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Abstract 

 

Keywords: Acoustics, condition classification, pipes,sound intensity, signal 

processing, machine learning. 

 

“Pattern recognition is a fast-moving and proliferating discipline. It is not easy 

to form a well-balanced and well-informed summary view of the newest 

developments in this field. It is still harder to have a vision of its future 

progress”. 

Watanabe in 1972 

 

This thesis is concerned with the development and study of a pattern 

recognition system for siphon and sewer condition/defect analysis based on 

acoustic characteristics. Pattern recognition has been studied and used 

widely in many fields including: identification and authentication; medical 

diagnosis and musical modelling. Audio based classification and research 

has been mainly focusing on speech recognition and music retrieval, but few 

applications have attempted to use acoustic characteristics for underground 

pipe condition classification. Traditional CCTV inspection methods are 

relatively expensive and subjective so remote techniques have been 

developed to overcome this concern and increase the inspection efficiency. 

The acoustic environment provides a rich source of information about the 
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internal conditions of a pipe. This thesis reports on a classification system 

based on measuring the direct and reflected acoustic signals and describing 

the energy spectrum for each condition/pipe defect. A K-nearest neighbour 

classifier (KNN) and Support vector machines (SVMs) classifier have been 

adopted to train the classification system to identify sediment and pipe 

surface defects by comparing the measured acoustic signals with a database 

containing a range of typical conditions. Laboratory generated data and field 

collected data were used to train the proposed system and evaluate its ability. 

The overall accuracy of the system recognizing blockage and structural 

aspects in each of the series of experiments varies between 70% and 95%. 
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Chapter 1 

Introduction to the Project 

 

1.1 Background 

A US Environmental Protection Agency (USEPA) report titled “Distribution 

system Inventory, Integrity and Water Quality” [1] indicates that condition 

assessment of buried infrastructure is either not used or not used routinely by 

most utilities, and utilities often have limited data about their systems beyond 

what was available when the infrastructure was installed. The emphasis on 

evaluating the condition of underground pipes in the water industry has 

increased during the past decade. Therefore, it is necessary to identify a 

range of appropriate techniques that together will provide sufficient 

information on the condition of pipes to make rational and informed decisions 

about rehabilitation or replacement. A wide range of both direct and indirect 

techniques for condition assessment are now available including near field 

and remote field electromagnetic techniques, acoustic, stray current 

monitoring, visual inspection, and soil surveys [2].  

The structural condition and hydraulic capacity of water pipes deteriorate 

because of aging in which the physical condition of the pipe changes and so 

adversely affect the system performance. Therefore, the need for inspecting 

and assessing the condition of pipes in water and sewer system is increased 

in order to maintain and upgrade such system. Condition assessment of 
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pipes is challenging compared to other infrastructure assets because they 

are typically underground and mostly they are inaccessible [3]. Different pipe 

materials, the type of information and the level of accuracy required, will 

determine the type of inspection and assessment techniques used. 

Traditionally, sewer surveys were carried out by sending out inspectors to 

„see and touch‟ the defects inside those man-entry pipes along the network. 

However, this method, although highly effective at revealing the internal 

condition and providing certain clues about the external condition, suffers 

from inefficiency in terms of manpower and has significant health and safety 

risks. It is obviously impractical for the majority of the smaller pipes that make 

up the majority of the sewer network [4]. As a result, remote techniques were 

developed to overcome this concern and greatly increase the inspection 

efficiency. 

Acoustic based techniques are increasingly adopted in condition assessment 

of utilities since they provide the possibility to measure the location and 

characteristics of individual defects inside a pipe. Reflected acoustic signals 

in a sewer pipe can contain vital information about the internal conditions, the 

signals can be measured at distances sufficiently far from the target. This 

allows the measurement to be taken in a live pipe which otherwise may not 

be suitable for inspection with any other monitoring methods. But at the same 

time, acoustic sensors can pick up noise from other unwanted sources of 

sound in the vicinity of the sensor. Therefore, it is necessary to apply 

powerful signal processing techniques to distinguish the effects which can 

represent the defects from those due to harmless ones. 
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Most signal analysis instruments utilize a Fast Fourier Transform (FFT) to 

convert the signals from its time domain representation to its equivalent 

frequency domain representation and vice versa. It is thought that the 

frequency spectrum will have a characteristic shape responding to a 

particular condition pipe condition, but in most of cases this spectrum needs 

to be processed to remove undesirable noise.  

Several modelling approaches have been developed to predict and evaluate 

the occurrence of sewer blockages and failures. Sewer failures can be 

modelled following two different possible approaches: physically based or 

statistical [5]. In general physical models are used where the cost of failure is 

significant enough to justify the cost of detailed surveys, and the statistically 

derived models may be applied to less critical sewer pipes for condition 

monitoring and failure prediction. New data mining techniques proved to be 

more efficient than classic statistical tools in modelling pipe defects [6]. 

Statistical based condition modelling requires assessment data are collected 

and a methodology is available to efficiently extract information from the data. 

This automated analysis of datasets is performed to determine significant 

patterns among data. There are many data mining and pattern recognition 

technologies (Decision Tree, Rule Induction, Statistical analysis, Artificial 

Neural Networks, etc.), but not all are useful for every type of problem. Savic 

et al. [7] usedclassification tree and rule induction algorithms to derive 

statistical relationships to predict the likelihood of sewer failure for different 

pipe classes. Giustolisiet al. [8] used Evolutionary Polynomial Regression 

(EPR) to describe the relationships among data and to discover new 

knowledge about the factors influence pipe breaks. 
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This thesis reports on the development and study of the performance of a 

novel pattern recognition system that enables us to relate the condition of a 

pipe with its corresponding acoustic characteristics. The assessment of pipe 

conditions is based on measuring the direct and reflected acoustic signals 

which are excited in by a pipe with obstructions, sediments or structural 

defects. The system is capable of identifying sediment and pipe surface 

defects by comparing the measured acoustic response signals with a 

signature database covering a number of typical defects. 

 

1.2 Objectives of the Research 

The main objectives of the research are: 

(1) To develop the feature extraction methods using the acoustic signals 

collected from water and air filled pipes; 

(2) To investigate a range of classification techniques in application to 

condition classification in pipes; 

(3) To develop a new pattern recognition system based on suitable feature 

extractor and acoustic characteristics; 

(4)  To study and evaluate the performance of the system in the laboratory 

and in the field. 

The research was carried out in three main stages: 
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(1) Development of a statistical system for defect pattern classification using 

acoustic sound pressure level and energy as main features to discriminate 

different siphon conditions; 

(2) Development of new algorithms based on the acoustic intensity 

characteristics of pipes containing a range of common operational and 

structural. 

(3) Study of the performance of the new classification system through further 

regularisation of the training datasets. 

 

1.3 Novel Contribution of the Research 

(1)Developed a multiple class condition recognition system which is suitedto 

classify and identify the underground sewer conditions based on acoustic 

energy characters. The structure of the recognition system is given in Figure 

1.1. 

(2)Acoustic energy and corresponding spectrum were proved to be 

informative and be able to provide distinguishable coefficients for pipe 

condition and defect classification using suitable data fitting tools. 

(3) The proposed classification system can be adopted to work with 1-

dimensional and 2-dimensional features for binary and multiple class pipe 

conditions. 

(4) The accuracy rates of identifying underground pipe conditions and defects 

were achieved between 60% and 95% approximately. 
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Figure 1.1 The structure of the proposed pattern recognition system 

 

1.4 Structure of the Thesis 

This thesis is organised as follows. Chapter 2 presents a literature review of 

current condition assessment technologies for underground infrastructure, 

the state-of-the-art feature extraction techniques and classification methods. 

In Chapter 3, mathematical and theoretical background of a robust pattern 

recognition system is reviewed, which includes signal pre-processing 

methods as well as feature extraction techniques and classification 

algorithms which were adopted in this research. In Chapter 4, details are 

given of the new experimental facility comprising of a full scale siphon and a 
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set of acoustic sensor device that was developed for data acquisition and 

subsequent acoustic condition classification. This chapter also details the 

digital filter and wavelet transform analysis as well as K-nearest neighbours 

(KNN) classifier algorithm which were used for the purpose of feature 

extraction and condition classification. In Chapter 5, the results of 

measurements in a 150mm diameter, 14.4m long clay pipe under a range of 

simulated conditions. Polynomial and Padé approximation were used to 

extract features from obtained acoustic signatures, and then KNN and 

Support Vector Machines (SVMs) were adopted to train and classify the pipe 

condition. Chapter 6 presents the application of the classification algorithm 

detailed in Chapter 5 to the data collected in the underground pipes in the 

field. Here imbalanced learning problems and their solutions are discussed 

and compared. Chapter 7 presents a summary of this work together with final 

recommendations for their dissemination for the direction of future work.  
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Chapter 2 

Literature Review 

 

Underneath today‟s cities exists an extensive and complex network of pipes 

providing the essential utility services that underpin the modern civilised life. 

With the ageing of this buried infrastructure and growing demand for the 

increase in its capacity due to the expansion of the population and the 

development of new technologies, it is vitally important to monitor and assess 

their condition throughout their life cycles to avoid major potential failures due 

to their deterioration. The complexity of the underground pipe networks 

derives from a great variation in the age, pipe materials and types of pipe 

design which represent the existing underground infrastructure [1]. This 

chapter reviews the state-of-the-art methods for condition assessment of 

underground utilities (especially water and sewage pipelines). Among these, 

acoustic methods for the inspection of pipes have been used extensively with 

primary applications related to the quality control and condition monitoring of 

pipes used in oil and gas industries, the water and sewage industries and 

chemical engineering [2, 3, 4]. 
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2.1 Condition Assessment Methods of Underground Utilities 

The pipe condition assessment can be defined as “the collection of data and 

information through direct and/or indirect methods, followed by analysis of 

the data and information, to make a determination of the current and/or future 

structural, water quality, and hydraulic status of the pipeline” by the US 

Environmental Protection Agency [5]. Condition assessment methods can be 

roughly categorized into direct and indirect methods [6]. Direct methods 

include automated and manual visual inspection, pipe sampling and non-

destructive testing. Indirect methods include water audit, flow testing, and 

measurement of soil resistivity to determine the risk of deterioration.  

There is a wide range of direct and indirect techniques for determining the 

existing condition of a pipeline and the rate of its deterioration. Indirect 

methods are relatively simple and less costly than direct intrusive methods. 

Indirect techniques do not require access to either the internal or the external 

surface of the pipe and, therefore do not disrupt operations or require local 

excavations. However, indirect methods may not provide the level of detail, 

timeliness, or confidence required for maintenance and renewal decisions 

about pipes with a high consequence of failure [6]. 

 

2.1.1 Indirect Condition Assessment Techniques for Water Mains  

(1) Historical data such as the age of pipe, manufacturer and experience of 

various pipe materials; 
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(2) Environmental techniques include a consideration of the chemistry of the 

water and surrounding soil (e.g. soil conditions, ground water tables, surface 

conditions). Soil characterization is used to explore the soil parameters 

relevant to the deterioration of buried pipes. Following are some soil 

parameters of interest: soil resistivity; pH value; Redox potential; moisture 

content; shrink/swell capacity; buffering capacity etc [7]. 

(3) Operational data such as flow, maintenance and repair records. This 

information, from which pipe and/or network condition can be inferred, 

coupled with information about potential consequences of failure, is of great 

value in focusing an investigation strategy to those sections in most need of 

assessment. 

 

2.1.2 Direct Condition Assessment Methods 

2.1.2.1 Visual Inspection Techniques 

(1) Closed-Circuit Television (CCTV) 

Current alternatives to direct man-entry and visual observation include the 

collection and inspection of CCTV images, or the use of Light Line surveys. 

However, these methods are slow, largely subjective and may require a 

sewer length to be drained or pre-cleaned before inspection, and thus they 

are expensive [1]. Using CCTV to inspect the interior of pipes was introduced 

in 1960s. The system consists of a television camera mounted on a tractor 

and remotely controlled by an operator. The CCTV inspection system has 

been widely used for decades and the basic principle has remained the same. 

The obvious advantage of this method is that it provides direct illuminated 
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images of the defects of the pipe‟s interior wall, which can be examined in 

detail by zooming the camera or viewing from different angles by controlling 

the position of the tractor. The natural limitation of this technique is that the 

images of the interior wall can only be obtained above the water surface in 

the case of sewer and water pipes. Since the CCTV tractor travels along the 

pipeline, unsteady camera movement and lack of geometric references are 

considered to be further limitations of the technique [8]. 

Recent research has focused on how to improve the quality of the inspection 

images, how to improve the interpretation of poor-quality images, and how to 

improve the automation of the inspection. Sarshar et al. [9] proposed a 

software system to semi-automatically extract historical condition data 

information from sewer inspection CCTV files, Cherqui et al. [10] proposed 

an algorithm which calibrates dysfunction indicators based on the results of 

visual inspections. Yang et al. [11] proposed the use of a CCTV image quality 

index to improve the inspection confidence when compared to reference 

images. 

(2) Sewer Scanner and Evaluation Technology (SSET) 

In late 1990s, optical scanner and gyroscope techniques were introduced to 

facilitate pipe interior inspection. The SSET is a flexible non-destructive 

evaluation data acquisition tool. Unlike CCTV inspection, the SSET device 

does not need to stop at the defect locations and provide the engineers with 

the ability to see the total surface of the pipe from one end to the other, which 

conceptually increases the inspection efficiency [8]. The scanned image is 
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then digitized so that a colour-coded computer generated image of the pipe 

wall can be obtained. 

The major benefit of SSET system over the CCTV technology is that higher 

quality information is provided for the assessment. However, this techniques 

still requires manual interpretation of the images and ever higher level of 

expert assessment. Research in this area has been undertaken to automate 

the assessment process in order to increase efficiency and interpretation 

accuracy [12, 13]. In the deployment of SSET in the practical pipeline 

inspection, commercial systems such as PANORAMO system by RapidView 

IBAK and SOLO system by RedZone have been deployed in pipeline 

inspection with high image resolution, inspection speed and efficiency [13]. 

2.1.2.2 Electromagnetic Methods 

(1) Magnetic Flux Leakage (MFL) 

The MFL technique is widely acknowledged and used for metallic pipeline 

inspections. A pipeline inspection gauge (pig) is normally inserted into the 

system and travels along the pipeline, and it is used to detect and 

characterize the metal loss defects such as corrosion and cracks on the 

interior wall of the pipeline [14]. MFL technology is claimed to have good 

detection capabilities even for small pitting anomalies, attributed to the fact 

that the MFL pattern registered by the inspection tool is larger than the 

anomaly itself. MFL technology is therefore potentially suitable for detecting 

very small pitting defects because even under extremely poor conditions, a 

magnetic response is still obtainable. However, the use of MFL in water 
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industry is limited to cleaned, unlined pipes and also requires accessibility to 

the pipes‟ exterior [5]. 

(2) Eddy Current Testing 

Eddy current testing tends to be used for smaller diameter metallic pipes, e.g., 

down to 100 mm diameter pipes [8]. The principle of the eddy current 

technique is based on the interaction between a magnetic field source and 

the test material. This interaction induces eddy currents in the test piece, 

engineers can detect the presence of very small cracks by monitoring 

changes in the eddy current flow [15]. 

In eddy current testing, a time varying magnetic field is induced in the pipe by 

using a magnetic coil with alternating current. This magnetic field causes an 

electric current to be generated, which in turn produces small magnetic fields 

around, conducting materials. The smaller magnetic fields generally oppose 

the original field, which changes the impedance of the magnetic coil. Thus, 

by measuring the change in impedance of the magnetic coil as it traverses 

the pipe, different characteristics can be identified [16]. 

The strength of the eddy current is related to the pipe wall thickness and one 

drawback of eddy current testing is the dimension of the skin depth that is 

examined, which is dependent on the induced frequency (e.g. for steel pipes 

at 50 Hz the skin depth is about 3 mm) [8]. To overcome this problem, the 

Remote Field Eddy Current (RFEC) method was developed [5]. The RFEC 

technique uses an internal probe to inspect conducting tubes non-

destructively. This method relies on the fact that the remote field signal is 

larger than the direct eddy current signal measured by the detector coils. As 
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the Remote Field principle works in low frequencies (typical 10Hz ~ 1kHz), 

the inspection speed is therefore limited [17]. The frequency is adapted to the 

material and wall thickness and the signal amplitude shows the volume of the 

defects [17]. 

(3) Broadband Electromagnetic (BEM) 

BEM is a patented technology developed in Australia that is now 

commercially available. It is currently being utilized in the mineral exploration 

industry in the search for massive sulphide ore deposits [18]. It uses the 

equivalent of a continuous range of electromagnetic frequencies to measure 

the wall thickness of a pipe by sensing the attenuation and phase delay of 

the signal passed through the pipe wall. Unlike the conventional eddy current 

technique, which uses a single frequency for testing, the BEM technique 

transmits a signal that covers a broad frequency spectrum ranging from 50 

Hz to 50 kHz [19]. 

BEM data recorded can reveal the location of perturbations and can only be 

used on ferrous materials to measure wall thickness, identify and locate 

metal loss that produces wall thinning or graphitization, and also locate 

cracks. BEM does not require contact with bare metal, and in water pipes can 

read pipe condition through a cement lining [5, 18]. 

(4) Ground Penetrating Radar (GPR) 

The first use of GPR for buried objects detection appeared in a German 

patent by Leimbach and Löwy in 1911 [20]. In the area of utility service 

deterioration monitoring, GPR has been used effectively to detect abnormally 
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wet areas within the ground, such as from leaking water pipes, as well as 

leaking oil from high voltage cables [8]. In GPR surveys, high frequency 

(typically 1-1000MHz range) electromagnetic waves are transmitted into the 

ground from an antenna. These pulses propagate through the ground and 

reflect off sub-surface boundaries and the reflections are detected by a 

receiving antenna [21]. In general, any object whose electromagnetic 

properties are different to those of the surrounding soil will reflect a signal. In 

this way, tunnels, voids, metals and other buried objects can be located. 

GPR can be used in a variety of media, including water, soil, rock and 

pavements. The most significant limitation of GPR‟s performance is that the 

pulses lose strength very quickly in conductive, lossy materials such as clay 

and saturated soils, therefore limiting the depth of penetration [21]. Therefore, 

research into GPR technologies has been focused on overcoming its 

drawbacks. Hata et al. [22] through their work on antenna design have 

produced a deep ground penetrating radar capable of surveying at depths up 

to 5 m in favourable conditions. Ciochetto and Polidoro [23] have developed 

an array of antenna system which is an improvement to a more traditional 

single-antenna instrument. Such arrangement allows for a 3D survey of the 

area under investigation. Some other research has focused on the 

interpretation of GPR images, notably the presentation of the output in three-

dimensional images. Conway and Bernstein et al. [24, 25] described a new 

ground penetrating imaging radar system that creates sharp, three-

dimensional images of underground pipelines and other buried objects. 
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2.1.2.3 Acoustic and Vibration Techniques 

(1) Sonar 

Sonar is an acoustic detection technology designed to operate under water. 

In the pipe inspection field, it has been adapted to provide information about 

elements in the pipe that are submerged below the water line. In sonar 

surveys, the time of the sound from the point of excitation, through 

transmission and reflection to the point that it is finally received is measured; 

the distance from the source to the target can be determined by the speed of 

the sound in the travelling medium. Such information is used to construct a 

sonar image from which the condition of the pipe interior can be assessed [8].  

The sonar profiling system can be used with different frequencies to achieve 

different goals [26].  High frequency sonar can provide a higher resolution 

scan but a high frequency pulse attenuates quickly and therefore has a 

relatively low penetration capability. In contrast, low frequency sonar has a 

high penetration capability but it is limited in terms of its scanning resolution. 

Consequently, high frequency sonar can be suitable for clear water 

conditions; turbid water with high concentrations of suspended solids may 

require a lower frequency signal. Small defects are more likely to be 

observed by a high frequency signal [5]. 

(2) Impact Echo 

Impact echo is a method for non-destructive evaluation typically applied to 

concrete, masonry materials, stone, plastic and some ceramics. It is based 

on the use of impact-generated compression waves that travel through the 
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structure and are reflected by internal flaws and external surfaces [5]. The 

impact echo equation is : 

2 p

V
T

F
  (2.1) 

where T is the thickness, V is the wave speed and 
pF is the peak frequency. 

Impact echo can be used to determine the location and extent of flaws such 

as cracks and voids, it can also be used to measure the thickness of slabs, 

plates and hollow cylinders. The testing is conducted by hitting the test 

surface at a given location with a small instrumented impulse hammer or 

impactor and recording the reflected wave with a displacement or 

accelerometer sensor adjacent to the impact location [17]. This method is not 

limited by pipe size and can be applied both internally and externally only if 

the testing is executable. 

(3) Ultrasound 

Ultrasonic guided waves have been used extensively for pipe corrosion 

assessment [27]. The method employs mechanical stress waves that 

propagate along an elongated structure while guided by its boundaries. This 

allows the waves to travel a long distance with little loss in energy. The 

guided wave modes are generally categorized into 3 groups: torsional, 

longitudinal and flexural modes. The acoustic properties of these wave 

modes are a function of the pipe geometry, the material and the frequency. 

In Guided Wave Testing of pipelines, an array of low frequency transducers 

is attached around the circumference of the pipe to generate an axially 
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symmetric wave that propagate along the pipe in both the forward and 

backward directions of the transducer array. Depending on the type of guided 

wave, the number of transducers can range between two and four [5].  At 

location where there is a change of cross-section or a change in local 

stiffness of the pipe, an echo is generated. Based on the arrival time of the 

echoes, and the predicted speed of the wave mode at a particular frequency, 

the distance of a feature in relation to the position of the transducer array can 

be accurately calculated [28]. The technique is not suitable for pipes in 

softened materials as the acoustic waves are likely to attenuate significantly 

and it requires the internal pipe wall to be clean. 

A summary of different condition assessment techniques with their 

applications and limitations of buried infrastructures is presented in Table 2.1.  

 

Table 2.1 

Different Condition Assessment Techniques: Applications and Limitations 

Technology Applicationsand Limitations 

CCTV •  Real time assessment necessary 

•  Subjective to the inspector 

•  Images can only be obtained above the water line 

SSET •  Post processing of images possible 

•  Higher efficiency than CCTV 

•  Requires manual interpretation of results 

Sonar and Laser 

system 

•  Determines internal profile of the pipe along its length 

•  Can measure pipe wall deflection, corrosion loss . 

• Can be operated in air or water, but not both 

simultaneously 

MFL •  Good for cast iron and steel pipes 
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 •  Access to pipe required 

• Can detect small defects but difficult for short and 

shallow defects 

•  Often limited to cleaned and unlined pipes 

Eddy Current testing •  Used in smaller diameter cast iron and steel pipes 

•  Access to pipe required 

• Dimension of skin depth is a problem, RFEC is an 

improvement 

Wave analysis 

(Ultrasound) 

•  Can determine location and site of defect 

•  Pipe cleaning prior to inspection 

•Good detection rates for oil and gas pipelines 

detecting defects 

Impact echo •  Overall condition of the pipe can be assessed 

•  Access to pipe required 

Ground Penetrating 

Radar (GPR) 

• Technique successfully applied in pre-stressed 

concrete pipes 

•  Can determine ground conditions external to the pipe 

•  Can be used at ground surface and in-pipe mode 

•  Requires skilled operator 

 

2.2 Data Analysis and Condition Classification Methods 

There is a variety of data analysis techniques to determine the condition 

assessment data. How to choose the suitable techniques depends on the 

objectives of the research. Pattern recognition is a machine learning and 

classification process which can be adopted in many areas. The use of 

pattern recognition techniques is a new approach for applications where 

adaptive signal processing methods are conventionally used. The 

functionality of an automated pattern recognition system can be divided into 

two basic tasks: the Description task generates attributes of an object using 
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feature extraction techniques; and the Classification task assigns a group 

label to the object based on those features and a classifier. 

2.2.1 Signal Processing and Feature Extraction 

Feature extraction is the most significant phase of the classification process. 

In feature extraction, certain transforms or techniques are used to select and 

generate the features that represent the characteristic of the source signal. 

Feature arrays of vectors can be generated in time, frequency and time-

frequency domain. 

The computation of feature vector in time domain is usually simple. One of 

the methods is based on the energy distribution of the signal where the 

energy of a short time window of the source signal is used to discriminate 

between classes [29].Another method named Time Encoded Signal 

Processing and Recognition (TESPAR) is commonly used in speech 

waveform encoding to generate features from vehicle acoustic and seismic 

signals [30]. TESPAR is based on the duration and shape of the portion of 

the waveform that is between two zero crossings. 

Spectral characteristics of acoustic signatures vary significantly among target 

classes. Feature generation methods based on frequency domain such as 

Fast Fourier Transform (FFT) and Power Spectral Density (PSD) are 

commonly used in applications such as speech and vehicle detection and 

classification [31]. Harmonics can also be used to extract feature vector. 

Harmonics are the peaks present in spectral domain representation of a 

signal. Relation between amplitude and phase of these harmonics is used to 
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form the feature vector. These feature vectors are known as Harmonic Line 

Association (HLA) feature vector [32].  

Time-frequency based techniques have been shown to outperform the 

techniques based on either time- or frequency-only domains. Features 

extracted in time-frequency domain are the most complete characterization 

for non-stationary signals as they display the energy distribution of a signal in 

both time and frequency domains [33]. Mel-frequency cepstral coefficients 

(MFCC) is the most popular spectral based parameter used in speech 

recognition due to its advantage of less complexity in implementation of 

feature extraction algorithm [34]. Short Time Fourier Transform (STFT) is an 

extension of Fourier Transform allowing for the analysis of non-stationary 

signals with a fixed resolution. Wavelet Transform (WT) provides multi-

resolution time-frequency analysis. A set of wavelet based features can be 

obtained by calculating the inherent energies of the wavelet packet 

coefficients of the signal, each of which is related to a certain frequency band 

[35]. Other analysis including: Wigner-Ville Distribution (WVD), 

Multidimensional scaling (MDS) and learning vector quantization (LVQ) etc. 

are feature extraction techniques aim to represent the signal in different 

mapping [36]. Table 2.2 summarizes the feature extraction methods including 

the methods discussed above. 
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Table 2.2 

Feature Extraction Methods  

Extractor Property and Comments 

Filter-Bank Based • Parameters sensitive 

• Criterion adopted for parameters selection 

• Local spectral energy estimation 

Principle Component 

Analysis(PCA) 

 

• Linear map 

• Eigenvector based 

• Good for Gaussian data 

• Supervised linear map 

Linear Discriminative 

Analysis(LDA) 

• Eigenvector based 

• Better than PCA for classification 

Multidimensional scaling 

(MDS) 

• Nonlinear map 

• Iterative 

• Sample size limited 

• Mainly used for 2-dimensional visualization 

MFCC • Nonlinear cepstral analysis 

• Features are good for automatic speech recognition 

Wavelet Transform 

 

• Linear map 

• Iterative 

• Good feature localisation 

• Efficiency depends on the basis selected 

Self-Organizing Map 

(SOM) 

• Nonlinear generalization of PCA 

•Suitable for extracting spaces of lower dimensionality 

• Iterative 
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2.2.2 Classification Techniques 

Classifiers provide the functions or the rules that divide the feature space into 

regions, where each region corresponds to a certain class. This process is 

called classification. Classifiers can be categorized to parametric or non-

parametric. 

2.2.2.1 Parametric Classifiers 

Below are several popular parametric classifiers which have been used in 

classification based on acoustic characteristics. 

(1) Bayesian Classifier 

Bayesian classifier is a probabilistic classifier based on Bayes' theorem. The 

optimal Bayes decision rule assigns a pattern to the class with the maximum 

posterior probability [37]. Maximum likelihood (ML) is used to estimate the 

Bayesian classifier parameters: ( )ip C probabilities representing the 

frequency of class iC in sample x  and ( | )ip x C , class probability of x belongs 

to iC . Each class is assumed to be normally distributed. Bayesian classifier 

requires a large number of training set for minimizing the bias [37]. 

(2) Support Vector Machines (SVMs) 

SVMs is a state-of-the-art learning algorithm which was first introduced by 

Vapnik [38] in 1992. It was initially designed as a binary classifier. SVMs 

belong to the general category of kernel methods. It has two advantages. 

Firstly, it has the ability to generate non-linear decision boundaries using 

methods designed for linear classifiers. Secondly, it makes use of kernel 
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functions which enables the user to apply a classifier to data that has no 

obvious fixed dimensions in terms of the feature space representation [39]. 

The effectiveness of SVMs is highly dependent on the selection of the kernel 

decision function, kernel's parameters, and soft margin parameter. There is 

no optimal solution to parameters selection for SVMs, prior understanding of 

the system and repeatedly trials are always required. 

(3) Hidden Markov Model (HMM) 

Hidden Markov Model (HMM) is an ubiquitous tool for modelling time series 

data. It is used in almost all the current speech recognition systems and 

numerous applications of other artificial intelligence and patter recognition 

[40]. 

