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Microbial keratitis (MK) is a major cause of blindness worldwide. Despite adequate

antimicrobial treatment, tissue damage can ensue. We compared the human corneal

transcriptional profile in late stage MK to normal corneal tissue to identify pathways

involved in pathogenesis. Total RNA from MK tissue and normal cadaver corneas was

used to determine transcriptome profiles with Illumina HumanHT-12 v4 beadchips. We

performed differential expression and network analysis of genes in bacterial keratitis (BK)

and fungal keratitis (FK) compared with control (C) samples. Results were validated by

RTqPCR for 45 genes in an independent series of 183 MK patients. For the microarray

transcriptome analysis, 27 samples were used: 12 controls, 7 BK culture positive for

Streptococcus pneumoniae (n= 6), Pseudomonas aeruginosa (n= 1), and 8 FK, culture

positive for Fusarium sp. (n = 5), Aspergillus sp. (n = 2), or Lasiodiplodia sp. (n = 1).

There were 185 unique differentially expressed genes in BK, 50 in FK, and 339 common

to both [i.e., genes with fold-change (FC) <−4 or ≥4 and false discovery rate (FDR)

adjusted P <0.05]. MMP9 had the highest FC in BK (91 FC, adj p = 3.64 E-12) and FK

(FC 64, adj. p = 6.10 E-11), along with other MMPs (MMP1, MMP7, MMP10, MMP12),

pro-inflammatory cytokines (IL1B, TNF), and PRRs (TLR2, TLR4). HIF1A and its induced

genes were upregulated uniquely in BK. Immune/defense response and extracellular

matrix terms were the most enriched Gene Ontology terms in both BK and FK. In the

network analysis, chemokines were prominent for FK, and actin filament reorganization

for BK. Microarray and RTqPCR results were highly correlated for the same samples

tested with both assays, and with the larger RTqPCR series. In conclusion, we found a

great deal of overlap in the gene expression profile of late stage BK and FK, however

genes unique to fungal infection highlighted a corneal epithelial wound healing response

and for bacterial infection the prominence of HIF1A-induced genes. These sets of genes

may provide new targets for future research into therapeutic agents.
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INTRODUCTION

Microbial keratitis (MK) is a major cause of blindness worldwide,
and affects an estimated 840,000 people per year in India
alone (Whitcher et al., 2001). In severe corneal ulceration,
despite adequate antimicrobial therapy, the disease can progress
resulting in corneal perforation in up to 30% and loss of
the eye in up to 25% of patients (Poole, 2002; Burton et al.,
2011). The spectrum of organisms that cause MK varies
geographically, with filamentous fungi (e.g., Fusarium sp. and
Aspergillus sp.) accounting for up to 50% of all MK in tropical
regions such as South India (Srinivasan et al., 1997). In more
temperate climates, bacterial pathogens such as Pseudomonas
aeruginosa and Streptococcus pneumoniae predominate, although
there have been some notable outbreaks of filamentary fungal
infections related to contact lens solutions in recent years (Tuft
and Matheson, 2000; Galarreta et al., 2007; Gorscak et al.,
2007).

Although some pathogens are able to produce enzymes that
can damage the cornea, much of the corneal destruction in
MK is likely due to an excessive host inflammatory response
(Steuhl et al., 1987; Gopinathan et al., 2001). Several factors are
thought to contribute to this tissue destruction and subsequent
poor clinical outcome inMK. Tissue macrophages resident in the
cornea detect pathogen-associated molecular patterns (PAMPs)
via pattern recognition receptors (PRRs) such as Dectin-1 and
toll-like receptors resulting in production of cytokines such as
IL1B and chemokines (e.g., CXCL1, CXCL5) which result in a
rapid influx of neutrophils (Leal et al., 2010; Sun et al., 2010).
Activated neutrophils attempt to destroy the pathogen through
production of reactive oxygen species and release of enzymes
such asmatrixmetalloproteinases (MMPs) but thesemechanisms
can also damage surrounding host tissue. Additional sources
of MMPs during MK include host corneal epithelial cells and
activated keratocytes, causing an excess of these enzymes that
can contribute to further tissue destruction, and even cornea
perforation (Matsubara et al., 1991). By using a transcriptomic
approach, Huang et al. investigated the entire murine corneal
response to early P. aeruginosa infection and found increased
gene expression for pro-inflammatory cytokines (e.g., IL1B,
TNF), chemokines (e.g., CXCL2), in the corneas that developed
perforation (Huang and Hazlett, 2003). Genes that protected
against apoptosis, e.g., BCL2, were also upregulated in perforated
corneas, implying prolonged survival of immune effector cells
and therefore an extended inflammatory response (Huang and
Hazlett, 2003).

Several studies have shown that host response to bacterial and
fungal pathogens infecting the cornea appear to converge into
common biological pathways as disease progresses (Karthikeyan
et al., 2011, 2013). However, there remains a paucity of
data on the specific molecular mechanisms within these
pathways in human MK. In order to better understand the
immunopathogenesis of this disease, we have investigated the
human corneal transcriptome in bacterial keratitis (BK) and
fungal keratitis (FK) compared with the normal non-infected
cadaveric cornea as the control (C), using Illumina HumanHT-
12 v4 microarrays. We then validated our findings in a separate

cohort of MK patients with an earlier stage of disease using real
time quantitative reverse transcriptase PCR (RTqPCR).

METHODS

This study was carried out in accordance with the
recommendations of the Ethical Guidelines for Biomedical
Research from The Indian Council of Medical Research. The
protocol was approved by the Ethics Committees of the London
School of Hygiene and Tropical Medicine (ref. no. 6118),
Aravind Eye Care System (application no. IRB2011003CLI), and
the Indian Council of Medical Research (ref. no. 53/2/oph/indo-
foreign/12/NCDII). All subjects and relatives of the deceased (for
inclusion of cadaver corneas) gave written informed consent in
accordance with the Declaration of Helsinki.

Participant Enrolment: Microarray Study
Adult subjects (aged ≥ 18 years) undergoing corneal
transplantation at Aravind Eye Hospital (AEH) for culture-
positive MK were enrolled into the study between January
2012 and 2013. Corneal scrapes were taken from the ulcer at
presentation for microbiological culture. Sociodemographic data
and ulcer clinical feature data were recorded into a standardized
study form on the day of or day before surgery. Immediately after
surgical excision, the corneal tissue was cut into four quadrants
through the center of the ulcer using sterile technique. Two
adjacent quadrants were placed into RNALater (Ambion, TX),
stored at 4◦C for 24 h, then −80◦C until RNA extraction. The
remaining two quadrants were formalin-fixed and paraffin wax
embedded for an additional experiment. Thirteen adult cadaver
corneas that were not eligible for corneal transplantation (due
to inadequate endothelial cell count) and with no evidence of
pathology on slit lamp examination were collected from Aravind
Eye Bank between January 2012 and 2013 and preserved in
RNAlater as described above.

