements, 30 randomly selected VAS scales were measured by the first author 

independently. Intra-Class Correlation coefficient of 0.93 showed excellent reproducibility and 

reliability.  
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Participants were also asked to record their analgesic consumption at each time point. 

No specific analgesic was prescribed and participants were free to consume over-the-counter 

(OTC) analgesics of their choice. Since no restrictions were applied in terms of dose, frequency 

or type of analgesics, analgesic consumption data will be used only for descriptive purposes 

and will not be included in the analysis. 

Statistical analysis  

Orthodontic pain trajectories were estimated using two-level random-intercept mixed-

effects location scale models, treating the repeated measurements at level-1 nested within 

subjects at level-2. The models consist of three separate equations for simultaneous modelling 

of the mean response, the log of the BS variance, and the log of the WS variance each as a 

function of the covariates. The log-link is employed to ensure positive BS and WS variances. 

All models were fitted using the MIXREGLS program,11 calling it from within Stata (version 

13, StataCorp LP, College Station, TX 77845) using the runmixregls command.16 A complete 

technical description of the mixed-effects location scale model and its adaption to the current 

orthodontic pain study, as well as the details of model fit/run-in is described in the online-

supplementary-material. 

Results  

Of the 120 patients included in this study, three patient did not return the questionnaire; 

and two patients did not report back. The remaining 115 patients (mean age 14.99, SD ±1.90; 

males 56, 48.7%; females 59, 51.3%) adhered to the study protocol and provided pain data over 

the observed time period following orthodontic separator placement. An advantage of mixed-

effects models for repeated measures data is that they can handle subject-to-subject variation 

in the timing of measurements as well as the missing data under the missing at random (MAR) 

assumption, 10,14 and therefore subjects do not need to provide outcome measurements at 
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exactly the same time points. In our study, subjects were asked to record their pain intensity as 

close as possible to the scheduled measurement occasions (1, 2, 4, 12 hours etc.). When subjects 

failed to record pain at a scheduled measurement occasion (e.g. asleep) they would simply 

record their pain intensity and time of measurement at the first available opportunity. As stated 

in the methodological section, we intended to collect 11 observations per subject. Results 

revealed that the average number of observations per subject was 10.5 with a minimum of 9 

and a maximum of 11 suggesting that missing data was not a major problem in our study.  

The descriptive statistics showing the demographic characteristics and the clinical data 

at each time point are shown in Table 1. All four groups were well matched for number of 

subjects as well as the mean age for male and female subjects in the 12-15 year and 15-18 year 

age groups. The mean pain score data shows that peak pain intensity level plateaued for all four 

groups between 24 hours to 48 hours and that the mean differences between the four groups 

were also most pronounced during this period. The frequency of analgesic consumption was 

also highest at this point. Over the seven day period as a whole, the pain intensity level and 

frequency of analgesic consumption was highest for 15-18 year female group and lowest for 

the 12-15 year male group. Individual pain trajectories for each group are shown in Figure 1 

and reveal substantial BS heterogeneity in VAS scores: some individuals in general report 

higher pain across all occasions than other individuals. Figure 1 also reveals substantial WS 

heterogeneity in VAS scores: subjects’ individual pain trajectories are not smooth, rather there 

is a degree of occasion-to-occasion volatility in subjects’ pain profiles.  

The results from the mixed-effects location scale analysis are shown in Table 2. The 

variables included in this final model were based on the best fitting model identified by 

likelihood ratio tests and the information criterion. The close fit of the mean fitted VAS score 

trajectories to the mean observed VAS score trajectories further confirmed the good model fit 

(Figure B1 of online-supplementary-material). The histogram and Q-Q plots also showed no 
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threat to the random effects normality assumptions (Figure B2 of online-supplementary-

material). 

Mean average pain trajectory  

The model predicted mean pain trajectories for each group are shown as Figure 2. The 

mean initial pain i.e. 1 hour (time=0) after orthodontic separator placement was 13.52 mm on 

VAS scale for 12-15 year male group (coding 12-15 age=0; sex=0) and there was no significant 

main effect of age (estimate -0.61; p 0.728; 95% CI -4.02 to 2.81), sex (estimate 1.80; p 0.363; 

95% CI -2.08 to 5.69) or age-sex interaction effect (estimate -0.02; p 0.994; 95% CI -5.40 to 

5.36) on initial pain level.  

From initial pain onwards, 12-15 year male group showed a statistically significant 

increase in pain with time (linear estimate 9.16; p 0.000; 95% CI -8.65 to 9.67), but this rate 

decelerated with time (quadratic estimate -0.95; p 0.000; 95% CI -1.0 to -0.90), suggesting an 

inverted ‘U’ shaped mean average pain trajectory (see Figure 2).  

Compared to 12-15 year male group, 15-18 year male group (estimate 3.88; p 0.00; 

95% CI 3.11 to 4.64) and 12-15 year female group (estimate 4.32; p 0.000; 95% CI 3.42 to 

5.21) showed significantly steeper rise in pain. The corresponding Cohen’s d effect size can be 

estimated as the slope coefficient /√ (BS variance + WS variance). The required estimates of 

BS variance and WS variance are provided in the next two sections of the results. 

