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Abstract

We consider Diophantine quintuples {a, b, c, d, e}, sets of integers with a < b < c < d <

e the product of any two elements of which is one less than a perfect square. Triples of
the first kind are sets {A,B,C} with C ≥ B5. We show that there are no Diophantine
quintuples {a, b, c, d, e} such that {a, b, d} is a triple of the first kind.

1 Introduction

Define a Diophantine m-tuple as a set of m distinct positive integers a1 < a2 < · · · < am
such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m. For example, the set {1, 3, 8, 120}
is a Diophantine quadruple. Throughout the rest of this article we simply refer to m-tuples,
and not to Diophantine m-tuples.

One may extend any triple {a, b, c} to a quadruple {a, b, c, d+} where

d+ = a+ b+ c+ 2abc + 2rst, r =
√
ab+ 1, s =

√
ac+ 1, t =

√
bc + 1,
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by appealing to a result by Arkin, Hoggatt and Straus [2]. Such a quadruple {a, b, c, d+} is
called a regular quadruple. Arkin, Hoggatt and Straus conjectured that all quadruples are
regular. Note that any possible quintuple {a, b, c, d, e} contains the quadruples {a, b, c, d}
and {a, b, c, e}. If the conjecture by Arkin, Hoggatt and Straus were true then d+ = d = e,
whence d and e are not distinct. This implies that there are no quintuples. A partial result
towards this is the following theorem, proved by Fujita [10].

Theorem 1 (Fujita). If {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e,
then d = d+.

When attempting to bound the number of possible quintuples {a, b, c, d, e} it is useful
to examine the relative size of b and d. To this end, Fujita [11] considered three classes of
triples {A,B,C}, namely, triples of the first kind in which C > B5; triples of the second
kind in which B > 4A and B2 ≤ C ≤ B5; and triples of the third kind in which B > 12A
and B5/3 < C < B2.

Lemma 4.2 in [6] states that every quadruple contains a triple of the first, second, or
third kind. Specifically, we have

Lemma 1 (Lemma 4.2 in [6]). Let {a, b, c, d, e} be a Diophantine quintuple with a < b <
c < d < e. Then

1. {a, b, d} is a triple of the first kind, or

2. (i) {a, b, d} is of the second kind, with 4ab+ a+ b ≤ c ≤ b3/2, or

(ii) {a, b, d} is of the second kind, with c = a+ b+ 2r, or

(iii) {a, b, d} is of the second kind, with c > b3/2, or

(iv) {a, c, d} is of the second kind, with b < 4a and c = a + b+ 2r, or

3. {a, c, d} is of the third kind, with b < 4a and c = (4ab+ 2)(a+ b− 2r) + 2(a+ b).

Lemma 1 allows us to take aim at various triples: to prove there are no quintuples one
need only prove the nonexistence of quintuples containing each of the kinds of triples listed
in Lemma 1. The aim of this paper is to show that there are no quintuples satisfying part 1
of Lemma 1.

The current best estimate1, by Elsholtz, Filipin and Fujita [6], is that there are at most
6.8 · 1032 quintuples comprising

• 5.05 · 1015 possible quintuples derived from triples of the first kind,

• 6.72 · 1032 possible quintuples derived from triples of the second kind, and

• 1.92 · 1026 possible quintuples derived from triples of the third kind.

1The second author has announced [16] that there are at most 2.1 · 1029 quintuples, and that there are
no quintuples of the kind 3 in Lemma 1.
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Attempts to bound the total number of quintuples have used a result by Matveev [14]
on linear forms of logarithms. This is not required for triples of the first kind, which greatly
simplifies the exposition. Rather, the bounds on b and d come from work of Filipin and Fujita
[7] wherein so-called gap principles between solutions of Pell’s equation are considered.

In §2 we improve Fujita and Filipin’s proof slightly. This enables us to perform compu-
tations in §3 that prove:

Theorem 2. There are no Diophantine quintuples {a, b, c, d, e} such that {a, b, d} is a Dio-
phantine triple with d > b5.

Independently of this work, Cipu [5] has considered the same problem. Indeed, his
Theorem 1.1 states that “the quadruple left after removing the largest entry of a Diophantine
quintuple contains no standard triple of the first kind”. This is somewhat stronger than our
Theorem 2, though either result may be used to eliminate the triples in part 1 of Lemma 1.
Moreover, Cipu shows [5, Thm. 1.1] that there are at most 1031 quintuples.

We were only made aware of this result when this paper was essentially completed.
Elements of Cipu’s paper, such as the reliance on inequalities of the form (2) and (7) are
similar to ours. Our computational approach is different, and, in particular, our Algorithm
2 introduces some new ideas to the field.