Participant Enrolment: Validation Cohort
Between March 2012 and February 2013, we recruited an
independent series of consecutive patients as defined as all
patients who presented daily to the cornea clinic at AEH with
culture-positive BK or FK and with a moderate/large corneal
ulcer (defined as stromal infiltrate ≥ 3 mm in longest diameter
and extending >1/3 into the corneal stroma as assessed by slit
lamp biomicroscopy) who met the study inclusion/exclusion
criteria. Sociodemographic/clinical data were recorded in
the standardized study form. After application of a 0.5%
proparacaine anesthetic eyedrop (Aurocaine, Aurolab, Madurai,
India), a sterile Dacron swab (Puritan Medical, ME) was gently
swept across the base and leading edge of the ulcer, then
immediately placed into RNAlater. This was kept at 4◦C for 24
h, then stored at −80◦C until RNA extraction. Then a corneal
scrape was taken from the ulcer base and leading edge and
material transferred on to two glass slides and two sterile agar
plates (blood and potato dextrose agar) for microbiological
diagnosis.
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Microbiological Diagnosis
For microscopy, the slides stained with gram stain (for bacteria)
and 10% potassium hydroxide (to aid in identification of fungal
filaments) and examined by an experienced microbiologist. For
culture, blood agar plates were incubated at 37◦C for 2 days,
and potato dextrose agar plates at 27◦C for 1 week; agar
plates were examined daily for any growth. A positive culture
was defined as growth of the same organism on both solid
media, or semi-confluent growth at the inoculation site in one
solid medium matching the organism identified on microscopy;
organisms grown were identified using methods described
elsewhere (Wilhelmus et al., 1994). For fungal speciation, we used
colony morphology and characteristic microscopic appearances
of lactophenol cotton blue-stained hyphae and conidia, as
described elsewhere (Thomas, 2003; Guarner and Brandt, 2011).
Any culture and microscopy negative corneal ulcers were not
included in the study.

RNA Extraction
Total RNA was extracted from corneal tissue using TRIzol
(Invitrogen, Carlsbad, CA) after tissue was ground in liquid
nitrogen. RNA concentration was estimated by fluorescence
(Qubit, Invitrogen). Any microarray samples with <70 ng/µL
of RNA underwent speed vacuum concentration (Eppendorf
Concentrator Plus, Hamburg, Germany). RNA purity was
assessed using Agilent Bioanalyzer RNA 6000 Nanochip (Agilent
Technologies Inc., Palo Alto, CA) and samples with RNA
integrity number values ≥7 and/or intact 18S and 28S RNA were
selected for microarray. For corneal swabs from the validation
cohort, total RNA was extracted using the RNeasy micro kit
(Qiagen, Netherlands) and RNA quantity estimated using
Nanodrop ND-1000 spectrophotometer (ThermoScientific,
Waltham, MA).

Microarray Experiment
Total RNA (150 ng) from the 30 samples that passed RNA
quality control (QC) measures described above underwent
conversion to biotin labeled a-RNA (Target Amp Nano-g Biotin
a-RNA labeling kit, EpiCenter Biotechnologies, Madison, WI)
and was hybridized on to Illumina HumanHT-12 v4 beadchips
(Illumina Inc., San Diego, CA) as per the manufacturer’s
protocol (Illumina, 2010). Disease and control samples were
randomized between the three beadchips used. Fluorescence
intensities were imaged with the BeadArray reader (Illumina
Inc.). Each beadchip contained 47,231 probes covering the
whole-genome and known splice variants. The definition of a
probe in the Illumina HT-12 v4 beadchip is a 50-mer sequence-
specific oligonucleotide that is designed to recognize a single
gene with sequences originating from the National Center for
Biotechnology Information Reference Sequence (NCBI) RefSeq
Release 38 (November 7, 2009) and legacy UniGene content
(Illumina, 2010).

Themicroarray raw and normalized data are available at NCBI
Gene Expression Omnibus repository under accession number
GSE58291. QC checks for sample-independent and sample-
dependent controls were performed in GenomeStudio version
3.1 (Illumina Inc.) and data exported to Lumi in Bioconductor

in R for analysis (Du et al., 2008). Pairwise comparisons were
defined as BK or FK vs. controls, and BK vs. FK. Probe-
level raw data were divided into subsets according to these
pairwise comparisons and only samples involved in a given
comparison were included in that analysis. Data were filtered to
remove non-expressed probes (probes whose fluorescence was
not statistically significantly different to negative control probes,
i.e., p > 0.01). Variance stabilizing transformation followed
by quantile normalization were applied to reduce variation
due to non-biological differences (Lin et al., 2008b). Prior
to normalization, samples were ordered by strength of their
pairwise correlations using agglomerative hierarchical clustering
with complete linkage to identify outliers, and also principal
component analysis was used with data from all samples to
again identify outlying samples. Fold change (FC) was calculated
as the antilog2 of the difference between the mean normalized
expression intensity for each gene in each group in the pairwise
comparison.

RTqPCR Experiment
RTqPCR was used to validate the microarray findings using RNA
from a) the same microarray samples (except 1 sample with
inadequate RNA remaining, M20 in FK) and b) samples from
the validation cohort. For the RTqPCR, 48 genes were chosen
from the most differentially expressed genes in the microarray
using a literature search method to identify genes associated
with the host response to bacterial/fungal infection or MK, and
also included three genes (IFNG, IL12B, IL17A) that were not
among the microarray differentially expressed genes (DEGs)
but were considered to be of potential biological importance
in MK. Three housekeeping genes (GAPDH, HPRT1, RPP30)
were also included. Primers were selected from Taqman (Life
Technologies, NewYork, USA) gene expression assays (Table S1)
and pre-loaded into custom Taqman Low Density Array (TLDA)
cards (Life Technologies) with eight samples per card. Technical
replicates were run for eight randomly selected samples from the
validation cohort and all microarray samples. Total RNA (100 ng)
from each sample was converted to cDNA (Takara PrimeScript
1st strand cDNA synthesis kit, Takara Bio, Otsu, Shiga, Japan) in
a 20 µL reaction volume; for samples with total RNA <100 ng
(n = 25), all sample RNA was used. TaqMan (Life Technologies)
gene expression mastermix (50 µL), and cDNA were made up to
100 µL with RNAse-free water and loaded into TLDA cards, with
disease and control samples randomized to be present on each
card. RTqPCR was performed in the ABI 7900HT PCR thermal
cycler (Life Technologies). Thermal cycling conditions were 50◦C
for 2 min; 94.5◦C for 10 min (denaturation); 40 cycles of 97◦C
for 30 s then 59.7◦C for 1 min (for annealing and extension). Raw
cycle threshold (CT) data were collected in SDS RQmanager (Life
Technologies) with baseline automatically detected. For samples
run in duplicate, the arithmetic mean of CT values was used
in data analysis. CT values were normalized to GAPDH as this
housekeeping gene showed the best expression profile for all
samples. Samples were considered to have failed gene expression
if GAPDH was not expressed (i.e., CT = 40) and median CT

for all 48 genes was > 37, and were excluded from downstream
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analysis. FC was calculated as the mean normalized expression
between groups, using 2−(1CT(meangroup1)−1CT(meangroup2)).