However, the significant age-sex interaction effect with time (estimate 0.36; p 0.042; 

95% CI -0.01 to 0.71) revealed that the difference in the rate of increase in pain between male 

and female subjects was conditional on age and as a result, the rate of increase in pain was 

further increased by 0.36 units in 15-18 year female group as compared to the 12-15 year 

female group. The results for the pairwise comparisons (by using Stata’s ‘lincom’ command) 
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to detect the difference in the linear rate of increase in pain among the four groups (Table C1 

of online-supplementary material) show the greatest difference was between the 15-18 year 

female and 12-15 year male groups (estimate 8.55; p 0.000; 95% CI 7.40 to 9.70). 

Compared to 12-15 year male group, the deceleration was significantly faster  for 15-

18 year male group (estimate -0.37; p 0.000; 95% CI -0.44 to -0.29) and 12-15 year female 

group (estimate -0.42; p 0.000; 95% CI -0.51 to -0.34). For the quadratic trend, age-sex 

interaction effect was not included in the model because it led to convergence difficulties. 

However, a likely reason for this is that the age and sex interactions with the quadratic trend 

captured the trajectories appropriately and adequately. Therefore, the deceleration in the rate 

of increase in pain for females was not conditional on age and females attained higher peak 

pain intensity in both age groups.  

Therefore, compared to the 12-15 year male group, the 15-18 year female group 

experienced the most rapid increase resulting in highest peak pain intensity level, however, 

owing to their faster rate of deceleration in pain, the difference in pain intensity decreased 

towards the end of the study period.  

Interestingly, findings reveal a plateau of peak pain intensity level for all four groups 

between Time ‘4’ (24 hours) to Time ‘6’ (48 hours) with peak around the Time ‘5’ (36 hours). 

The fact that Time is entered as a polynomial makes it straightforward to predict the actual 

Time at which each group attained peak level of pain intensity. Full details are provided in the 

online-supplementary material (equation 16) and estimates were obtained using Stata’s ‘nlcom’ 

command. 

Results showed the times of peak mean pain intensity for the 12-15 year male, 12-15 

year female, 15-18 year male, and 15-18 year female groups were 4.83, 4.92, 4.96 and 5.10 on 

the model’s Time scale (Table C2 of online-supplementary material) which implies that the 
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12-15 year male, 12-15 year female and 15-18 year male groups attained peak mean pain 

intensity level before 36 hours; whereas the 15-18 year female group reported peak mean pain 

intensity after 36 hours. The results for pairwise comparisons to detect the difference in the 

time of peak mean pain intensity level (Table C3 of online-supplementary material) shows that 

the difference was significant between 15-18 year female group and all other three groups.  

Between-subject (BS) variation in pain perception 

The BS variance function shows that having adjusted VAS scores for time, covariates 

and covariates-by-time interaction effects, there was significant remaining variability in terms 

of subjects’ individual trajectories about the overall mean average trajectory. Compared to 12-

15 year males, 15-18 year males showed greater BS variation but not significantly so (estimate 

0.79; p 0.060; 95% CI -0.03 to 1.61). However, 12-15 year females were significantly more 

variable than 12-15 year males (estimate 1.53; p 0.000; 95% CI 0.75 to 2.30). Interestingly, 

though not significant, the age-sex interaction effect was negative for the BS variance estimate 

implying that 15-18 year females are actually less variable as compared to 12-15 year females.  

The predicted BS variance for the 12-15 year male, 12-15 year female, 15-18 year male 

and 15-18 year female groups were 21.19, 97.47, 44.66, and 84.98 respectively. The standard 

deviation of BS variation can be calculated from variance as SD=√variance. Further, the model 

implied 95% range for such variation can be calculated as SD*2*1.96. Therefore, the SD (95% 

range) for the 12-15 year male, 12-15 year female, 15-18 year male and 15-18 year female 

groups BS variation are ±4.60 mm (±18.04 mm), ±9.87 mm (±38.70 mm), ±6.65 mm (±26.07 

mm), and± 9.21 mm (±36.13 mm) respectively. Thus females exhibited greater individual 

heterogeneity in pain than males, and this variation was greatest for 12-15 year females. 
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Within-subject (WS) variation in pain perception 

The WS variance function captures the occasion-to-occasion variation in pain intensity 

as a function of the evolution of time and covariates (age, sex and age-sex effect), and provides 

insight into each subject's fluctuation in pain intensity around his/her individual mean pain 

trajectory. We also examined interaction of the covariates with linear and quadratic time terms 

but the estimates were not significant and there was no improvement in the model fit. 

The results show that the degree of WS variation exhibited by the typical 12-15 year 

male was significantly related to both the linear (estimate 0.55; p 0.000; 95% CI 0.40 to 0.70) 

and quadratic (estimate -0.06; p 0.000; 95% CI -0.07 to -0.04) components of the time trend. 

Compared to a typical 12-15 year male, the 15-18 year male showed greater WS variance at all 

occasions, but this difference was not significant (estimate 0.22; p 0.289; 95% CI -0.19 to 0.63). 

However, the 12-15 year female group showed significantly more variable daily pain 

experience (estimate 0.69; p 0.000; 95% CI 0.31 to 1.07) as compared to the 12-15 year male 

group. Though not significant, it is interesting to note that in contrast to the BS variance, the 

age-sex interaction effect for the WS variance is positive (estimate 0.30; p 0.270; 95% CI -0.24 

to 0.84) which implies that a typical 15-18 year female has greater daily variation in pain as 

compared to the 12-15 year female.  