Acknowledgements

We are grateful to Mihai Cipu, Andrej Dujella, Christian Elsholtz, Alan Filipin, Yasutsugu
Fujita, Alain Togbé for useful discussions and for making us aware of the work by Cipu.

2 Bounds considered by Filipin and Fujita

If a double or a triple cannot be extended to form a quintuple, we need not consider them
in what follows. We call such doubles and triples discards. Many discards are known; we
require only a few. The first, due to Fujita [9] (see also [3]), that shows that the double
{k, k + 2} is a discard. In addition, Filipin, Fujita and Togbé [8, Cor. 1.6, 1.9] proved that
the following are discards for k ≥ 1

{3k2 − 2k, 3k2 + 4k + 1}, {2(k + 1)2 − 2(k + 1), 2(k + 1)2 + 2(k + 1)},
{(k + 1)2 − 1, (k + 1)2 + 2(k + 1)}, {k, 4k + 4}. (1)

For the following arguments we make frequent reference to Lemma 2.4 and (2.9) in [7].
These rely on a property denoted as ‘Assumption 2.2’ concerning the relations between the
indexed solutions of the Pellian equations associated with the hypothetical quintuple. For
ease of exposition, we do not write out the details of Assumption 2.2; we merely note that,
for its application to quintuples containing triples of the kind in 1 in Lemma 1, it is satisfied
as per [7, p. 303].

We also note, for the convenience of the reader, that a′ in [7, (2.9)] is defined as a′ =
max{b − a, a}. We assume that {a, b, d} is a triple with d > b5. We consider two cases
according as b ≥ 2a or b < 2a.

3



2.1 When b ≥ 2a

Combining (2.9) and Lemma 2.4(i) in [7] we have

0.178a1/2d1/2

4b
<

log(4.001a1/2(b− a)1/2b2d) log(1.299a1/2b1/2(b− a)−1d)

log(4bd) log(0.1053ab−1(b− a)−3d)
. (2)

It is easy to see that both factors of the numerator and the second factor of the denominator
are increasing in a for b ≥ 2a. Hence, given that 1 ≤ a ≤ b/2, the right side of (2) is bounded
above by

log(2.0005b3d) log(1.8371d)

log(4bd) log(0.1053b−4d)
. (3)

It is easy to see that (logA1x)(logA2x)/((logA3x)(logA4x)) is decreasing in x if A1 > A3

and A2 > A4. Since b ≥ 2 it follows that (3) is decreasing in d, and since d > b5, we have
from (2) that

b3/2 <
4

0.178

log(2.0005b8) log(1.8371b5)

log(4b6) log(0.1053b)
. (4)

We find that (4) holds provided that b ≤ 50; in [7] the bound derived is b ≤ 52. Thus we
need only consider those pairs {a, b} for which 1 ≤ a ≤ b/2 ≤ 25. We enumerate these pairs,
and test them against the inequality in (2). After discarding pairs containing {k, k+2} and
those doubles in (1) we find that the only possibilities are

{1, 15}, {1, 24}, {1, 35}, {2, 24}, {3, 21}. (5)

For each of these five doubles we insert values of a, b into (2), and solve for d. For example,
with {1, 15} we find that d ≤ 5.2 · 106. We now search for all those d with 155 < d ≤ 5.2 · 106
such that {1, 15, d} is a triple. We find only one such value of d, namely d = 2030624.
We now search for all those c ∈ (15, 2030624) such that {1, 15, c, 2030624} is a quadruple.
This yields exactly one value of c, namely c = 32760. Thus, one possible quadruple is
{1, 15, 37260, 2030624}. We continue in this way with each of the doubles in (5). We find
that the only possible quadruples are

{1, 15, 37260, 2030624}, {1, 24, 148995, 14600040}, {1, 35, 494208, 70174128}. (6)

Note that each of the quadruples in (6) has a = 1. The proof of Lemma 2.4(i) in [7],
that leads to the ‘0.178’ on the right side of (2) can be improved significantly if it is known
that a = 1. Indeed, if one there assumes n ≤ 0.45b−1c1/2 one obtains (2.4) in [7] as well
as the desired contradiction, as before. Thus, for a = 1 one may replace the ‘0.178’ in (2)
by ‘0.45’. It now follows that the double {1, 15} when extended to a triple {1, 15, d} must
have d < 2 · 106, whence we eliminate the first quadruple in (6). The other two quadruples
are similarly eliminated. We conclude that there are no quintuples with b ≥ 2a for which
{a, b, d} is a triple of the first kind.
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2.2 When b < 2a