Statistical Analysis
Wilcoxon rank-sum test was used to compare clinical data in
each group in Stata v12.1 (StataCorp, Texas, USA). Microarray
and RTqPCR pairwise comparisons were assessed for statistical
significance using empirical Bayes moderated t-tests (Limma
package in Bioconductor in R) (Smyth, 2004). P-values
were adjusted for multiple comparisons using the Benjamini-
Hochberg false-discovery rate (FDR) (Benjamini and Hochberg,
1995).

Differential Expression Analysis
Differentially expressed genes were defined as FDR-adjusted
p-value < 0.05 and FC ≥ 4 for upregulation or FC < −4 for
downregulation. For genes with multiple probes, the probe with
the greatest absolute value of the FC was selected to represent
the gene for all downstream analysis. FCs from microarray
and RTqPCR were evaluated with Spearman’s rank correlation
since data were not normally distributed, as confirmed by the
Shapiro-Wilk test (Stata v12.1, StataCorp). Genes that were non-
expressed in the microarray were not included in the correlation
calculations: IL17A and IL12B for all comparisons, and IFNG for
FK vs. C. The list of differentially expressed genes was analyzed
for gene ontology (GO) terms using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) v6.8 (Huang
et al., 2009).

Protein-Protein Interaction (PPI) Network
Analysis
A human PPI network was constructed using the HIPPIE v2.0
database (Schaefer et al., 2012) and visualized with Cytoscape
version 3.4.0 (http://www.cytoscape.org) for differentially
expressed genes unique to BK or FK as well as those genes
common to both infections. The Molecular Complex Detection
(MCODE) plugin was used within Cytoscape to assess highly
interconnected clusters of proteins using default parameters
(Degree Cutoff: 2, Node Score Cutoff: 0.2, K-Core: 2) (Bader and
Hogue, 2003). Degree was defined as the number of connections
that each gene had, and degree cutoff was defined the minimum
number of connections allowed for each gene to be included in
the network (Bader and Hogue, 2003).

Network Analysis: Miru
Normalized expression intensities for each gene expressed in the
BK, FK, and C samples in the microarray experiment (n= 24,418
probes) were used to generate a Pearson correlation matrix in
Miru (Theocharidis et al., 2009). As described above, for genes
with multiple probes, the probe with the greatest absolute value
of the FC was selected to represent the gene for the network
analysis. The three samples found to be outliers in hierarchical
clustering were excluded. A network graph was created with each
gene drawn as a “node.” The line drawn between two highly
correlated nodes (i.e., correlation coefficient ≥ 0.9) is known as
an “edge.” The Markov Cluster Algorithm (MCL) was used to
highlight natural clusters of the most highly correlated nodes,

using standard settings in Miru and smallest cluster size of four
nodes (Enright et al., 2002). Gene lists from each cluster were
explored for GO term enrichment using DAVID v6.8.

RESULTS

Socio-Demographic Features and
Microbiology
For the microarray study, a total of 47 participants were enrolled
(n = 19 controls, n = 10 BK, n = 18 FK). Corneal tissue from
16 of these participants failed initial RNA QC measures (n = 6
controls; n = 2 BK: 1 S. pneumoniae and 1 P. aeruginosa; n = 9
FK: 8 Aspergillus sp. and 1 Fusarium sp). Corneal tissue from the
remaining 30 participants passed QC and underwent microarray
analysis (n = 13 C, n = 9 FK, n = 8 BK). Hierarchical clustering
revealed three outlier specimens that were excluded from further
analyses (n= 1 BK, n= 1 FK, n= 1 C). For the validation cohort
with earlier stage of disease, 205 participants were enrolled (n =

185 FK and 20 BK); 22 of these samples failed RTqPCR QC (n =

20 FK, n= 2 BK) and were excluded.
Table 1 summarizes socio-demographic and clinical features

of the final 183 validation cohort and 27 microarray cohort
participants. The control group had an older median age (p
≤ 0.001) compared to the other microarray participants, since
most cadaver corneas were from deceased older subjects. In the
microarray cohort, the symptom duration, ulcer size and visual
acuity at presentation was similar in both bacterial and fungal
ulcers (Table 1; full details Table S2). All bacterial ulcers in the
microarray cohort had corneal perforation, compared to only
three in the fungal group; this reflects the different indications
for performing corneal transplantation in these two groups.
The validation cohort had less severe disease compared with
participants in themicroarray study, as evidenced by significantly
better visual acuity and smaller ulcer size at presentation as well
as fewer corneal perforations (Table 1).

For the microarray study, bacterial ulcers were positive for S.
pneumoniae (n= 6) and P. aeruginosa (n= 1), and fungal ulcers
grew Fusarium sp. (n = 5), Aspergillus flavus (n = 1), Aspergillus
terreus (n = 1), and Lasiodiplodia sp. (n = 1). In the validation
cohort, most ulcers were fungal (n= 165) rather than bacterial (n
= 23). The commonest fungi were Fusarium sp. (n = 69) and A.
flavus (n= 25) and among the bacterial ulcers, the most frequent
organism was S. pneumoniae (n= 8; Table 2).

Microarray Study: Global Gene Expression
Profile and Differential Expression Analysis
Many genes (>17,000) were found to be expressed in the BK
and FK vs. C comparisons (Table 3). Hierarchical clustering of
transcriptome data revealed a clear difference in infected vs.
control samples by their global gene expression profile using
differentially expressed genes only (Figure 1), but there was no
clear distinction between bacterial and fungal samples. Principal
components analysis using whole-genome level expression also
shows that control samples cluster together, but bacterial and
fungal keratitis samples are interspersed (Figure S1). Differential
expression analysis revealed a large number of genes to be
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TABLE 2 | Microbiological results of corneal ulcers.