A hidden Markov Model is a tool for representing probability distributions over 

sequence of observations. More precisely, the HMM is a probabilistic pattern 

matching technique in which the observations are considered to be the 

output of stochastic process and consists of an underlying (hidden) Markov 

chain. It has two components: a finite state Markov chain and a finite set of 

output probability distribution [41]. There are three basic problems of interest 

must be solved for the HMM model to be used real world applications [42]: 

• Evaluation: with what probability does a given model generate a given 

sequence of observations? The forward algorithm solves this problem 

efficiently. 

• Decoding : what sequence of underlying (hidden) states most probably 

generated a given sequence of observations. The Viterbi algorithm solves 

this problem efficiently. 
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• Learning : what model most probably underlies a given sample of 

observation sequences - that is, what are the parameters of such a model. 

This problem may be solved by using the forward-backward algorithm. 

The technique was originally applied to the speech recognition field by Baker 

[43]. Now HMMs are applied in many fields where the goal is to recover a 

data sequence that is not immediately observable, but other data that 

depends on the sequence is. 

 (4) Gaussian Mixture Model (GMM) 

Mixture Models are a type of density model which comprise a number of 

component functions, usually Gaussian. Mixture models are a semi-

parametric alternative to non-parametric histograms (which can also be used 

as densities) and provide greater flexibility and precision in modelling the 

underlying statistics of sample data [44]. The GMM method is based on a 

finite mixture probability distribution model. And the method was successfully 

applied on robust speaker recognition system [45]. GMM provides a robust 

speaker representation for the difficult task of speaker identification using 

corrupted, unconstrained speech as reported by Reynolds and Smith [46]. 

The models are computationally inexpensive and easily implemented on a 

real-time platform. 

2.2.2.2 Non-Parametric Classifiers 

(1) KNN Classifier 

KNN is a simple and accurate method for classifying objects based on the 

majority of the closest training examples in the feature space. The K-nearest 
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neighbour algorithm is amongst the simplest of all machine learning 

algorithms: an object is classified by a majority vote of its neighbours, with 

the object being assigned to the class most common amongst its K nearest 

neighbours. The best choice of k depends upon the data. Generally, a larger 

value of K reduces the effect of noise on the classification but makes 

boundaries between classes less distinct. The accuracy of the KNN algorithm 

can be severely degraded by the presence of noisy or irrelevant features. 

Therefore, much research effort has been put into selecting or scaling 

features to improve classification [47]. KNN is implemented in many 

literatures as a benchmark to evaluate other classifiers [40, 47, 48]. 

(2) Artificial Neural Network (ANN) 

Artificial Neural Network is a bio-inspired network made from neurons and 

can solve the problems that are hard to be modelled analytically. An 

important and very useful property of neural network is the ability to learn 

from examples in a supervisory manner. In most cases an ANN is an 

adaptive system changing its structure during a learning phase. ANN is used 

for modelling complex relationships between inputs and outputs or to find 

patterns in data. 

The choice of the network type depends on the problem to be solved. A most 

commonly used family of neural networks for pattern classification tasks is 

the feed-forward network, which includes multilayer perceptron and Radial-

Basis Function (RBF) networks [49]. These networks are organized into 

layers and have unidirectional connections between the layers. Another 

popular network is the Self-Organizing Map (SOM), or Kohonen-Network [50], 
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which is mainly used for data clustering and feature mapping. The utility of 

artificial neural network models lies in the fact that they can be used to infer a 

function from observations. This is particularly useful in applications where 

the complexity of the data or task makes the design of such a function by 

hand impractical. One drawback of using artificial neural networks is that they 

require a large diversity of training for real-world operation [51]. 

(3) Decision Tree 

Decision tree is a nonlinear classifier that depends on a multistage decision 

system, where the classes are sequentially rejected until reach the accepted 

class. This kind of classifier split the feature space into unique regions, where 

each region represents a class [52]. The most important feature of Decision 

tree classifiers is their capability to break down a complex decision-making 

process into a collection of simpler decisions, thus providing a solution which 

is often easier to interpret [40]. 

Decision trees are commonly used in operations research, specifically in 

decision analysis, to help identify a strategy most likely to reach a 

goal.Another use of decision trees is as a descriptive means for calculating 

conditional probabilities. Decision trees are simple to understand and 

interpret; they require little data preparation and large datasets can be 

analyzed using standard computing resources in reasonable time [53]. There 

are also limitations for users if create over-complex trees, then over-fitting 

could occur and calculations can be overwhelming. 

Table 2.3 summarized a few most commonly used classifiers and their 

properties. 
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Table 2.3  

Classification Methods and Comments 

Classifier Property and Comments 

Template Matching • Assign patterns to the most similar template 

• Scale (metric) dependent 

K-Nearest Neighbours 

Rule 

• Assign patterns to the majority class among K nearest 

neighbours 

• Scale dependent 

Bayes Rule • Assign patterns to the class which has the maximum 

estimated posterior probabilities 

• Yields simple classifiers for Gaussian distributions 

• Sensitive to density estimation errors 

Decision Tree • Finds a set of thresholds for a pattern-dependent 

sequence of features 

• Iterative training process and needs pruning 

• Over training sensitive 

• Nonlinear classification 

Support Vector 

Machines 

• Maximizes the margin between the classes by 

selecting a minimum number of support vectors 

• Scale dependent 

• Nonlinear classification function 

• good generalization performance  

Artificial Neural 

Network 

• Iterative optimization of layers of units 

• Sensitive to training parameters 

• Nonlinear classification function 

• Needs regularization 

 

2.3 Learning from Imbalanced Datasets 

Most standard classification algorithms were designed based on one 

assumption that is the datasets are balanced and equally distributed among 

classes. However, in many real-world domains, class distribution is complex 

and imbalanced. In a given classification task, the size of datasets has an 
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important role in building a good classifier. Learning from imbalanced 

datasets will cause machine learning algorithms fail to properly represent the 

distributive characteristics of the data and perform poorly on the classes 

contain fewer samples. 

One of the common approaches to class imbalance problem is sampling, 

either randomly or intelligently, for obtaining an altered class distribution. The 

two basic sampling techniques are random minority oversampling and 

random majority undersampling. Random sampling is easy to perform but the 

drawbacks are obvious. In the case of undersampling, removing samples 

from the majority class may cause the classifier to miss important concepts 

pertaining to the majority class. With regard to oversampling, since 

oversampling simply replicates data to the original data set, multiple 

instances of certain examples become “tied,” leading to overfitting [54]. 

Numerous intelligent sampling techniques have been developed to improve 

the performance of random samplings. Kubat and Matwin [55] proposed a 

technique called one-sided selection (OSS). One-sided selection attempts to 

intelligently undersample the majority class by removing majority class 

examples that are considered either redundant or „noisy.‟ Chawla et al. [56] 

proposed an intelligent oversampling method called Synthetic Minority 

Oversampling Technique (SMOTE). SMOTE adds new, artificial minority 

examples by extrapolating between pre-existing minority instances rather 

than simply duplicating original examples. Han et al. presented a modification 

of Chawla et al.‟s SMOTE technique which they call borderline-SMOTE (BSM) 

[57]. BSM selects minority examples which are considered to be on the 

border of the minority decision region in the feature-space and only performs 
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SMOTE to oversample those instances, rather than oversampling them all or 

a random subset. Cluster-based oversampling (CBOS) proposed by Jo and 

Japkowicz [58] attempts to even out the between-class imbalance as well as 

the within-class imbalance. In this technique, clustering is employed to select 

the representative training samples to improve the predictive accuracy for the 

minority class. Yen and Lee [59]reported that this approach empirically 

outperforms other undersampling methods. Yoon and Kwek also proposed to 

use clustering to reduce the imbalanced ratio, called Class Purity 

Maximization (CPM) [60]. 

Besides sampling methods, many other approaches have also been pursued 

in the imbalanced learning field. Kernel-based learning methods provide 

state-of-the-art techniques for many of today‟s data engineering applications. 

The principles of kernel-based learning are cantered on the theories of 

statistical learning and Vapnik-Chervonenkis (VC) dimensions [61]. Zhu and 

Hovy [62] analyzed the effect of undersampling and oversampling techniques 

with active learning for imbalanced learning problem. Traditionally, active 

learning methods are used to solve problems related to unlabeled training 

data. Similarly to re-sampling, active learning techniques create balanced 

training datasets at the early stage of the learning process. This technique 

focus on the query instances nearthe classification boundary rather than 

selecting randomly by instance. Active learning does not create extra data as 

in oversampling [63]. 

Another alternative solution for the imbalanced learning problem is 

ensemble-learning, in which multiple classifiers are trained from the original 

data and their predictions are combined to classify new instances [63]. 
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Boosting and Bagging are two widely known ensemble based approaches. 

Boosting algorithms have been adapted to address the problem with small 

classes and forced the users to focus more on the difficult samples. At each 

boosting iteration, the distribution of training data is altered by updating the 

weight associated with each sample [64]. Most current bagging methods use 

a similar learning procedure: re-sampling subsets from a given training set, 

build multiple base classifiers on those subsets, and combining their 

predictions to make final prediction [65]. Several algorithms based on a 

variety of sampling strategies are proposed, such as: Roughly balanced (RB) 

bagging by Hido and Kashima [66]; underbagging by Liu et al. [67]; 

Overbagging and SMOTEbaggning by Wang and Yao [68]. Bagging 

maintains the class distribution of the training set, however, it relies on a 

simple strategy that is limited for dealing with imbalanced problem, except 

from changing the bag size and sampling step [63]. 
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2.4 Summary 

This chapter firstly reviewed current inspection techniques and technologies 

towards condition assessment of underground infrastructures. The 

description of the performance of each technology is provided in Section 2.1. 

The collection and analysis of relevant data and information is the next 

paramount step to detect and monitor buried assets. Pattern recognition 

analysis has experienced a rapid growth in the community. Pattern 

recognition is the study of how machines can observe the environment, learn 

to distinguish patterns of interest from their background, and make 

reasonable decisions about the categories of the patterns. A wide variety of 

feature extraction and classification methods are given in Section 2.2. The 

imbalanced learning problem is concerned with the performance of standard 

classifiers and it has attracted drawn significant attention over years, Section 

2.3 provides a brief survey of the state-of-the-art solutions to the problem. 
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Chapter 3   

Pattern Recognition System and Methods:  

The Theory 

 

3.1 Introduction 

Automatic (machine) recognition, description, classification and grouping of 

patterns are important problems in a variety of engineering and scientific 

disciplines such as biology, statistics, psychology, engineering, computer 

vision and artificial intelligence. The definition of a pattern is “as opposite of a 

chaos; it is an entity, vaguely defined, that could be given a name” [1]. A 

pattern could be the ridges of a fingerprint, a handwritten cursive word, a 

human face, or a speech signal. Given a pattern, its recognition/classification 

system may contain two tasks: (1) supervised classification in which the input 

pattern is identified as a member of predefined class; (2) unsupervised 

classification in which the pattern is assigned to an unknown class. The 

recognition problem is then being posted as a classification or a 

categorization task, where the classes are defined either by the system 

designer (in supervised classification) or are learned based on the similarity 

of patterns (in unsupervised classification) [2]. 

Pattern Recognition as a field of study developed significantly in 1960s and 

to some extent with the growth of research on knowledge-based systems in 

1970s and neural networks in 1980s [2]. A large numbers of applications, 
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ranging from the classical ones such as medical diagnosis and automatic 

character recognition to the more recent ones in data mining such as credit 

card transaction analysis and biometrics, have attracted considerable 

research effort with many methods developed and advances made. A 

common characteristic of a number of these applications is that the available 

features are not usually suggested by the domain but must be extracted and 

optimized by data analysis procedures. 

The design of a pattern recognition system essentially involves the following 

four aspects: (1) data acquisition and pre-processing, (2) feature extraction 

and data representation, (3) feature grouping and pattern classification, and 

(4) decision making. The outcome of the system can be affected by the 

choice of sensor(s), pre-processing techniques, feature extraction algorithm 

and the decision making model. In many of the emerging applications, there 

is no single approach for classification that is “optimal” and that multiple 

methods and algorithms have to be used.  

A brief description and comparison of several widely used feature extraction 

methods and pattern classification algorithms are given in this chapter. 

 

3.2 Feature Extraction and Methods 

The essential problem of pattern recognition is to identify an object as 

belonging to a particular group or class. Assuming the objects share common 

attributes with a particular group more than the others, the task of assigning 

the object to a group can be accomplished by determining the attributes of 
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the object and identifying the group of which those attributes are most 

representative. 

Given the goal of classifying objects based on their representative attributes, 

the functionality of an automated pattern recognition system can be divided 

into two basic tasks: the Description task generates attributes of an object 

using feature extraction techniques; and the Classification task assigns a 

group label to the object based on those features and a classifier. 

 

 

 

 

Figure 3.1 A Pattern Recognition System 

Various methods have been developed for feature extraction in different 

fields such as face detection, character recognition, speech recognition and 

medical image processing. Two particular methods which can be applied to 

acoustic signals are discussed and compared in this section. 

 

3.2.1 Wavelet Transform (WT) 

3.2.1.1 Time-Frequency Signal Analysis 

A time-frequency analysis can identify the signal frequency components, 

reveal the time variant features and is an efficient tool to extract 

representative information contained in signals. Various time–frequency 

Description Classification 

Pattern Recognition Algorithms 

Features 

Data Identification 
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analysis methods have been proposed and applied to condition 

classification.The earliest time-frequency method is known as the 

Spectrogram via Short Time Fourier Transform (STFT).One of the downfalls 

of the STFT is that it has a fixed resolution, the width of the windowing 

function relates to how the signal is represented. A wide window gives better 

frequency resolution but poor time resolution, a narrower window gives good 

time resolution but poor frequency resolution. This is one of the reasons for 

the creation of the Wavelet Transform and multi-resolution analysis, which 

can give good time resolution for high frequency components, and good 

frequency resolution for low frequency components, which is the type of 

analysis best suited for many real signals. 

Wigner-VilleDistribution (WVD) is apopular nonlinear alternative to the STFT 

technique which can achieve higher resolution than STFT and give exactly 

the instantaneous frequency.The Wigner transformation gives good results 

(high time-frequency resolution) when theexamined signals consist of a small 

number of higher harmonics. In other cases, thetransformation results 

include interferences, the so called cross-terms.Currently research is 

conductedconcerning methods of cross-terms reduction. 

In the Wavelet Transform (WT), the mother wavelet can be stretched 

according to frequency toprovide reasonable window, a long time window is 

used in low frequency and a short timewindow is used in high 

frequency.Though the resolution of WT is lower than WVD, the cross-terms 

don't appear as the WT is linear time-frequency analysis.The result of 

Discrete Wavelet Transform (DWT) of a continuous signal is a series of 

wavelet coefficients which represent the degree of correlation between the 
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analyzed signal and the wavelet function at different instances of time; 

therefore, DWT coefficients contain temporal information of the analysed 

signal and that is essential for providing useful features for recognition 

system. 

3.2.1.2 Discrete Wavelet Transform (DWT) 

The Wavelet Transform (WT) and more particularly Discrete Wavelet 

Transform (DWT) is one of the computationally efficient techniques for 

extracting information of non-stationary signals. The DWT was developed as 

an alternative to the Short Time Fourier Transform (STFT) to improve on the 

frequency and time resolution of the FT. Instead of providing a fixed time 

resolution for all the frequencies in the signal spectrum, the DWT is a multi-

resolution analysis (MRA) which is able to analyze signals at different 

frequencies with different resolutions. 

The DWT is defined by the following equation: 

,

1
{ ( )} ( ) ( )

22
j k jj

j k

t k
DWT X t x t 


 (3.1) 

where (.)  is the wavelet function, k  is the translation factor and j  is the 

scale parameter, 22
j


is the normalization factor  [3]. 

In order to take advantage of the Wavelet Transform, an efficient 

computation algorithm and an implementation scheme are needed. Mallat [3] 

solved these problems by introducing the Multi-resolution Analysis (MRA) 

which is linked to the Perfect Reconstruction filter-bank structures [3, 4]. 
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A signal‟s approximation at resolution 2 j is defined as an orthogonal 

projection on a space 2 ( )jV L R .The space 
jV groups all possible 

approximations at the resolution 2 j . The orthogonal projection of x on 
jV  is 

the function 
jx  that minimizes distance

jx x . The detail of a signal at 

resolution 2 j is the difference between approximations at the resolution 12 j

and 2 j . For a given multi-resolution approximation jV , there exists a unique 

function called a scaling function ( )t . The scaling function plays a role of an 

averaging function of a low-pass filter in the multi-resolutionanalysis. A 

problem was raised along with the decomposition process that is “how to 

cover the signal spectrum all the way down to zero with wavelet spectra” and 

the scaling function is the solution to it. By introducing the scaling function we 

have circumvented the problem of the infinite number of wavelets and set a 

lower bound for the wavelets as the lower limit can never reach zero. The 

iteration of filtering will stop at the point where the number of samples has 

become smaller than the length of the scaling filter. 

The scaling function ( )t is shifted by discrete translations and is dilated by 

dyadic scale factor 2
, ( ) 2 ( )

2

j

j k j

t k
t 

  
 

 
 , where 22

j


is a normalization 

constant. At each scale 2 j the shifted scaling functions constitute a basis that 

spans a subspace jV . The orthogonal projection on jV can be computed by 

decomposing the signal ( )x t in the scaling orthogonal basis. The inner 

products: 

,[ ] ,j j ka k x  (3.2) 
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represent the discrete wavelet approximation coefficients of the original 

signal ( )x t  at scale 2 j . It can also be written as: 

1
[ ] ( ) ( ) (2 )

22

j

j jjj
t

t k
a k x t x k 


   (3.3) 

where 2( ) 2 ( )
2

j

j j

t
t 


  , symbol   stands for discrete convolution. Let 

jpV

be the orthogonal projection on the vector space
jV . The approximation 

signal of ( )x t at scale 2 j is equal to: 

, ,( ) ,j j k j k

k

pV x t x    (3.4) 

 The difference between the approximations of a signal ( )x t at scales 12 j and 

2 j is called the detail of the signal at scale 2 j . Here the space 
jW is 

orthogonal to
jV  , and 

1j j jV W V   , where stands for direct sum of two 

vector spaces. Mallat has proven that there exists a function ( )t , called 

orthogonal wavelet: 

2
,

2
( ) 2 ( )

2

j j

j k j

t k
t 

 
 (3.5) 

The inner products: 

,[ ] ,j j kd k x  (3.6) 

represent the detail wavelet coefficients of ( )x t  at scale 2 j . Let 
jpW be the 

orthogonal projection on the vector space
jW . The detail signal can be 



Chapter 3Pattern Recognition System and Methods: The Theory 

Page | 47 
 

implemented as a high-pass filtering of ( )x t sampled at rate 2 j , and it equals 

to: 

, ,( ) ,j j k j k

k

pW x t x    (3.7) 

A signal ( )x t can be fully characterized by its wavelet decomposition and can 

be written as a sum of its approximation at level L and its details on all levels: 

1

( ) ( ) ( )
L

L j

j

x t pV x t pW x t


   (3.8) 

The DWT decomposition can be implemented using a fast pyramidal 

algorithm related to multirate filterbanks first proposed by Stephane Mallat 

and it is also called „Mallat Algorithm‟ [3, 5]. Figure 3.2 shows example of a 3 

level wavelet decomposition tree. 

 

 

 

 

Figure 3.2 Three Level DWT Decomposition Tree 

Down-sampling by 2 ( 2  ) following each filter halves the resolution (doubles 

the scale) is used to avoid the information redundancy. Half-band filters dh

and dg remove half of the frequencies but leave the scale unchanged, which 

makes half the number of samples redundant, the down-sampling operation 

can therefore discard half the samples without any loss of information. 
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In the algorithm the signal ( )x t is analysed at different frequency bands with 

different resolution by decomposing the signal into a coarse approximation 

and detail information, the coarse approximation is then further decomposed 

repeating the same wavelet decomposition steps. This is achieved by 

successive high-pass and low-pass filtering of the original time-domain signal 

and is defined by the following so-called two-scale equations: 

1 ,[ ] [ 2 ] , [ 2 ] [ ]j j k j

k k

d t g k t x g k t a k       

[ ] [2 ]j da t g t   (3.9) 

1 ,[ ] [ 2 ] , [ 2 ] [ ]j j k j

k k

a t h k t x h k t a k       

[ ] [2 ]j da t h t   (3.10) 

The approximation and detail coefficients from one scale can be computed 

from the approximation coefficients from the previous scale by convolution 

with the low-pass filter dh and high-pass filter dg , respectively, followed by a 

down sampling with a factor of 2. 

 

3.2.1.3 Wavelet Packet Decomposition (WPD) 

Wavelet Packet Decomposition (WPD) is extended from the Wavelet 

Decomposition (WD). In the DWT, each level is calculated by passing the 

previous approximation coefficients through high and low pass filters. 

However, in the WPD, both the detail and approximation coefficients are 

filtered. For n  levels of decomposition the WPD produces 2n different sets of 



Chapter 3Pattern Recognition System and Methods: The Theory 

Page | 49 
 

coefficients (or nodes) as opposed to ( 1)n sets for the DWT. However, due 

to the down sampling process the overall number of coefficients is still the 

same and there is no redundancy. 

The wavelet packet method is a generalization of wavelet decomposition that 

offers a richer range of possibilities for signal analysis and it allows the best 

matched analysis to a signal. It provides level by level transformation of a 

signal from the time domain into the wavelet domain with variable frequency 

resolution. 

 

 

 

 

 

Figure 3.3 Level 3 Decomposition using complete wavelet packet transforms 

The top level of the WPD tree is the time representation of the signal. As 

each level of the tree there is an increase in the trade-off between the time 

and frequency resolution. The bottom level of a fully decomposed tree is the 

wavelet representation of the signal. Figure 3.3 shows level 3 decomposition 

using wavelet packet transform. To define wavelet packets, the coefficients 

resulting from the decomposition of the signal ( )x t are: 

1

2 2

1
(2 ) (2 )

2

j j

m l k m

l

C t k h C t l




    (3.11) 
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1

2 1 2

1
(2 ) (2 )

2

j j

m l k m

l

C t k g C t l




     (3.12) 

where 
2l kh 

and 2l kg  are the previously defined low-pass and high-pass filters, 

m is the level number of the decomposition, 0( ) ( )C t t ,
1( ) ( )C t t . 

3.2.1.4 Wavelet Family 

Several wavelet families are available for signal characterization and the 

selection of appropriate wavelet is very important for the correct analysis of 

signals. Depending on the type of signal to be analyzed, the mother wavelet 

is normally chosen according to the convenience, experience and published 

studies. For some applications,comparison tools such as cross-correlation 

can be used to help choose an optimal wavelet function by computing cross 

correlation coefficient between analysed signal and selected wavelet filter, 

the wavelet which maximizes the correlation coefficient is considered 

optimum. 

The most popular and commonly used wavelets for signal processing are 

Daubechies (db), Symlets (Sym) and Coiflets (Coif). Figure 3.4 gives some 

examples of each of these wavelet families. 
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Figure 3.4 Wavelet Families 

 

Table 3.1 General characteristics of popular wavelet families 

Family Daubechies Symlet Coiflet Meyer 

Short Name Db Sym Coif Meyr 

Order N strictly positive integer N=2, 3… N=1,2…5 - 

Orthogonal yes yes yes yes 

Biorthogonal yes yes yes yes 

Discrete transform possible possible possible possible 

Continuous transform possible possible possible possible 

Fast algorithm possible possible possible no 

FIR filters possible possible possible possible 

Support Width 2N-1 2N-1 6N-1 infinite 

Filter Length 2N 2N 6N [-8   8] 

Symmetry Far from Near to Near to yes 
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3.2.2 Data Fitting Methods 

Data fitting (or parameter estimation) is an important technique used for 

modelling in many areas of disciplines. It is the process to construct a curve 

with mathematical function that has the „best‟ fit to a series of data points. 

Fitted curve can be used to summarize the relationship among two or more 

variables and reveal the hidden patterns which reflect the observed data.  

3.2.2.1 Least Squares Polynomial Approximation 

The problem can be described as follows: let ( , )i ix y be the observed 

quantities. Assume the function f in (3.13) is a ( 1)n th  degree polynomial: 

1 2

1 2 1 2 1{ ; , ,... } ...n n

n n ny f x a a a a x a x a x a 

                     (3.13) 

Then the data fitting problem is to solve the system: 

1 2
1 11 1 1

1 2
2 22 2 2

1 2

1

1

1

n n

n n

n n
n mm m m

a fx x x

a fx x x

a fx x x

 

 

 

     
     
     
     
     
      





    
                        (3.14)                            

for the coefficients  1 2, , na a a . Usually the system is over-determined, so 

the least square problem is considered: 

2

1

( ( ))
n

i i

i

y f x


   (3.15) 

where ix and iy are known quantities. The error  gives a measure of how 

well the function f fits values y . For a straight line fitting, let ( )f x ax b  , the 

goal is to find values of a and b that minimize the error  . The 
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coefficientswhich produces the smallest value of describes the best fit of 

the observed data and represent the variables‟ relationship. 

To find the minimum of function (3.15), we take the derivative of the error

with respect to a andb , then set each to zero: 

 (3.16) 

 

 (3.17) 

 

On solving (3.16) and (3.17): 

2

1 1 1

n n n

i i i i

i i i

a x b x x y
  

     (3.18) 

1 1

n n

i i

i i

a x bn y
 

   (3.19) 

They can be re-written as: 

2
i ii i

ii i

i i
i i

x yx x
a

bx n y

  
    

    
    

   

 

 
 (3.20) 

( )AX B  

The coefficients a andb will be obtained by solving 1X A B . Putting the value 

of a andb in ( )f x , we will get the best fit of the observed quantities. 

Consider the general form for a polynomial of order j : 0

1

( )
j

k

k

k

f x a a x


  . The 

general expression of error using the least squares approach is: 

1

2 ( ) 0
n

i i i

i

x y ax b
a






    




1

2 ( ) 0
n

i i

i

y ax b
b






    



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 2

0

1 1

( ( ))
jn

k

i k

i k

y a a x
 

     (3.21) 

To minimize equation (3.21), we can take the derivative with respect to each 

of the coefficients in (3.21) 0 1, , ka a a , 1,k j  and set these derivatives to 

zero: 

 0

1 10

2 ( ( )) 0
jn

k

i k

i k

y a a x
a



 


    


   (3.22) 

 0

1 11

2 ( ( )) 0
jn

k

i k

i k

y a a x x
a



 


    


   

 2

0

1 12

2 ( ( )) 0
jn

k

i k

i k

y a a x x
a



 


    


   

   

 
0

1 1

2 ( ( )) 0
jn

k j

i k

i kj

y a a x x
a



 


   


   

Then re-write these equations and put into matrix form: 

 

2

02 3 1

1

22 3 4 2
2

1 2

j

ii i i

ii i i

j

i ii i i i

ii i i i

j

i ii i i i

ii i i i

j jj j j j j

i ii i i i

ii i i i

yn x x x

a
x yx x x x

a

a x yx x x x

a
x yx x x x





  

   
   

 
   

 
   

 
   

     
 

   
 

   
 

    
   

  

  

   

   

   








   



 (3.23) 

 ( )AX B  

The coefficients 0 , ja a can be obtained by solving 1X A B  
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3.2.2.2 Padé Approximation 

The Padé approximation was firstly made in a systematic study by the 

French mathematician Henri Padé in his thesis, which was a rational 

approximation to functions given by their power series [6]. He proved the 

results on their general structure and set out the connection between Padé 

approximants and continued fractions. 

The Padé approximation to ( )f x  is the quotient of two polynomials ( )MP x and 

( )NQ x of degrees M and N , respectively. Notation ( )M

NR x is used to denote 

this quotient, normalized by (0) 1NQ  : 

0

1

( )
( )

( )
1

M
i

i
M iM
N N

jN
j

j

a x
P x

R x
Q x

b x





 






 (3.24) 

One of the main applications of Padé approximations is to extract as much 

information as possible from a power series expansion that is known only to 

a few terms. Conversion from a Taylor expansion (when 0N  ) to Padé form 

usually accelerates convergence, and in many cases is often a better  

approximations of ( )f x than a number of terms from its Taylor expansion, for 

a Padé approximation of ( )f x of degree M , it is expected to give results at 

least as good as its polynomial approximation of degree M . 

A Padé approximation to a given data series ( )k ky f x can be obtained as 

follows: finding p and q to satisfy
( )

( )
( )

M M
N

N

P x
R x

Q x
 , the rational function ( )M

NR x is 

the Padé approximant to the series ( )f x if: 
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1( ) ( ) ( )M m n

Nf x R x O x     (3.25) 

when 0x and ( ) 0NQ x  , (.)O is Landau's big-Oh symbol, meaning that the 

right side is a power series over ix , beginning with degree , 1i M N   , up 

to i   . It can also be written as: 

1( ) ( ) ( ) ( )M N m nP x f x Q x O x     (3.26) 

Suppose a and b are m th and n th vectors of coefficients of polynomials 

Mp P and Nq Q , respectively. As a consequence:                     

0

0

( )
( )

( )
( )

( )

M
i

M i k

k i
k k NN

jk
j k

j

a x
P x

y f x
Q x

b x





  



 (3.27) 

if m n  , equation (3.27) can be written as (3.28) and its matrix form as 

equation (3.29) with the expansion of  kx :  

2 1

0 1 1 2 2 1( ) ( ) ( ) n n m

k k n n k n k m k ka a b y x a b y x a b y x a x a x y

          (3.28) 
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




 
 
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   
   
    
   
   
   

   
 
 
 

 

 

        


 



(3.29) 
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If m n , the essence of the matter remains the same although it is displayed 

in a different form: 

2 1

0 1 1 2 2 1( ) ( ) ( ) ( ) ( )m n n

k k m m k m k n k ka a b y x a b y x a b y x b y x b y x y

           

(3.30) 
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(3.31) 

Equations (3.29) and (3.31) can be re-arranged in following form: 
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 

 

 

   


 

(3.32) 

The Padé coefficients 0 1 1[ , , , , ]m na a a b b  then will be obtained by solving a 

linear algebraic equation AX = B . That is: 1X A B .  