In this case we combine (2.9) and Lemma 2.4(iii) in [7] and obtain

a−1/2d1/8

4
<

log(4.001ab2d) log(1.299a1/2b1/2(b− a)−1d)

log(4bd) log(0.1053db−1(b− a)−2)
. (7)

We need a lower bound on b− a: given Fujita’s result that {k, k+2} cannot be extended to
a quintuple, we can write b − a ≥ 3. Since, again, the logarithms dependent upon a in (7)
are increasing with a, and since a+ 3 ≤ b < 2a we rewrite (7) as

b1/8 < 4
log(4.001b8) log(0.433b6)

log(4b6) log(0.4212b2)
. (8)

We find that (8) is true provided that b ≤ 4.69 · 109. In fact, we can squeeze a little more
out of the argument. Let α ∈ [1/2, 1) be a parameter to be chosen later. Then, for a ≤ αb
we have

b1/8 < 4α1/2 log(4.001αb
8) log(1.299α1/2b6(1− α)−1)

log(4b6) log(0.4212b2)
, (9)

whereas, for a > αb we have

b1/8 < 4
log(4.001b8) log(0.433b5)

log(4b6) log(0.1053b2(1− α)−2)
. (10)

Therefore b1/8 is less than the maximum of the right sides in (9) and (10). We find that
choosing α = 0.9862 gives b ≤ 1.3 · 109. Filipin and Fujita [7] proved that b < 1010: while
our improvement is only slight, it makes the problem computationally tractable.

Filipin and Fujita proved also that d < b9; this was improved in [6] to d < b7.7. We use
the weaker bound d < b8 for computational convenience.

We hope now to search for possible quadruples {a, b, c, d} with {a, b, d} a triple of the
first kind. We first enumerate all double {a, b} with a ≥ 1, a+ 2 < b < 2a and b ≤ 1.3 · 109.
For each such doubles we enumerate all c where c < b8 such that {a, b, c} is a triple. We now
appeal to Theorem 1 and compute d = d+. If b5 < d < b8 and a, b and d satisfy inequality
(7), then we add the quadruples to our initial list.

2.3 Specific bounds for d

There are a little under 11 million quadruples in our initial list (details are given in §3). We
now propose a criterion against which to test these specimens.

Each quadruple {a, b, c, d} gives rise to a system of Pellian equations the solutions to
which are indexed by integers m and n — see [7, pp. 294-295]. One obtains tighter bounds
by showing that m and n must be of roughly the same size. Implicit in the proof of Lemma
2.3 in [7] is the following problem. Given {a, b, d} a triple of the first kind, and given m,n
with m ≥ 3 and n ≥ 2 we want to find good bounds on

m

n
<

log(2.0012bd) + 1

n
log(1.994a1/2b−1/2)

log(1.9942ad)
= w(a, b, d, n), (11)
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say. Note that w is decreasing with n. Let n0 be the smallest value of n such that (n0 +
1)/n0 < w(a, b, d, n0) = γ1, say.

Now let γ2 be any number satisfying γ2 > γ2
1 , and let γ3 be any number less than

1

γ1

√

1 +
1

ad

(

√

γ2ad+ 1

ad+ 1
− γ1

)

= v(a, d, γ1, γ2). (12)

Filipin and Fujita have γ1 = 1.2, γ2 = 1.45, γ3 = 0.0033. This gives them a criterion against
which to test quadruples provided that b ≥ 1.45a. We should like to take γ2 to be less than
1.45, so that we can test more quadruples. We do this in the following lemma.

Lemma 2. Assume that γ2a ≤ b < 2a, and that {a, b, d} is a triple with d > b5. Then

γ3a
1/2b−1d1/2

4
<

log(4.001ab2d) log(1.299a1/2b1/2(b− a)−1d)

log(4bd) log(0.1053db−1(b− a)−2)
. (13)

Proof. Using (12), and that fact that γ2 > γ2
1 , the proof follows exactly the same lines as in

the proof of Lemma 2.4(ii) in [7]. We complete the proof by combining the bound on n with
(2.9) in [7].

3 Computations

We first present a simple result on triples.

Lemma 3. Let a, b, r be positive integers with a < b such that ab + 1 = r2. That is, {a, b}
is a double. Then all admissible cn such that {a, b, cn} is a triple are of the form

cn =
x2
n − 1

a
=

y2n − 1

b

where cn is an integer and the xn, yn are integer solutions to

bx2 − ay2 = b− a. (14)

Proof. For cn to be admissible, we have

acn = x2 − 1

and
bcn = y2 − 1

for some integers x, y. We now simply eliminate cn.