Microarray participants Validation cohort

(n = 15) (n = 183)

BACTERIA

Streptococcus pneumoniae 6 (40%) 8 (4.4%)

Pseudomonas aeruginosa 1 (6.7%) 3 (1.6%)

Nocardia sp. – 3 (1.6%)

Streptococcus viridans – 2 (1.1%)

Aeromonas sp. – 1 (0.5%)

Staphylococcus epidermidis – 1 (0.5%)

FUNGI

Fusarium sp. 5 (33.3%) 69 (37.7%)

Aspergillus flavus 1 (6.7%) 25 (13.7%)

Aspergillus terreus 1 (6.7%) 2 (1.1%)

Aspergillus fumigatus – 4 (2.2%)

Lasiodiplodia sp. 1 (6.7%) 2 (1.1%)

Curvularia sp. – 5 (2.7%)

Exserohilum sp. – 5 (2.7%)

Alternaria sp. – 1 (0.5%)

Bipolaris sp. – 1 (0.5%)

Cylindrocarpon sp. – 1 (0.5%)

Unidentified dematiaceous fungus – 9 (4.9%)

Unidentified hyaline fungus – 13 (7.1%)

Microscopy positive (no growth) – 28 (15.3%)

TABLE 3 | Summary of expressed genes in microarray pairwise

comparisons (FK, Fungal Keratitis; BK, Bacterial Keratitis; C, Controls).

FK vs. C BK vs. C BK vs. FK

No. of expressed genes 17,753 17,434 17,120

p < 0.05 6,414 7,825 18

p < 0.01 4,119 5,384 0

No. of differentially expressed genes* 389 524 0

Up-regulated 291 361 0

Down-regulated 98 163 0

*Genes were considered differentially expressed if FDR-adjusted p-value <0.05 and fold

change was <–4 or ≥4.

differentially expressed in both bacterial and fungal ulcers
compared to control tissue (shown in Table S3).

Differentially Expressed Genes Common to
Bacterial and Fungal Keratitis
Many of the differentially expressed genes were common to both
BK and FK (n = 339; 250 upregulated and 89 downregulated;
Table S4). Using this gene list with DAVID, the most significant
GO terms enriched within the biological process category
were: the inflammatory response, the immune response, and
neutrophil chemotaxis (Table 4), however there is a high
degree of overlap of the genes that are present in these three
GO terms (i.e., high redundancy). Additional GO terms that
were significantly enriched are also shown in Table S4, and
include regulation of the immune response, cytokine response,
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FIGURE 1 | Plot of hierarchical clustering of log2 fold changes of differentially expressed genes from the final bacterial keratitis, fungal keratitis, and

control samples used in the microarray experiment (n = 27). (Color scale red = log2FC of 8, green log2FC of 14). Bacterial and fungal ulcer samples are

interspersed, but normal control tissue samples cluster together in the hierarchical cluster plot of the differentially expressed genes only. The whole-genome level

expression profile of raw data for all samples is shown in Figure S1.

phagocytosis and cell-cell adhesion terms. Within the immune
response term, the most highly upregulated cytokine genes
included IL1B (along with its activator, the inflammasome
NLRP3), Oncostatin M (OSM) and TNF, all of which had
higher fold changes in bacterial ulcers. Many chemokine genes
were upregulated (CCL2, CCL3, CCL3L1, CCL4L1, CCL5, CCL7,
CCL8, CCL13, CCL20; CXCL5, CXCL6) and were found in the
significantly enriched chemokine signaling pathway, chemokine
activity, or chemokine receptor activity terms. Multiple GO
terms associated with leukocyte chemotaxis were enriched and
included upregulated genes promoting cell adhesion (e.g., the

integrins ITGB2, ITGAM, ITGAX) or cell migration via actin
filament organization (HCK, FGR), or pseudopodia formation
(AQP9). PRR genes were also upregulated: CD209 (DCSIGN),
TLR2 (and its synergists NOD2 and MARCO), TLR4 (and co-
receptor CD14), TLR8, as well as SYK, a TLR downstream
signaling molecule. Elements of the adaptive immune system
were also among the differentially expressed genes. The gene
coding for the IL7 receptor (IL7R) present on naïve and memory
T-cells, was strongly upregulated especially in BK. There was also
indirect evidence of Th17 activity with high expression of genes
coding for the Th17-chemokine CCL2. IFN-gamma activity may
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have been occurring since we observed increased gene expression
for IFNG-induced genes (IFI30, ISG15). Serglycin, SRGN, the
main component of cytotoxic T-cell, and NK cell dense granules
also had upregulated gene expression.

The defense response term was also found to be a significantly
enriched biological processed. Genes that were expressed with
high fold changes within this pathway included those in the
complement system (C1QC; the receptor C3AR; complement
activators Ficolin 1, FCN1, and FC-gamma receptors). However,
the complement regulator gene, Complement Factor H (CFH),
was downregulated. Genes involved in multiple microbial killing
mechanisms were upregulated including those encoding
antimicrobial peptides (LYZ, DEFB4), NADPH oxidase
subunits (NCF2, NCF4, CYBB, RAC2), and phagolysosome
components (late-endosome associated SLC11A1). Genes
promoting ROS detoxification (SOD2, CD53, IFI30) and
regulating excess ROS production were also upregulated
(EFHD1).

Enriched cellular component GO terms included the
extracellular space, region or exosome, the extracellular matrix
(ECM) and the cell surface. Many MMP genes were found
within these terms (i.e., MMP1, MMP7, MMP9, MMP10,
MMP12), especially MMP9, which had the highest FC in
both BK and FK (91 FC in BK, adj p = 3.64 E-12; 64 FC
in FK, adj. p = 6.10 E-11). With regards to the corneal
epithelium, we observed upregulation of genes from the
epithelial differentiation complex such as keratins unique to the
wound-healing phenotype (KRT6B, KRT16), and antimicrobial
peptides (PI3, S100A7, S100A8, S100A9). Genes promoting
stability of the epithelium such as ASIP, (associated with
epithelial cell adhesion) and some corneal epithelial keratins
(KRT3, KRT12) were all downregulated. For the corneal stroma,
the gene for type 3 collagen, associated with wound healing, was
also upregulated (COL3A1). However, keratocyte gene markers
were downregulated, e.g., the main stromal proteoglycan
keratocan (KERA), its sulphation enzyme CHST6, and the
corneal crystallins (ALDH1A1, ALDH3A1). The myofibroblast
gene marker alpha smooth muscle actin was not a month the
differentially expressed genes in BK or FK, and the receptor
that promotes myofibroblast differentiation (TGFBR3) was
downregulated.