The predicted population-averaged WS variances for the 12-15 year male, 12-15 year 

female, 15-18 year male and 15-18 year female groups were 31.96, 63.84, 40.86, and 107.66 

respectively. The corresponding SD (95% range) for 12-15 year male, 12-15 year female, 15-

18 year male and 15-18 year female groups WS variation are ±5.50 mm (±21.59 mm), ±7.78 

mm (±30.51 mm), ±6.22 mm (±24.39 mm), and ±10.11 mm (±39.63 mm) respectively. 
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In other words, the typical female has a more erratic series of pain measurements about 

her individual quadratic trajectory than does the typical male; and this variation was greatest 

for 15-18 year females. 

Association between subjects’ mean pain levels and their WS variability  

The linear random-location effects are positively associated with the WS variance and 

so, having adjusted for all the covariates, subjects with higher mean pain scores tend to have 

higher pain variability (estimate 0.25; p 0.001; 95% CI 0.10 to 0.39). Finally, the BS random-

scale standard deviation which allows for individual-to-individual heterogeneity in individuals' 

WS variances remains significant even after adjusting for the time, age and sex of the individual 

suggesting that there is an unexplained component to the within-subjects' pain variability 

(estimate 0.56; p 0.001; 95% CI 0.430 to 0.688). Thus some individuals present more erratic 

series of pain measurements than others and this is not simply explained by their age and gender 

nor is it simply related to their overall mean level of pain. 

Intra-class correlation coefficient (ICC) 

Based on the predicted BS and WS variances, the ICC can be calculated for each group. 

The ICC represents the proportion of overall variation in unexplained pain perception which 

lies between subjects11. It is also the expected residual correlation between two observations 

from the same subject and therefore quantifies the remaining clustering or dependency in the 

data.16 The ICC, derived as the BS variance divided by the sum of the BS variance and WS 

variance, is calculated for the 12-15 year male, 12-15 year female, 15-18 year male and 15-18 

year female groups as 0.42, 0.62, 0.54, and 0.46 respectively. Thus, while there was substantial 

residual clustering for all four groups, subjects in the 12-15 year female group showed 

disproportionately high variation in the overall average levels of pain experienced coupled with 

disproportionately low fluctuation in daily pain perception.  
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Discussion 

In this study, we examined individual pain trajectories as well as BS and WS variation 

in orthodontic pain perception using the recently proposed mixed-effects location scale model.  

Our results support the claims made by recent studies which reported that age and sex 

of individual has a significant influence on orthodontic pain perception4; and that substantial 

individual variation exists in orthodontic pain perception among adolescents.2,5,6 However, 

unlike these previous studies which made generalized claims regarding these effects, we were 

able to explicitly explore the simultaneous effect of age and sex of individual on all three areas 

of interest i.e. mean average trajectories, BS variation, and WS variation.  

The mean (average) estimates showed that pain started almost immediately (within 1 

hour) after orthodontic force application, a finding in agreement with previous studies.1,2 The 

observed trend of pain was not linear but followed a non-linear approximately quadratic profile 

(inverted ‘U’ shape),  supporting the findings of a recent study which claimed that orthodontic 

pain follows a quadratic trend.4  

Generally it is claimed that peak orthodontic pain level is reached on day one morning 

or 24 hours after orthodontic separator placement.1,2,5,6 However, this claim made by authors 

of previous studies has an inherent flaw, as rightly pointed out by the authors of a recent study.7 

Since none of the previous studies reported the actual time of force application and the 

subsequent time of pain assessment, therefore, it is difficult to ascertain the actual time of peak 

intensity level. After controlling for this factor of variation i.e. time (standardizing time for 

force application and reporting of pain assessment in hours), our results shows that there is a 

plateau of peak pain intensity level ranging from 24 hours to 48 hours of orthodontic force 

application and interestingly, the time taken to reach peak pain intensity level after orthodontic 
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force application is significantly longer for 15-18 year female (after 36 hours) as compared to 

the other three groups (before 36 hours). 

The observed mean average pain trend perhaps reflects the underlying biological 

responses to orthodontic force application. Interleukin-1β (IL-1 β), the first mediator to regulate 

bone remodelling in response to orthodontic force, also plays a significant role in orthodontic 

pain response by inducing the secretion of pain producing pro-inflammatory mediators.1 

Studies1,2 have demonstrated that the IL-1 β concentration increases after 1 hour of orthodontic 

force application; reaches a peak after 24 hours; and subsequently declines to about the normal 

level after around one week. However, these studies assessed the concentration of IL-1 β at 

only 24 hours around the plateau of peak pain intensity observed in our study. Perhaps future 

studies can provide better insight into the biological mediators of pain response by assessing 

the concentrations of these substances at more frequent intervals around the 24 hours’ time 

period. 

Females were associated with higher mean pain perception compared to males. 

However a significant positive age-sex interaction effect revealed that the effect of sex on pain 

was mediated by the age of subjects. As a result, 15-18 year female group experienced the most 

pain whereas the 12-15 year male group reported least mean pain response. 