Here, simply to compute the inverse of A . For many situations where the 

inverse of A does not exist, the Singular Value Decomposition (SVD) is often 

used to approximate the inverse which turn a singular problem into a non-
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singular one. The vector X in equation (3.32) can be solved for using the 

transpose of A , i.e.: 

T T
A AX = A B  (3.33) 

T -1 T
X = (A A) A B  (3.34) 

This is the form of the solution in a least-squares sense from standard 

multivariate regression theory where the inverse of A  is express as: 

† T -1 T
A = (A A) A  (3.35) 

where †
A is called the More-Penrose pseudoinverse, the use of SVD can aid 

in the computation of the generalized pseudoinverse. 

 

3.3 Classification Methods 

Pattern recognition can be seen as a classification process. The task of the 

classification process is to use the features provided from the feature 

extraction process (introduced in 3.2) to assign the object to a category. 

There are two main types of classification: supervised classification and 

unsupervised classification. In supervised classification, data samples have 

given labels and class types which are used as exemplars in the classifier 

design, sometimes the number of classes must be learned along with the 

structure of each class.  Unsupervised classification refers to situations 

where the objective is to construct decision boundaries based on unlabeled 

training data. Unsupervised classification is also known as data clustering, 
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the goal of clustering is to find groups in the data and the features that 

distinguish one group from another. Clustering techniques can also be used 

as part of a supervised classification by defining prototypes. Furthermore, in 

cluster analysis the number of categories or classes may not even be 

specified, the task is to discover a reasonable categorization of the data (if 

one exists). 

Once a feature selection or classification procedure finds a proper 

representation, a classifier can be designed using a number of possible 

approaches. Three different approaches are defined to design a classifier. 

The simplest and the most intuitive approach to classifier design is based on 

the concept of similarity: patterns that are similar should be assigned to the 

same class. Therefore, once an appropriate metric has been established to 

define similarity, patterns can be classified by template matching or minimum 

distance classifier using a few prototypes per class. The most straightforward 

1-nearest neighbour rule is always used as a benchmark for all the other 

classifiers based on similarity theory and it does not require any user defined 

parameters, its classification results are implemented independently [7]. 

The second main concept used for designing pattern classifiers is based on 

the probabilistic approach. The optimal Bayesian decision rule assigns a 

pattern to the class with the maximum posterior probability. In practice, the 

empirical Bayesian decision rule is used: the estimates of the densities are 

used in place of the true densities. These density estimates are either 

parametric or nonparametric. Commonly used parametric models are 

multivariate Gaussian distributions [8] for continuous features, binomial 

distributions for binary features, and multinormal distributions for integer-
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valued (and categorical) features. The two well known nonparametric 

decision rules, the k-nearest neighbours (KNN) rule and the Parzen classifier 

(the class-conditional densities are replaced by their estimates using the 

Parzen window approach) [9], while similar in nature, give different results in 

practice. They both have essentially one free parameter each, the number of 

neighbour k, or the smoothing parameter of the Parzen kernel. Further, both 

these classifiers require the computation of the distances between a test 

pattern and all the patterns in the training set. 

The third category of classifiers is to construct decision boundaries directly by 

optimizing certain error criterion. A classical example of this type of classifier 

is Fisher's linear discriminate [10] that minimizes the MSE (mean square 

error) between the classifier output and the desired labels. Decision tree is a 

special type in this category, which is trained by an iterative selection of 

individual features that are most salient at each node of the tree [11].One of 

the most interesting recent developments in classifier design is the 

introduction of the Support Vector Classifier [12].It is primarily a two-class 

classifier. The optimization criterion here is the width of the margin between 

the classes, i.e., the empty area around the decision boundary defined by the 

distance to the nearest training patterns. These patterns, called support 

vectors, finally define the classification function. 

The classifier is first designed using training samples, and then it is evaluated 

based on its classification performance on the test samples. The percentage 

of misclassified test samples is taken as an estimate of the error rate. The 

error rate of a recognition system must be estimated from all the available 

samples which are split into training and test sets. There are no good 
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guidelines available on how to divide the available samples into training and 

test sets. No matter how the data is split into training and test sets, it should 

be clear that different random splits (with the specified size of training and 

test sets) will result in different error estimates. 

Several most commonly used classifiers are summarized in Table 3.2, many 

of them represent a family of classifiers.  

Table 3.2 Classification methods 

Method Property Comments 

Template Matching 
• Assign patterns to the most 

similar template, e.g.correlation 

The template and metric 

must be supplied by the user. 

1-nearest neighbour rule 
• Assign patterns to the class of 

the nearest training pattern 

No training needed; scale 

dependent 

K-nearest neighbour rule 

• Assign patterns to the major 

class among K nearest 

neighbour using an optimized 

value K. 

Slow testing;  

scale dependent 

Bayesian decision rule 

• Assign patterns to the class 

which has the maximum 

estimated posterior probability 

Sensitive to density 

estimation error; yields 

simple classifier function 

Logistic classifier 
• Maximum likelihood rule for 

logistic posterior probability 

Linear classifier; suitable for 

mixed data types 

Fish linear discriminate 
• Linear classifier using MSE 

optimization 

Simple and fast; similar to 

Bayesian. 

Decision tree 

• Finds a set of thresholds for a 

pattern-dependent feature 

sequence 

Fast testing; iterative training; 

overtraining sensitive 

Multilayer Neutral network 
• Iterative MSE optimization of 

two or more layers of features 

Nonlinear; slow training; 

overtraining sensitive 

Support vector classifier 

• Maximize the margin between 

classes by selecting a minimum 

number of support vectors 

Scale dependent; nonlinear; 

good generalization 

performance 
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How to select machine learning algorithms for one‟s classification problem 

normally depends on the size and the structure of the feature sets and the 

advantages of some particular algorithms.In this research, we have a 

reasonable amount of labelled data of each pipe condition that we wish to 

study, but limited prior knowledge about the domain of the data. One 

practical choice is to start with simpler algorithm such as Bayes classifier or 

its extension K-Nearest Neighbours (KNN) which is easy to perform and can 

be very effective when the training datasets are well-distributed, another 

appealing character of KNN is that it is non-parametric and can be applied to 

multi-class applications like ours. It is always necessary to test out a couple 

different classifiers to compare and achieve higher accuracy. More 

sophisticated algorithms usually involve more parameters to yield specific 

decision regions, for example Neural Networks and Support Vector Machines 

(SVM). When the training datasets are not linearly separable in the feature 

space, SVM appears to have its advantage to adopt an appropriate kernel 

and adjust the weights to produce boundaries between classes. Based on 

above consideration, KNN and SVM were chosen for two types of pipe data 

classification in this research, but other classifiers may be tested together 

with different parameters within each algorithm in the future work.Detailed 

descriptions of these two classifiers are given in the following sections. 

3.3.1 K-Nearest Neighbours Classifier (KNN) 

The Nearest Neighbour rule is a simple non-parametric decision procedure to 

classify unknown object into the class of its nearest neighbour. The K-

Nearest Neighbours rule is an extension to the Nearest Neighbour approach 

to use not just one but a set of K nearest neighbours in the training data. This 
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rule classifies the sample by assigning it the label which is most frequently 

presented among the K nearest samples. Then a voting scheme (e.g. 

majority vote) is used to make the decision. 

The basic idea behind many of the methods of estimation is a simple 

probability density function. Suppose n samples  1, nx x are independently 

and identically distributed according to the probability density function, the 

probability P of a vector x will fall in a region R is given by: 

( )
R

P p x dx   (3.36) 

Thus P is a smoothed or averaged version of the density function ( )p x . The 

probability that K  of these n samples fall in the region R is given by the 

Binominal distribution. If the random variable x follows Binomial distribution 

with parameters n (total) and K (subset), the probability of having K samples 

in n measurements are success is given by the probability mass function: 

( ) (1 )K n K

r

n
P x K p p

K

 
   

 
(3.37) 

!

!( )!

n n

K K n K

 
 

 
 (3.38) 

Now assume that x is a point within R and V is the volume enclosed by R , 

take x as the centre of V and let it grow until it captures K  samples, the 

estimate for ( )p x can be written as: 

( )

K
np x

V
  (3.39) 
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Therefore the general expression of non-parametric density function is: 

( )
K

p x
nV

 , where

V

n

K







is the total number of examples 

In applying this result to practical density estimation problems there are two 

basic approaches can be adopted: (1) fix the volumeV and count the number 

K of data points insideV . This leads to the method commonly referred as 

Kernel Density Estimation(KDE); (2) fix the value of K and determine the 

minimum volumeV that encloses K data points. This gives rise to the K-

Nearest Neighbours (KNN) approach. 

 

 

 

 

 

 

 

Figure 3.5 is an example of KNN classification. Dashed line circles are the 

corresponding volumes when K is chosen to be 5, 9 and 13. The test sample 

x should be classified to the class which contains more data points inside the 

volume than the other class among K samples.  For example: if 5K  , the 

 

Figure 3.5 KNN classification when k=5, 9 and 13. 
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is the volume surrounding x  

is the number of examples inside V  

1  

2  
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test sample x should be assigned to class
2 because there are 4 examples 

belong to 2 and only 1 example belongs to 1 inside the volume.  

The K-Nearest Neighbours classifier relies on a metric or distance function 

between patterns. Euclidean distance metric in d dimensions is commonly 

chosen. A metric (.,.)D  is merely a function that gives a generalized scalar 

distance between two argument patterns. Suppose there are n labelled 

training samples in d dimensions, equation (3.40) can be used to calculate 

the Euclidean distance to the test sample x to seek K closest training 

samples: 

1
2

2

1

( , ) ( )
r

r k k

k

D s x s x


 
  
 
  (3.40) 

where r d , r is some subset of the full d dimensions. 

The main advantage of KNN method is that it leads to a simple 

approximation of the (optimal) Bayes classifier [13]. Suppose a database with

n  examples, a hyper-sphere of volume V around test sample x and captures 

a total of K samples among n , in which ik examples from class i , i are 

categories that cover all n samples.The likelihood that variable x falls in class

i is given by: 

      1 2 1 2

1

| , , | |
n

n r n r i

i

x P x P x      


 L    (3.41) 

We wish to estimate the probability that x belongs to one particular class i , the 

likelihood function (3.41) then can be transformed by introducing equation (3.37) into: 
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 1 2

1

( | , ) (1 )
n

k n k

n r r

i

n
x P P

k
   



 
  

 
L  (3.42) 

In practice, it is often more convenient to work with the logarithm of the 

likelihood function, called the log-likelihood lnL . Differentiate lnL with 

respect to 
rP and set the value to zero to find the value of 

rP that maximizes

lnL : 

1 2ln ( | , )
0n

r

x

P

  




L
 (3.43) 

1ˆ ( | )

n

i

i
r i

i

k

P x
n N

 


 (3.44) 

ˆ
rP is the maximum likelihood estimation that variable x belongs to one 

particular class i , where in N ,are observations enclosed in chosen 

volume. 

The priors can be estimated by: 

( ) i
i

n
p

N
   (3.45) 

Therefore the Bayes classifier becomes: 

( | ) ( )
( | )

( )

i i

r i i i i
r i

k n

p x p nV N k
P x

Kp x K

NV

 
     (3.46) 

Consequently, the category which most frequently presented among K 

examples would be selected for test sample x . 
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3.3.2 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) is a relatively new supervised classification 

model introduced and developed by Russian mathematician Vladimir N. 

Vapnik [14] and his group in 1995.  The SVMs method was initially invented 

to solve binary class problems but they are gaining popularity and 

development for multiclass classification due to its many attractive features 

and promising empirical performance.   

SVMs belongs to the general classification category of kernel methods [15]. 

A Kernel method is an algorithm that depends on the data only through inner 

products, by replacing the inner products with kernels in possibly higher 

dimensional feature space, flexible representations of data could be obtained. 

Combining a simple linear discriminate algorithm with the kernels, nonlinear 

separations of data can be learned efficiently.  

 

3.3.2.1 Linear Support Vector Classification 

A linear classifier is defined by a linear discriminate function in the form: 

T(x) w x+bf   (3.47) 

The vector w is known as weight vector and b is called bias, the inner 

product between w and x is defined as: w xT

i ii
x  . The set of points x

such that Tw x= - b are all points perpendicular to w and go through the origin: 

a line in two dimensions; a plane in three dimensions and more generally, a 

hyperplane, which divides the space into two.  
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Figure 3.6 Linear binary SVMs classification 

Figure 3.6 gives an example of the case b 0 .  Tx: (x)=w x+b=0f  donates the 

hyperplane which defines the decision boundary between regions, the bias 

parameter b determines the location of the boundary away from the origin of 

the space. A classifier with a linear decision boundary is called linear 

classifier as shown in Figure 3.6. Conversely, when the decision boundary of 

a classier depends on the data in a non-linear way the classier is said to be 

non-linear. 

Consider a set of training vectors belonging to two classes is of the form

 ,i ix y , where  1,1iy   , 1,2,i n  .  The distance of a point x from the 

hyperplane w,b is given by: 

x1

x2

w

2

w
  Margin 

b

w
 

Support 

vector 

Support 

vector 

Support 

vectors 

wx-b 1 0   

wx-b 1 0    

wx-b 0  
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Tw x b
(w,b;x)

w

i
d


  (3.48) 

The optimal hyperplane is given by maximizing the margin , it is given by: 

: 1 : 1
min (w,b;x ) min (w,b;x )
i i i i

i i
x y x y

d d
 

   

T T

: 1 : 1

1
( min w x b min w x b )

w i i i i

i i
x y x y 

     

2

w
 (3.49) 

It equivalents to finding min w , min w  is also equivalent to min
21

w
2

and 

the use of this term makes it possible to perform Quadratic Programming (QP) 

optimization [16]. The optimization problem therefore becomes: 

21
min w

2
 such that: T(w x b) 1 0i iy    , 1,2i n  (3.50) 

Where iy is the label series of training samples x i . To allow for errors 

equation (3.50) is modified with: 

T(w x b) 1i i iy     (3.51) 

where 0, 1,2i i n    are called slack variables for which the penalty term

1

n

i

i




  allow a sample to be in the margin ( 0 1i  , also called a margin error) 

or to be misclassified ( 1i  ). These slack variables i  are basically a 
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measure of the misclassification error. The optimization problem then 

becomes: 

2

1w,b

1
min w

2

n

ii
C 


   (3.52) 

with the following constrains: 

T(w x b) 1i i iy    , 0i   (3.53) 

where the constant 0C  is chosen to maximize the margin and minimize the 

amount of slack. Equation (3.52) is the formulation called „soft-margin SVMs‟ 

and it was originally introduced by Cortes and Vapink [7, 14]. The solution to 

the optimization problem of equation (3.53) is given by introducing Lagrange 

multipliers i [17], where 0i  : 

2 T

1

1
(w,b, ) w ( [ w x b] 1)

2

n

i i i

i

y 


    (3.54) 

Classical Lagrangian duality enables the primal problem, Equation (3.53), to 

be transformed to its dual problem, which is easier to solve: 

w,b
max ( ) max(min (w,b, ))W
 

   (3.55) 

The minimum with respect to w  and b  of the Lagrangian,  , is given by: 

1

0 w
w

n

i i i

i

y x





  


  (3.56) 

1

0 0
b

n

i i

i

y





  


  (3.57) 

Substituting (3.54), (3.56) and (3.57) into (3.55) gives a new dual formulation: 
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T

1
1 1

1
max x x

2

n n
n

i i j i j i ji
i j

y y


 


 

 
 

 
   (3.58) 

with the following constrains: 

1
0,0

n

i i ii
y C 


    (3.59) 

Solving Equation (3.58) with constraints Equation (3.59) determines the 

Lagrange multipliers, and the optimal separating hyperplane is given by: 

1

w
n

i i i

i

y x



  

1
b w , x x

2
r s

     (3.60) 

where x , xr s are any support vectors from each class satisfying: , 0r s   ,

1, 1r sy y   . 

The classifier is then given by: 

( ) sgn( w ,x b)f x    (3.61) 

The dual formulation of the SVM optimization problem depends on the data 

only through dot products. The dot product can therefore be replaced with a 

non-linear kernel function, thereby, performing a non-linear mapping into 

feature space and the constraints are unchanged: 

( ) sgn( ( , ) b)i i i

i SVs

f x y K x x


   (3.62) 
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3.3.2.2 Multiple Class SVMs Classification 

The conventional way to extend original binary SVMs classifier to multiple 

category classifiers is to decompose M  class problem into a series of two-

class problems, for which One-Against-All is the earliest and one of the most 

widely used implementations [18]. Suppose there are N training samples

 1 1( , ), ( , )n nx y x y , M

ix R and {1,2, }iy M  is the corresponding class 

labels. One-Against-All approach constructs M binary SVMs classifiers, each 

of which separates one class from all the others. The i th SVM is trained 

with all the training examples of the i th class with positive labels (one side 

of the boundary), and all the others with negative labels (the other side of the 

boundary). The decision function of i th SVM T(x) w (x ) bi i i if   solves the 

following problem: 

2

w,
1

1
min w

2

n
i

j

i

C





   (3.63) 

provided that: 

 T(w (x ) b ) 1 i

i j i ji
y     , 0i

j   (3.64) 

where  1jy  if 
jy i and  1jy   otherwise. For an unknown sample x to be 

classified in class i whose decision function produces the largest value: 

T

1,2 1,2

arg max (x) arg max(w (x ) b )i i i i
i M i M

i f 
 

  
 

 (3.65) 

Another popular method for multiple class problems is One-Against-One 

method which is also called pair-wise classification [19]. This method 
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constructs ( 1) 2k k  classifiers, k is the number of categories. For training 

samples from the i th and j th classes, solve the following binary 

classification problem: 

2

, ,
w,

1

1
min w

2

n

i j i j

i

C





  , 0   (3.66) 

provided that: 

T

, , ,w (x ) b 1i j l i j i j    , if ly i  

T

, , ,w (x ) b 1i j l i j i j     , if ly j  (3.67) 

The decision strategy suggested by Friedman [20] is: if T

, ,{w (x) b }i j i jsign  

says x belongs to i th class then the vote for i th class is added by one, 

otherwise j th is increased by one. Then the sample x is predicted to be in 

the class with the higher vote. This method is usually slower than the One-

Against-All method due to its squared number of classifiers and the 

complexity of its decision making. However, it is not reasonable to claim 

which method is always better than the other, the number of classes, the 

number of training samples and the application constraints all need 

consideration to choose the suitable strategy. 

 

3.3.2.3 Kernel Models and SVMs Parameters 

The effectiveness of SVMs highly depends on the selection of kernel decision 

function, the kernel's parameters, and the soft margin parameter.  
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Hyper-Parameters 

Parameters 
i and b  given in Equation (3.48) are used to train SVMs to find a 

large margin hyperplane, another parameter called the soft margin constant, 

C , plays an important role in deciding the boundary of the margin as 

illustrated in Equation (3.40). For a large value of C , a large penalty is 

assigned to margin errors as shown in the left of Figure 3.7, those points 

closest to the hyperplane affect its orientation, as a result the hyperplane 

comes close to several other data points. When C is decreased as shown in 

the right of Figure 3.7, those points become margin errors so that the 

hyperplane‟s orientation changed, providing a much larger margin for the rest 

of the data. 

 

 

 

 

 

 

 

 

 

 

 

Soft margin parameter 10C   

 

Soft margin parameter 2C   

 

Figure 3.7 The effect of parameter C  on the decision boundary 
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Kernel Parameters 

The idea of the kernel function is to enable operations to be performed in the 

input space rather than the potentially higher dimensional feature space. The 

computation is critically dependent upon the number of training patterns and 

to provide a good data separation for a higher dimensional problem requires 

a smart choice of kernel functions. Table 3.3 summarizes several popular 

kernel functions and their mathematical forms. 

Table 3.3 Some popular Kernels for Classification 

Name Function Parameter 

Linear ( , ) ( ) ( )T

i j i jk x x x x   - 

Polynomial ( , ) ( ( ) ( ) ) , 0T d

i j i jk x x x x r      Degree d , , r  

Gaussian 
2

2

1
( , ) exp( ( ) ( ) )

2
i j i jk x x x x 


    Inverse- width  

Radial Basis 

Function 

2

( , ) exp( ( ) ( ) )i j i jk x x x x      Variance   

Sigmoid ( , ) tanh( ( ) ( ) )T

i j i jk x x x x r    Scaling factor , shifting factor r  

Kernel parameters have significant effects on the decision boundary. The 

degree d of polynomial kernel and the width parameter  of Gaussian kernel 

control the flexibility of the corresponding classifiers. Higher order of 

polynomial classifier yields decision boundary with greater curvature as can 

be seen in Figure 3.8. Left figure shows classification using a linear classifier; 

a 2-nd order polynomial classifier (middle) is already flexible enough to 

discriminate two classes; the 7-th degree classifier (right) yields a similar 

boundary but clearly over fitted. 
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 Large value of width parameter   of Gaussian classifier can lead to 

overfitting while small value of  results in a nearly linear decision boundary, 

Figure 3.9 gives examples of the effect of . When  is small (left), the whole 

set of data affects the value of discriminant function of a given x , results in a 

smooth boundary. As  is increased (right), the locality of the support vector 

expansion increases resulting in a greater curvature of the decision boundary. 

As seen from Figure 3.8 and 3.9, if the complexity parameters are too large, 

overfitting will occur.  

 

 

 

 

 

 

Gaussian 0.1  good fit Gaussian 1  over-fitted 

Figure 3.9 The effect of width parameter of Gaussian classifier on decision boundary 
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Figure 3.8 The effect of degree d of polynomial classifier on decision boundary 
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The frequently asked question is: which kernel should be chosen? There is 

no simple answer for it. Like most practical problems in machine learning, the 

answer is data-dependent and several kernels should be tried. A general 

procedure should be followed: try a linear kernel first, then move to non-linear 

kernel to see if the classification performance can be improved. The linear 

kernel provides a useful baseline and it is easy to operate as the only 

affecting parameter is the soft margin parameterC . Once a result of using a 

non-linear kernel is available, adjust its corresponding kernel parameters to 

achieve a better classification result. Comparisons among different kernels 

and different value of kernel parameters by using independent test data over 

a reasonable range of problems should be carried out. 
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3.4 Summary 

Pattern recognition has been used for many real world applications and 

provided satisfying results upon the understanding and procession of 

knowledge of the system and available algorithms. In this chapter, feature 

extraction and classification are given detailed description as they are the 

most important procedures in a pattern recognition system. Following 

methods are given a throughout presentation of their theoretical aspects: 

Wavelet Transform (WT) and two data fitting methods: Polynomial and Padé 

approximation are the main techniques used for feature extraction in the 

research; K-Nearest Neighbours (KNN) and Support Vector Machines (SVMs) 

are classification algorithms applied on obtained features. Classification 

results from Laboratory data and field data will be presented and discussed 

in the following chapters. 
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Chapter 4  

Laboratory Constructed Water-filled Siphon 

Condition Classification 

 

4.1 Introduction 

This chapter presents the results of the laboratory study of the proposed 

classification and recognition system for siphon conditions. The experiments 

were carried out using a 450mm diameter concrete siphon constructed in the 

Hydraulics Laboratory at the University. The temperature was recorded 

routinely for all measurements and the reproducibility tests were conducted 

to test the reliability of the system.  A number of possible conditions were 

designed and studied to check the capabilities of the system.  

The siphon was filled with water in all the experiments to simulate real live 

sewer conditions. Acoustic data were collected under three sets of conditions: 

(i) clean empty siphon; (ii) siphon with a controlled amount of blockage; (iii) 

siphon with various types of wall damage. The effect of surrounding medium 

was also studied including air, sand and water. The signal processing of the 

raw recorded data as the first step of classification was carried out. Acoustic 

signals were received on the receivers and transformed into acoustic 

pressure response and recorded with a PC. Discrete wavelet and digital 

filters were used to decompose and extract representative features from the 

pressure signals for the further classification analysis. Finally, the 

classification of siphon conditions was carried out using K-nearest 
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neighbours (KNN). These results of the experiments were used to improve 

the data analysis methods and condition classification system. The detail of 

the theories of feature extraction method and classification algorithm used in 

this part of research can be found in Chapter 3. 

 

4.2 Experimental Design  

Within the underground sewerage system there are numerous special 

structures serving particular needs. Siphons are designed to convey water 

run-off and sewage flows below deep obstructions where such crossings 

cannot be attained by a sewer placed on a continuous gradient [1, 2]. 

Monitoring of the conditions of this infrastructure is important to maintain it 

timely to avoid failures and resultant flooding. A full-scale siphon has been 

designed and constructed in the Hydraulics Laboratory in the University of 

Bradford in order to study the effect of a range of typical conditions, and 

develop a classification method based on acoustic characteristics to detect 

sediment level in or damages on the wall of the siphon. 

 

4.2.1 Measurement setup 

A 4.2 m long and 2.0 m high siphon using sections of 450mm concrete pipes 

was installed on a 500mm layer of fine sand in an open top box made of 

12mm plywood as shown in Figure 4.1 (left). The siphon was filled up with 

clean water to the level of 900mm below the top rims of the vertical parts 

(Figure 4.1 (right)), and the water level remained during all the experiments 

as reference.  
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Figure 4.1 Photograph of Siphon Experimental setup 

 

The acoustic instrument consisted of four 25mm hydrophones Type SQ31 by 

Sensor Technology Inc. (Canada) and one 50mm speaker Type K50WP by 

Visaton (Germany).   Hydrophones H1-H3 were installed in the left leg of the 

siphon. Hydrophone H4 was installed in the right leg of the siphon 75mm 

above the speaker and used as a reference receiver (see Figure 4.2).  The 

hydrophones and the speaker were attached securely to two aluminium 

tubes which were lowered into the opposite legs of the siphon and kept at the 

same positions in all of the experiments conducted in the siphon.    

 

 

 

 

 

 Figure 4.2 Arrangement of sensors in the siphon 
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The data acquisition and signal processing facilities used in these 

experiments consisted of:  (i) a PC installed with WinMLS software to control 

the sound card which generated a 10-second sinusoidal sweep in the 

frequency range of 100 - 6000 Hz; (ii) an 8-channel high-pass hydrophone 

filter used to remove unwanted low-frequency machinery noise from the 

signals received on hydrophone H1-H3; (iii) a B&K Type 2610 measuring 

amplifier and a dual variable filter Kemo VBF 10M filter which were used to 

condition and filter the signal received on the reference hydrophone in the 

100 – 4000 Hz range. In addition, a B&K Type 2708 power amplifier was 

used to drive the underwater speaker. Rotel Type RA-9708 X Stereo 

amplifier and headphones were used to control subjectively the quality of the 

signal produced by the underwater speaker. 

WinMLS software controlled the sound card which generated a sinusoidal 

sweep (chirp) in the frequency range of 100 – 6000 Hz. Sinusoidal sweep 

(chirp) is widely used excitation signal to measure the transfer function. 

Chirp-based measurements are considerably less vulnerable to the 

deleteriouseffect of time variance, they are best suited for outdoor 

measurements in presence of dynamically rough water surface [3].The signal 

was repeated 8 times and averaged to increase the signal-to-noise ratio. The 

sounds received on the four hydrophones were digitised at 22050Hz 

sampling rate and recorded on the PC. The sinusoidal sweep signals were 

then deconvolved using WinMLS software so that the acoustic pressure 

impulse response of the siphon was obtained at the four hydrophone 

positions at a high signal-to-noise ratio. Typically, three measurements were 

recorded for each of the experimental conditions studied in this work to 
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provide data for the statistical analysis. In addition, the background noise was 

regularly recorded to control the levels of noise produced by the other 

machinery and equipment operated in the laboratory at the time of 

measurements. 

 

Figure 4.3 A schematic diagram of the data acquisition and analysis system 

 

4.2.2 Laboratory Data Collection 

The effects of the following conditions on sound propagation in the siphon 

were studied: (i) water level in the siphon; (ii) air bubbles effect; (iii) type of 

the medium surrounding the siphon; (iv) amount of sediment deposited in the 

siphon; (v) various types of the wall damage.  

The original acoustic signals received on hydrophones H1-H3 were de-

convolved with WinMLS software to obtain the acoustic pressure response. 
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These pressure data were used in signal processing and condition analysis, 

the results of which will be presented in the next section. The purpose of 

experiments (i), (ii) and (iii) listed above was to find out whether or not 

conditions (iv) and (v) can be detected acoustically in the presence of noise 

and environmental uncertainties. 