Differentially Expressed Genes Unique to
BK
There were 185 uniquely differentially expressed genes in the
BK samples (n = 111 upregulated, n = 74 downregulated). GO
analysis identified the three most significant main biological
processes to be the inflammatory response, regulation of
the immune system, and cytokine production, which again
contain many genes that overlap among all three GO terms
(Table 4).

The neutrophil chemoattractant CXCL2 was the most highly
upregulated chemokine gene in the BK samples. Other pro-
inflammatory genes that had increased expression included
cytokines/cytokine receptors (i.e., IL1A, IL1R2, IL6, IL18RAP).
Also, the gene for the PRR, TLR4, was upregulated.

HIF1A was one of the most highly upregulated genes in
BK that was also a transcription factor. We also detected
upregulation of multiple HIF1A-induced genes and these were
involved in cellular processes such as mitochondrial fusion
(GNG2).

Further GO analysis of the differentially expressed genes
revealed that the main molecular function was receptor binding
and cytokine activity. The main cellular component containing
most of the differentially expressed genes according to GO
analysis was the extracellular region. Examples of genes found
within this category were claudin 5 (CLDN5) the endothelial
cell tight junction, fibulin 2 FBLN2, that contributes to corneal
elasticity and also a Descemet’s membrane (DM) collagen
(COL8A1, COL8A2); all of these genes were downregulated in the
BK samples.

Differentially Expressed Genes Unique to
FK
Fewer genes were differentially expressed uniquely in FK
(n = 50; 41 upregulated and 9 downregulated). GO analysis
highlighted the main biological processes to be response
to reactive oxygen species or oxygen-containing compounds
(Table 4). The response to external stimulus GO term was
also found to be significant in the FK samples, and included
selected chemokines (e.g., CCL22, CXCL10, CXCL13) that
were all upregulated. In addition, other biological process GO
terms that were enriched included keratinization and epithelial
cell differentiation (Table S4), that contained genes known
to promote corneal re-epithelialization such as the cornified
envelope proteins (SPRR2A, SPRR2D, SPRR2F, and SPRR3;
Suprabasin, SBSN), which were all upregulated. Genes involved
in epithelial adhesion such as the tight junction component
desmoglein 1 (DSG1) were downregulated.

The GO terms enriched in the molecular function category
were mainly associated with antioxidant activity, oxidoreductase
activity or peroxidase activity, such as glutathione peroxidase
2 (GPX2) and the hemoglobin subunit genes HBA2 and HBB
that were upregulated in FK and present in many of these GO
terms.

The cellular component GO terms that were enriched
for FK were predominantly extracellular and included the
cornified envelope, extracellular vesicle/exosome and the
extracellular matrix (Table S4). Many genes overlapped between
these GO terms, including the corneal collagens (COL1A1,
COL5A1), a corneal crystallin (ALDH3A2), and an integrin
(ITGB7).

Microarray Probes Differentially Expressed
between Bacterial and Fungal Keratitis
No genes were differentially expressed in the BK vs. FK
comparison. The most upregulated gene was SMPDL3A, a
nucleotide phosphodiesterase present in macrophages, with a
fold change of 2.27 (fdr-adjusted p = 0.048) in BK samples
compared to FK. The most downregulated gene was ACVRL1,
a receptor in the TGF-beta signaling pathway, that had a fold
change of 0.41 in BK vs. FK (fdr-adjusted p= 0.014; Table S3).
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TABLE 4 | Top three most significantly enriched biological process Gene Ontology (GO) terms for microarray pairwise comparisons

GO terms Fold enrichment P-value

Genes common to both bacterial and fungal keratitis

compared to control tissue

GO:0006955: immune response 4.6 5.37 E-50

GO:0006952: defense response 4.3 2.38 E -42

GO:0002682: regulation of immune system process 4.4 9.68 E-19

Genes unique to bacterial keratitis GO:0006954: inflammatory response 6.3 3.63 E-13

GO: 0002682: regulation of immune system process 5.3 6.89 E-13

GO:0001816: cytokine production 8.7 1.82 E-12

Genes unique to fungal keratitis GO:1901700: response to oxygen-containing compound 4.3 2.9 E-06

GO:0000302: response to reactive oxygen species 11.9 1.2 E-04

GO:0009605: response to external stimulus 3.0 1.5 E-04

Analyses performed in DAVID v6.8 (all p-values unadjusted).

Network Analysis: MCODE Protein-Protein
Interaction and Network Co-expression
The protein-protein interaction network of all BK DEGs
identified the most inter-connected genes as those involved in
actin filament reorganization (BTK, FGR, HCK, LYN, PLCG2,
KIT; see Figure S2). The remaining five clusters detected mainly
genes involved in the immune response: chemokines (CCL22,
CCL5, CCR1, CXCR4, CXCL8), TLR4 signaling (TLR4, NOD2,
IRAK2, IRAK3, RIPK2), macrophage activity (CCL7, CCL2,
MMP1), the cytokine IL1B, and the final cluster contained
the transcription factor BATF (promotes Th17 differentiation)
and HLF (protects against oxidative stress). For FK, MCODE
identified only a single cluster which included the same
chemokines as detected in BK (CCL22, CCL5, CCR1, CXCR4,
CXCL8; shown in Figure S2).

Using all of the DEGs for BK and FK, a network co-expression
graph was generated in Miru which consisted of 513 nodes and
18,592 edges. The most highly connected genes formed 7 clusters
(found usingMarkov chain clustering algorithm - see Figure S2).
Exploration of GO enrichment for each cluster (detailed in
Table S5) showed several associated with the immune response,
in particular leucocyte migration (cluster 1), cytokine production
(cluster 1), or cytokine-mediated signaling pathway involvement
(cluster 4) and regulation of T-cell activation (cluster 7). Other
GO terms enriched in the remaining clusters included wound
healing terms (blood vessel morphogenesis in cluster 2; lymphoid
progenitor cell and epithelial cell differentiation in cluster 3;
cytoskeleton organization in cluster 5) as well as protein folding
associated with cytoplasmic vesicles (cluster 5).