Various bio-physiologic and psychosocial factors can contribute to age and sex 

differences in pain perception during adolescence.17,18 Evidence shows that in response to 

painful stimulus, females have significantly greater activation of the contralateral prefrontal 

cortex, the contralateral insula and the thalamus compared with males, suggesting an inherent 

sexual dimorphism in response to pain.19 Further, the difference for pain perception among 

male and female subjects changes significantly after puberty/menarche onset (initiation of 

menstrual cycles) due to complex central/peripheral interactions between pain specific 

neurotransmitters and ovarian hormones.18,20  
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In our study, the difference in the mean pain perception as well as the BS and WS 

variance amongst 12-15 year females and 15-18 year females could be possibly explained by 

the expected difference in the number of females with menarche onset in these two age groups, 

as pointed out by the authors of recent orthodontic pain study.4 The median age for menarche 

onset is 12.43 years and nearly 90% of girls are menstruating by the age of 13.75 years.21 

Therefore, females in the 12-15 year age group were more heterogeneous in terms of menarche 

onset as compared to those in the 15-18 year age group where almost all females could be 

expected to have positive menarche onset. 

The heterogeneity in number of females with menarche onset in the 12-15 year female 

group might explain the highest between-subject variation observed for that group if females 

who achieved menarche onset did indeed experience significantly greater pain as compared to 

females who had not yet started their menstruation periods. The lower between-subject 

variation among 15-18 year females shows that almost all older female adolescents behaved 

similarly in terms of pain perception, perhaps owing to the similar positive status of menarche 

onset. 

In contrast to the between-subject variation, 15-18 year-old females showed the greatest 

variation in within-subject daily fluctuation of pain. The large WS variance observed for these 

subjects might again be explained by the greater number of females with positive menarche 

onset in this group as compared to 12-15 year female group. Evidence suggests that hormonal 

fluctuation during the menstrual cycle modulates pain perception. A recent study22 which 

investigated the effect of female sex hormone on pain perception in healthy, normally 

menstruating female during the three phases of the menstrual cycle: early follicular, ovulatory, 

and mid-luteal, demonstrated that the conditioned pain modulation effect of sex hormones 

varies across the menstrual cycle.  
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Further, various psychological factors such as depression, anxiety, poor body image, 

and low self-esteem, which are associated with increased pain during adolescence, have 

significant and substantial influence primarily on post-pubertal girls.23  A population based 

study investigated the depression prevalence and factors influencing the depression in 

adolescence (11-18 years age) and reported higher prevalence of depression in girls than in 

boys and a greater influence of pubertal onset on the severity of depressive symptoms in girls 

than in boys.24 Further, the study’s findings revealed that poor body image and low self-esteem 

are crucial components in the development of depression and that the intensity of these risk 

factors is strongest for post-pubertal girls.24 Since these emotional and psychological factors 

are characterised by subjective daily variation, this could also have resulted in the greater day-

to-day variation in pain perception observed in the 15-18 year female group.  

Another possible reason for the large daily fluctuation in pain perception observed in 

the 15-18 year female group might be due to the higher analgesic consumption reported by 

these subjects. Since there was no set protocol for the dose, frequency or timing of analgesic 

consumption, longitudinal within-subject variation in these factors might be driving the large 

day-to-day variation in pain intensity level seen in this group. 

Lastly, the significant residual individual-to-individual differences in WS variability 

show that there remains an unexplained component to WS pain variability even after adjusting 

for age and sex. Thus, there remain un-modelled factors which are producing substantial 

individual differences in day-to-day pain variation. This finding supports the previous study 

which concluded there are multiple factors which can influence orthodontic pain perception in 

adolescents besides the age and sex of individual.4 

Clinical implications 

Efficient pain management strategy requires knowledge of not only the mean average 

pain score across subjects, but also an understanding of how pain varies between and within 
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each subject. It is generally believed that healthcare professionals lack a common 

understanding of the meanings behind the scores that pain assessment tools generate, especially 

in acute care settings.25  

In our study, results show that there are statistically significant and clinically 

meaningful individual differences in both the average profile of pain perception and in day-to-

day fluctuations around individuals’ own trends. Therefore, the common practice of evaluating 

orthodontic pain by using a single measure obtained on each day can prove misleading; and 

clinicians managing orthodontic pain should identify such differences as they emerge, and treat 

patients accordingly. 

Limitations and future directions  

Our study had several limitations. First, we were not able to control for analgesic 

consumption in our models. There was no set protocol regarding the dose, frequency and timing 

of analgesic consumption, and therefore including this factor would very likely have provided 

misleading information regarding the true relationship between pain and analgesic 

consumption due to confounding bias. The potential for bias could have been further 

exaggerated because of likely reciprocal causation between pain perception and analgesic 

consumption. In future studies, the most appropriate way to study the effect of analgesic 

consumption on pain would be to experimentally manipulate the amount of analgesic 

consumption by conducting a randomised control trial. Where only observational data is 

available there may be some utility to undertaking a simultaneous equation mixed-effects 

modelling approach wherein both pain perception and analgesic consumption are analysed as 

joint outcomes. In this approach, correlated random effects (or alternatively a single shared 

random effect) are introduced across the two outcome equations, thereby acting as a vehicle to 

capture the likely positive association between the unobserved determinants of each outcome.26 
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Typically this approach will be more convincing when so-called “instrumental variables” 

known to be predictive of one outcome, but not the other are included in the model. 

Second, we did not include the timing of the menstrual cycle in our study. Evidence 

shows that to examine the influence of female sex hormone on pain perception, a correct 

determination of menstrual cycle phase (follicular, ovulatory, and mid-luteal) should be based 

on the serum sex hormone levels analysis and not simple recording of timing of menstrual 

cycle.22 Thus, future studies in this direction might better assess the status of menstrual cycle 

on pain perception based on the analysis of serum sex hormone level rather than just timing of 

the menstrual cycle. 