4.2.2.1. Water Level Effect 

The purpose of this experiment was to determine the effect of the water level 

on the acoustic pressure emitted by the speaker into the siphon. The 

horizontal section of the siphon was fully surrounded by dry sand up to a 

level of 1m from the bottom of the box. The water level in the siphon was 

varied between 600mm and 1200mm from the top of the left vertical pipe. 

Measurements were taken with 100mm difference of water level.   

4.2.2.2. Influence of Air Bubbles 

Air bubbles are usually present in the turbulent water flow and can strongly 

affect sound propagation in a certain frequency range. For this purpose a fish 

tank air pump with a 150mm long porous airstone (Figure 4.4) was installed 

on the bottom in the middle of the horizontal section of the siphon to study 

the effect of bubbles on the sound propagation in the siphon. The acoustic 

field in the siphon was recorded in the presence and absence of bubbles.  
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Figure 4.4 Air pump and air stone used in bubble effect experiments 

 

4.2.2.3. Siphon Surrounding Medium     

Measurements were taken with the siphon surrounded by different types of 

medium to study the effect on the sound propagation in the siphon. 

Surrounding conditions were designed as following: (i) exposed (air medium); 

(ii) dry sand in variable amount; (iii) water in variable level. 

Exposed condition was set as approximately 50% of the horizontal section of 

the siphon being exposed to air, and it was the initial condition of the sand 

and water level experiments. Approximately 6 tonnes of sand were added to 

the box on the reference exposed condition, one tonne at a time in six 

sequential steps, and equally distributed in the box. Four conditions: exposed; 

2 tons; 4 tons and all 6 tons were studied, see Figure 4.5. 
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Figure 4.5 Photographs of dry sand conditions studied 

 

Approximately six tonnes of dry sand were then removed from the box so 

that the siphon condition became exposed again as the initial condition for 

water level experiments. A water pump working at flow rate of 20 litre/min 

was used to fill the box with water. During this experiment measurements 

were carried out at 25 minute intervals which corresponded to approximately 

500 litres of water pumped into the box every 25 minutes. Ultimately, the 

water level in the box was aligned with that inside the siphon (900mm below 

the open end of the siphon). This experiment required in total approximately 

4500 litres of water and lasted 3 hour 45 minutes. These conditions are 

illustrated by photographs shown in Figure 4.6.  



Chapter 4Laboratory Constructed Water-filled Siphon Condition Classification 

Page | 89 
 

  

  

Figure 4.6 Siphon conditions in water level effect experiments 

The comparison results of the effects of different amount of surrounding sand 

and water on the acoustic field in the siphon will be presented in the next 

„signal pre-processing ‟ section. 

4.2.2.4 Siphon with variable amount of sediment 

In this experiment the siphon was fully surrounded by dry sand and filled with 

water up to the level of 900mm below the top. Ten 5kg acoustically 

transparent bags were prepared and filled with fine sand. The maximum 

cross-sectional dimension of one sand bag corresponded to approximately 

20% of the pipe cross-section. Several bags at a time were tied to a 9m rope 

separated by a 300mm distance as shown in Figure 4.7. The number of bags 



Chapter 4Laboratory Constructed Water-filled Siphon Condition Classification 

Page | 90 
 

deposited in the siphon by these means varied from 1 to 10. The acoustic 

sensors were removed and installed again each time when the bags were 

deposited or taken out of the siphon before the measurements were taken. 

 

  

Figure 4.7 Sandbags used in sediment experiments. 

4.2.2.5 Wall Damages 

The purpose of this experiment was to study the effect of wall damage on the 

acoustic field in the siphon. Artificial cuts were inflicted to the top of the 

horizontal section of the siphon. The siphon remained exposed and then 

surrounded by water up to the level matching with the reference level inside 

the siphon after the damages were conducted. Measurements were taken in 

the presence of 6 different damages: (i) 50mm longitudinal cut; (ii) 100mm 

longitudinal cut; (iii) 200mm longitudinal cut; (iv) 200mm longitudinal and 

55mm transversal cuts; (v) 200mm longitudinal and 150mm transversal cuts; 

(vi) 200mm longitudinal cut and 120mm x 70mm hole (see Figure 4.8). 
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Figure 4.8 Photographs of the artificial damages on the wall 

 

4.3 Signal Pre-processing 

The acoustic impulse response of a physical system is a very useful quantity. 

It contains information of the sound speed, system geometry and conditions 

at its boundaries [3]. Any change in these properties is reflected in a change 

in the acoustic impulse response. The acoustic pressure response data were 

obtained through deconvolution on the original signals received on the 

hydrophones H1-H3 using the convolution theorem: 

 1( ) Re { ( ) / ( { ( )} )j jh t F F y t F x t       (4.1) 
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where ( )x t is the excitation signal, ( )jy t is the signal recorded on hydrophone 

j and  is the regularization factor. Only the real part of the signal was 

analysed and used in this research, the phase information contained in the 

signal may also provide useful features for condition analysis and may be 

considered as future work. Figure 4.9 shows a recorded acoustic signal of an 

empty siphon and the corresponding pressure response. 

 

 

 

 

 

 

 

Figure 4.10 shows examples of deconvolved impulse response data received 

on all three receiving hydrophones of the clean siphon and the siphon with 

one blockage. It was noted that the data received on three hydrophones are 

remarkably similar and it appears difficult to detect visually the blockage from 

the impulse response data 

  

 

Figure 4.9 Recorded acoustic signal on one hydrophone of clean siphon (left)  

and its pressure response (right) 
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Figure 4.10 Examples of time domain impulse response data received on three hydrophones 

of two siphon conditions. Left column corresponds to clean siphon condition while right 

column shows the data for a siphon with one blockage. 

A major goal of the data pre-processing part was to modify the measured 

data obtained from the data acquisition part so that those data could be more 

suitable for the further processing in feature extraction and classification. It 
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was assumed that the acoustic impulse response carries sufficient dynamic 

system information and can be used to study the characteristics of the 

system. However, the impulse response is a broad band signal and only a 

part of its spectrum is affected by the change in the siphon condition.  

The impulse response obtained from Equation (4.1) was then used to 

determine the sound pressure level as a function of time according to the 

Schroeder integral [4]: 

2

10

1 ˆ( ) 10log ( )

t

t

L t h t dt

 
  

 
  (4.2) 

where t  is a time instant at which the sound pressure level is calculated, ∆ is 

the duration of the integrating time interval and ˆ( )h t  is the impulse pressure 

response obtained on one hydrophone in a particular frequency band. The 

change in the sound field is easier to be detected and observed by 

measuring the sound pressure level, the SPL data is therefore more suitable 

than the original impulse response data for further analysis.    

 

4.3.1 Reproducibility of the Experiments Performed 

In order to study the stability of the measurement system, reproducibility 

experiments were performed at a 1 hour interval. The sensors were kept at 

the same position as shown in Figure 4.1 and the siphon was filled with clean 

water up to the reference level. No change in the siphon conditions were 

made during these measurements. The RMS sound pressure level was 

calculated over 9 hour period using Equation (4.3) and presented in Figure 
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4.11 (left), where ( )p t is the instantaneous pressure. The maximum 

difference between the RMS sound pressure levels was less than 2.3% 

during the same time interval.  

2

0

1
( )

T

rmsp p t dt
T

   

2

0

1
rms( ) 10log( ( ) )

T

SPL p t dt
T

   (4.3) 

Another set of experiments was conducted to determine if the influence of the 

sensors position in the siphon needs to be taken into account during those 

experiments which require removing and re-placing the hydrophone array. 

The temperature and water levels were kept the same and no change in the 

siphon conditions was made in this experiment. A measurement was taken in 

the clean siphon, the transmitters were then removed and placed back in the 

original position with possible small misalignment. The same measurement 

was then repeated to determine if there was noticeable change on the 

acoustic pressure data. The correlation coefficient was calculated using 

Equation (4.4) to measure the similarity between two sets of SPL data ix and

iy : 

1

,

2 2

1 1

( )( )

( ) ( )

n

i i

i
x y n n

i i

i i

x x y y

r

x x y y



 

 



 



 

 (4.4) 

Where x and y are the means of ix and iy . The correlation coefficients of 6 

sets of SPL data obtained before and after reinstalling the sensor back to the 

original position are presented in Figure 4.11 (right). 
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Figure 4.11 Left: RMS sound pressure; right: correlation coefficients of SPL data  

obtained before (b) and after (a) reinstalling the sensor. 

 

4.3.2 Digital Filters 

Digital filters are commonly used to remove unwanted components like noise, 

or to extract useful parts from the recorded signals at some frequencies. 

Butterworth, Chebyshev and Elliptic filters are frequently used for digital 

signal analysis. Their performance can be summarized as following [5]: the 

Butterworth filter of order 3 is found to provide the best roll-off; the 

Chebyshev filter is found to provide the most flat response in the design 

frequency range; the magnitude response of the Elliptic filter is somewhat 

between that provided by the Butterworth and Chebyshev filters, but it shows 

the most monotonic variation in the phase response. In this research, the 3rd 

order Butterworth filter was adopted to process the acoustic pressure 

response to determine the frequency range within which a change in the 

siphon condition can be noticed and detected. 

Figure 4.12 presents the sound pressure levels obtained from hydrophone 1 

for the water levels 200mm, 600mm, 900mm and 1300mm below the top of 
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the siphon. The details of water level experiments are given in section 4.2.3.1. 

The results show that the water level has a very noticeable effect on the 

sound pressure particularly in the frequency range below 1000 Hz. This 

phenomenon is associated with a strong interference between the sound 

wave incidents on and reflected by the free water surfaces in the vertical legs 

of the siphon. This effect is also observed consistently in the data recorded 

on all the other two hydrophones. 

  

Figure 4.12 Examples of SPL at different water levels in the siphon: 200mm; 600mm;  

900mmm and 1300mm at low and high frequency range. 

 

Bubble effect experiment stated in section 4.2.3.2 aims to study the effect of 

air bubbles on the sound propagation in the siphon. The results of this 

experiment show that there is a strong similarity in the acoustic field between 

the presence and the absence of bubbles, Figure 4.13 shows the sound 

pressure levels with and without the presence of air bubbles. The degree of 

correlation between these two conditions is 90% calculated using equation 

(4.4) and is comparable to that which was observed in the reproducibility 

experiment. Therefore, the effect of bubbles on the sound field in the siphon 

is relatively small and can be neglected. 
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Figure 4.13 Sound pressure level of an empty siphon with and without the presence of air 

bubbles at low (left [100-1000] Hz) and high (right [1000 2000] Hz) frequency range. 

 

Figure 4.14 and 4.15 show the sound pressure level comparisons between 

different amount of surrounding dry sand and water effect in two frequency 

bands, respectively. The sound pressure level results suggest that the effect 

of different amount of surroundings on the acoustic field in the siphon is 

progressive, but limited. More difference showed in SPL at lower frequencies. 

Relatively, more area covered by dry sand, the lower sound pressure level 

resulted in the siphon; and on the contrary, the higher surrounding water 

level caused higher interior sound pressure level. Whether the surrounding 

medium effects should be taken into account in further siphon condition 

analysis depends on the exact amount and type of the surrounding medium, 

also the time window that chosen to extract information from. 

0 0.1 0.2 0.3 0.4 0.5
-30

-20

-10

0

10

20

30

Time (sec)

S
P

L

Frequency range [100 1000]Hz

 

 

with bubbles

without bubbles

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

10

20

30

40

Time (sec)

S
P

L

Frequency range [1000 2000]Hz

 

 

with bubbles

without bubbles



Chapter 4Laboratory Constructed Water-filled Siphon Condition Classification 

Page | 99 
 

  

Figure 4.14 Sound pressure level of an empty siphon surrounded by different amount  

of dry sand at low frequencies (left) and high frequencies (high). 

 

  

Figure 4.15 Sound pressure level of an empty siphon surrounded by different amount 

of water at  low frequencies (left) and high frequencies (high). 
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distinguishable on the time line from 0 to 0.04 second. The data within that 

range contained mostly useful characteristics for siphon condition analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 gives the sound pressure levels of several damage conditions for 

different frequency bands. The sound pressure level was found not sensitive 

to damage at frequencies below 1000Hz. From 1000 to 4000Hz range, there 

is noticeable difference between undamaged condition and damaged 

conditions. However, the differences between different types of damages 

were not obvious from the visual examination of these graphs. Choosing time 

window seems critical for damage condition analysis as it can be seen from 

these figures that data within 0.02 ~ 0.06 sec appear to be more separable 

from one type of damage to another.  

  

  

Figure 4.16 Sound pressure levels of different sediment conditions in several frequency bands 
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Figure 4.17 Sound pressure level of damage conditions at different frequency bands 
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approximations being decomposed in turn, so that one signal is broken down 

into many components. This is called the wavelet decomposition tree. The 

frequency responses for the decomposed signals for a system with a 

sampling frequency 
sf are shown in Table 4.1. The frequency band on a 

certain decomposition depth p  can be calculated as: 

1

2 2
s sp p

k k
f f


  (4.5) 

Where k is the node number in the wavelet tree (Figure 4.18), 0,1,k n  .  

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Wavelet decomposition tree generated with MATLAB 

 

The DWT coefficients represent the degree of correlation between the 

analyzed signal and the wavelet function at different instances of time. 

Therefore, DWT coefficients carry useful temporal information about the 

transient activity of the analyzed signal [6]. Figure 4.19 shows a 3 level 

wavelet decomposition tree using „db4‟ as the wavelet function, s  is the 

Table 4.1  

Frequency  bands of DWT decomposition of  depth 3 

Decomposition level Frequency bandwidth (Hz) 

1D  2

s
s

f
f  

2D  
4 2

s sf f
  

3D  
8 4

s sf f
  

3A  0
8

sf  

 

Tree Decomposition

S (0,0)

A1 (1,0) D1 (1,1)

A2 (2,0) D2 (2,1)

A3 (3,0) D3 (3,1)
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original analyzed pressure response signal, cA1-cA3 are approximation 

coefficients of s , cD1-cD3 are detail coefficients of s .  

The coefficients can be used to reconstruct approximation and detail signals 

from their coefficients on any decomposition level, the decomposition and 

reconstruction phases together finished the signal filtering process. 

Meanwhile, the DWT coefficients themselves preserve the temporal 

information about the original signal, they have been proven effective for 

analysis of non-stationary signals in some applications [6], there have not 

been much effort in applying DWT on acoustic signal for condition 

classification, its effectiveness were studied in this research and will be 

presented in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19Discrete Wavelet Decomposition of depth 3 of a clean siphon signal 
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Different wavelet functions have different effect on the performance of the 

decomposition process. The performance of the different types of wavelet 

functions would indicate their suitability to detect transient activity in 

acoustical signals, which correspond to different siphon conditions.  

The waveforms of the wavelet function should be as similar to the transient 

activity to be detected in the acoustic signals. However, since the optimal 

waveform for this research is unknown, various types of wavelet function 

were considered: Daubechies („db‟), Symlets („sym‟) and Coiflets („coif‟). 

Figure 4.20 displays the approximate shapes of several wavelets. 

   

   

 
  

Figure 4.20 Approximations of wavelet functions of „db‟, „sym‟ and „coif‟ in different orders. 
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Figure 4.21 shows examples of a recorded acoustic signal and the 

reconstructed signals using wavelet „coif2‟, „sym4‟ and „db4‟. The Coiflets 

wavelets with order above 2, Symlets and Daubechies wavelets with order 

above 4 all appear to have similar waveforms as the original recorded signal. 

The cross-correlation coefficients were calculated between the original signal 

and each reconstructed signal, the reconstructed signal using wavelet „db4‟ 

has the highest similarity. Therefore, Daubechies of order 4 was chosen as 

the wavelet function. 

 

Figure 4.21 Examples of a recorded signal and reconstructed signals  

using wavelet „coif2‟, „sym4‟ and „db4‟ 

 

Daubechies have no analytical formula for scaling and wavelet functions, but 

its coefficients are available in textbook and literatures for each order [7]. 
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The wavelet function coefficients are:  

0 3
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g h

g h

g h

g h



 



 

 

The scaling and wavelet functions are the sum of inner products of the 

coefficients and four values of the input data s , the scaling function is given 

by: 

2 1

0

( ) 2 (2 )
N

k

k

t h t k 




   (4.6) 

The wavelet function is given by: 

2 1

0

( ) 2 (2 )
N

k

k

t g t k 




   (4.7) 

The decomposition high-pass and low-pass filters were then obtained by: 

, 1,_ ( ), ( )o j n j kL D t t    

, 1,_ ( ), ( )i j n j kH D t t    (4.8) 

Where ,j k are scale and shift parameters if applicable, n is the number of 

data samples. The reconstruction filters are the reverse of the decomposition 
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filters. Figure 4.22 illustrates the „db4‟ decomposition and reconstruction 

filters.  

  

  

Figure 4.22 db4 wavelet decomposition filters (top) and reconstruction filters (bottom) 
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The decomposition starts with producing two sets of coefficients at scale 1j  , 

the process repeats until reaches the frequency bandwidth as needed. The 

approximation and detail coefficients are calculated as: 
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1 1,( ) ( ), ( )j kcA k x t t   (4.10) 

0 , 1,( ) ( ), ( )j n j k

n

cA n t t     

0 , 1,( ) ( ) , ( )j n j k

n

cA n t t    

1 1,( ) ( ), ( )j kcD k x t t   (4.11) 

0 , 1,( ) ( ), ( )j n j k

n

cA n t t     

0 , 1,( ) ( ) , ( )j n j k

n

cA n t t    

Alternatively, they also can be written upon substitution with (4.4): 

1 0( ) _ ( 2 ) ( )o

n

cA k L D n k cA n   (4.12) 

1 0( ) _ ( 2 ) ( )i

n

cD k H D n k cA n   

For a depth= p decomposition, signal ( )x t  can be written as:

 

, , 1 ( 1), 1 1,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p j p k p j p k p j p k j k

k k k k

x t cA k t cD k t cD t cD k t              

 

1 1p p pA D D D                  (4.13) 

The sampling frequency of acoustic pressure response in this research is 

22050sf  Hz. For the sediment condition, based on the results from 

Butterworth filtering, a modified wavelet tree of depth 5 (Figure 4.24) was 

designed to decompose the original pressure response signals into 4 

frequency bands with bandwidth calculated as: 52sB f = 22050 32 =689Hz. 

Reconstructed signals with same length are shown in Figure 4.23: S is the 
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original broad band signal; 
5A is the lowest frequency component of S; 

3D is 

the highest frequency component. 
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Figure 4.23 Reconstructed filtered signals of clean pipe pressure response used „db4‟ as 

wavelet function, 5 depth decomposition, decomposition filter bandwidth=689Hz. S is the 

original signal, 5A - 3D : frequency from low to high with maximum frequency =2756Hz. 

 

 

Figure 4.24 Modified „db4‟ wavelet decomposition tree of 5 depth, each node corresponds to 

a set of decomposition coefficients, from cA5 to cD3: frequency goes from 100-2756Hz. 
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therefore only three frequency bands are useful for the further condition 

analysis, while the filtered signals obtained from the modified wavelet 

decomposition tree are showing noticeable difference in a certain time 

window 0 0.04t  sec at all four frequency bands which supply more data 

information for condition analysis. 

  

  

Figure 4.25 Sound pressure level of sediment conditions at 4 frequency bands defined by 

modified „db4‟ wavelet decomposition tree as shown in Figure 4.23 
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0.02 0.06t  sec as determined for digital filtered data is chosen for the 

consistency of analysis and comparison. Also, the SPL data generally show 

more differences between different conditions than the SPL data obtained 

from Butterworth filter. See Figure 4.26. 

  

  

Figure 4.26 Sound pressure level of damage conditions at 4 frequency bands defined by 
„db4‟ wavelet decomposition functions 
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The time window chosen for the detection of sediment conditions was 

0 0.04t  sec for both Butterworth filtered data and DWT decomposed data. 

In the case of damage conditions, the time windows were 0.02 0.06t  sec 

and 0 0.04t  sec for data filtered by Butterworth and DWT, respectively. 

4.4.1 Energy Data from Signals Filtered by 3rd Butterworth 

The estimation of the acoustic energy in the pressure response at a given 

instant can be calculated as: 

( )/1010

t

L t

t

E dt



   (4.14) 

where the times t  and t  define the time window, within which the 

integration was carried out.   was the time interval.  ( )L t  was the sound 

pressure level obtained from Equation (4.2). 

The four frequency bands defined by 3rd order Butterworth filter for sediment 

conditions are: 100~600Hz, 600~1200Hz, 1200~1800Hz and 1800~2400Hz. 

The time window 0 0.04t  sec contained the most contents of the 

difference between conditions. Acoustic reflected energy was calculated in 

the time window in the four frequency ranges for each sediment condition. 

Table 4.2 presents an example of the energy data sets for a range of 

sediment conditions. These data were obtained using the pressure response 

recorded on hydrophone 1, signals recorded on the other two hydrophones 

were processed in the same manner. 
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Table 4.2The acoustic energy as a function of frequency band and 

amount of porous sediment calculated in time window  0 0.04t  sec 

Relative energy 100-600Hz 600-1200Hz 1200-1800Hz 1800-2400Hz 

Class1  (clean pipe) 133.9636 12.4720 9.3339 1.0605 

Class2   (1bag) 42.3982 1.1934 1.9585 0.4606 

Class3   (2bags) 34.3554 0.3877 1.8760 0.3009 

Class4   (3bags) 22.0364 0.0772 0.2148 0.3039 

Class5   (4bags) 15.0750 0.1247 0.3408 0.1237 

Class6   (5bags) 11.3719 0.1224 0.2933 0.0590 

Class7   (6bags) 10.9847 0.0931 0.1570 0.0869 

Class8   (7bags) 13.6994 0.0715 0.1886 0.2001 

Class9   (8bags) 5.2682 0.0214 0.0341 0.1153 

Class10 (9bags) 1.3901 0.0174 0.0141 0.0801 

Class11 (10bags) 1.0464 0.0244 0.0383 0.0265 

 

Table 4.2 clearly illustrates that increasing the amount of porous sediment in 

the siphon results in a noticeable decrease in the calculated acoustic energy 

in the first three frequency bands, the energy contained in the highest 

frequency band 1800~2400Hz does not seem to follow the same pattern 

after the number of sandbag was more than 5, which was also verified in 

Figure 4.10. This information is essential in the pattern analysis of siphon 

conditions. The energy data of damage conditions were calculated and 

organized in the same manner as shown in Table 4.3. The frequency bands 

determined by the 3rd Butterworth filter were: 100~1000Hz; 1000~2000Hz; 

2000 ~3000Hz and 3000 ~4000Hz. The time window 0.02 0.06t  sec was 

used to obtain the energy data in all 4 frequency bands. The energy value 

wasn‟t proportional to the size of the damage as suggested by the datasets, 

however, there was a pattern in energy distribution in three frequency bands 

from 1000 to 4000 Hz, it didn‟t apply to the lowest band, which was revealed 

also in Figure 4.11.  As shown in Figure 4.27, in order to remain the most 



Chapter 4Laboratory Constructed Water-filled Siphon Condition Classification 

Page | 115 
 

useful frequency bands for condition classification, the highest frequency 

band 1800~2400Hz in sediment conditions (the dot line) and the lowest 

frequency band 100~1000Hz in damage conditions (the dot line) were 

removed.  

Table 4.3The acoustic energy as a function of frequency band and type of damage 

calculated in the time window 0.02 0.06t   sec  

Relative energy 100-1000Hz 1000-2000Hz 2000-3000Hz 3000-4000Hz 

Class1 (undamaged pipe) 0.0199 0.0238 310  0.0012 310  0.0007 310  

Class2 (50mm cut) 0.0124 0.0712 310  0.0017 310  0.0007 310  

Class3 (100mm cut) 0.0033 0.0071 310  0.0020 310  0.0006 310  

Class4 (200mm cut) 0.0184 0.5693 310  0.1998 310  0.0841 310  

Class5 (200mm&55mm cut) 0.0304 0.8629 310  0.2959 310  0.1004 310  

Class6 (200mm&150mm cut) 0.0004 0.0101 310  0.0040 310  0.0014 310  

Class7 (200mm&square hole) 0.0683 0.0614 310  0.0025 310  0.0017 310  

 

  

Figure 4.27 Energy distribution as a function of sediment conditions (left) 

and damage conditions (right). 

4.4.2 Wavelet Sub-Band Energy and Entropy 

The energy derived from DWT at j th  level is called Sub-band energy, it is 
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2

, ( ) ( , )j k x t

n

E C j k  (4.15) 

where C is the DWT coefficient, n is the number of samples contained in one 

band, ,j k are the scale and translation variables of the wavelet function, 

respectively. 5j  corresponds to the 5th level of decomposition. 

The concept of the entropy been widely used as a measure of the disorder of 

a system, it can provide additional information about the underlying 

dynamical process associated with the signal [8]. Shannon entropy [9], which 

is the average unpredictability in a random variable calculated from DWT for 

each scale. This parameter is defined as: 

22

( ) ( )( , ) log ( , )j x t x t

k

W C j k C j k  
   (4.16) 

Then, the wavelet energy-entropy spectrum of m th decomposition scale of 

signal ( )x t , E , can be written as : 

1 1 2 2E {( , ),( , ), ( , )}m n n mW E W E W E   (4.17) 

These features are useful to describe temporal information related properties 

for an accurate representation of a given signal. Table 4.4 displays the DWT 

sub-band energy and corresponding entropy of sediment conditions. The 

data were calculated at 5th level of wavelet decomposition using „db4‟ as the 

wavelet function. Each set of coefficient represents one frequency range: 5A

(100~689) Hz; 5D (689~1378) Hz; 4D (1378~2067)Hz; 3D (2067~2756)Hz. 

Time window 0 0.04t  sec was chosen for feature extraction. 
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Table 4.4 DWT  Sub-Band Energy E and Entropy W of Sediment Conditions 

Coefficient 5A  5D  4D  3D  

Condition 5AE  
5

( 10 )5AW   
5DE  

4
( 10 )5DW   

4DE  
4

( 10 )4DW   
3DE  

4
( 10 )3DW   

Class1  

(clean) 
114.1477 -2.9827 23.4282 -6.3720 2.3479 -1.5536 9.8314 -3.4295 

Class2   

(1bag) 
41.2702 -2.2180 3.0056 -3.3407 0.6288 -0.8113 1.0286 -1.2762 

Class3   

(2bags) 
35.3020 -2.3198 0.8767 -1.4651 1.4458 -0.9395 0.0547 -0.0657 

Class4   

(3bags) 
23.7594 -1.6903 0.3418 -0.5946 0.0889 -0.1833 0.0330 -0.0269 

Class5   

(4bags) 
15.8800 -1.6027 0.2709 -0.3983 0.1702 -0.2949 0.0607 -0.0977 

Class6   

(5bags) 
12.5985 -1.4567 0.2659 -0.3677 0.2467 -0.4477 0.0779 -0.1164 

Class7   

(6bags) 
12.4730 -1.3337 0.3399 -0.4800 0.1013 -0.1945 0.0378 -0.0366 

Class8   

(7bags) 
15.0681 -1.4051 0.2873 -0.4193 0.0859 -0.1620 0.0246 -0.0125 

Class9   

(8bags) 
6.2219 -0.6192 0.0991 -0.0463 0.0170 -0.0185 0.0130 -0.0007 

Class10 

(9bags) 
1.8587 -0.2833 0.0799 -0.0163 0.0086 -0.0080 0.0123 -0.0001 

Class11 

(10bags) 
1.0030 -0.1814 0.1242 -0.1103 0.0137 -0.0084 0.0174 -0.0002 

 

Table 4.5 DWT  Sub-Band Energy E and Entropy W of Damage Conditions 

Coefficient 5A  5D  4D  3D  

Condition 
5AE  

5
( 10 )5AW   5DE  

5
( 10 )5DW   4DE  

5
( 10 )4DW   3DE  

5
( 10 )3DW   

Class1  

(Undamaged) 
7.2627 -0.8847 69.2964 -1.2671 141.9002 -1.1580 47.6275 -0.8309 

Class2    

(50mm cut) 
27.4188 -2.1608 185.7676 -1.7892 107.7842 -0.9690 98.2164 -1.2466 

Class3   

(100mm cut) 
50.6451 -2.6198 218.5889 -2.1350 120.8663 -1.0416 88.5572 -1.2586 

Class4    

(200mm cut) 
16.6938 -1.4367 9.9978 -0.6185 39.3166 -0.6446 5.5845 -0.4261 

Class5   

(200&55cut) 
28.4780 -1.7510 31.1480 -0.9738 72.1236 -0.7335 13.4458 -0.6910 

Class6   

(200&150cut) 
17.5681 -1.3619 15.8280 -0.7166 78.1741 -0.7308 7.2371 -0.4740 

Class7   

(200&hole) 
45.3661 -2.2533 63.7955 -1.1092 79.1571 -0.7904 27.7935 -0.6900 
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Table 4.5 illustrates the wavelet sub-band energy and entropy of damage 

conditions at the 5th decomposition level. Time window 0 0.04t  sec was 

used to calculate these data. 

Figure 4.28 shows the wavelet sub-band energy of 4 DWT coefficients 

plotted as a function of the corresponding entropy. The energy and entropy 

value were in log scale in the sediment conditions figure to enhance the 

difference between wavelet coefficients. Shannon entropy was employed to 

discrete wavelet coefficients generated by DWT where larger entropy values 

represent higher process uncertainty and therefore higher complexity. 