Validation of Microarray Results Using
RTqPCR
Comparison of the RTqPCR results for BK and FK vs. control,
and vs. each other, for the microarray cohort and the validation
cohorts are shown in Tables 5, 6 respectively. For RNA extracted
from corneal tissue used in both the microarray and RTqPCR
experiments, we found a high correlation between expression
values for the genes tested (Spearman’s rho 0.90 for BK and 0.90
for FK samples, p < 0.0001 for both; Figure 2). We also found
a high correlation for FK (Spearman’s rho 0.74, p < 0.0001) and
moderate correlation for BK (Spearman’s rho 0.66, p < 0.0001)

when comparing the gene expression of the corneal tissue used
in the microarray experiment with that of corneal ulcers with
late stage disease in the validation cohort of patients (symptom
duration > 7 days; n = 12 for BK, n = 71 for FK). When
comparing early stage disease in the validation cohort (symptom
duration ≤ 7 days; n = 5 for BK, n = 94 for FK) with corneal
tissue in the microarray samples, we found the top three genes
with the highest fold changes were IL12B, IL23A and IL18 in
BK, and IL17A, IL23A and IFNG in FK (Table S6). Within the
validation cohort, there were no differentially expressed genes
when comparing early vs. late stage disease or BK with FK
samples.

DISCUSSION

In this study, we examined the main genes and biological
processes contributing to pathogenesis in human MK. Even
though we studied late stage keratitis up to 15 days post-
symptom onset, we found a prominence of innate immune
pathways among the DEGs in both BK and FK. In the microarray
experiment all of the participants with BK experienced corneal
perforation. Their corneal gene expression profile reflected this
with differential expression of many genes associated with tissue
destruction.MMP9 had the highest fold change among all DEGs
for BK in particular but also FK. The high level of MMP9
gene expression may be due its production by many cell types
including corneal epithelial cells (to aid their migration to close
the wound), activated keratocytes, infiltrating macrophages and
neutrophils, although the latter appear to be the main source
(Matsubara et al., 1991; Wong et al., 2002; Mulholland et al.,
2005; McClellan et al., 2006; Lin et al., 2008a). MMP9 in addition
to destroying Type IV collagen (the main collagen in DM)
is able to cleave and activate pro-IL1B, thereby contributing
to inflammation in the cornea (McClellan et al., 2006). Other
MMPs also had highly upregulated gene expression in both
BK and FK, including MMP10, blockade of which improves
corneal epithelial healing in diabetic corneas (Saghizadeh et al.,
2013). Pharmacological inhibition of MMPs with tetracyclines
has shown some success toward halting corneal perforation in
both animal models and human MK, and thus may prove to be
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TABLE 5 | RTqPCR differential expression analysis results using RNA from microarray study participants.

Category Gene BK vs. C FK vs. C BK vs. FK

FC FDR-adjusted p-value FC FDR-adjusted p-value FC FDR-adjusted p-value

Immune response CXCL5 5284.76 1.15E-08 1458.86 2.97E-07 3.62 9.32E-01

CXCL6 209.81 3.41E-07 151.09 1.34E-06 1.39 9.32E-01

CCL20 93.32 3.32E-04 41.04 2.43E-03 2.27 9.32E-01

CCL3L1 26.57 3.82E-03 118.69 1.09E-04 0.22 9.32E-01

CXCL1 22.06 1.02E-03 8.86 1.48E-02 2.49 9.32E-01

CXCL8 624.37 1.22E-05 191.25 1.54E-04 3.26 9.32E-01

IL1B 240.14 3.22E-05 118.04 1.59E-04 2.03 9.32E-01

TNF 17.36 4.82E-04 9.80 3.96E-03 1.77 9.32E-01

IL17A 8.20 2.36E-02 1.30 7.82E-01 6.33 9.32E-01

IL23A 7.17 3.88E-02 9.48 1.87E-02 0.76 9.32E-01

IFNG 2.01 4.46E-01 1.18 8.47E-01 1.70 9.32E-01

IL18 0.93 9.05E-01 0.76 6.80E-01 1.23 9.32E-01

IL12B 0.55 4.77E-01 3.20 1.72E-01 0.17 9.32E-01

TREM1 136.48 2.77E-06 130.90 3.07E-06 1.04 9.95E-01

CYTL1 0.00 1.15E-08 0.02 1.54E-05 0.10 4.60E-01

AQP9 904.84 3.88E-08 259.07 1.34E-06 3.49 9.32E-01

PRRs CLEC4A 79.40 8.36E-08 66.52 2.97E-07 1.19 9.32E-01

CLEC7A 1.83 3.36E-01 2.19 2.09E-01 0.84 9.32E-01

FCER1G 49.67 1.66E-06 54.44 1.34E-06 0.91 9.76E-01

FCN1 334.06 2.99E-08 271.71 1.32E-07 1.23 9.32E-01

FPR1 17.83 2.03E-04 13.38 6.31E-04 1.33 9.32E-01

SCARA3 0.09 2.33E-03 0.12 6.26E-03 0.76 9.32E-01

TLR2 9.11 1.64E-03 9.06 1.80E-03 1.00 9.95E-01

TLR4 27.73 9.41E-05 9.84 3.96E-03 2.82 9.32E-01

MARCO 159.96 2.73E-07 163.95 3.95E-07 0.98 9.95E-01

NLRP3 37.29 6.68E-05 19.28 6.17E-04 1.93 9.32E-01

ECM COL1A1 4.91 9.18E-02 16.45 4.84E-03 0.30 9.32E-01

COL5A1 10.64 2.06E-02 19.80 4.36E-03 0.54 9.32E-01

KERA 0.00 2.26E-05 0.01 1.52E-04 0.44 9.32E-01

KRT6B 29.45 3.59E-03 94.62 2.15E-04 0.31 9.32E-01

ALDH1A1 0.04 6.68E-05 0.04 4.97E-05 1.09 9.76E-01

MMPs MMP1 93.57 2.77E-06 110.98 1.70E-06 0.84 9.45E-01

MMP10 21.66 4.82E-04 10.67 4.90E-03 2.03 9.32E-01

MMP12 59.43 1.33E-04 110.09 2.58E-05 0.54 9.32E-01

MMP28 0.22 6.19E-02 0.33 1.68E-01 0.68 9.32E-01

MMP7 41.29 1.78E-04 51.95 9.64E-05 0.79 9.32E-01

MMP9 2117.89 7.16E-10 4151.54 8.34E-11 0.51 9.32E-01

ADAM19 34.91 4.58E-05 70.56 3.18E-06 0.49 9.32E-01

Anti-microbial peptides PI3 3551.44 9.58E-08 2181.29 3.95E-07 1.63 9.32E-01

S100A7 127.46 5.71E-04 427.84 4.97E-05 0.30 9.32E-01

S100A9 37.40 1.20E-04 60.60 2.58E-05 0.62 9.32E-01

DEFB4B 45.05 1.92E-03 84.92 4.65E-04 0.53 9.32E-01

Peptidase inhibitors SERPINA1 38.90 5.38E-06 46.80 2.67E-06 0.83 9.32E-01

TIMP1 3.98 5.34E-02 6.61 9.83E-03 0.60 9.32E-01

TIMP3 0.11 3.66E-03 0.29 8.72E-02 0.39 9.32E-01

BK, Bacterial Keratitis; FK, Fungal keratitis; C, Controls; PRRs, Pattern Recognition Receptors; ECM, Extra-Cellular Matrix; MMPs, Matrix Metallopeptidases.
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TABLE 6 | RTqPCR differential expression analysis results using samples from the validation cohort of microbial keratitis patients.