A third limitation pertains to the fact that only random intercepts and not random slopes 

were included in the equation for the mean response. While subjects’ quadratic time trends are 

allowed to vary as a function of age and sex and to additionally vary in their overall average 

levels from subject-to-subject, this may not be sufficient to fully capture the different ways 

subjects’ levels of pain perception evolve over time. Including a random-slope on time would 

allow for differential rates of recovery across subjects within their age-sex groups and this 

would seem desirable to at least explore in the current application.16 However, this modelling 

extension is not currently implemented in MIXREGLS. Perhaps future studies in this direction 

would be able to include random time trends as the developers of MIXREGLS program are 

currently working on upgrading their program (personal communication with the Donald 

Hedeker) to include random slopes. Alternatively those familiar with the Bayesian estimation 

framework may choose to fit this extended mixed-effects location scale model using the Stat-

JR software27 as this has been shown to be possible in a recent application of this model to 

cross-sectional clustered data.28 

Lastly, our findings are based on pain assessment after orthodontic separators 

placement. We are not aware of any literature applying similar analyses to studies involving 
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comprehensive fixed orthodontic appliance. However, such comparisons would be of interest 

and therefore future studies should also consider fixed orthodontic treatment with 

comprehensive bands and brackets on all teeth. 

 

Conclusions 

Orthodontic pain is a dynamic process with marked individual differences in pain 

perception, both in terms of individuals’ overall average levels of pain, but importantly also in  

their daily fluctuations in pain perception. Our results shows that females experience greater 

orthodontic pain as compared to males and that this difference increases with age. 15-18 year 

female group experienced the greatest mean average pain perception as well as the highest 

daily fluctuations in pain perception; whereas the 12-15 year females showed the greatest 

between-subject variations in overall average pain perception. 
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Highlights  

 We examined pain perception among adolescents after orthodontic separator 

placement 

 A novel “mixed-effects location scale model” was used to analyse pain trajectories 

 Mean score and subject variability in pain explored as a function of age and sex 

 Subject variability included both between- and within-subject variation in pain 

 Age and sex has significant effect on mean score and subject variability in pain 
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Table 1. Demographic and Clinical Characteristics for each group (n=115) 

12-15 yrs Male group 12-15 yrs Female group 15-18 yrs Male group 15-18 yrs Female group 

Number (%) Number (%) Number (%) Number (%) 

28 (24.35%) 29 (25.22%) 28 (24.35%) 30 (26.09%) 

Age (years) Age (years) Age (years) Age (years) 

13.5 (SD=1.01) 13.2 (SD=1.04) 16.5 (SD=1.02) 16.6 (SD=0.97) 

Pain and analgesic data Pain and analgesic data Pain and analgesic data Pain and analgesic data 

Time 
VAS score  Analgesic* VAS score  Analgesic* VAS score  Analgesic* VAS score  Analgesic* 

Mean SD Count % Mean SD Count % Mean SD Count % Mean SD Count % 

1 hr 12.5 4.0 0 0% 14 9 6 20.69% 8.6 6.2 4 14.29% 11.1 5.9 4 13.33% 

2 hr 20.3 7.0 0 0% 27 13 5 17.24% 25.7 11.6 4 14.29% 26.4 14.5 9 30% 

4 hr 27.6 9.4 3 10.71% 36 19 12 41.38% 36.2 12.3 11 39.29% 42.8 19.4 18 60% 

12 hr 31.5 12.8 8 28.57% 44 14 15 51.72% 40.9 11.4 15 53.57% 51.1 12.1 25 83.33% 

24 hr 37.6 5.2 7 25% 45 16 22 75.86% 45.2 8.9 23 82.14% 53.3 18.0 30 100% 

36 hr 36.5 6.4 6 21.43% 43 21 24 82.76% 41.0 15.3 17 60.71% 56.3 23.5 25 83.33% 

48 hr 34.5 4.8 3 10.71% 45 16 22 75.86% 44.7 8.6 22 78.57% 52.8 18.3 30 100% 

72 hr 26.4 11.2 5 17.86% 43 14 15 51.72% 41.2 12.5 15 53.57% 52.5 13.4 25 83.33% 

96 hr 23.5 8.9 1 3.57% 36 19 12 41.38% 34.8 11.9 10 35.71% 42.8 19.4 18 60% 

120 hr 17.2 6.3 0 0% 25 13 3 10.34% 24.5 12.0 3 10.71% 29.6 16.4 14 46.67% 

144 hr 10.9 4.7 0 0% 11 9 6 20.69% 8.6 7.3 4 14.29% 14.9 8.8 4 13.33% 

* Analgesic count shows the number of individuals in each group who consumed analgesic at each time point   
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Table 2 Results from the mixed-effects location scale model analysis.* 