As shown in Figure 4.28 that the distribution of energy-entropy data obtained 

from four DWT coefficients followed similar patterns which can reflect the 

variation of the signal energy in different frequency bands. It also suggests 

that all four DWT coefficients are useful for condition classification, a 

classification system can be trained by these datasets to classify siphon 

conditions with suitable classification algorithms. 

  

Figure 4.28 Wavelet Entropy-Energy distribution E


of sediment conditions (left in log scale) and 

                                             damage conditions (right) at 5
th
 decomposition level. 
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4.5 Condition Classification and Recognition 

Pattern classification is the process after feature extraction in a pattern 

recognition system.  “Each pattern is a three-part rule, which expresses a 

relation between a certain context, a problem, and a solution” is the 

description of a pattern given by Christopher Alexander [10]. Pattern 

classification is an organization process of mapping patterns into groups 

where patterns sharing the same set of properties. The definition of these 

properties is not fixed and may include criteria such as structure, intent or 

applicable. Depending on the chosen criteria, a classification scheme can be 

defined. 

Classification can be divided into two categories based on the type of 

problems: supervised classification (labelled training samples) and 

unsupervised classification (unlabelled training samples). Supervised 

classification requires the upfront knowledge of the data, predefined classes 

and the algorithm to be used before the training process. In unsupervised 

classification, samples are given as unlabelled, the input feature is assigned 

to an unknown class using some clustering algorithms. Unsupervised 

classification is more computer-automated based on the nature of the data, 

while supervised classification is more closely controlled by the users to 

specify parameters with a priori information.  

A recognition system is operated in two modes: training (machine learning) 

and classification (testing) (see Figure 4.29). In the training mode, the feature 

extraction/selection module finds the appropriate features for representing 

the input data and the classifier is trained to partition the feature space. In the 
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classification mode, the trained classifier assigns the test sample to one of 

the pattern classes under consideration based on the measured features. 

 

 

 

 

 

Figure 4.29 Model for statistical pattern recognition 

The choice of the classifier is a difficult problem and in practice, it is often 

based on which classifier happens to be available or best known to the users. 

The simplest and the most intuitive approach to classifier design is based on 

the concept of similarity: patterns that are similar in some ways should be 

assigned to the same class. The second main concept used for designing 

pattern classifiers is based on the probabilistic approach. The optimal Bayes 

decision rule assigns a pattern to the class with the maximum posterior 

probability [11]. One of the well-known nonparametric decision rules is the k-

nearest neighbours rule (k-NN), it is closely related to the problem of density 

estimation in statistics. The similarity between patterns in k-NN classification 

is the distance between the test sample and training samples, usually the 

Euclidean distance is used as the similarity measure: 

1

1

( , ) ( )
N

p p

p i ip
i

d x x x x x x


       (4.18) 
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where x is the test sample, x is the training sample, x and x are points in the 

parameter space NX  , p is the dimension of the space.  

After the feature extraction and selection procedures through Butterworth 

filtering and DWT, two sets of energy related data were obtained from raw 

acoustic data recorded on each hydrophone (H1, H2 and H3) for a range of 

siphon conditions. Data extracted from hydrophone 1, 2 and 3 were used to 

train a classifier and new unknown data extracted were used to test the 

system. When the number of nearest neighbour 1k  , KNN is also called 

nearest neighbour which simply assigns the test sample to the class of its 

nearest neighbour. It is the simplest of all algorithms but very effective 

because the training error is zero (no overfitting).  

The decision rule of the nearest neighbour classifier for a single observation

x is: 

 2

1,
arg min min n

k n N
i x x


 


 (4.19) 

where N is the number of training samples in class i and nx is the n-th 

observation from this class. A common extension to the nearest neighbour 

approach is to use features in more dimensions in a majority vote scheme. 

The classification is decided by majority vote which assigns the test sample 

to the class which is the most common amongst its nearest neighbours in the 

feature spaces. 

In general, a majority vote rule is defined basing on probability estimation: 

ˆ( ) arg max j ij
i

j

C X p  , (4.20) 
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ˆ Pr( | ) i
i

N
p X i N

N
    (4.21) 

where ˆ
ijp is the probability estimated from the j -th classification rule for the i

-th class,
j is the optional weights. iN is the number of the condition 

estimation X chosen to be class i and N is the total number of all estimations. 

 

4.5.1 Classification Using Features from Digital Filters 

A training data matrix was constructed using energy data derived from a 

range of known siphon conditions:  E mnlE , each element in this matrix is 

the value of the acoustic energy determined by the siphon condition ( m ); 

frequency band ( n ) and hydrophone channel ( l ). In sediment conditions, the 

training matrix is in the form 11 3 3  ( m n l  ); in damage conditions, the size 

of the training matrix is 7 3 3  . 5 sets of data recoded in the siphon with 

different amount of sediment inside and 5 sets of data recorded in the siphon 

with some damage on the wall were used for testing the classification system. 

Each testing dataset is in the form 1 3 3  containing features extracted from 

data recorded on 3 hydrophones and filtered in 3 frequency bands for one 

testing siphon condition. 

The Euclidean distance was in fact the absolute distance in a 1-parameter 

space ( 1p  in (4.14)) in this part of the analysis, and the distance matrix 

obtained from one set of testing data and the training datasets is: 

 ( )D
mnl

i d , for every Dd , its class label mi  . Then the problem of 
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condition recognition can be reduced to finding the minimum  of Dwith the 

respect to the condition class label i : 

 : min ( )D
i n l

i i


   (4.22) 

 is the condition label matrix of size N L , where N is the number of 

frequency bands and L is the number of hydrophone channels through which 

the data were collected. 

Majority vote was applied to  of each testing dataset to select the class 

number which appeared the most appropriate and assign the testing data to 

that class. Four outcomes of the majority vote analysis were achieved: (i) the 

correct result, whereby the majority vote identified the correct condition in the 

siphon; (ii) a false result, whereby the majority vote identified a wrong 

condition in the siphon; (iii) an ambiguous result, when no clear decision 

could be drawn from majority vote because the correct condition number 

appeared as frequent as another condition number; (iv) a failure to make a 

decision as all condition numbers appeared equal times. 

4.5.2 Classification Using Wavelet Coefficients 

Discrete wavelet coefficients were obtained through discrete wavelet 

transform, sub-band energy and entropy were calculated from the 

coefficients and the wavelet sub-band energy feature was defined in 

Equation (4.13). The Euclidean distance between wavelet features derived 

from training data and testing data is calculated as: 

2 2( , ) ( ) ( )d x x e e w w       (4.23) 
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where e and w are the sub-band energy and entropy of test sample x ; e and

ware the sub-band energy and entropy of training sample x . The distance 

matrix was constructed in the same manner as pervious the only difference is 

the number of frequency band, 4 bands were used in wavelet analysis, the 

size of training matrix of sediment and damage conditions are: 11 4 3  and

7 4 3  , respectively. The size of test data is 1 4 3  corresponding to 4 

frequency bands and 3 hydrophones from one unknown siphon condition. 

Figure 4.30 is an example of energy features of sediment conditions obtained 

from two extraction process at the lowest frequency band. It shows how the 

Euclidean distance between test sample and training samples would be 

calculated and the nearest neighbour of the test sample should be chosen. 

 

Figure 4.30 Energy features obtained through digital filter and Wavelet sub-band energy  

                   features at the lowest frequency band from a range of sediment conditions 

 

Table 4.6 presents the probability of the correct condition classification of 5 
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obtained through digital filter and discrete wavelet transform. In the case of 

the sediment tests, the probabilities of the correct estimation from using 

features pre-processed by the digital filters are generally below 60% except 

the clean siphon condition. It appears to be difficult to classify the sediment 

condition by the exact number of sandbags inside the siphon, the energy did 

not change significantly to the change when one sandbag was added or 

removed. However, the acoustic energy had noticeable decrease when the 

amount of sediment reached certain level, in this research four conditions 

were clearly detectable with 100% recognition accuracy rate: (i) 0 (clean); (ii) 

1~2sandbags; (iii) 3~7 sandbags; (iv) 8~10 sandbags. Classifying testing 

sediment condition to above four classes instead of specifying the exact 

number of sandbags would be more sensible.    The results of damage 

condition estimation are less ambiguous than the results of sediment 

conditions. Although the energy was not necessarily decreasing with the 

increase of the size of the wall damage, the difference between different 

types of damage (as illustrated in Table 4.5) were distinguishable in energy 

distribution.  

The wavelet energy was derived from the DWT coefficients with each set of 

coefficient corresponding to a frequency range. The wavelet entropy was 

calculated from these DWT coefficients too, the energy and entropy showed 

similar pattern to the change of the siphon conditions. The entropy was 

added to make the energy features two-dimensional, the probabilities of the 

correct classificationsoftesting samples are given in Table 4.6 and 4.7. Table 

4.8 and 4.9 present the classification results of testing samples using Nearest 

Neighbour classifier.  The class label appeared the most frequently resulted 
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in the highest condition estimation probability and therefore will be 

determined as the class label for the testing sample. The probabilities of each 

estimation for all testing samples are shown in Figure 4.31 and 4.32. 

 

 

Table 4.8Numbers of sediment  condition class labels appeared among nearest 

neighbours of  two sets of features 

 Blockage C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

Filter 

Features 

 
(3x3) 

Test 1 8 1 - - - - - - - - - 

Test 2 - - 4 3 2 - - - - - - 

Test 3 - - - - 3 2 - - 4 - - 

Test 4 - - - - - 4 4 1 - - - 

Test 5 - - - - - - - - 5 2 2 

 

Wavelet 

Features 

 
(4x3) 

Test 1 12 - - - - - - - - - - 

Test 2 - 5 6 1 - - - - - - - 

Test 3 - - - - 5 1 1 5 - - - 

Test 4 - - - - - 5 7 - - - - 

Test 5 - - - - - - - - 8 2 2 

 

Table 4.6 

Probabilities of correct estimation of 

siphon sediment condition  

Test data 

index 

Feature extractor 

Filter DWT 

Test bk_1 0.89 1.0 

Test bk_2 0.44 0.5 

Test bk_3 0.33 0.42 

Test bk_4 0.44 0.58 

Test bk_5 0.56 0.67 

Table 4.7 

Probabilities of correct estimation of 

siphondamage condition  

Test data 

index 

Feature extractor 

Filter DWT 

Test dm_1 0.78 0.92 

Test dm_2 0.67 0.67 

Test dm_3 0.89 0.83 

Test dm_4 0.67 0.75 

Test dm_5 0.78 0.83 
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Figure 4.31Total probabilities of sediment condition estimation using 2 sets of features: filter 

features (above) and wavelet features (bottom). 

 

Table 4.9 Numbers of damage  condition class labels appeared among 

nearest neighbours of two sets of features 

 Damage C1 C2 C3 C4 C5 C6 C7 

 

Filter 

Features 

 
(3x3) 

Test 1 7 - - 2 - - - 

Test 2 1 6 - 2 - - - 

Test 3 - 1 - 8 - - - 

Test 4 - 1 2 - - 6 - 

Test 5 - - - - 2 - 7 

 

 

Wavelet 

Figures 

 
(4x3) 

Test 1 11 - - - - - 1 

Test 2 - 8 3 - 1 - - 

Test 3 - - - 10 1 1 - 

Test 4 - - - 2 1 9 - 

Test 5 - - 1 - 1 - 10 
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Figure 4.32Total probabilities of damage condition estimation using 2 sets of features: filter 

features (above) and wavelet features (bottom). 
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4.6 Summary 

Acoustic signals were collected from a range of typical blockage and damage 

siphon conditions which were recreated in the laboratory. Original broadband 

signals recorded on 3 hydrophones were filtered by using Butterworth digital 

filter and discrete Daubechies wavelet transform in several narrow frequency 

bands. The sound pressure level was calculated so that the acoustic energy 

and wavelet energy-entropy feature could be determined as a function of 

time and used as features in the classification analysis.  

Nearest neighbour (NN) was used as the classification method to identify the 

siphon conditions. The acoustic based nearest neighbour classification 

system is proved   to   be   capable   of   discriminating different siphon 

conditions. For sediment conditions, acoustic data in the lower frequency 

bands contain more useful information than those filtered through the higher 

frequency bands. It is challenging to classify the siphon condition by the 

exact amount of sediment, however, the size of the sediment can be limited 

in a certain range and be classified. Acoustic energy was more sensitive to 

the change of damages than sediment, damage condition classification 

results showed higher certainty than sediment conditions. The accuracy of 

sediment classification was improved by 20% using wavelet features than 

filter features. Damage classification results are 100% correct for all 5 testing 

samples using both wavelet and filter features, however, the estimation 

probabilities leading to the classification decision have shown that wavelet 

features generally produced higher probabilities for the correct classification 

than filter features. 
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Discrete wavelet transform coefficients carry useful information about the 

transient activity of the acoustic signals. Therefore, DWT coefficients were 

used to extract energy and entropy as features for condition analysis. Results 

showed that DWT improved the classification accuracy of the system in 

general. It can be concluded that the K-NN classification system showed 

promising performance in condition classification using acoustic energy as 

features to discriminate a range of sediment and damage siphon conditions. 

A few factors could affect the classification results are: (i) the time window 

chosen to calculate sound pressure level; (ii) the frequency bands used to 

derive energy features; (iii) wavelet function, if use discrete wavelet transform 

as filterbank. 
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Chapter 5 

Condition Classification of Laboratory Constructed 

Partly-Filled Pipe 

 

5.1 Introduction 

This chapter presents the results on the application of the pattern recognition 

methods to determine the conditions in a partially full sewer pipe. For this 

purpose a special, full scale pipe facility was constructed in the Hydraulic 

laboratory at the University of Bradford. It was designed to provide as a 

flexible experimental facility in which a representative range of structural and 

operational conditions such as lateral connection and sediments could be 

reproduced in a controlled experiment in the presence and absence of flow 

[1]. This type of pipe was chosen because it is representative of a large 

network of small combined sewers found in the UK. This facility was used to 

study the capabilities of the acoustic equipment for data acquisition that was 

developed and tested by the acoustic group at the University of Bradford. 

The focus of this study was on the effects of water level and multiple defects 

on the performance of the condition classification methods. In each of these 

experiments, 3 categories of pipe condition were studied: (1) pipe end; (2) 

lateral connection; (3) sediment. The acoustic signals reflected from the 

conditions simulated in the pipe were recorded and processed using the 

classification algorithms proposed in Chapter 3. 
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Especially two data fitting algorithms were employed: polynomial and Padé 

approximations were used as feature extractors whereas Support Vector 

Machines (SVMs) were used as main is the main classification method. 

 

5.2 Data Acquisition and Pre-Processing 

5.2.1 Experimental Set-up 

The experimental facility used in this work was a 150mm diameter, 14.4 

meters long clay pipe, each of the two ends of this pipe was connected to a 

rectangular tank which was capable of holding water to allow different level of 

flow to be set as shown in Figure 5.1.  A lateral connection was installed in 

the middle of the pipe through which different types of blockages (see Figure 

5.1) could be deposited at different locations in the pipe to study the 

capability of the classification algorithms to discriminate between multiple 

defects and for a range of water levels. 
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Figure 5.1 The 150mm clay pipe, lateral connection, pipe end and blockages used for 

sediment simulation 

 

The acoustic system which was used for data collection in this research 

consisted of four microphones arranged in line on a slim PCB board 

separated non-equidistantly to optimize the accuracy of the sound intensity 

measurement, as shown in Figure 5.2. The distance between each pair of 

these microphones,  , were chosen to be less than the wavelength , , to 

allow for the sound pressure gradient measurements which was then used to 

calculate the sound intensity. 

The sensor was inserted through one end of the pipe and attached to the 

interior wall. The other end remained either open or closed. 

 

 

 

 

Figure 5.2 Acoustic sensor made of four microphones and one speaker 

 

1 2 3 4 Speaker 

75mm 12.5mm 27mm 17.5mm 
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5.2.2 Acoustic Intensity Response 

A sinusoidal sweep within the frequency range from 50 to 7000Hz was used 

as excitation signal to measure the impulse response of the pipe. This type of 

signal is considered more suitable for outdoor measurements than periodic 

pulse and Maximum Length Sequence (MLS) when high SNR is required[2]. 

The acoustic impulse or frequency response of a physical system is a very 

useful quantity. This quantity contains detailed information on the system 

geometry, sound speed and the conditions at its boundaries. Any change in 

these properties is reflected in a change in the acoustic impulse or the 

associated frequency response. The impulse response can be obtained by 

deconvolving the output of the system, the convolution is given by:

( ) ( ) ( )
t

y t h x t d    , where ( )h  is the system impulse response. The 

acoustic pressure impulse response data could be used to calculate the 

instantaneous acoustic intensity. The acoustic intensity is equal to the 

product of the acoustic pressure (a scalar) and particle velocity (a vector). 

Hence it is a vector quantity, possessing both a magnitude and direction. The 

relationship of acoustic pressure and intensity is given by following equation: 

1 2
1 2

0

( ) ( )
( ) ( ) ( ) [ ( ) ( )]

2

p t p t
t p t t p p d  




  

 I u n (5.1) 

where 1( )p t and 2 ( )p t are acoustic pressure data recorded on a pair of 

microphones spaced by a distance wavelength  , 

1 2

0 0

1 1
( ) [ ( ) ( )]

p
t d p p d   

 


   

  u
n

is the acoustic (particle) velocity 

vector in the direction of the normal n  that coincides with the direction of 
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sound wave propagation. Here assume 3

0 3.43 10 aP

T
   is the density of air, 

T is the temperature and 
aP is the atmosphere pressure.  

Unlike the problem of siphon condition classification presented in Chapter 4 

which relied on acoustic pressure data for classification, the sewer pipe 

condition classification was reliant on acoustic intensity data. The acoustic 

field in the fully filled is inherently reverberant combination of sound waves in 

the fluid and solid phase which are strongly coupled. As a result, there are 

multiple reflections and scattering from individual defects that cannot be 

easily separated. Therefore, the acoustic field in the siphon is strongly 

diffused so that the use of the acoustic intensity as a vector field does not 

have any advantages over the acoustic pressure field measurements. On the 

other hand, the acoustic intensity field in the partially full sewer pipe is a 

vector quantity for which the direction can be clearly established. This 

information enables us to develop a system to recognize a plurality of defects 

based on the acoustic intensity signatures which can be extracted separately 

for separate defects. 

 

5.2.3 Water Level Effect Experiment and Data Pre-Processing 

To understand how much different level of water inside the pipe could affect 

the acoustic reflected signals and the accuracy of further condition analysis, 

a set of measurements were implemented with water flowing through the 

pipe. For this purpose the water level was varied from 0 to 20mm depth to 

simulate the dry/flow conditions typical for the real underground live sewers.  
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The following conditions were simulated in these experiments:  

(1) clean empty pipe; 

(2) empty pipe with an open lateral connection; 

(3) a 55mm blockage placed inside the pipe at two locations; 

(4) a 55mm blockage placed inside pipe with the effect of an open lateral 

connection. 

For each above condition, 20 sets of data were collected for the water level 

depth inside the pipe varying from 0 to 20mm with the highest water level 

corresponding to approximately 10% of the pipe cross-section. The purpose 

of this experiment was to determine the capability of the pattern recognition 

system of recognizing different pipe defects under various water levels, so 

that the performance of the proposed classification algorithms can be 

evaluated and improved. 

The acoustic pressure signals were recorded on the 4-microphone array at 

the sampling frequency of 15 kHz. The analysis of these signals consisted of 

deconvolution which was used to obtain the acoustic pressure impulse 

response containing information on the pipe geometry and operational 

conditions in the pipe. Figure 5.3 gives examples of raw acoustic pressure 

data recorded in the empty pipe (left) and the pressure impulse response 

obtained from its deconvolution (right). 
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Figure 5.3 Acoustic recorded data and pressure impulse response of 

clean empty 150mm clay pipe 

 

A Butterworth filter of order 3 was then used to filter the broadband acoustic 

signals into several narrow bands with a 150Hz bandwidth. The reason for 

the choice of this filter is given in Ref [1]. The reflections from individual 

conditions in the pipe were separated in time domain and used in the 

condition classification process. 
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Figure 5.4 Intensity responses (left) and acoustic signatures (right) of defects 

 

Figure 5.4 shows the intensity responses/reflections (left column) in the 

frequency range 250 to 400 Hz of three conditions from top down: empty pipe; 

55mm blockage placed at 5 meters from the sensor and an empty pipe with 

an open lateral connection at 8 meters from the sensor. These reflections are 

plotted as a function of the distance in the pipe which was calculated as 

d t c  , where t is the time and c  is the sound speed in the pipe. It can be 

seen that part of the intensity spectrum contains clear data reflected from a 

particular defect in the pipe which can be extracted as signature of the defect. 

Signatures collected from a range of conditions of each defect can be stored 

as a database and used in the training process. Figure 5.4 gives examples of 

acoustic signatures containing 600 sample points (right column) extracted 
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from the left intensity data in frequency range from 100 to 1000 Hz and 

filtered in 6 frequency bands with a 150Hz bandwidth. A library of intensity 

signatures extracted from data collected for 4 conditions listed above is built 

for the next step of condition classification. 

Table 5.1 Summary of conditions and extracted signatures of water level 

effect  experiments 

Condition Signature extracted Number of signatures 

Empty clean pipe Pipe end 20 

Empty pipe with an open 

Lateral connection 

Lateral connection 20 

pipe end 20 

Blockage placed 5m from the 

source 

Blockage 20 

pipe end 20 

Blockage placed 3m before 

open lateral connection 

Blockage 20 

lateral connection 20 

pipe end 20 

Signature type 
Pipe End  

(PE) 

Blockage  

(BK) 

Lateral Connection 

(LC) 

Total amount 80 40 40 

 

Table 5.1 gives a summary of all the conditions that were simulated in these 

experiments and number of signatures extracted for each of these conditions. 

The details of the database development, data analysis and classification are 

given in the following sections. 

5.2.4 Experiments with Multiple Defects 

The effect on condition classification in the presence of multiple defects was 

an important part of this research. The pipe conditions in this experiment 

were designed to study the interaction between the reflections from multiple 

defects and its effect on the classification algorithm. The conditions and 

defect signatures used in this experiment are summarized in Table 5.2. 
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Table 5.2Summary of conditions and extracted signatures of multi-defect 

effect experiments 

Condition Signature extracted No. of signatures 

Empty clean pipe Pipe end 5 

Empty pipe with an open lateral connection 
Pipe end 5 

lateral connection 5 

40mm blockage placed 4M away from the 

source 

Pipe end 5 

Blockage 5 

40mm blockage placed 11M away from the 

source 

Pipe end 5 

blockage 5 

55mm blockage place 4M away from the 

source 

Pipe end 5 

blockage 5 

55mm blockage placed 11M away from the 

source 

Pipe end 5 

blockage 5 

40mm blockage placed 3M before open 

lateral connection 

pipe end 5 

blockage 5 

Lateral connection 5 

40mm blockage placed 3M after open lateral 

connection 

pipe end 5 

blockage 5 

Lateral connection 5 

55mm blockage placed 3M before open 

lateral connection 

pipe end 5 

blockage 5 

Lateral connection 5 

55mm blockage placed 3M after open lateral 

connection 

pipe end 5 

blockage 5 

Lateral connection 5 

55mm and 40mm blockages placed 4M and 

11M away from the source, respectively 

Pipe end 5 

blockage 10 

55mm blockage and 40mm blockage placed 

3M before and after the open lateral 

connection, respectively 

Pipe end 5 

Blockage 10 

Lateral connection 5 

Signature type PE BK LC 

Total amount 60 60 30 

 

For each above condition, 5 sets of measurement were taken. Signatures of 

defects from each condition were extracted in the same way as stated in 
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section 5.2.3. Some defects were used for training and others were used for 

proposed classification algorithm. 

 

5.3 Feature Extraction and Selection 

The acoustic energy reflected for a defect in the pipe was used and proved to 

be able to provide enough information for the system to determine the siphon 

condition as presented in Chapter 4. Since the reflected intensity signatures 

contained a set of clear data of defect, the reflected energy of each intensity 

signature in a range of frequency bands is calculated: 

( ) ( ( ) | ( ) |) / 2I t I t I t   (5.2) 

2

1

( ) ( )
t

t t

e t I t



  

1 2( ) [ ( ), ( ), ( )]i iE f e t e t e t     (5.3) 

Where ( )I t is the positive (reflected) part of the intensity response function 

using for the pipe condition characterisation, ( )iE f  gives the energy spectrum 

of the acoustic intensity signal reflected from a defect in the pipe in 20 

frequency bands below the 1st cut-off frequency of the pipe. In the case of a 

cylindrical pipe, the 1st cut-off frequency is 0

max

0.5861

2

c
f

a
 , where a  is the 

pipe radius and 0c is the sound speed in air. The acoustic pressure patterns 

created by the modal acoustic field in a pipe is rather complex [1]. Therefore, 

this research is focused on the propagation of the fundamental mode in a 
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round pipe.  For this purpose we will ensure that the frequencies of sound in 

our study do not exceed the cut-off frequency. 

The reason of choosing 20 frequency bands with relatively bid bandwidth is 

to capture the energy spectrum variation in the acoustic wave which 

corresponds to the plane wave in the pipe. Figure 5.5 are the energy-

frequency plots of 3 types of defects which were generated using the data 

obtained from 2 sets of measurement of each condition from water level 

(Figure 5.5 top figure) and multiple defect (Figure 5.5 bottom figure) 

experiments. It is clear that there are consistent patterns for each of the three 

defect types. These are relatively independent from the water level present in 

the pipe and relatively unaffected by the presence in the pipe some other 

types of multiple defects. Clearly, the pattern in the acoustic energy 

frequency spectrum is somewhat unique to a particular defect type and can 

be used to distinguish between different types of defect under various 

conditions in the sewer pipe. For this purpose, a suitable data fitting algorithm 

is required. This topic is discussed in the following sections of this chapter.  

The energy spectrum of all defects were normalized by subtracting the mean 

value of each class to remove the baseline so that the derived pattern of 

each defect can be fairly compared. 
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Figure 5.5 Energy-frequency band plots of water level and multiple defects experiments 

 

5.3.1 Least Squares Polynomial Fitting 

Polynomial fitting as a spectral approximation algorithm was introduced in 

Chapter 3. The least-squares error estimate is a criterion that can be used to 

measure the goodness of a fitting by calculating the square of the separation 

(residue) between a series of data and its approximation over a given interval. 

The polynomial order n is the parameter that affects the performance of the 
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fitting. The polynomial coefficients are the classification features to provide 

spectral pattern information in our case and to distinguish patterns from one 

to the others. 

Figure 5.6 gives 2 sets of polynomial fitting examples: left column is the 

reflected energy from the pipe end of an empty clean pipe and its polynomial 

approximations of order 2, 3 and 4 from top to bottom, respectively. The right 

column in Figure 5.6 presents the reflected energy from the pipe end 3m 

from which a 55mm blockage is placed. In this case the pipe has an open 

lateral connection between the blockage and the sensor. The approximation 

here is made with the polynomial expression of the same orders as shown in 

the left column in the same figure. Generally, 2nd order polynomial could not 

describe fully of the behaviour of real data, the 3rd and 4th polynomials fit 

better but have a very little difference between them. In order to reduce the 

complexity of classification, a better trade-off is to use a smaller number of 

features in the form of polynomial coefficients, i.e. a low-order polynomial 

which could provide a reasonable fitting to the real data.   
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Figure 5.6 Polynomial approximation of order 2, 3 and 4 for the reflected energy from the 

clean pipe end (left) and the pipe end with a blockage placed before it (right) 

 

It can be seen from the top figure in Figure 5.5 that when the frequency was 

higher than a certain point, most of the energy value fell in a very narrow 

area which have no other contribution to the classification system but 

increase the computational burden and bring uncertainty into the outcome, 

choosing several more distinguishable frequency bands could not only 

improve the classification performance but also make the polynomial fitting 

more effective. To keep the unique character of each pattern, frequency 

bands from 5 to 12 (200~550Hz) were chosen from which polynomial 

approximation coefficients will be extracted and used for classification system 
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training. Figure 5.7 gives examples of 3rd polynomial fitting to the entire 

energy data set and the fitting to the same set of data within the chosen 

frequency range. The coefficients 
3, 2 1 0, ,a a a a of 3rd polynomial function

3 2

3 2 1 0( )f x a x a x a x a    obtained from fitting each set of energy spectrum of 

all defects will be used for condition classification as input data. 

Figure 5.7 3
rd

 polynomial approximation of entire data set and a chosen frequency range 

of 2 types of defect. 