Category Gene BK vs. C FK vs. C BK vs. FK

FC FDR-adjusted p-value FC FDR-adjusted p-value FC FDR-adjusted p-value

Immune response CXCL5 2792.89 3.21E-16 1564.99 9.69E-21 1.78 0.947

CXCL6 205.85 7.50E-06 196.07 3.68E-08 1.05 0.957

CCL20 1320.91 3.78E-16 656.98 8.32E-20 2.01 0.947

CCL3L1 147.23 1.95E-07 180.04 2.92E-11 0.82 0.947

CXCL1 109.8 2.93E-11 84.25 8.61E-15 1.3 0.947

CXCL8 1035.87 2.15E-14 1272.22 2.15E-21 0.81 0.947

IL1B 959.19 1.44E-13 1296.59 1.32E-20 0.74 0.947

TNF 65.29 1.98E-06 74.92 1.36E-09 0.87 0.947

IL17A 201.64 1.18E-04 218.43 1.27E-06 0.92 0.957

IL23A 1238.8 3.84E-14 1665.71 2.15E-21 0.74 0.947

IFNG 138.09 8.47E-04 129.84 4.11E-05 1.06 0.957

IL18 27.5 2.84E-05 19.34 2.76E-06 1.42 0.947

IL12B 190.28 3.71E-05 182.04 3.73E-07 1.05 0.957

TREM1 206.05 8.59E-10 423.63 4.60E-17 0.49 0.947

CYTL1 0.05 6.46E-03 0.03 1.32E-04 1.46 0.947

AQP9 1167.59 1.29E-13 1591.01 9.69E-21 0.73 0.947

PRRs CLEC4A 135.1 1.03E-09 311.48 1.20E-17 0.43 0.947

CLEC7A 19.42 1.26E-04 24.77 3.23E-07 0.78 0.947

FCER1G 77.22 4.24E-09 145.47 4.32E-16 0.53 0.947

FCN1 268.45 5.35E-10 465.36 1.40E-16 0.58 0.947

FPR1 161.68 1.22E-10 253.77 2.15E-17 0.64 0.947

SCARA3 1.64 6.16E-01 0.93 9.28E-01 1.76 0.947

TLR2 270.16 1.68E-12 497.91 9.69E-21 0.54 0.947

TLR4 76.09 7.50E-06 106.71 2.72E-09 0.71 0.947

MARCO 398.21 1.38E-11 251.09 9.53E-15 1.59 0.947

NLRP3 35.68 3.72E-05 48.95 3.22E-08 0.73 0.947

ECM COL1A1 6.66 2.91E-02 3.21 9.56E-02 2.07 0.947

COL5A1 61.06 5.24E-05 47.83 2.20E-06 1.28 0.947

KERA 0.03 1.28E-02 0.04 3.57E-03 0.8 0.947

KRT6B 2101.97 6.00E-21 2937.8 3.19E-31 0.72 0.947

ALDH1A1 1.8 5.27E-01 0.74 6.80E-01 2.44 0.947

MMPs MMP1 536.49 1.39E-12 565.54 3.04E-18 0.95 0.957

MMP10 459.9 2.93E-11 405.57 1.17E-15 1.13 0.947

MMP12 2791.89 1.07E-08 717.96 3.14E-09 3.89 0.947

MMP28 12.71 1.70E-02 8.39 1.28E-02 1.52 0.947

MMP7 335.79 7.50E-09 296.06 3.26E-12 1.13 0.947

MMP9 7754.12 5.23E-22 11661.09 8.82E-33 0.66 0.947

ADAM19 156.56 7.64E-08 284.19 2.46E-13 0.55 0.947

Anti-microbial peptides PI3 4787.64 6.43E-23 5666.71 8.82E-33 0.84 0.947

S100A7 7119.6 1.44E-13 3891.02 1.90E-17 1.83 0.947

S100A9 831.43 6.43E-23 921.41 8.82E-33 0.9 0.947

DEFB4B 1421.62 6.51E-14 1208.72 2.57E-19 1.18 0.947

Peptidase inhibitors SERPINA1 134.64 1.29E-10 311.83 2.57E-19 0.43 0.947

TIMP1 3.81 1.23E-02 4.4 5.26E-04 0.87 0.947

TIMP3 1.09 9.26E-01 0.59 4.97E-01 1.84 0.947

BK, Bacterial Keratitis; FK, Fungal keratitis; C, Controls; PRRs, Pattern Recognition Receptors; ECM, Extra-Cellular Matrix; MMPs, Matrix Metallopeptidases.
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FIGURE 2 | Scatter plots showing log2 fold changes for corneal ulcer tissue analyzed using microarray vs. RTqPCR for (A) fungal keratitis and (B)

bacterial keratitis vs. controls (Spearman’s rho 0.9, p < 0.0001 for both).

a potential therapeutic target (Levy and Katz, 1990; McElvanney,
2003).

Laying down of new collagen to rebuild DM did not appear to
occur effectively in BK, since the genes for key collagen subunits
in DM (collagen type 8) were downregulated (Matsubara et al.,
1991; Hopfer et al., 2005; McClellan et al., 2006; Dyrlund et al.,
2012). BK tissue compared to FK had a higher proportion of
type III collagen gene expression vs. type I, as well as versican,
both of which contribute to a weaker wound that is more likely
to perforate as explored previously in other tissues but not the
cornea (Venkatesan et al., 2000; Eriksen et al., 2002; Andersson-
Sjoland et al., 2015). Other factors contributing to weakness of the
posterior-most layer of the cornea in BK were downregulation
of gene expression of claudin 5, a major component of tight
junctions between corneal endothelial cells, and fibulin 2, that
gives elasticity and strength to DM (Nakasaki et al., 2015).

Evidence of corneal epithelial wound healing was present
FK more than BK, with increased expression of genes in the
cornified envelope protein category. Many genes that are part
of the “epithelial differentiation complex” described in epidermal
wound healing were found to be upregulated in both BK and FK.
Genes such as PI3, SLPI, S100A7 that are part of this complex also
have antimicrobial activity. The broad-spectrum antimicrobial
activity of PI3 and SLPI proteins have led to investigation into
their potential as treatments for infectious diseases, and could
therefore be explored as adjunct antimicrobials for keratitis
(Williams et al., 2006).