Parameter Variables Estimate 
Standard 

Error 
z p 

95% Confidence 
Intervals 

lower upper 

Mean (Average) Constant 13.52 0.98 13.75 0.000 11.59 15.45 

 Age -0.61 1.74 -0.35 0.728 -4.02 2.81 

 Sex 1.80 1.98 0.91 0.363 -2.08 5.69 

 Age-Sex -0.02 2.74 -0.01 0.994 -5.40 5.36 

 Time 9.16 0.26 35.00 0.000 8.65 9.67 

 Age*time 3.88 0.39 9.91 0.000 3.11 4.64 

 Sex*time 4.32 0.46 9.47 0.000 3.42 5.21 

 Age-Sex*time 0.36 0.18 2.03 0.042 0.01 0.71 

 Time*time -0.95 0.03 
-

37.36 
0.000 -1.00 -0.90 

 Age*time*time -0.37 0.04 -9.69 0.000 -0.44 -0.29 

 Sex*time*time -0.42 0.04 -9.63 0.000 -0.51 -0.34 

Between-subject (BS) variance Constant 3.05 0.31 9.89 0.000 2.45 3.66 

 Age 0.79 0.42 1.88 0.060 -0.03 1.61 

 Sex 1.53 0.40 3.84 0.000 0.75 2.30 

 Age-Sex -0.93 0.55 -1.67 0.094 -2.01 0.16 

Within-subject (WS) variance Constant 2.39 0.20 12.13 0.000 2.01 2.78 

 Age 0.22 0.21 1.06 0.289 -0.19 0.63 

 Sex 0.69 0.19 3.57 0.000 0.31 1.07 

 Age-Sex 0.30 0.27 1.10 0.270 -0.24 0.84 

 Time 0.55 0.07 7.34 0.000 0.40 0.70 

 Time*time -0.06 0.01 -7.64 0.000 -0.07 -0.04 

Association Linear association 0.25 0.08 3.24 0.001 0.10 0.39 

Scale Sigma 0.56 0.07 8.51 0.000 0.430 0.688 

* Variable coding: Age (0=12-15 years; 1=15-18 years), Sex (0=Male; 1=Female). The Constant (Intercept) repersents Time '0' corresponding 
to the first wave of data i.e. 1 hour after orthodontic separator placement. The BS and WS variance estimates are on the log scale. The log-

likelihood statistic for this model was -4160.6172. 
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Figure 1 Individual pain trajectories for each group 
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Figure 2 Predicted mean pain trajectories for each group 
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Online supplementary materials 

 

A. Methodology 

Section A1 briefly reviews the standard two-level random-intercept mixed-effects model for 

continuous response repeated measures data. Section A2 then reviews the mixed-effects 

location scale version of this model. Section A3 presents the specific mixed-effects location 

scale model used in the current study. Section A4 describes the model fit and run-in for the 

current study. Sections A1 and A2 are adapted from Leckie (2014) which itself is adapted 

from Hedeker and Nordgren (2013). 

 

A1. Mixed-effects model 

Let 𝑦𝑖𝑗 denote the continuous response measurement for subject 𝑖 (𝑖 =  1,2, . . . , 𝑁) at 

occasion 𝑗 (𝑗 =  1,2, . . . , 𝑛𝑖). The standard two-level random-intercept mixed-effects model 

can then be written as 

 

 𝑦𝑖𝑗 = 𝐱𝑖𝑗
T 𝛃 + 𝜐𝑖 + 𝜖𝑖𝑗, (1) 

 𝜐𝑖~𝑁(0, 𝜎𝜐
2), (2) 

 𝜖𝑖~𝑁(0, 𝜎𝜖
2), (3) 

 

where 𝐱𝑖𝑗 is a vector of covariates, 𝛃 is the associated vector of coefficients, 𝜐𝑖  is the 

random-intercept effect, and 𝜖𝑖𝑗 is the residual. The covariates may be time varying or time 

invariant. The random-intercept effect and residual are assumed normally distributed with 

zero means and constant variances. The homogeneous between-subject (BS) variance 𝜎𝜐
2 

measures the variability in subjects' mean responses, having adjusted for the covariates. The 
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homogeneous within-subject (WS) variance 𝜎𝜖
2 measures the variability in subjects' 

measurements about their adjusted mean responses.  

The mixed-effects model can be fitted in Stata using the xtreg command with the mle 

option, or by using the mixed command (Rabe-Hesketh and Skrondal, 2012). 

 

A2. Mixed-effects location scale model 

The mixed-effects location scale model proposed by Hedeker and Nordgren, (2013) may be 

viewed as an extended reparameterized version of the above model and can be written as 

 

 𝑦𝑖𝑗 = 𝐱𝑖𝑗
T 𝛃 + 𝜎𝜐𝑖𝑗

𝜃1𝑖 + 𝜖𝑖𝑗 , (4) 

 log (𝜎𝜐𝑖𝑗

2 ) = 𝐮𝑖𝑗
T 𝛂, (5) 

 log (𝜎𝜖𝑖𝑗

2 ) = 𝐰𝑖𝑗
T 𝛕 + 𝜏𝑙𝜃1𝑖 + 𝜏𝑞𝜃1𝑖

2 + 𝜎𝜔𝜃2𝑖, (6) 

 𝜃1𝑖~𝑁(0,1), (7) 

 𝜃2𝑖~𝑁(0,1), (8) 

 𝜖𝑖~𝑁 (0, 𝜎𝜖𝑖𝑗

2 ), (9) 

 

where we refer to Equation 4, Equation 5 and Equation 6 as the mean function, the BS 

variance function, and the WS variance function, respectively. 