 

5.3.2 Padé Approximation 

Padé approximants are derived by expanding a function as a ratio of two 

power series and determining both the numerator and denominator 

coefficients. Its theorem and formulation were given in Chapter 3. It is most 

frequently used in a control system to approximate the transfer function. In 

this research, it is expected to simply provide a more accurate approximation 

to of energy spectrum data because the coefficients in the Pade 

approximation are able to capture better of the essence of a spectral pattern 

a polynomial fit. A most recommended Padé approximation for the type of 
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polynomial order in numerator is equal to that in the denominator degree [3, 

4]: 

2
2 2 1 0
2 2

2 1

( ) ( )
1

a x a x a
f x R x

b x b x

 


 
  (5.7) 

  

Figure 5.8 2
nd

 Padé approximation and 3
rd

 polynomial approximation of 

reflected energy spectrum of PE (left) and BK (right) 

 

Comparing with polynomial approximation, Padé approximation has a few 

advantages: 2nd order Padé approximation can provide a better fit to an 

entire energy data set without having to choose a certain frequency range; 

clearly Padé approximation fits better and captures more characters of a 

hidden pattern in a data set. However, a 2nd order Padé approximation yields 

5 coefficients: 2 1 0 2 1, , , ,a a a b b  whereas a 3rd order polynomial has 4 coefficients 

only. As a result, before these features are used in the classification system, 

an additional selection procedure is necessary. This can help to avoid 

bringing in the classification process any unwanted features which can cause 

excessive calculation time and confuse the classifier. 
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5.3.3 Feature Selection 

The assumption here is that features of one particular type of conditions 

which can exist in a pipe are expected to be characteristic so that the 

classifier could recognize them and discriminate from those features that are 

characteristic of some other type of conditions. In order to testify which 

coefficients are the parameters that a classifier could take advantage of, 4 

coefficients of 3rd polynomial and 5 coefficients of Padé approximation 

derived from 10 sets of energy spectrum data for each of the defect 

signatures extracted from a range of pipe conditions are plotted as shown in 

Figure 5.9 and Figure 5.10. 

Pipe end (PE), blockage (BK) and lateral connection (LC) are the conditions 

of interest to us which are to be recognized and classified by the system. As 

clearly indicated in Figure 5.9 and Figure 5.10, some coefficients can be 

separated visually. This enables us to train an automatic classifier to 

recognize each group to which a particular coefficient belongs to a class and 

test the effectiveness of this classifier using testing samples. In this work, 3rd 

order polynomial coefficients 3 2 1, ,a a a and 2nd order Padé coefficients 2 1 0, ,a a a

are selected as the features for the classification system. For each set of 

features, a classifier will be trained to generate a cluster for each of the 

known classes of data and assign a test sample to a particular class that is 

determined by the kernel function adopted by the classifier. 
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Figure 5.10 The values of the 2
nd

 order Padé  

approximation coefficients and their groupings. 
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5.4 Condition Classification Using SVMs Technique 

The K-nearest neighbours (KNN) algorithm was used for siphon condition 

classification as described in Chapter 4. This is a straightforward method 

which is non-parametric and which works well on data that can be 

represented as points in a n-dimensional space. In this case, the Euclidean 

distance can be calculated to measure the similarity or dissimilarity between 

an object and a labelled group to which it can be called close. The KNN is 

sensitive to the value of K since the „distance‟ is not a robust statistical 

characteristic. If the desired K is not known in advance, one will have to try 

different values of K and choose a criterion to select one of the results, which 

will increase the computational burden especially when dealing with a large 

number of data points. In this chapter, Support Vector Machines (SVMs) was 

adopted which is considered a state-of-the-art of classification method which 

is founded strongly on the theoretical foundations developed by Vapnik and 

Chervonenkis theory [5] (see Chapter 3).  

The SVMs is a supervised learning model which means that there are a few 

parameters which the user needs to define during the training and 

classification process. The SVMs was developed originally as a binary 

classifier. However, in this research project there are at least 3 objects which 

need to be classified and recognized. Therefore, a one-against-all method 

was introduced here to solve the problem by repeated use one of the classes 

as a positive class and the rest as a negative class so that two-class 

classification can be performed. The kernel functions are adopted and used 

to define a variety of nonlinear relationship between the inputs, if a linear 
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classifier could not separate them by observation. The classification results 

could be very different due to different choices of kernels, however, there is 

no single rule to help picking up a suitable kernel prior to the training, linear 

function and a few basic kernels will be adopted and compared. 

5.4.1Defect Classification in the Pipe with Variable Water Levels 

As summarized in Table 5.1, acoustic signatures were extracted from a 

range of pipe conditions. Here each measurement corresponds to one 

particular water level so that the experiment provides 80 signatures for pipe 

end, 40 signatures for blockage and 40 signatures for lateral connection 

condition in the pipe. In feature extraction and selection procedures, 2 sets of 

coefficients were derived by approximating the reflected energy-frequency 

spectrum of each signature using two approximation techniques. These 

coefficients where split into 2 parts: one used for training and the other used 

for testing. To ensure the balance of the training datasets, we chose to use 

32 signatures from each class to train the system. The effect of different size 

of the training datasets will be discussed in the section 5.4.1.3. 

5.4.1.1 Use Polynomial Coefficients as Input Features 

The coefficients 1 2 3, ,a a a 1 2 3, ,a a a  in the 3rd order polynomial approximation 

derived from the energy spectrum in the reflection signatures are plotted in 

Figure 5.11 as a function of the water level for the pipe end, blockage and 

lateral connection. This approximation was taken over the range from 200 to 

550Hz. The range of the value of these coefficients for each defect is rather 

clear so that these can be separated using linear classifiers and/or other low-
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order classifiers which provide smooth separation. A linear classifier 

produces a linear decision boundary that is defined as: 

 x, (x) w,xf b     (5.8) 

A non-linear classifier using a non-linear kernel function 

( , ) ( ), ( )i j i jK x x x x  is given by: 

1

(x) (x, x )
n

i i

i

f K b


   (5.9) 

where x i is a set of support vectors. One popular kernel is a Polynomial 

kernel of degree- d . This kernel is defined as: 

( , ) ( ( ), ( ) )d

i j i jK x x x x b    (5.10) 

The kernel with 1d  is the linear kernel. The increasing degree results in the 

increase of the flexibility of the classifier and produces more curvature in the 

decision boundary. Another widely used kernel is the Gaussian kernel 

defined by: 

2

( , ) exp( ( ) ( ) )i j i jK x x x x      (5.11) 

where 0  is a parameter that controls the width of the Gaussian kernel that 

is, sometimes parameterized using 2
1

2



 . This parameter plays a similar 

role as the degree of the polynomial kernel. Normally a Gaussian kernel is 

referred to as the Gaussian RBF (Radial Basis Function) kernel which is 

used in support vector classification. Linear kernel, polynomial kernel and 



Chapter 5Condition Classification of Laboratory Constructed Partly-filled Pipe 

Page | 154 
 

Gaussian RBF kernel are used in the following sections to train the classifier 

for each set of features. 

 

 

 

Figure 5.11 The value of the 3
rd

 order polynomial coefficients 1a (top left), 2a (top right) and 

3a (left) derived from the energy spectrum of the acoustic signatures for a pipe end (PE), 

blockage (BK ) and lateral connection (LC) and plotted as a function of the water level. 
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Linear Classifier 

A linear classifier corresponds to a separating hyperplane ( )f x , which is a 

line in a 2-dimensional space, that passes though the middle of the two 

classes, separating the two. Once the function is determined, new data ix can 

be classified by simple testing the sign of the function ( )if x , so that ix belongs 

to the positive class if ( ) 0if x  . 
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Figure 5.12 An example of the linear SVMs classification obtained by using the 3
rd

 order 

polynomial coefficients: 1a (top), 2a (mid) and 3a (bottom) 

 

Figure 5.12 gives a linear classification example for 3 in-pipe defects. These 

results were obtained by using the 3rd order polynomial coefficients as inputs 

in the SVMs. In total, 96 samples were used to train the classifier, with 

32samples of each of the three conditions (PE, LC, BK). In these datasets, 

one data sample corresponds to one water level for which the original 

acoustic data was recorded. The application of the one-against-all method 

enables us to construct 2 binary SVMs classifiers, each of which separates 

one class from all the rest. At the classification phase, a sample is projected 

onto the corresponding feature space so that it can be assigned to the class 

within which its feature appears. The SVMs linear classification results in 

True-False form using 3 3rd order polynomial coefficients as inputs are given 

in Table 5.3, the accuracy of all 3 coefficients are given in Table 5.4. Figure 
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5.13 gives a visual example of how testing samples are classified by the 

linear classifiers. 

Table 5.3  Some Linear classification results in True-False form using 

polynomial coefficient 1a  

Defect/Test Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 

PE T F T T T T T T F T 

BK T F T T T T T T - - 

LC T T T T T F T F - - 

 

Figure 5.4 The accuracy of linear SVMs classification using 3rd order 

polynomial fitting  coefficients as input 

Defect/ Feature 1a (lowest order) 2a  3a (highest order) 

Pipe End (PE) 87.5% 92.18% 96.87% 

Blockage (BK) 87.5% 87.5% 100% 

Lateral Connection (LC) 75% 100% 100% 

 

 

Figure 5.13 Condition recognition of 6 testing samples by linear SVMs  

using the 3
rd

 order polynomial coefficient   1a as input features 
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Non-Linear classifiers 

Nonlinear models are used when linear models are just not sufficient to 

reflect the complexity in the behaviour of the observed feature pattern. 

Kernels turn linear models into non-linear models by replacing the inner 

product by a kernel function which represents the data in some higher 

dimensional feature space in which the data could be linearly separated. The 

prediction for a test sample x is given by equation (5.12) when g a linear 

classifier is available: 

Tsign( w , +b)y x  

Tsign( )i i i

i SV

y x x b


   (5.12) 

where SV is a set of support vectors, sign is the signum function which is 

used to define the decision boundary. Non-linear prediction of x is to simply 

replace each sample with its feature mapped representation ( )x x : 

Tsign( ( ) ( ))i i i

i SV

y y x x  


   

sign( ( , ))i i i

i SV

y K x x


   (5.13) 

Polynomial kernel and Gaussian kernel are very commonly used to train a 

classifier for non-linear separations. Figure 5.11 suggested that 3 classes are 

almost linear separable, therefore low orders of non-linear classifiers would 

work well to provide smooth decision boundaries. 2nd and 3rd polynomial 

kernels, Gaussian kernel width parameter  equals to 0.2 and 2 were tried 

using the same set of training and testing samples as in the case of linear 
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classification. Figure 5.14 shows classification using the 2nd order polynomial 

(top) and 3rd order polynomial (bottom) classifiers, from which it can be seen 

that the 2nd order polynomial classifier generated similar boundaries as the 

linear classifier therefore the classification results are approximate. The 3rd 

order polynomial classifiers led to overfitting where misclassified BK test 

sample 1 (circled in Figure 5.14) and created two unwanted areas by being 

too sensitive to the samples. 

Width parameter   in the Gaussian RBF kernel determines the area of 

influence that support vectors have over the feature space. A larger value of 

  results in smoother and more regular boundaries while small values of 

add more curvature to the boundaries as indicated in Figure 5.15. A large 

value of  can also reduce the number of support vectors required for 

classification. Similar to the case with the polynomial classifiers, overfitting 

could occur if the parameter was chosen inappropriately. The accuracy of the 

class predictions based on the coefficients 1a as input for all testing samples 

and linear, polynomial and Gaussian kernels used for separation is quoted in 

Table 5.5. The results suggest that for linearly separable data, linear 

classifier is the most suitable machine learning algorithm to design a linear 

support vector machines system which could provide a fast process and 

superior performance than other non-linear classifiers. 
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Table 5.5 Classification accuracy comparison among linear, polynomial  

and Gaussian kernels using 1a as input 

Defect/Classifier Linear 
Polynomial Gaussian 

2d   3d   0.2   2   

Pipe end 87.5% 82.81% 90.62% 85.94% 92.18% 

Blockage 87.5% 75% 37.5% 25% 75% 

Lateral connection 75% 75% 62.5% 62.5% 62.5% 
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Figure 5.14   Classification examples obtained by 2
nd

 

order (top) and 3
rd

 order (bottom) polynomial classifiers 
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Figure 5.15  Classification examples obtained using Gaussian RBF classifiers  

with  =2 (top) and 0.2 (bottom) 
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5.4.1.2 Use Padé Approximation Coefficients as Input Features 

As presented in Chapter 3, Padé approximation as an alternative of 

polynomial approximation provides more precise fitting to the data in some 

particular cases. The coefficients 0 1 2, ,a a a  in Padé approximation appeared 

particularly useful and, therefore, were selected for classification as 

described in the previous section (5.3.3). Feature extraction and selection 

procedures were repeated as done for using polynomial coefficients as input. 

The 2nd order Padé approximation coefficients were obtained for the data for 

all three conditions studied in this work. These coefficients are plotted as a 

function of water level in Figure 5.16, which shows the pattern that these 

coefficients following in the feature space. Similar to the patterns observed in 

the case of polynomial coefficients, Padé coefficients derived for each of the 

three conditions appear linearly separable so that linear classifiers can be 

suitable for separating the classes. Figure 5.17 gives examples of using 3 

sets of Padé coefficient as input. It is possible to separate the three 

conditions and test the decision boundaries by introducing testing samples to 

the system. 
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Figure 5.16 The 2
nd

 order Padé coefficients 0a (top left), 1a (top right) and 2a (left) derived 

from energy spectrum of PE, BK and LC signatures for a range of water level 
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Figure 5.17 Linear classification using the 2
nd

 order Padé 

coefficients as inputs. Order from low to high: 0a (top), 1a (middle) 

and 2a (bottom). 
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Classification results of using Padé coefficients as input of the system are 

given in Table 5.6. A comparison of these data with that presented in Table 

5.6 suggest that the performance of classification was improved in some 

occasions by replacing the polynomial coefficients with Padé coefficients, i.e. 

that Padé approximation provides more accurate fitting when the 

observations have more complicated structure . A main advantage of 

polynomials is their simplicity; one of the main disadvantages of polynomial 

approximation is that high degree polynomials are needed in order to reach a 

satisfactory accuracy level for polynomial approximations. Padé 

approximation as a member of ration function families can accommodate a 

much wider range of shapes than does the polynomial families. It can also be 

used to model complicated structure with a fairly low degree in both the 

numerator and denominator, which meansfewer coefficients will be required 

compared to the polynomial model. 

5.4.1.3 Effect of Training Sample Size 

There are no well-defined rules of how many training samples are enough to 

train a system properly.  Generally, it is expected that training sets with more 

Table 5.6 Linear classification accuracy of using 2nd Padé approximation 

coefficients as input 

Defect/ Feature 0a (lowest order) 1a  2a (highest order) 

Pipe End (PE) 93.75% 96.87% 100% 

Blockage (BK) 100% 75% 87.5% 

Lateral Connection (LC) 87.5% 100% 100% 
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samples will be “better” as they will provide better definition of the region of 

interests, and as a result a model based on a larger sample set should 

provide more reliable inferences of condition. However, a large number of 

training samples means expensive computational cost and possibly leads to 

some confusion in classification and excessive sensitivity of the system. As 

shown in Table 5.7, 3 sets of training samples containing different size of 

coefficients will be used to train the system and compare the outcomes. 

Figure 5.18 and Table 5.8 to 5.10 prove that small size of samples are not 

enough to train the system to provide a reliable performance, training set 3 

contains more than half samples which covered reasonable number of 

conditions of each defect, it is expected to be rich enough to reflect the 

complexity of each class. It is also the training datasets used to train the 

system for classification in the previous sections. 

 

Table 5.7 Number of features and training samples 

Features/numbers 
Total Amount 

PE/BK/LC 

Training set 1 

PE/BK/LC 

Training set 2 

PE/BK/LC 

Training set 3 

PE/BK/LC 

3
rd

 Polynomial 

coefficients: 

3 2 1, ,a a a  

80/40/40 8/8/8 16/16/16 32/32/32 

2
nd

 padé 

coefficients:

2 1 0, ,a a a  

80/40/40 8/8/8 16/16/16 32/32/32 
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Figure 5.18 Size of training sample against Classification accuracy 
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Table 5.8 Linear Classification accuracy using different size of training 

samples of 1a (lowest) 

Defect/No. of samples 8/8/8 16/16/16 32/32/32 

PE 79.16% 89% 87.5% 

BK 37.5% 66.67% 87.5% 

LC 75% 66.67% 75% 

 

Table 5.9 Linear Classification accuracy using different size of training 

samples of 
2a  

Defect/No. of samples 8/8/8 16/16/16 32/32/32 

PE 85.42% 91.67% 92.18% 

BK 87.5% 68.75% 87.5% 

LC 81.25% 68.75% 100% 

 

Table 5.10 Linear Classification accuracy using different size of training 

samples of 3a (highest) 

Defect/No. of samples 8/8/8 16/16/16 32/32/32 

PE 88.89% 95.31% 96.87% 

BK 87.5% 100% 100% 

LC 100% 100% 100% 

 

5.4.2Defect Classification with Multiple Objects Effect  

The aim of this study was to test how much the interaction between defects 

could affect the ability of the classification system to recognize defects and to 

make the right decision. Table 5.2 lists all the conditions taken into account in 

the multiple object effect experiments. 5 sets of measurement were taken for 

each pipe condition, 3 of which were used to collect training features; the 

other 2 sets were used for testing. Unlike water level effect experiments in 

which equal numbers of samples were collected for all the defects, datasets 

used in the multiple objects experiments were imbalanced meaning that each 
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of the classes contained different number of training samples. In total, 60 PE 

signatures, 60 BK signatures and 30 LC signatures were extracted from the 

original data. 

Many research papers on imbalanced data sets report that the performance 

of the existing classifiers in this case tends to be biased towards the majority 

class, i.e. (the class that contains more samples than the others)[5]. A 

number of solutions to the imbalanced datasets problem were proposed 

including re-sampling, adjusting the decision threshold and cost-sensitive 

learning etc [6, 7, 8]. Some of these solutions are tested in this study. 

5.4.2.1 Learning from Imbalanced Data 

In binary learning from imbalanced datasets, the class with fewer samples is 

known as the minority class or positive, while the other class with larger 

samples is called the majority class or negative. A number of solutions to the 

class-imbalance problem were previously proposed both at the data and 

algorithmic levels [6, 7]. At the data level, these solutions include different 

forms of re-sampling such as random oversampling of the minority class, or 

random under sampling of the majority class. At the algorithmic level, 

solutions include cost-sensitive learning, over-weighting errors on the 

minority class, ensemble methods, trained from learning sets with different 

data distributions, post-processing by tuning the learning classification 

function to improve performance on minority class, etc. 

In this research, the imbalance is due to the fact that different defects 

simulated in the laboratory and in reality are not always in equal numbers, it 

is a direct result of the nature of the data space, and the imbalance of this 
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form is referred to as intrinsic. For this type of data, some studies have 

shown that strategies like some of the re-sampling methods and adjusting the 

decision threshold provide improved classification performance [7, 8]. The 

methods adopted in this section include re-size the training samples and 

introduce a second decision rule. 

5.4.2.2 Resample the Training Samples 

Among many strategies of learning from imbalanced data, re-sampling 

methods aid to modify an imbalanced datasets to a balanced distribution and 

have been proved to be able to improve the accuracy of classifiers [9]. 

Traditional re-sampling methods like random over-sampling and under-

sampling replicate or eliminate samples for the minority class or majority 

class until it contains as many samples as the other class. These methods 

have their limitations which related to either a loss of information by removing 

random samples from the majority class, or lead to overfitting by introducing 

copies of random existing samples. Informed under-sampling and synthetic 

sampling are improved alternatives to overcome the limitations in the 

traditional way [9]. Here, a second classifier, K-nearest neighbours (KNN), is 

introduced to achieve a more appropriate and specific re-sampling. 

K-nearest neighbours (KNN) as a classification technique that was 

introduced and applied in Chapter 4 in the siphon data analysis. It has shown 

a great deal of success in various applications including informed under-

sampling and synthetic oversampling [10]. KNN under-sampling selects a 

given number of those majority class samples whose average distance to the 

other minority classes samples are the smallest. It is then used to refine the 
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majority class by removing these samples until it contains the same size of 

samples as the other classes. K-nearest neighbours can also be used in 

oversampling to create artificial data based on the feature space similarities 

between existing minority examples. In this process, a synthetic sample is 

created through a random selection of one of the K-nearest neighbours of 

each of the existing sample ix in a minority class, which is then multiplied by 

the corresponding feature vector difference with a random number between 

[0, 1]. Finally, new data are created and as: 

ˆ( )new i i ix x x x      (5.17) 

where ˆ
ix is one of the nearest neighbours of ix , ix and ˆ

ix belong to a same 

minority class, and [0,1]  is a random number. The resulting synthetic 

instance according to (5.17) is a point along the line between ix  and ˆ
ix .As 

the minority class is over-sampled by creating “synthetic” examples rather 

than by over-sampling with replacement, it effectively forces the decision 

region of the minority class to become more general.We generate synthetic 

examples in a less application-specific manner, by operating in “feature 

space” rather than “data space”.Replication of the minority class using (5.17) 

does not cause its decision boundary to spread into the majority class region, 

but it providesmore related minority class samples to learn from.This enables 

theuser to definebroader decision regions, leading to more coverage of the 

minority class. 

Feature extraction of multiple objects data is based on the same procedure 

as that applied in the case of the data obtained for the variable water in the 
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pipe. Here we use 3rd order polynomial and 2nd order Padé approximations to 

obtain fitting coefficients for the acoustic energy spectrum which corresponds 

to the reflection of the signals from a pipe defect. Three defect classes 

contain different sample size: 60 PE signatures, 60 BK signatures and 30 LC 

signatures. Two options are available to balance these classes: (1) under-

sampling the majority classes (PE and BK) to match the size of samples of 

minority class (LC); (2) oversampling the minority class until it contains the 

same number of samples as the majority classes.  

Under-sampling 

The distribution of original 3rd order polynomial coefficient features obtained 

from multiple defects experiment is given in Figure 5.19. In order to remove 

30 samples from PE and BK classes and refine the boundaries, a selection of 

redundant samples is needed. The redundant samples are those which do 

not harm the correct classification but increase the classification costs. 

Selection techniques were studied by the statistical literature of the 60s and 

70s and were later investigated by researchers specializing in machine 

learning. In particular, a recognition-based learning rule of detecting and 

removing less reliable samples is given by Kubat [11] and it is named One 

Sided Selection (OSS). This rule is based on the following assumptions: 

1. Those samples that either cross or are very close to the borderlines are 

unreliable as they can increase the sensitivity of the classifier to an exorbitant 

level. Those samples which are far away from the borderlines are redundant 

as they could be taken over by other samples and not change the 
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classification result. The rest of the samples are safe to keep for further 

classification task. 

2. Noisy and borderline samples can be detected using Tomek Links 

algorithm [12] which is a form of the K-Nearest Neighbours (KNN) algorithm, 

it was applied as a data cleaning method in order to remove the noisy and 

borderline instances from the training set. Assume two samples 
ix and

jx

belonging to different classes, ( , )i jd x x is the distance between them, a pair of 

( , )i jx x is called a Tomek Link if there is no other sample lx such that 

( , ) ( , )i l i jd x x d x x or ( , ) ( , )j l i jd x x d x x . 

3. Redundant samples can be reduced by creating a subset C S , S is the 

original training dataset. Initially, C contains all the positive samples (samples 

from minority class) and one randomly selected negative sample, then 1-NN 

rule is applied on all the samples in C in an attempt to re-classify S , those 

training samples that have been misclassified in S are then added to C . 

Remove all the negative samples participating in Tomek Links from C , all 

positive samples are retained. The resulting set contains only safe and 

reliable samples for further classification. 

From Figure 5.19 it can be seen that if we use 0a as a feature, PE and LC are 

severely overlapped, while the other three polynomial coefficients appear 

separable. Therefore, polynomial coefficients 1 2 3, ,a a a are more reliable to be 

used for classification. Figure 5.20 shows the training features after the 

application of the One Sided Selection rule to original datasets. The new sets 

contain the same size of samples and are well-balanced. The Padé 
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approximation coefficients were also used for classification for water level 

data analysis and these have shown better classification results for some 

conditions. These coefficients will be used for classification and compared 

with the results from attained with the polynomial fits. Figure 5.21 and Figure 

5.22 show the original Padé coefficients distribution and the training sets 

retained after re-sampling. 

 

Figure 5.19 Original 3
rd

 order polynomial features distribution 

 

Figure 5.20 Re-sampled 3
rd

 order polynomial features by OSS 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.21 Original 2
nd

 order Padé features distribution (a) and zoomed-in view of coefficient 1b  

(b) and 2b  (c). 
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Figure 5.22 Re-sampled 2
nd

 order Padé features by OSS 

 

Oversampling and Data Generation 

Synthetic minority oversampling technique (SMOTE) is a powerful method 

that has shown a great deal of success in various applications [13]. The 

SMOTE algorithm creates artificial data based on the feature space 
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original training dataset, consider the K-nearest neighbours for each samples 
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LC class is in need of 30 new artificial samples to match the size of the other 

two classes so the data distribution could be balanced for classification. 2 

parameters have impact on the new data distribution: the number of nearest 

neighbours K and weighting vector in equation (5.17) . To avoid replicating 

existing samples, for 6 conditions where all LC data were collected, choose 

one sample randomly from each condition and these 6 samples will be 

applied with K-nearest neighbours. New artificial samples are obtained by 

weighting the 30 nearest neighbours of these 6 samples when K is chosen to 

be 5, the weighting vector [0,1]   will be taken randomly. 

Figure 5.23 shows the original polynomial coefficient 
0a derived from all the 

existing LC samples and the zoomed-in view of the 5 nearest neighbours of 

one feature from LC class. The difference between the feature (sample) and 

its neighbours can be calculated and multiplied by a random number 

between 0 and 1 to be added as a feature vector. In this way, a newly 

created sample should appear along the line segments between the feature 

and its corresponding neighbour. 

 

Figure 5.23 Five nearest neighbours of a sample among the class 
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Figure 5.24 and 5.25 present the polynomial features and Padé features 

distribution after over-sampling the LC class. The weighting parameter was 

chosen to be 0.5, each class now contains 60 samples exactly. 

 

Figure 5.24 Over-sampled 3
rd

 order polynomial features by SMOTE 

 

 

Figure 5.25 Over-sampled 2
nd

 order Padé features by SMOTE 
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5.4.2.3 Defect Classification using Re-Sampled Features 

Two sets of features were obtained by having applied under-sampling to the 

majority classes and over-sampling to the minority class. 30 samples of each 

class retained from the former and 60 samples from the latter. 

 

Down-Sampled Features Classification 

The number of training samples for a classification depends greatly on the 

nature of data and experience of the system designer. A small number of 

training samples can results in the loss of information while a large number 

can lead to over fitting of the class region. From the 5 sets of experiments 

conducted for one condition, 3 sets of measurements were picked randomly 

to train the classification system and the rest 2 sets were used for testing. In 

order to create balanced training datasets, down-sampling was applied as 

explained in Section 5.4.2.2 which resulted in 30 samples retained in each 

class. Linear classifiers were tried first to test if the data were separable. The 

coefficients (features) obtained with a 3rd order polynomial and 2nd order 

Padé approximation were used to train the system, as illustrated in Figure 

5.26 and Figure 5.27, and the linear classifiers adopted for this purpose were 

capable of separating condition classes effectively. The linear classification 

accuracy attained by using the 3rd order polynomial features and the 2nd 

order Padé approximation features are given in Table 5.11 and Table 5.12, 

respectively. 

 



Chapter 5Condition Classification of Laboratory Constructed Partly-filled Pipe 

Page | 180 
 

 

 

 

Figure 5.26 Linear classification of under-sampled 3
rd

 order polynomial features 
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Table 5.11  The accuracy in condition classification attained with linear 

classifiers and the 3rd order polynomial features 

Defect/ Feature 
1a (lowest order) 

2a  
3a (highest order) 

Pipe End (PE) 100% 100% 100% 

Blockage (BK) 83.3% 91.76% 83.3% 

Lateral Connection (LC) 100% 100% 100% 
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Figure 5.27 Linear classification of under-sampled 2
nd

 order Padé approximation features 
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The LC class which was used in this work contained only half number of the 
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Table 5.12 Linear classification accuracy of using under-sampled 2nd order 

Padé approximation features 

Defect/ Feature 
0a (lowest order) 1a  2a (highest order) 

Pipe End (PE) 83.3% 75% 83.3% 

Blockage (BK) 100% 100% 91.67% 

Lateral Connection (LC) 100% 100% 100% 
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similarities between the existing samples in feature space. Linear classifiers 

were trained by using the 3rd order polynomial and 2nd order Padé 

approximation features which are shown in Figure 5.28 and Figure 5.29.  

Table 5.13 and Table 5.14 summarize the classification accuracy attained 

with the features that were used to train and test the system as a part of this 

classification process. 
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Figure 5.28 Linear classification of over-sampled 3
rd

 order polynomial features 
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Table 5.13 Linear classification accuracy of using over-sampled 3rd 

Polynomial features 

Defect/ Feature 
1a (lowest order) 2a  3a (highest order) 

Pipe End (PE) 100% 83.3% 75% 

Blockage (BK) 91.6% 100% 100% 

Lateral Connection (LC) 100% 100% 83.3% 
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Figure 5.29 Linear classification of over-sampled 2
nd

 order 

Padé approximation features 
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The classification results from using down-sampled and over-sampled 

features above did not show much difference, the classification accuracy of 

using the 3rd polynomial fitting coefficients and 2nd Padé approximation 

coefficients both varied between 75% and 100%. The system has the highest 

success rate of recognizing the lateral connection (LC) defect. The original 

feature distribution of all three defects were showing linearly separable with 

rather obvious distance between classes, although the original feature 

datasets were imbalanced, it did not cause noticeable bias for the linear 

classifiers, therefore, the performance of advanced re-sampling methods 

have achieved similar results. However, the problem of imbalanced learning 

is considered a relatively new challenge that has attracted growing attention 

from both academia and industry. Due to the inherent complex 

characteristics of imbalanced data sets, learning from such data requires 

various principles, algorithms and tools to represent the raw data efficiently 

so that a classification process can be performed effectively. 