Within the stroma, corneal keratocytes take on a characteristic
expression profile toward a fibroblastic phenotype during healing
(Hassell and Birk, 2010). We also observed this in both BK
and FK with downregulation of KERA, TKT, ALDH3A1, and
ALDH1A1 genes, and upregulation of wound-healing collagen
genes (COL1A1, COL3A1). Activated keratocytes differentiate

into myofibroblasts upon exposure to growth factors such as
TGFB, allowing them to express alpha smooth muscle actin and
promote wound closure (Hassell and Birk, 2010). We found
downregulation of the TGFBR3 gene in both BK and FK and
we did not detect the gene for the myofibroblast marker alpha-
smooth muscle actin among the DEGs in BK or FK. The presence
of highly upregulated IL1B gene in both BK and FK may have
played a role in inhibiting the differentiation of fibroblasts to
myofibroblasts (Mia et al., 2014).

Upregulation of specific PRRs genes gives an insight into
the balance between pro- and anti-inflammatory pathways
triggered in BK and FK. The TLR4 gene was upregulated
in BK, as previously reported in corneal scrapings from
human BK (Karthikeyan et al., 2011, 2013). However, activation
of TLRs may not always bring about a pro-inflammatory
response. Chronic TLR4 activation in bacterial infection with
persistent lipopolysaccharide produces anti-inflammatory IL10,
and in Aspergillus sp. infection results in reduced IL1B and
IL6 production (Chai et al., 2009; Gurung et al., 2015).
Further research is required into this tolerance effect and anti-
inflammatory activity of TLRs that may contribute to persistence
of pathogen in late stage keratitis.

Although innate immune response genes dominated the
BK and FK transcriptome, there were also some DEGs that
represented adaptive immune pathways, albeit with lower levels
of differential expression. The T-cell associated IL7 receptor gene
(IL7R) was more highly upregulated in BK samples than in FK.
We did not directly detect differential expression of IL17A-E, in
both BK and FK in the microarray cohort, but we did observe
a much higher lever of IL17A gene expression in early stage
FK samples compared to end-stage FK tissue in the microarray
cohort, implying a role for this cytokine in the host response
early on in fungal keratitis. Also, in BK, the early stage ulcers had
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higher expression of the IL23A and IL12B genes, which together
encode the components of the IL23 cytokine, that can maintain
Th17 cells. In addition, the IFNG gene was also expressed
more highly in early stage FK rather than late stage FK tissue.
Karthikeyan et al. also found the IFNG gene to be differentially
expressed in both early and late stage ulcers in human FK, and
correlated this to the presence of CD3+ and CD4+ cells in
the immunohistochemical analysis of late stage ulcers, implying
a Th1 response (Karthikeyan et al., 2011). Further studies are
required to more fully explore the balance of Th1 and Th17
responses in early vs. late stages of human MK.

The gene expression profile of BK compared to control tissue
showed a much greater degree of differential expression than in
FK, with higher fold changes in pro-inflammatory genes. CXCL2
gene had the highest fold change in BK among the chemokines
and this gene promotes persistent neutrophil influx even in later
stages of keratitis (Kernacki et al., 2001).

The most prominent gene signature in the BK tissue was the
upregulation of the transcription factor HIF1A and many of its
induced genes. The presence ofHIF1A appears to be essential for
successful resolution of BK in Pseudomonal infection, as siRNA
or pharmacological blockade results in less NO production,
ineffective bacterial killing and ultimately corneal perforation
in a murine model of disease (Berger et al., 2013). It acts as a
transcription factor to increase the expression of multiple genes
required for the clearance of infection, and as such has been
described as a master regulator of innate immunity; HIF1A
has a preferential effect on promoting activity of neutrophils
and macrophages, boosting their antimicrobial activities through
sustained glycolysis in hypoxic conditions. This occurs mainly
through upregulation of mitochondrial genes, which we also
detected in our BK samples. However, HIF1A has the opposite
effect on T-cells and so may suppress the adaptive immune
response (Bhandari and Nizet, 2014). Augmentation of the
activity of HIF1A or molecules within its pathway early on in the
disease process have been explored as a therapeutic option for
some infections, but is yet to be investigated in MK (Bhandari
and Nizet, 2014).

Both types of network analyses used in this study (PPI
and network co-expression analyses) complemented the findings
of the differential expression analyses, with the most highly
interconnected gene clusters being enriched for immune
response GO terms, including aspects of the innate immune
response (such as macrophage activity in BK, or TLR4 activity
and chemokine production in both BK and FK) as well as
the adaptive system (such as transcription factor for Th17 cell
differentiation in BK, and regulation of T-cell activation in both
BK and FK in the network co-expression analyses). Multiple
genes associated with actin filament reorganization were found to
be highly interconnected in BK; this may be due to the fact that
dynamic actin filament changes are required for many cellular
antibacterial functions, such as cell migration and phagocytosis
(both of which were in the list of enriched GO terms for DEGs
common to BK and FK).

In this study, we used control tissue from donors who
were significantly older than the keratitis patients, as tissue
from younger donors was prioritized for use in corneal

transplantation. Although this may have resulted in reduced cell
density, particularly keratocytes and endothelial cells, due to the
effect of age (Patel et al., 2001; Sanchis-Gimeno et al., 2005), we
believe that the marked differences in gene expression observed
between cases and controls are more likely to be driven by the
presence of infection, rather than a moderate difference in age.
Another limitation of this study is that we have focused on
the host but not the pathogen transcriptome. Keratitis-causing
pathogens can also contribute to disease pathogenesis through
evasion of host immune mechanisms, promotion of host cell
apoptosis and production of ECM-destroying enzymes (Burns
et al., 1990; Gopinathan et al., 2001). Further studies are needed
to more fully explore the host-pathogen interaction in MK. We
found a great deal of similarity in the transcriptome between
bacterial and fungal samples as demonstrated in the global gene
expression profiles. Previous studies have also found an overlap
in human gene expression responses from late stage Aspergillus
and Fusarium keratitis as well as S. pneumoniae vs. P. aeruginosa
keratitis (Karthikeyan et al., 2011, 2013). Future studies with a
larger sample size may be able to more fully elucidate the time
point at which the transcriptomic response to these infections in
the cornea begin to converge.

In summary, we have reported the human transcriptional
response of late stage corneal ulcer tissue following bacterial and
fungal infection in the human cornea, and have focused on many
genes that have not been previously explored in keratitis. Our
findings provide an initial foundation for further exploration
of some of these genes as potential prognostic biomarkers or
therapeutic targets to treat this blinding eye disease.
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