The mean function (Equation 4) is the same as that in the standard model (Equation 

1), except that the random-intercept effect, now referred to as the random-location effect, is 

parameterized in standardized form, 𝜎𝜐𝑖𝑗
𝜃1𝑖. The first term 𝜎𝜐𝑖𝑗

 denotes the square root of the 

BS variance, while 𝜃1𝑖 denotes the standardized random-location effect, 𝜃1𝑖~𝑁(0,1). Note 

that 𝜎𝜐𝑖𝑗
 is subscripted by 𝑖 and 𝑗 to indicate that its value may change across subjects and 
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occasions. The influence of 𝜃1𝑖 on 𝑦𝑖𝑗 may therefore be amplified or dampened by the 

magnitude of 𝜎𝜐𝑖𝑗
. 

The BS variance function (Equation 5) models the BS variance 𝜎𝜐𝑖𝑗

2  as a log-linear 

function of a second vector of subject- or occasion-level covariates 𝐮𝑖𝑗 where 𝛂 denotes the 

associated vector of coefficients. 

The WS variance function (Equation 6) models the WS variance 𝜎𝜖𝑖𝑗

2  as a log-linear 

function of a third vector of subject- or occasion-level covariates 𝐰𝑖𝑗 where 𝛕 is the 

associated vector of coefficients. A quadratic subject-level association is allowed between the 

unexplained location and scale variability by entering 𝜃1𝑖 and its square 𝜃1𝑖
2  into the WS 

variance function as latent covariates with regression coefficients 𝜏𝑙 and 𝜏𝑞 to be estimated. 

This additional flexibility is useful when the response exhibits floor or ceiling effects, as we 

then expect a concave relationship between subjects' variances and means whereby subjects 

with very low or very high means have near-zero WS variances, while subjects with means 

closer to the middle of the response scale have higher WS variances. A quadratic association 

is better able to capture such concavity. Finally, a new random effect, denoted 𝜃2𝑖 and 

referred to as the standardized random-scale effect, is included to account for unexplained 

variation in the WS variance above and beyond the contribution of the covariates. This 

random effect is assumed normally distributed with zero mean and constant variance 𝜎𝜔
2 . 

When 𝐮𝑖𝑗 and 𝐰𝑖𝑗 each include only a constant and when 𝜏𝑙 = 𝜏1 = 𝜎𝜔 = 0, the 

above mixed- effects location scale model simplifies to a reparameterized version of the 

standard two-level random-intercept mixed-effects model with homogeneous variances 

presented in Section A1. 

The use of log-link functions ensures positive variances. However, it makes parameter 

interpretation less straightforward. In particular, the covariates have multiplicative rather than 
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additive effects on the variances. In the examples we plot the predicted variance functions to 

aid their substantive interpretation. This proves especially helpful in interpreting quadratic 

random-location effects on the WS variance. 

As in standard mixed-effects models, the random effects normality assumptions may 

not necessarily hold and it is prudent to check their plausibility, for example, by inspecting 

quantile-quantile (Q-Q; normal scores plots) or other graphical plots post-estimation. 

The mixed-effects location scale model can be fitted in the MIXREGLS software 

(Hedeker and Nordgren, 2013) which we choose to call from within Stata using the 

runmixregls command (Leckie, 2014). 

 

A3. Orthodontic pain 

In the current paper, we consider the following model for pain 

 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖 + 𝛽4𝑡𝑖𝑗 + 𝛽5𝑥1𝑖𝑡𝑖𝑗 + 𝛽6𝑥2𝑖𝑡𝑖𝑗 + 𝛽7𝑥1𝑖𝑥2𝑖𝑡𝑖𝑗 + 𝛽8𝑡𝑖𝑗
2  

 +𝛽9𝑥1𝑖𝑡𝑖𝑗
2 + 𝛽10𝑥2𝑖𝑡𝑖𝑗

2 + 𝜎𝜐𝑖𝑗
𝜃1𝑖 + 𝜖𝑖𝑗, (10) 

 log (𝜎𝜐𝑖𝑗

2 ) = 𝛼0 + 𝛼1𝑥1𝑖 + 𝛼2𝑥2𝑖 + 𝛼3𝑥1𝑖𝑥2𝑖, (11) 

 log (𝜎𝜖𝑖𝑗

2 ) = 𝜏0 + 𝜏1𝑥1𝑖 + 𝜏2𝑥2𝑖 + 𝜏3𝑥1𝑖𝑥2𝑖 + 𝜏4𝑡𝑖𝑗 + 𝜏5𝑡𝑖𝑗
2 + 𝜏𝑙𝜃1𝑖 + 𝜎𝜔𝜃2𝑖, (12) 

 𝜃1𝑖~𝑁(0,1), (13) 

 𝜃2𝑖~𝑁(0,1), (14) 

 𝜖𝑖~𝑁 (0, 𝜎𝜖𝑖𝑗

2 ), (15) 

 

where in the mean function, the pain VAS score 𝑦𝑖𝑗 is modeled in terms of a quadratic 

function of time 𝑡𝑖𝑗 (in days where 0 = bassline), age 𝑥1𝑖 (0 = 12-15 year-olds; 1 = 15-18 

year-olds), and sex 𝑥2𝑖 (0 = male; 1 = female) and their interactions to allow young, old, 
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male, and female subjects to differ in baseline pain and to recover at different rates. The 

random-location effect 𝜎𝜐𝑖𝑗
𝜃1𝑖 allows for subject intercept heterogeneity above and beyond 

that explained by the covariates. The log of the BS variance 𝜎𝜐𝑖𝑗

2  is modeled as a function of 

age and sex and their interaction to allow the four groups subject groups to be differentially 

variable in terms of their mean pain scores, having adjusted for the mean differences between 

these groups. The log of the WS variance 𝜎𝜖𝑖𝑗

2  is modeled as a function of the same two 

covariates and their interaction, but also the quadratic function of time, to allow the 

variability of a subject's pain scores about their individual trajectories to differ across the four 

groups and to change over time. The location effect is entered into the WS variance function 

to allow for a linear subject-level association between the log of the WS variance and the 

random-location effect. The random-scale effect 𝜎𝜔𝜃2𝑖 allows for any remaining unexplained 

variation in WS response heterogeneity across subjects. 