 

 

Table 5.14 Linear classification accuracy of using over-sampled 2nd Padé 

features 

Defect/ Feature 0a (lowest order) 1a  2a (highest order) 

Pipe End (PE) 75% 79.1% 83.3% 

Blockage (BK) 91.7% 100% 91.7% 

Lateral Connection (LC) 100% 100% 100% 



Chapter 5Condition Classification of Laboratory Constructed Partly-filled Pipe 

Page | 187 
 

 

5.5 Summary 

This chapter is concerned with condition classification analysis of pipe data 

which were collected under two main conditions: water level effects and 

multiple object effects. Acoustic signatures were extracted from intensity 

reflection of defects and used as original input of the classification system. 

Feature extraction methods and classification techniques were studied and 

compared. 

 The energy spectrum of the acoustic intensity signature show 

distinguishable pattern of each defect under different pipe condition. 

Polynomial data fitting and Padé approximation methods were applied 

to extract pattern coefficients for further classification: less polynomial 

coefficients are required when the observation has a simple structure; 

Padé approximation provides better fitting when the observation has a 

more complicated shape. 

 Support vector machines (SVMs) is a powerful state-of-the-art 

classification method. It belongs to the general category of Kernel 

methods. A SVMs classification system can be trained by linear or 

non-linear kernels based on the data distribution. It was shown by the 

results that the intensity energy spectrum fitting coefficients were 

linearly separable. Input data preparation, SVM and kernel parameters 

setting are influential to achieve better classification. 

Acoustic properties of a partially filled pipe are proved to be useful in defect 

classification, appropriate signal pre-processing and feature extraction 
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methods provide relevant features to train a system, support vector machines 

generate decision boundaries based on the training features and tested by 

other unlabelled features. Results have suggested that the classification 

system is capable of recognizing pipe defect under a range of conditions with 

reasonable accuracy rate. 
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Chapter 6  

Field Measurements Analysis 

 

6.1 Introduction 

This chapter describes the use of defect classification analysis using acoustic 

data obtained from different sites in Austria and Australia using a developed 

acoustic inspection system [1]. Acoustic data were collected from a wide 

range of pipe defects under field conditions. This data was used to validate 

the classification system developed as a part of this PhD study (see Chapter 

5). The results of this work were used to improve the classification system. 

An acoustic signature library was built containing defect signatures extracted 

using field data from one site in Austria and three sites in Sydney, Australia. 

Defects signatures include pipe end (PE), lateral connection (LC), displaced 

joint (DJ) and crack (CR). The number of signatures of cracks collected was 

much less than the number of other defects, therefore this data will not be 

added to the classification analysis to avoid biased results. Individual defects 

were identified and confirmed by CCTV data collected at the same time as 

the acoustic data. 

The combination of conventional CCTV method and acoustic inspection into 

one device will be an innovative and powerful instrument for sewer inspection. 

The challenge for that goal is to develop both technologies and improve the 

recognition capacities for structural and operational sewer conditions. To 
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achieve that aim the research has following objectives: use acoustic data to 

develop a library containing signatures of defects from the reflected signals; 

then to identify these signatures with the help of CCTV derived information; 

apply the data to the classification system by following the feature extraction, 

selection and classification steps and then finally to quantify the performance 

of the system using an independent set of field data. 

 

6.2 Field Signatures Library 

A live sewer pipe is never perfect. Structural and operational defects such as 

cracks, poor joints, pipe deformation and blockages are commonly contained 

in pipes. These defects cause acoustic reflection which can be extracted 

from the recorded intensity response of the pipe and analysed in terms of the 

spectral and temporal composition. Table 6.1 presents a list of pipe defects 

including: pipe end (PE), displaced joint (DJ), crack (CR) and lateral 

connection (LC). These defects were used to obtain signatures of pipes 

characteristics. These tests were carried out at (i) Oatlands, Sydney, (ii) 

Bushland, Sydney, (iii) Carlingford, Sydney and (iv) Anzbach-Laabental, 

Austria. Figure 6.1 gives some examples of CCTV images that helped to 

understand the pipe conditions and identify the individual defects. The further 

analysis used the signatures obtained from this data library and the diameter 

of all these pipes is 300mm. 
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Table 6.1 Field Acoustic Data Library 

Data file ID Pipe Material Pipe length  Defects  Site location 

1376358_1376563 Vitrified clay 79.70 CR, PE,DJ Oatlands, Sydney 

1290939_1290935 Vitrified clay 63.93 PE Bushland, Sydney 

1184881_1187589 Cast Iron 26.83 LC Carlingford, Sydney 

1187609_1184877 Vitrified clay 1.96 CR Carlingford, Sydney 

158_157_M6 Concrete 33.1 LC, PE Anzbach‐Laabental, Austria 

159_158_M6 Concrete 32.7 LC, PE Anzbach‐Laabental, Austria 

160_159_M6 Concrete 37.1 LC, PE Anzbach‐Laabental, Austria 

19_18_M7 Concrete 8.3 PE Anzbach‐Laabental, Austria 

20_19_M7 Concrete 22.6 LC, PE Anzbach‐Laabental, Austria 

23_22_M7 Concrete 34.9 DJ, LC, PE Anzbach‐Laabental, Austria 

23_24_M7 Concrete 34.6 DJ, LC Anzbach‐Laabental, Austria 

24_25_M7 Concrete 26.7 LC Anzbach‐Laabental, Austria 

31_30_M7 Concrete 22.3 LC Anzbach‐Laabental, Austria 

32_31_M7 Concrete 34.3 DJ, LC, PE Anzbach‐Laabental, Austria 

33_32_M7 Concrete 38.6 LC, PE Anzbach‐Laabental, Austria 

41_40_M7 Concrete 36.7 DJ, LC, PE Anzbach‐Laabental, Austria 

32_31_M8 Concrete 40.8 LC, PE Anzbach‐Laabental, Austria 

36_37_M8 Concrete 34.9 PE Anzbach‐Laabental, Austria 

41_42_M8 Concrete 26.6 PE Anzbach‐Laabental, Austria 

44_45_M8 Concrete 25.2 LC, PE Anzbach‐Laabental, Austria 

46_47_M8 Concrete 35.8 DJ, LC, PE Anzbach‐Laabental, Austria 

50_33_M8 Concrete 33.7 LC, PE Anzbach‐Laabental, Austria 

109_108_M9 PVC 51.3 DJ, LC, PE Anzbach‐Laabental, Austria 

167_166_M9 Concrete 37.5 DJ, LC, PE Anzbach‐Laabental, Austria 

177_176_M9 Concrete 35.1 DJ, LC Anzbach‐Laabental, Austria 

30_31_M10 Concrete 36.2 DJ, LC Anzbach‐Laabental, Austria 

31_32_M10 Concrete 32.7 LC, PE Anzbach‐Laabental, Austria 

41_40_M10 Concrete 33.0 LC, PE Anzbach‐Laabental, Austria 
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 Figure 6.1 Field CCTV images of an open saddle connection (left) and a displaced joint (right). 

 

6.3 Feature Extraction and Preparation 

The acoustic intensity signatures of pipe ends, lateral connections and 

displaced joints were obtained in 20 frequency bands in the range from 100 

to 800Hzas listed below: 

 

 

 

 

 

 

 

 

 

The intensity energy (using Equation 5.2) were calculated and plotted as a 

function of frequency band, Figure 6.2, 6.3 and 6.4 are examples of pipe end, 

lateral connection and displaced joint signatures, respectively, and their 

corresponding energy plots. It was noticed that the pattern of reflected 

Frequency band 11 389-539Hz 

Frequency band 12 418-568Hz 

Frequency band 13 447-597Hz 

Frequency band 14 476-626Hz 

Frequency band 15 505-655Hz 

Frequency band 16 534-684Hz 

Frequency band 17 563-713Hz 

Frequency band 18 592-742Hz 

Frequency band 19 621-771Hz 

Frequency band 20 650-800Hz 

 

Frequency band 1 100~150 Hz 

Frequency band 2 129~279Hz 

Frequency band 3 158~308Hz 

Frequency band 4 187~337Hz 

Frequency band 5 216~366Hz 

Frequency band 6 245~395Hz 

Frequency band 7 274~424Hz 

Frequency band 8 303~453Hz 

Frequency band 9 332-482Hz 

Frequency band 10 361-511Hz 
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energy does not depend significantly on pipe material but on the type of 

defect. 

As discussed in Chapter 5, two data fitting techniques: least squares 

polynomial fitting and Padé approximation are available to derive the pattern 

characteristics. Empirically, 3rd order polynomial and 2nd order Padé 

approximation are able to capture the essence of the pattern with minimum 

number of coefficients. The numbers of signatures of each defect are not 

equal which caused imbalanced datasets for condition classification, the 

concept has been studied in Chapter 5 and re-sampling was proved to be an 

effective solution to this issue. 

The lateral connection class of signatures (LC) contains 44 signatures and it 

is the largest class. The pipe end class (PE) contains 22 signatures and the 

displaced joint class (DJ) is the smallest class with 14 signatures. In order to 

make 3 classes equal in size, there are three options: (i) over-sample PE and 

DJ classes until they contain the same number of samples as LC class; (ii) 

down-sample LC and PE classes until their size are the same as DJ class; (iii) 

a combination of both over-sampling and down-sampling at different rates, 

set middle size PE class at re-sampling rate 100%. 

Table 6.2 gives the size of 3 classes adopting different re-sampling schemes. 

The detailed analysis of re-sampling will be given in the following section. 
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Table 6.2 Size of the classes corresponding to different re-sampling  scheme 

Number/Signatures Pipe End (PE) Lateral Connection(LC) Displaced Joint (DJ) 

Original 22 44 14 

Over-sampled 44 44 44 

Down-sampled 14 14 14 

Hybrid 22 22 22 

 

 

  

  

Figure 6.2 Two pipe end signatures obtained from different sites (left) in 20 frequency bands  

and their corresponding energy spectrum (right) 
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Figure 6.3 Two lateral connection signatures obtained from different sites (left) in 20 frequency 

bandsand their corresponding energy spectrum (right) 

 

 

 

 

 

2.3 2.8 3.3 3.8 4.3 4.8 5.3
0

2

4

6

8

10

12

14

16

Distance (m)

In
te

n
s
it
y
 (

u
n

it
)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Frequency band (Hz)

E
n

e
rg

y
 (

u
n

it
)

16.6 17.1 17.6 18.1 18.6 19.1 19.6
0

2

4

6

8

10

12

14

Distance (m)

In
te

n
s
it
y
 (

u
n

it
)

0 5 10 15 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Frequency band (Hz)

E
n

e
rg

y
 (

u
n

it
)



Chapter 6 Field Measurement Analysis 

Page | 198 
 

 

  

  

Figure 6.4 Two displaced joint signatures obtained from different sites (left) in 20 frequency 

bandsand their corresponding energy spectrum (right) 
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data curves which have more regular shapes, while Padé approximation can 
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unpredictable, the reflected energy distributions can be in many different 

shapes, therefore, both fitting techniques will be adopted and their results will 

be compared. 

 3rd order polynomial fitting produces 4 coefficients and 2nd order Padé 

approximation 5 coefficients, in order to only keep the coefficients which are 

useful for pattern classification, each coefficient‟s distribution was studied. 

Figure 6.5 and 6.6 are 3rd order polynomial fitting coefficients and 2nd order 

Padé coefficients obtained from intensity signatures in the field data library, 

respectively. Both figures are showing poor clarity among different defects, 

therefore, the mean and the standard deviation   of each coefficient set 

were calculated to measure how spread out the samples are within the class, 

and how much overlapping between classes caused. Table 6.3 lists the 

mean and the standard deviation  values of each set of fitting coefficients 

obtained by 3rd polynomial and 2nd Padé approximation for all three defects. 

 

 

 

 

 

 

 

 

 

Figure 6.5  All four coefficient sets of 3rd order polynomial fitting 

obtained from original acoustic intensity signatures. 
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Figure 6.6  All five coefficient sets of 2
nd

 order Padé approximations obtained  

from the original acoustic intensity signatures 

 

Table 6.3 Standard deviation and mean of each coefficient sets obtained from 

defect signature energy fitting by 3rd order polynomial and 2nd order Padé 

approximation 

Defect PE LC DJ 

Data fitting coefficient mean   mean   mean   

3
rd

 order 

polynomial fitting 

0a  0.7168 0.3178 0.4862 0.5932 -0.2309 0.5702 

1a  -0.0752 0.1297 -0.0958 0.2605 0.0133 0.1579 

2a  -0.0065 0.0128 0.0007 0.0304 -0.0010 0.0257 

3a (×10⁻⁵) 0.1968 0.3972 3.0292 0.9334 -1.8383 0.8838 

2
nd

 order Padé 

approximation 

0a  0.7889 0.2455 0.3890 0.3981 -0.1041 0.4571 

1a  -1.8141 0.7955 -0.8492 0.8617 0.0555 0.8891 

2a  0.8301 0.4576 0.3696 0.3995 0.0028 0.3492 

1b  -0.7271 0.3089 -1.2673 0.5311 -1.4523 0.6277 

2b  0.0485 0.2180 0.4459 0.4323 0.5291 0.4267 
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Polynomial coefficients of each class are showing severe overlapping in 

terms of their mean and standard deviation measurement. Figure 6.7 gives 

examples of how standard deviation can help to select coefficients for further 

defect classification. The mean values of the 3rd order polynomial coefficients

0a for all three defect classes and their standard deviation are shown in the 

left figure.  It can be seen that most samples of PE class were included in the 

LC class which will make it very difficult to separate these two classes, the 

other three polynomial coefficients have shown the similar issue. Therefore, 

polynomial coefficients will not be used for the field data defect analysis. The 

right figure in Figure 6.7 gives the mean and standard deviation values of the 

2nd order Padé approximation coefficient 0a for all three defects. Although 

there is some overlapping between classes, it does show the possibility of 

separating them with suitable data cleaning techniques and classification 

algorithms. Padé numerator coefficients 0a , 1a and 2a are chosen as input 

features for defect classification. 

  

Figure 6.7 Examples of mean and standard deviation obtained from fitting coefficient sets for all 

threedefects: 3
rd

 polynomial coefficient 0a (left) and 2
nd

 Padé approximation coefficient 0a (right). 
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6.3.2 Re-sampling 

The effect of learning from imbalanced datasets has been discussed in 

Chapter 5 section 5.4.2.1. Down-sampling the majority class or over-

sampling the minority class are straight forward solutions for such a binary 

learning problem. Multiclass imbalanced learning can also adopt solo re-

sampling to either remain the biggest class or the smallest class, the 

combination of the over-sampling and down-sampling strategies can also be 

useful given the fact that the two approaches are both useful in the presence 

of imbalanced datasets and appear to learn concepts in different ways. In this 

section down-sampling, over-sampling and a combination of down and over 

sampling algorithms will all be applied on the original Padé features extracted 

using the 2nd order Padé approximation method. 

6.3.2.1 Random Over-sampling and Down-sampling 

The mechanics of random over-sampling follow naturally from its description: 

for a set of randomly selected examples from the minority class, augment the 

original set by replicating the selected examples and adding them to it. 

Random under-sampling removes samples randomly from the original data 

set in majority class. The limitations of random re-samplings are also obvious: 

removing samples randomly from the majority class may cause the classifier 

to miss important concepts pertaining to the majority class; in regards to 

over-sampling, multiple instances of certain samples may cause the classifier 

to become too specific and lead to over-fitting. 

Figure 6.8 shows the data distribution of the original LC class and randomly 

over-sampled DJ and PE classes, each class contains 44 samples; Figure 
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6.9 gives the distribution of randomly over-sampled DJ class, the original PE 

class and randomly down-sampled LC class with each class has 22 samples; 

in Figure 6.10, each class contains 14 samples after PE and LC class have 

been random down-sampled until they contain the same number of samples 

as the original DJ class. 
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Figure 6.8 Original LC class, random over-sampled DJ and PE class, each classcontains 44 samples 
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Figure 6.9 Random over-sampled DJ class, the original PE class  

and random down-sampled LC class, each class contains 22 samples 
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Figure 6.10 Original DJ class, random down-sampled LC and PE class, each class contains 

14 samples 
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6.3.2.2 Nearest-Neighbours Weighted Re-sampling 

One example of the many ideas which have been proposed in order to 

overcome the deficiency of information loss or duplication in the traditional 

random re-sampling methods is the KNN rule. It can be used to select the 

majority class samples whose average distances to the class border are the 

largest, so these samples are “safe” to be removed. It has also been 

introduced to improve an over-sampling algorithm, so the synthetic samples 

augment the original dataset in a manner that generally significantly improves 

learning. Weighted re-sampling algorithms also have their drawbacks 

including over generalization and variances [2], these algorithms produce 

more well-defined decision regions which potentially could fail to recognize 

informative samples brought in by independent datasets (testing datasets). 

Based on the characteristics of the original data distribution, a combination of 

KNN weighted over-sampling and down-sampling scheme is adopted to 

reshape the original datasets aim to improve the classification performance. . 

The following procedure is adopted here: 

(1) Set the size of PE class as the re-sampling target. It means that in this 

work the PE class retains its original number and the others are re-

sampled until they reach the same size as the PE class; 

(2) To reduce to half size the LC class, find Tomek links [3] of class LC & 

PE and class LC & DJ, and remove the LC samples participated in all 

Tomek links. Repeat the process until no more Tomek links could be 

found or the majority class reach the size it desires; 
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(3) The original DJ class contains 14 samples and it needs to be 

increased in size by adding artificial samples to match the target size. 

Find Tomek links in DJ class, apply SMOTE algorithm [4] on the 

samples except those participated in Tomek links to generate new 

samples to avoid more overlapping. The integer K depends on the 

number of Tomek links. 

 

 

Figure 6.11 Tomek links (the squared sample pairs) found in DJ & LC classes (top)  

and in LC & PE classes (bottom). 
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samples that are each other‟s nearest neighbour but do not share the same 

class label.  

LC class is the majority class in the learning which needs to remove 22 

samples to reach the balance. Using Padé coefficient 
0a as an example as 

illustrated in Figure 6.11, 7 Tomek links were found within original DJ and LC 

class and 12 Tomek links within LC and PE class in the first process, LC 

samples participated in these Tomek links are removed. The second process 

identified 5 Tomek links within the DJ and LC class and 6 Tomek links within 

the LC and PE class, only 3 majority samples needed to be moved, the 3 LC 

samples whose average distance to their nearest neighbours are the 

smallest are also removed. 

The original DJ class has 7 samples participated in Tomek links with samples 

from the LC class, the other 7 samples in LC class will be fed to the SMOTE 

algorithm to generate synthetic samples. This was achieved as follows: the 

four nearest neighbours of each sample were located, the reason of choosing 

K=4 is to have enough neighbours to generate new samples so that the 

minority class would be augmented as required. Then multiply the 

corresponding feature vector difference with a random number   [0, 1], and 

the new synthetic sample is obtained by ˆ( )new i i ix x x x     , where ix is a 

random sample in the class, ˆ
ix is one of the nearest neighbours of ix in the 

class,  is 0.5 here. The resulting new sample is a sample along the line 

segment joining ix  and one of its selected nearest neighbours. In this way, 

17 new samples were generated and 15 of them are picked randomly and 

added to LC class, the augmented LC class now contains 22 samples as 
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requested. Figure 6.12 illustrates the neighbour relations between the original 

DJ samples of Padé coefficient oa and how new samples are located. 

Figure 6.13 shows the Padé coefficients 
0 1,a a and

2a distribution of data down-

sampled by Tomek links and over-sampled by the SMOTE algorithm. 

 

 

Figure 6.12 Data generation for DJ class using the SMOTE 
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Figure 6.13 Weighted down-sampled LC class, original PE class 

and over-sampled DJ class by the SMOTE, each class contains 22 samples 
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6.4 Defect Classification 

One dichotomy in statistical pattern recognition is that of supervised learning 

(labeled training samples) versus unsupervised learning (unlabeled training 

samples). The distinction is drawn from how the learner classifies data. 

Unsupervised algorithms seek out similarity between pieces of data in order 

to determine whether they can be characterized as forming a group, one 

famous approach is K-nearest neighbour algorithm which has been used in 

pervious chapters as classifier and re-sampling technique. In supervised 

learning, the classes are predetermined, each example is a pair consisting of 

an input object (typically a vector feature) and a desired output value (a 

supervisory signal), which distinguishes supervised learning from 

unsupervised learning, the learning designer's task is to search for patterns 

and construct mathematical models. A supervised learning algorithm 

analyzes the training data and produces an inferred function, which can be 

used for mapping new examples. Among many supervised learning 

algorithms, Support vector machines (SVMs) is a state-of-the-art technique 

which seeks to map input vectors to a higher dimensional feature space so 

the represented or transformed samples can be separated.  

Multiclass classification can be achieved by supervised learning methods, 

also some appropriate unsupervised learning schemes, and it depends on 

the organization of the input data clusters. Both KNN and SVMs will be 

applied to the re-sampled balanced datasets obtained in the previous section 

for defect condition classification, detailed process are given as follows. 
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6.4.1 Unsupervised Classification and Recognition: KNN 

KNN is based on the use of distance measures, a KNN classification system 

does not require training a model to make a decision, and in other words, 

imbalanced datasets situation usually will not affect the decision if the 

number of nearest neighbours is limited not to exceed the size of the minority 

class. Each Padé coefficient corresponds to a dataset consisting of 14 DJ 

samples, 44 LC samples and 22 PE samples. Randomly pick 5 samples from 

each class to test if KNN algorithm is able to assign the correct class label to 

them with the effect of different value of K. Empirically, K N , N is the 

number of samples in training [5]. The decision rule of KNN is majority voting 

which approximates Bayes decision rule on K nearest neighbours of the 

testing sample awaiting to be assigned. The sample will be assigned to the 

class which has the highest number of samples in K nearest neighbours. 

Table 6.4 gives an example of how the recognition accuracy rate is obtained: 

T indicates correct recognition result, meaning the class which has the 

highest number of samples in 5 nearest neighbours of the test sample is in 

fact the right class that the test sample belongs to; F is short for False result 

and A represents ambiguous result, which suggests that there is tie between 

two classes as they contain the same number of samples in 5 nearest 

neighbours, indicating that KNN failed to make a decision. 

Table 6.5 to Table 6.9 give the recognition accuracy rates when K was 

chosen to be close to the square root of the size of training dataset for three 

Padé coefficient datasets when they are original, random re-sampled and re-

sampled using KNN weighted methods.  
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Table 6.4  

Example of KNN recognition results in True-False form of original dataset when K=5  

Test 

ID DJ1 DJ2 DJ3 DJ4 DJ5 LC1 LC2 LC3 LC4 LC5 PE1 PE2 PE3 PE4 PE5 

0a  A A A F T T F T T F T T T F T 

1a  A A F F T T F F T F T T F F F 

2a   A T A F T T F T T T T T F F T 

 

Table 6.5  

Defect recognition using KNN algorithm with the effect of K value 

Feature/K value K=5 K=7 K=9 

Padé 
0a  53.33% 66.67% 26.67% 

Padé 1a  33.33% 53.33% 46.67% 

Padé 2a  60% 60% 60% 

 

Table 6.6  

KNN defect recognition using random down-sampled data with the effect 

of K value 

with the effect of K value 

Feature/K value K=3 K=5 K=7 

Padé 0a  33.33% 26.67% 53.33% 

Padé 1a  33.33% 46.67% 53.33% 

Padé 2a  40% 66.67% 66.67% 

 

Table 6.7  

KNN defect recognition using random over-sampled data with the effect 

of K value Feature/K value K=7 K=9 K=11 

Padé 0a  60% 60% 66.67% 

Padé 1a  66.67% 73.33% 60% 

Padé 2a  73.33% 80% 73.33% 
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Table 6.8  

KNN defect recognition using hybrid random re-sampled data  

Feature/K value K=5 K=7 K=9 

Padé 
0a  46.67% 60% 60% 

Padé 
1a  60% 66.67% 60% 

Padé 
2a  70% 73.33% 73.33% 

 

Table 6.9  

KNN defect recognition using weighted re-sampled data with the effect of 

K value Feature/K value K=5 K=7 K=9 

Padé 0a  53.33% 60% 60% 

Padé 1a  60% 60% 53.33% 

Padé 2a  66.67% 60% 60% 

 

6.4.2 Supervised Classification and Recognition: SVMs 

Support vector machines (SVMs) as introduced in Chapter 3 and 5 is a 

supervised learning algorithm which has strong theoretical foundations and 

excellent empirical success in many pattern recognition and data mining 

applications. However, the performance of SVMs classifier greatly depends 

on the distribution of training dataset and can be biased if the dataset is 

imbalanced. Therefore, re-sampling training data to a full balance is 

necessary for SVMs classification. Re-sampled datasets obtained in section 

6.3.2 will be used to train several non-linear SVMs classifiers and their 

performances will be presented in this section. 

In KNN classification, each Pade coefficient‟s corresponding training dataset 

are samples located along the line as shown in Figure 6.6, KNN algorithm 

used the absolute distance between samples to decide nearest neighbours. 

That data distribution however is not for SVMs learning as it does not work 
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based on distance measures, therefore, the Padé features are organized as 

a function of the index of tests as seen in Figure 6.9 to 6.12. What SVMs 

need to do is to seek a suitable kernel functions to generate separating 

hyperplanes and class borders for each Padé dataset.  

Clearly the data are not linearly separable by inspection, polynomial, RBF 

kernel and quadratic kernel are employed with the default margin control 

parameter C  (see Chapter 3, section 3.3.2.3) in all runs for each dataset, so 

the kernels can be compared without the influence of SVM parameter. Each 

Padé dataset contains 44 samples after random over-sampled, as in KNN 

classification, 5 samples were picked randomly from each dataset for testing, 

and the rest of the samples were for training the classifiers.  Datasets 

obtained from other re-sampling methods are being processed in the same 

way. Table 6.10 and Figure 6.14 display the classification accuracy rates of 3 

kernel classifiers trained by 4 sets of re-sampled balanced data. 

In general, Tomek links and SMOTE scheme provided better refined training 

samples for SVMs classifiers than random re-sampling. Classifiers producing 

smoother decision boundaries achieved more accurate classification due to 

the inherent characteristics of the original field datasets. Among three Padé 

coefficients, 2a is the coefficient of the highest order variable of the defect 

pattern fitting structure, and its corresponding training dataset received 

higher classification accuracy rates than the other two coefficients in most 

runs, which suggests that the highest order coefficient of an approximation 

function captures more representative information of the pattern in a set of 

samples. 
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Table 6.10  SVMs classification accuracy with effect of re-sampling methods 

and kernel classifiers 

Re-

sampling 
Feature 

Polynomial RBF  

Quadratic 

3r   5r   0.8   2   

Down 

sampling 

0a  46.67% 46.67% 40% 46.67% 40% 

1a  46.67% 33.33% 53.33% 60% 53.33% 

2a  73.33% 73.33% 80% 80% 80% 

Over 

sampling 

0a  66.67% 46.67% 53.33% 60% 66.67% 

1a  53.33% 33.33% 60% 66.67% 60% 

2a  53.33% 60% 60% 60% 60% 

Hybrid  

0a  53.33% 40% 53.33% 60% 53.33% 

1a  53.33% 33.33% 46.67% 53.33% 46.67% 

2a  46.67% 26.67% 53.33% 60% 53.33% 

Tomek links 

+ 

SMOTE 

0a  60% 60% 66.67% 73.33% 60% 

1a  73.33% 66.67% 66.67% 73.33% 60% 

2a  73.33% 73.33% 73.33% 80% 80% 
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                                   Figure 6.14   SVMs classification accuracy rates:  

                                                        Random down-sampled training data (top left);  

                                                        Random over-sampled training data (top right);  

                                                        Hybrid Random re-sampled training data (bottom left);  

                                                        Tomek links+SMOTE re-sampled training data (bottom right). 

 

6.4.3 Classification Comparison 

 

(i) Four Re-sampling methods were adopted to re-shape the original 

imbalanced datasets to reach a full balance: random down-sampling 

removed samples from majority class may cause the classifier to miss 

important concepts pertaining to the majority class; random over-sampling 
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replicated data to the original dataset of certain existing minority samples, 

which narrowed the neighbourhood boundaries and probably cause 

overfitting. Tomek links and SMOTE were used to re-size the original 

datasets to a full balance in an informed manner, the training samples 

would be more well-defined and regularized in this scenario and that 

generally significantly improves learning. Although the training accuracy 

will be high in this scenario, the classification performance could be 

unsatisfied on the independent testing data which have high similarities 

with the samples were considered „unwanted‟ during the re-sampling.  