6



We now require an efficient algorithm to identify low-lying solutions to (14). We start
by dividing throughout by g = (a, b) to get

b†x2 − a†y2 = b† − a†

and then write X = b†x, D = a†b† and N = b†(b† − a†) to get

X2 −Dy2 = N. (15)

Since D is not a square by construction, this is an example of Pell’s equation which has
been widely studied (see, for example, [13]). To find solutions, we first use Lagrange’s PQa
algorithm to find (u, v), the fundamental solution to

X2 −Dy2 = 1.

We then use brute force2 to locate all the fundamental solutions to (15). Each such fun-
damental solution potentially gives rise to two infinite sequences of solutions, one generated
by

Xn+1 + yn+1

√
D = (Xn + yn

√
D)(u+ v

√
D)

and the other by
Xn+1 + yn+1

√
D = (Xn + yn

√
D)(u− v

√
D).

Thus we have a series of recurrence relations, indexed by i that will generate all possible
solutions, which we denote

xi,n+1 = fxi(xi,n, yi,n) and yi,n+1 = fyi(xi,n, yi,n)

for i ∈ [0, I − 1].
We can now proceed as described in Algorithm 1 to find all quadruples {a, b, c, d} with

0 < a < b < c < d, a+ 2 < b < 2a, b < 1.3 · 109 and b5 < d < b8 that satisfy inequality (7).
We note that iterating over the divisors of r2 − 1 is more efficient than iterating over a

and b and testing whether ab+1 is a perfect square. When factoring r2−1 for this purpose,
we first factor r ± 1 and merge the results.

We implemented Algorithm 1 in Pari [4] (for the factoring) and in ‘C’ using GMP [12]
(for everything else). We ran it on 5 nodes of the University of Bristol Bluecrystal Phase
III cluster [1] each of which comprises two 8 core Intel Xeon E5-2670 CPUs running at 2.60
GHz. The total time used across these nodes was about 40 hours.

There are 4, 038, 480, 906 pairs {a, b} with ab + 1 a perfect square, a + 2 < b < 2a and
b ≤ 1.3 · 109. From these pairs, we obtained 12, 115, 454, 363 potential quadruples with
b < c < d and b5 < d < b8. Applying inequality (7) eliminated all but 10, 811, 817 of these
quadruples and these survivors formed our initial list.

2Theorem 6.2.5 of [15] gives upper bounds on such a brute force approach.
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for r ← 2 to 1.3 · 109 do

w ← r2 − 1;
for a|w, a < r − 1 do

b← w/a;
if b ≥ 2a or b > 1.3 · 109 then continue Solve Pell’s equation
bx2 − ay2 = b− a to get I base solutions;
for i ∈ [0, I − 1] do

x← xi,0;
y ← yi,0;

c← x2−1

a
;

while c ≤ b do
t← fxi(x, y);
y ← fyi(x, y);
x← t;

c← x2−1

a
;

end

d← a+ b+ c+ 2abc + 2r
√
ac+ 1

√
bc + 1;

while d ≤ b5 do

t← fxi(x, y);
y ← fyi(x, y);
x← t;

c← x2−1

a
;

d← a+ b+ c+ 2abc+ 2r
√
ac+ 1

√
bc+ 1;

end

while d < b8 do

if c ∈ Z and a, b, d satisfy inequality (7) then
output {a, b, c, d}

end

t← fxi(x, y);
y ← fyi(x, y);
x← t;

c← x2−1

a
;

d← a+ b+ c+ 2abc+ 2r
√
ac+ 1

√
bc+ 1

end

end

end

end

Algorithm 1: Producing the initial list.
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We now apply Algorithm 2, based on inequalities (11), (12) and (13), to prune our
initial list. To illustrate, consider the quadruple {a, b, c, d} = {8, 15, 21736, 10476753} which
survives Algorithm 1. We have

31

30
> w(a, b, d, 30)

but
32

31
< w(a, b, d, 31) = 1.0330 . . . = γ1.

Now b/a = 15/8 > γ2
1 so we will take γ2 = 15/8. We now set

γ3 = v(a, d, γ1, γ2) = 0.32555 . . .

and we find that the left hand side of (13) is 49.67 . . . and the right hand side is 2.852 . . . so
the inequality fails and we have eliminated this quadruple.

When coded in Pari, Algorithm 2 takes less than 20 minutes on a single core to determine
that none of the quadruples in our initial list is admissible. This proves Theorem 2.

for {a, b, c, d} ∈ initial list do
n0 ← smallest n such that n+1

n
< w(a, b, d, n);

γ1 ← w(a, b, d, n0);

γ2 ← max
(

b
a
, γ2

1

)

;
γ3 ← v(a, d, γ1, γ2);
if a, b, d, γ3 satisfy inequality (13) then output {a, b, c, d}

end

Algorithm 2: Pruning the initial list.
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