The time of peak pain intensity level 𝑡𝑖
p
 is given by differentiating (10) w.r.t. time, 

setting the resulting equation to zero, and then rearranging. The resulting expression is given 

by 

 

 𝑡𝑖
p

= −
1

2
×

𝛽4+𝛽5𝑥1𝑖+𝛽6𝑥2𝑖+𝛽7𝑥1𝑖𝑥2𝑖

𝛽8+𝛽9𝑥1𝑖+𝛽10𝑥2𝑖
, (16) 

 

and is a function of age and sex. 

 

A4. Model fit/run-in 

A progressive model building strategy was adopted using likelihood ratio tests to guide 

choice of the final model. Decisions to include/exclude variables in non-nested model 

comparisons were guided by the Akaike information criterion (AIC) and Bayesian information 
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criterion (BIC) wherein models with smaller AIC and BIC values were preferred. To further 

ascertain the fit of the final model, the fitted and observed mean VAS score trajectories were 

plotted. The plausibility of the random effects normality assumptions were checked via 

inspection of histograms and quantile-quantile (Q-Q; normal scores plots) plots of their 

empirical Bayes predicted values. 

The mixed-effects location scale model employs full likelihood estimation and so 

provides valid inference in the presence of missing responses under the missing at random 

(MAR) assumption.11 Therefore, all participants who returned the pain questionnaire on one or 

more occasions were included in the analysis.  

Time was coded with the intercept representing the initial status. Age was entered into 

the model as a dichotomized variable (12-15 year-olds coded ‘0’; 15-18 year-olds coded ‘1’). 

Sex was coded ‘0’ for males and ‘1’ for females. The model fitted to the VAS scores included 

an intercept, time effects (linear and quadratic), covariates effects (sex, age and age-sex 

interaction) and covariate-by-time (linear and quadratic) interaction effects to examine whether 

the four age-sex groups differed in terms of their initial pain severity and rate of change across 

time (linear time effect) and acceleration/declaration (quadratic time effect). Covariates were 

also specified for the BS variance and the WS variance sub-models to examine whether the 

between- and within subjects variability in pain were themselves functions of time and patient 

characteristics. 
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B. Supplementary figures 

 Figure B1 Model fit evaluation plot for each group  
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Figure B2 Histogram and Quantile-Quantile (Q-Q) plots for checking the normality 

assumption of residuals.  
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C. Supplementary Tables 

 

lower upper

 12-15  years Female - 12-15  years Male 4.32 0.46 9.47 0.000 3.42 5.21

 15-18  years Male - 12-15  years Male 3.88 0.39 9.91 0.000 3.11 4.64

 15-18  years Male - 12-15  years Female -0.44 0.60 -0.73 0.467 -1.63 0.75

 15-18  years Female - 12-15  years Female 4.24 0.41 10.34 0.000 3.43 5.04

 15-18  years Female - 15-18  years Male 4.68 0.46 10.13 0.000 3.77 5.58

 15-18  years Female - 12-15  years Male 8.55 0.59 14.57 0.000 7.40 9.70

Table C1 Results showing the pairwise compariosns for the linear trend.

Estimate
Standard 

Error
z p

95% Confidence Intervals
Comparison

 

 

lower upper

12-15  years Male 4.83 0.03 145.46 0.000 4.77 4.90

12-15  years Female 4.92 0.03 144.01 0.000 4.85 4.98

15-18  years Male 4.96 0.03 179.46 0.000 4.91 5.01

15-18  years Female 5.10 0.03 152.32 0.000 5.03 5.17

* Time ‘4’ (24 hours), Time ‘5’ (36 hours), Time ‘6’ (48 hours)  

Table C2 Time taken to reach at peak pain intesnity.*

Estimate
Standard 

Error
z p

95% Confidence Intervals
Group

 

 

lower upper

 12-15  years Female - 12-15  years Male -0.09 0.05 -1.82 0.068 -0.18 0.01

 15-18  years Male - 12-15  years Male -0.13 0.04 -3.00 0.003 -0.21 -0.04

 15-18  years Male - 12-15  years Female 0.04 0.04 0.97 0.333 -0.04 0.13

 15-18  years Female - 12-15  years Female 0.18 0.05 3.82 0.000 0.09 0.28

 15-18  years Female - 15-18  years Male 0.14 0.04 3.24 0.001 0.06 0.23

 15-18  years Female - 12-15  years Male 0.27 0.05 5.73 0.000 0.18 0.36

* Time ‘4’ (24 hours), Time ‘5’ (36 hours), Time ‘6’ (48 hours)  

Table C3 Results showing the pairwise compariosns for time taken to reach at peak pain intesnity.*

Estimate
Standard 

Error
z p

95% Confidence Intervals
Comparison

 

 