 

(ii) In K-nearest neighbours classification, the value of K was chosen to be 

odd numbers close to the square root of the size of training dataset, the 

classification performance is influenced by the value of K : bigger K

results in better classification generally, but it could also leads to bias, a 

proper choice of K depends on the data and heuristics. KNN is instance-

based unsupervised leaning algorithm which doesn‟t require prior-

determined parameter, the imbalanced data distribution would not affect 

its performance greatly as the other learning methods if the value of K

does not exceed the size of the „most‟ minority class.  

 

(iii) In Support vector machines learning, a well balanced training data 

distribution is necessary to avoid biased classification. 3 non-linear 

classifiers were used to generate separating borders, 4 sets of re-

sampled dataset were used to train these classifiers. The classification 

accuracy rates suggest that: the parameters of kernel function determined 



Chapter 6 Field Measurement Analysis 

Page | 219 
 

the radius of decision boundaries, for more linear alike data distribution in 

this chapter, parameters produce smoother separating borders define the 

class regions better hence the classification accuracy rates are higher; 

various re-sampling methods have been proposed to improve the learning 

accuracy, Tomek links and SMOTE scheme that used in this chapter is 

based on the Nearest Neighbours rule and is proved to overcome the 

inefficiency introduced in the traditional random re-sampling to some 

extent. 
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6.5 Summary 

In this chapter data collected in the field were used to develop and modify a 

classification system for pipe conditions and defects. Learning performance 

of a classifier depends greatly on the distribution of training dataset. Most of 

learning algorithms assume or expect an equal distribution between classes, 

but in practice, many applications are facing the problem learning from 

imbalanced data which is a relatively new challenge for both academia and 

industry. Various re-sampling methods have been proposed as possible 

solutions to imbalanced learning, random down-sampling, random over-

sampling and a scheme combined Tomek links [3] and SMOTE algorithm [4] 

have been employed on field data to provide well-balanced training dataset 

for defect classification. 

The choice of classification algorithm depends highly on the nature of the 

dataset and the type of feature extracted from the data, there is no algorithm 

that is best for all applications, it is helpful to test multiple algorithms and 

parameter settings. K-nearest neighbours (KNN) and Support vector 

machines (SVMs) are used to classify and identify pipe defects based on 

acoustic characteristics, random down-sampling was found to be the least 

efficient method to imbalanced learning for both algorithms, random over-

sampling was proved to be more effective in KNN learning that SVMs 

learning because of the unsupervised nature of KNN. SVMs performances 

well on well-defined training data, informed re-sampling methods such as 
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Tomek links and SMOTE refine the clusters borders, as a result the SVMs 

learning is improved. 

The first limitation of this system at current stage is that the performance is 

determined by the quality of the data source, coefficient features are only 

reliable for classification if extracted from independent acoustic reflection 

signatures, overlapping with other signatures could make an obvious 

influence on the classification. The second challenge is the imbalanced 

learning problem, the numbers of different pipe defects in the real world are 

most likely to be unequal, although various re-sampling methods with 

different benefits have been proposed to imbalanced learning, the inherent 

characteristics of imbalanced data sets can be complex. 
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Chapter 7 

Conclusions and Recommendations for Future Work 

 

7.1 Results 

One pipe and one siphon structure were used to simulate a range of common 

conditions which relate to pipe blockage and structural damage.A series of 

experiments were carried out to collect acoustic data for defect and condition 

analysis. 5 sets of siphon conditions were studied based on the sound 

pressure level data. It was found that: (1) the water level inside the siphon 

had a noticeable effect on the sound pressure particularly in the frequency 

range below 1000Hz; (2) the effect of air bubbles on the sound propagation 

in the siphon is relatively small and can be neglected; (3) the sound pressure 

level data suggest that the effect of different amount of surroundings on the 

acoustic field in the siphon is progressive, but limited.The greater 

thehorizontal area covered by dry sand, the lower the sound pressure level 

resulting in the siphon; and by corollary, higher surrounding water level 

caused higher interior sound pressure level; (4) the sound pressure level did 

not depend on the amount of sediment inside the siphon when the frequency 

was higher than 2500Hz, and the influence of the amount of sediment on the 

sound pressure level was mostly distinguishablefrom the early time of arrival 

signals; (5) the sound pressure level was found not sensitive to the wall 

damages at frequencies lower than 1000Hz and higher than 4000Hz. The 



Chapter 7Conclusions and Recommendations for Future Work 

Page | 224 
 

time window is also critical to revealing the difference between different types 

of damage. Acoustic energy derived from the sound pressure level was 

shown to be useful for the condition analysis of the siphon. 

The accuracy of sediment classification using proposed KNN classifier was 

60%, which was improved by 20% using wavelet features than filter features 

on 5 sets of testing samples, the estimation probabilities were also improved 

between 6% and 14% approximately, therefore added more certainty to the 

decisions. Damage classification results were 100% for all 5 sets of testing 

samples using both wavelet and filter features, the estimation probabilities 

also shown that wavelet features generally led to more definite decisions 

than filter features.  

Sewer pipe condition study focused on the recognition of several pipe defects 

based on the acoustic intensity signatures. The effect of water levels and 

multiple defect interaction was studied. The results show that: (1) the 

acoustic energy spectrum derived from intensity signatures of pipe end, 

blockage and lateral connection showed somewhat unique patterns which 

can be used to classify the types of defect; (2) these patterns were relatively 

unaffected by the various levels of water flow inside the pipe; (3) the 

presence of multiple defects can have an effect on the energy spectrum 

pattern of each defect, but this pattern remains distinct and distinguishable by 

suitable feature extractors and classifiers. The real live sewer conditions are 

far more complicated especially when the sizes of data collected from 

different types of defect are not equal, re-sampling as one solution to the 

problem was studied and applied to the field data. A combination of Tomek 
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links and SMOTE was proven to be effective in re-shaping the original 

datasets into a better defined form which consequently improved the 

accuracy of classification. 

Lab-simulated sewer defects classification adopting multi-class SVM 

classifiershave reached approximately 83% and 94% accuracy rate using 

polynomial approximation and Padé approximation as feature extractor, 

respectively. Defect samples collected in the field were more complicated 

and imbalanced between classes, re-sampling methods were applied to re-

shape the samples to achieve a better classification performance. The 

combination of Tomek links and SMOTE as a hybrid re-sampling scheme 

resulted in approximately 70% accuracy rate of SVM classification and was 

by roughly 23% higher than random re-samplings. Only Padé features were 

used for field defects classification as polynomial features have shown too 

much ambiguity. 
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7.2 Conclusions 

This thesis has been concerned with acoustic methods for classifying and 

identifying defects in siphon pipes and sewer pipes under various conditions. 

A pattern recognition system has been developed to recognize condition or 

defect by finding the relationship between the measured acoustic signal and 

another signal from a benchmark signature database in which acoustic 

signatures are assembled to represent a range of common conditions or 

defects in the pipe. Laboratory data and field data have been used to train 

the system and evaluate its ability to recognize defects. The signal 

processing techniques and statistical algorithms that we adopted in the 

system have been chosen based on the nature of the data distribution in a 

feature space.   

In the case of the siphon structure, the sound pressure level history (SPL) 

has been determined from acoustic pressure response for a range of siphon 

conditions. The acoustic energy in the signal has been derived from the SPL 

data to be used as a main feature to distinguish between siphon conditions 

through a classification process. Digital filter and Discrete Wavelet Transform 

(DWT) have been used to filter the sound pressure level data, so that the 

acoustic energy filtered in a number of frequency bands and wavelet sub-

band energy features obtained via the DWT have been the two sets of input 

characteristics for the classification system. The classifier adopted in the 

classification phase has been K-nearest neighbours (KNN) algorithm which 

measures the distance between instances and make the decision using 

majority vote which is based on the condition probability estimation. The 
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results obtained from this work suggest that the acoustic energy changes 

noticeably when the siphon condition is changed. The system has been 

trained to estimate a range of the percentage of the siphon‟s cross-section 

which was occupied by the sediment. It has been shown that the use of 

wavelet energy features improve the classification performance, particularly 

when the wavelet entropy characteristic is added making effectively the 

feature space two-dimensional. 

In the case of the sewer pipe structure, the classification analysis has been 

based on the direct and reflected instantaneous acoustic intensity which was 

generated by a point source inserted in the pipe and measured with a 

microphone array. A signature library has been built to contain acoustic 

intensity signatures for a variety of pipe defects which included: pipe end; 

blockage and lateral connection. The energy spectrum of a defect signature 

has been found as representative. Classification patterns can be extracted 

from these signatures using data fitting techniques. Polynomial fitting and 

Padé approximation methods have been applied to acoustic energy spectra 

to derive a finite number of coefficients from these patterns. These 

coefficients have been used as features for the defect classification analysis. 

It has been shown that the polynomial fitting method is easy to apply and it 

produces fewer coefficients than the Padé approximation method. However, 

Padé approximation method can interpolate better a wider range of spectral 

shapes especially those with complicated spectral characteristics. A state-of-

the-art classifier named Support Vector Machines (SVMs) has been applied 

for machine learning and classification by considering the data distribution in 

the feature space. It is more suitable than the KNN method for a larger 
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number of data points. SVMs adopt kernel functions to transform the data 

into a higher dimensional feature space where the represented features are 

separable.  

For supervised classification techniques like SVMs, machine learning 

performance is likely to be affected by the distribution of the training datasets. 

If the training datasets are not equally distributed among classes, then the 

learning will cause misrepresentation of the data and perform poorly against 

the minority classes. In the real world applications, the defects mostly exhibit 

an unequal distribution between classes and that provide imbalanced 

datasets for machine learning and classification. The most popular solution to 

imbalanced learning is to re-sample the data. Random sampling and 

advanced sampling techniques have been applied and results have been 

compared against each other. Tomek links and SMOTE have been adopted 

as advanced sampling methods to remove or generate samples based on 

certain criteria to avoid possible information loss or redundancy.  

Laboratory generated and field collected data from live pipes have been used 

to develop and modify a new condition classification system. The 

classification of field data has been less accurate than that in the case of 

laboratory data due to the complexity of conditions in real live pipes. Some 

types of defect can occur less often than the others in the real world and 

causing small sample size problem. In these circumstances, the combination 

of imbalanced data and small sample size can be very challenging to achieve 

robust condition classification. In this respect, multiple re-sampling methods 

with different rates might be more useful to improve the quality of 
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classification. A combination of KNN weighted down-sampling and over-

sampling techniques has been applied to field data to balance the datasets 

distribution. KNN and SVMs methods have been applied to the re-sampled 

training datasets and the results suggest that there is no single optimal 

strategy for all situations. The selection of sampling methods and 

classification algorithms are problem-dependent so that different techniques 

or their combinations should be employed. 
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7.3 Future Work 

(1) The proposed classification system in this thesis is focused on using the 

acoustic energy extracted by different methods. This has been a main feature 

for condition and defect analysis and classification. It has proved to be 

possible to classify various conditions and defects accordance with the 

change in the energy spectrum provided a suitable classification technique is 

adopted. It can be recommended to study the performance of these 

classifiers using other acoustic characteristics rather than the energy. For 

example, these characteristics can include zero-crossing features, temporal 

and spectral structure of the signal, entropy and dynamism features and 

cepstrum coefficients. Some of these features have proved to be efficient in 

speech and music recognition. Signal phase data can be strongly affected by 

the type of defect and can be used in addition to the energy-based feature 

extraction methods.  

(2) Limited types of pipe defects were studied including: pipe end, blockage, 

lateral connection and displaced joint due to the limitation of data. There are 

many other types of defects exist in the real live underground pipes, for 

example: wall crack, roots and change of wall thickness etc. More of these 

defects should be studied and their features should be stored to expand the 

signature library so that more detailed and accurate condition classifications 

can be expected. 

(3)  Feature extraction is the most critical phase in a classification system as 

it decides the form of the features that can be representative. Depending on 

the feature type desired, the feature extract methods are various. Despite the 
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digital filter, Discrete Wavelet Transform, Polynomial fitting and Padé 

approximation methods adopted in this thesis, there are other methods of 

time-frequency analysis and statistical modelling that have been used 

successfully in different pattern recognition tasks. A review of these methods 

has been given in chapter 2.  

(4)  The field data presented and analyzed in chapter 6 showed obvious 

overlapping between defect signatures due to the complexity of the 

environment found in live underground pipes. The SVMs classifier adopted in 

this thesis works better with well-defined classes of signatures. The 

classification results suggest that the dimension of the feature space needs 

to be optimised, so that the performance of different kernel functions could be 

explored. At the same time, other classifiers used for other purpose should 

be studied based on a better understanding of the nature of the problem and 

fundamentals of the classification algorithms. 

(5) The imbalanced data learning problem needs to be revisited. Most real-

world applications have somewhat imbalanced data problems and learning 

from imbalanced data can misrepresent characteristics of the data and cause 

misclassification. Although almost every algorithm presented in the literature 

claims to be able to improve classification accuracy over certain benchmarks, 

the fundamental question: To what extent do imbalanced learning methods 

help with the learning capabilities, and is there a certain level of desired 

degree of balance for specific learning algorithms and application domains? 

Still remain unanswered. 
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Appendix A: Matlab Programs  

 

SoundLevelFltData.m Filter recorded data and calculate sound pressure level of the 

chosen frequency band 

 

IntensityResponse.m Calculates acoustic intensity response from pressure impulse 

response 

 

CalculateIntensity.m Calculates acoustic intensity from pressure data recorded on 

a pair of microphones 

 

mywavtree.m Builds a discrete wavelet decomposition tree and filters input 

data through a set of wavelet filters 

 

leastsquares_fitting.m Fits a least-squares polynomial of chosen degree through a 

set of data, fitting coefficients obtained 

 

padeApp_coef.m Calculates Padé approximation coefficients 

knnsearch.m Finds k nearest neighbours of a chosen sample in a dataset 

and restores their index  numbers in a array 

 

nearestneighbour.com Finds the nearest neighbour by Euclidean distance 

KNNClassifier.m Classifies a testing sample using a multiple class KNN 

classifier 

 

svmtrain.m Trains a support vector machine classifier for binary 

classification 

 

svmclassify.m Classifies one sample using a binary support vector machine 

testSVMtwomodels.m Classifies each sample from a dataset using a binary support 

vector machine classifier 

 

multisvm.m Trains a support vector machine classifier for multiple-class 

problem using One-Against-All rule. 

 

testSVMmultimodels.m Classifies a testing sample using a support vector machine 

trained by multiple class training datasets 

 

smote.m Finds k nearest neighbours of a certain sample and generates 

new artificial samples along the line between the sample and 

its nearest neighbours. 

 

file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\SoundLevelFltData.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\IntensityResponse.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\CalculateIntensity.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\mywavtree.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\least_squares%20fitting.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\padeApp_coef.m
file:///F:\Thsis%202013\Thsis%20Final_2013\corrections\matlab%20programs\knnsearch.m
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Abstract 

Pattern recognition has been used and developed as a process of advanced analysis 

of acoustic signal. Designing a robust pattern recognition system involves three 

fundamental tasks: signal pre-processing, feature extraction and selection, and finally 

classifier design and optimization. . This paper reports on an application to detect 

and monitor conditions of a large, water-filled siphon used in underground tunnels. 

Acoustic signals were collected from 4 hydrophones under various typical siphon 

conditions and used as input data to study the variation of the acoustic field. The 

discrete wavelet transform (DWT) was used in feature extraction and k-nearest 

neighbors (KNN) classification was applied. Subsequently, the system was tested on 

new unknown data and compared with supervised training samples. Results 

demonstrated that the acoustic sensors have high reproducibility for collecting 

signals under operational conditions. The pattern recognition system is also capable 

of discriminating different pipe conditions but further refinement is needed to 

improve sensitivity and to compensate for the effect of variable water level and 

sensor misalignment. 

Keywords 

Acoustics, siphon, wavelet transform, pattern recognition. 

 

1. Introduction 

Acoustics is used widely to determine the conditions of hidden assets, which include 

pipes, pumping stations and tunnels. It is popular because sound waves provide rapid, 

effective and non-invasive mean for asset quality control. Historically, Fourier 

transform-based spectral analysis methods have been used to analyse the collected 

acoustic data. These are based on time series data processing and calculating global 
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energy-frequency distributions and power spectra. However, the use of Fourier 

spectral analysis is always limited to linear and stationary systems.In order to 

overcome these issues, methods of time-frequency analysis, including short-time 

Fourier transform (STFT), Wigner-Ville Distribution (WVD)(Debnath, 2002)  and 

Wavelet Transform (WT) (Cohen, 1995), have been recently introduced. 

In this analysis it is important to be able to determine patterns which are associated 

with particular system states. For many industrial applications, identifying and 

classifying patters and extracting features using time-series data constitute an 

important topic for research. In this research a subset of patterns which represents a 

range of typical conditions is of a particular interest. Feature extraction and pattern 

recognition algorithms have been developed and used for analysing signals and for 

signal classification (Hugo, 1999). These techniques include hidden Markov models 

(HMM), K-nearest neighbours (KNN)(Richard O.Duda, 2001), decision trees, and 

neural networks methods(Michael Cowling, 2003). Although these techniques found 

applications in areas related to voice and speech recognition, image analysis and 

security, they have not been used extensively for the condition monitoring of civil 

engineering assets. Therefore, this project concentrates on developing a new 

methodology for the analysis of acoustic datacollected in a hydraulic siphon.The aim 

of this project is to develop a robust classification technique to discover a 

relationship between the acoustic data and a range of classified patterns obtained for 

a full-scale model of a hydraulic siphon used in London Underground.  

This paper is organized as follows: (i) the experimental procedure and data 

acquisition methods is described in section 2; (ii) section 3 presents a description of 

the wavelet analysis and K-nearest neighbors algorithm; (iii) the results are reported 

and discussed in Section 4 (iv) section 5 is the conclusion. 

 

2. Experiments set up and Data collection 

Acoustic data were collected in a siphon which was constructed from 450mm 

diameter concrete pipes in the Hydraulics Laboratory in the University of Bradford.  

The siphon was 4.2 m long and 2.0 m high. It was installed on a 500mm layer of fine 

sand in an open top box made of 12mm plywood. The siphon was instrumented with 

four 25mm hydrophones, 3 of which were installed in the left leg of the siphon. The 

other hydrophone was installed in the right leg of the siphon 75mm above the 

speaker and used as a reference receiver. The source was a 50mm diameter, water 

resistant speaker in a PVCenclosure which able to operate underwater. The 

hydrophones and the speaker were attached securely to two aluminum tubes which 

were lowered into the opposite legs of the siphon and kept at the same positions in 

all of the experiments conducted in the siphon. Figure 1 illustrates the equipment 

used in this experiment.The siphon was filled with clean water to the level of 900mm 
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below the top of the right vertical pipe (reference water level) in all the experiments 

except water level test. 

The data acquisition and signal processing facilities used in these experiments 

consisted of:  (i) a PC with WinMLS software to control the sound card which 

generated a sinusoidal sweep in the frequency range of 100 - 6000 Hz; (ii) an 8-

channel high-pass hydrophone filter used to remove unwanted low-frequency noise 

produced by equipment and machinery operated in the laboratory from the signals 

received on hydrophone H1-H3; (iii) a measuring amplifier and a filter which were 

used to condition and filter the signal received on the reference hydrophone in the 

100 – 4000 Hz range. In addition, a power amplifier was used to drive the 

underwater speaker. Stereo amplifier and headphones were used to control 

subjectively the quality of the signal produced by the underwater speaker. 

 

 

Figure 1 Structure of siphon and sensors 

 

3. Signal processing methodology 

For most industrial applications, a classical pattern recognition system consists 

following components: pre-processing, feature extraction, feature selection and 

pattern classification (decision making). Feature extraction and recognition methods 

are very important factors to achieve robustsystem performance. In this work we 

used the wavelet decomposition and K-nearest neighbors method to analyze the 

collected acoustic data and classify patterns. 
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3.1. Wavelet Decomposition 

The wavelet transform (WT) is an important part of pre-processing and feature 

extraction phases in a pattern recognition system. It has been designed to analyze the 

temporal and spectral properties of non-stationary signals and overcomes the 

shortcomings of Fourier transform by applying adjustable window to achieve the 

required frequency and temporal resolution. Applications of 1-D discrete wavelet 

transform are numerous in acoustical signal processing(Christian U. Grosse, 2004)A 

discrete wavelet transform (DWT) decomposes a signal into mutually orthogonal set 

of wavelets. The signal to be analyzed is passed through filters constructed by a 

mother wavelet with different cut-off frequencies and at different scales. A discrete 

wavelet transform of a discrete time signal f(t) with length Nand finite energy can be 

written as: 

                              𝐷𝑊𝑇(𝑎, 𝑏) =  𝑓 𝑡 
1

 𝑎
𝑁−1
𝑡=0 𝜓∗(

𝑡−𝑏

𝑎
)                                       (1) 

where 
1

 𝑎
𝜓(

𝑡−𝑏

𝑎
) defines the family of wavelet function, with 𝑎 ≠ 0 the scale of the 

transform and b the spatial (temporal) location, * denotes the complex conjugate.   

The process of discrete wavelet transform implemented at each stage can be 

simplified as low-pass filtering of the signal for the approximations and high-pass 

filtering of the signal for the details, and then down sampling by half.Filtering a 

signal corresponds to the convolution of the signal with the impulse response of the 

filter. The output coefficients can be then expressed mathematically as: 

                               𝑦𝑕𝑖𝑔𝑕 𝑘 =  𝑥 𝑛 𝑔(2𝑘 − 𝑛)+∞
𝑘=−∞                                        (2a)   

 

                                   𝑦𝑙𝑜𝑤  𝑘 =  𝑥 𝑛 𝑕(2𝑘 − 𝑛)+∞
𝑘=−∞                                       (2b) 

where 𝑥(𝑛) is the original signal, 𝑦𝑕𝑖𝑔𝑕(𝑘) and 𝑦𝑙𝑜𝑤 (𝑘) are the outputs of the high-

pass filter 𝐺 and low-pass filter 𝐻, respectively, after down sampling by half.  

For many signals, it is the low-frequency componentswhich are mostly important. 

These components define the signal its identity. The wavelet decomposition process 

can be iterated, with successive approximations being decomposed in turn, so that 

one signal is broken down into many lower-resolution components.It is called the 

wavelet decomposition tree(Strang, 1996) as presented in Figure 2. 
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Figure 2 Wavelet decomposition tree. 

The coefficients vectors 𝑐𝐴  and 𝑐𝐷 can be then used to reconstruct real filtered 

signals by reversing the decomposition process. The process yields reconstructed 

approximations𝐴𝑖 , and details𝐷𝑖which are true constituents of the original signal, so 

the original signal can be obtained by combining details and approximations, 

𝑆 = 𝐴𝑖 + 𝐷𝑖 . 

3.2. K-nearest neighbors (KNN) method 

K-nearest neighbors is a common classification technique which is based on the use 

of distance measures. For a given unlabeled sample 𝑥, find the 𝑘 ―closest‖ labeled 

samples in the training data set and assign 𝑥 to the class that appears most frequently 

within the 𝑘 -subset. 𝑘  is the number of considered neighbors. Usually the 

Euclideandistance is used and it is expressed as: 

                                            𝑑(𝑥, 𝑝) =    𝑥𝑖 − 𝑝𝑖 2𝑛
𝑖=1                                       (3) 

where 𝑝  is the training data set: 𝑝 = {𝑝𝑖}.  A typical procedure for the KNN 

classification process is: 

 

1) Calculate Euclidean distances of all training data to testingdata. 

2) Construct a new matrix with elements are Euclidean distance between testing 

data and corresponding training data. 

3) Pick K number of samples closest to the testing data by choosing 𝐾 smallest 

values of Euclidean distance. Larger value of K yields smoother decision regions 

and, therefore results in a better classification. However, this increases 

computational burden as further samples are taken into account. 

4) Classification: majority vote. K preferably odd to avoid ties.  

 

4. Experimental conditions 

 

The acoustic signals recorded in the siphon at two different conditions were 

decomposed by applying discrete wavelet transform. These conditions were: (i) 

clean siphon; (ii) siphon with a controlled amount of blockage. The blockage was 
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simulated with bags of sand. Each of this bags contained approximately 1 kg of fine 

sand. A maximum of 10 bags were used in these experiments. 

 

Signals with the frequency components higher than 5512Hz were filtered out and 

low-pass signals were decomposed into 8 frequency bands with each bandwidth 

equals to 
𝑓𝑠

2𝑛 , 𝑓𝑠 =22050Hz is the sampling frequency, 𝑛 is the depth of the 

decomposition. 

 

 
 

Figure 3 Modified wavelet decomposition 

tree generated by MATLAB 

 

 

The frequency bands on the 5
th

depth were 

calculated as following: 

 
𝑛

25
𝑓𝑠~

𝑛+1

25
𝑓𝑠                                      (4) 

 

Therefore, the frequency bands obtained with 

this method were:  

 

(1) 0 – 689 Hz; 

(2) 689—1378 Hz;  

(3) 1378—2067 Hz;  

(4) 2067—2756 Hz;  

(5) 2756--3445 Hz;  

(6)3445—4134 Hz;  

(7) 4134—4823 Hz;  

(8) 4823—5512 Hz. 

 

This process can be illustrated with a 

decomposition tree shown in Figure 3. 

Note: 8 frequency bands are presented as their 

index numbers in bracket as displayed above in 

the following contents. 

 

4.1 Reproducibility test 

Figure 4 is an example of the acoustic signal from two blockages in the siphon 

decomposed into 8 filtered signals by using discrete wavelet transform. This process 

was repeated on at least 3 signals which were collected under the same siphon 

condition but at different times so that the reproducibility of this experiment could be 

determined.  
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Figure 4 Acoustic impulse response of the siphon with 2 blockages decomposed 

using sym4(Singh & Tiwari, 2006) as mother wavelet. From top to bottom: the 

original signal plus 8 wavelet outputs with a progressive increase in the 

frequency band. 

Energy and cross-correlation coefficients were calculated to describe the similarity 

between signals at same frequency range. The energy contained in each signal was 

calculated according to  

                                                  𝐸 =
 𝑓2 𝑡 𝑑𝑡
𝑇

0

𝑓𝑠
                                            (5) 

As the energy of the sound generated by the speaker had varied slightly between 

individual measurements, the energy percentage in each frequency band was 

calculated to enable a  comparison between these signals 

𝐸𝑛𝑒𝑟𝑔𝑦  % =
𝑒𝑛𝑒𝑟𝑔𝑦  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑  𝑖𝑛  𝑐𝑒𝑟𝑡𝑎𝑖𝑛  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  𝑟𝑎𝑛𝑔𝑒

𝑡𝑜𝑡𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  𝑜𝑓  𝑡𝑕𝑒 𝑠𝑖𝑔𝑛𝑎𝑙
𝑥100%             (6) 

The cross-correlation coefficients were also calculated as 

                           𝑚𝑎𝑡𝑟𝑖𝑥 𝑅 𝑥, 𝑦 =
𝐶(𝑥,𝑦)

 𝐶 𝑥,𝑥 𝐶(𝑦,𝑦)
                                         (7) 

where C(x, y) is the covariance of the vector x and y 

                            𝐶 𝑥, 𝑦 = 𝐸(𝑥 ∙ 𝑦) − 𝐸(𝑥) ∙ 𝐸(𝑦)                                   (8) 
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In the above expression E(x) is the expected value of x 

                                                  𝐸 𝑥 =  𝑥𝑓 𝑥 𝑑𝑥
+∞

−∞
                                          (9) 

where f(x) is the probability function. The maximum deviation (MD) =𝑚𝑎𝑥(|𝑥𝑖 −

𝑥 |), where 𝑥𝑖  represents all samples and 𝑥  is the mean of them.Maximum deviation 

sensitivity C (%) is calculated as a measure of the reliability of the system, the lower 

value of C indicates more stable of the system. 

 

 

1

1

max( )

n

ii
i

n

ii

x
x

n
MD

C
xx

n







 




 (10) 

Table 1 presents the result for the acoustic energy determined from the 

reproducibility test for the siphon blocked with two sand bags. The number in the 

brackets in the top row corresponds to the WT band which is defined in the above 

paragraph. This table also presents the maximum deviation sensitivity C (%) which 

corresponds to the similarity between the data obtained in reproducibility 

experiments. 

Table 1 Acoustic energy percentage of 2 blockages in the siphon at 8 frequency 

bands and maximum deviation sensitivity. 

Energy (%) (1) (2) (3) (4) (5) (6) (7) (8) 

Test 1 18.61 11.97 2.18 1.20 0.49 1.33 1.55 1.15 

Test 2 20.14 11.76 2.30 1.21 0.47 1.35 1.58 1.13 

Test 3 20.83 11.29 2.17 1.09 0.50 1.37 1.56 1.10 

C(%) 6.29 3.28 3.76 6.57 3.42 1.48 1.07 2.37 

 

Table 2 presents the cross-correlation coefficient obtained in three experiments 

repeated in the siphon with the same amount of sediment. This table together with 

the acoustic energy data presents in Table 1 illustrates a very high similarity between 

the three repeated tests and reproducibility in the experiment.  

Table 2 Cross-Correlation coefficients of reproducibility tests of 2 blockages in 

the siphon 

Cross-correlation 

coefficients 

(1) (2) (3) (4) (5) (6) (7) (8) 

Test 1 VS Test 2 0.9989 0.9995 0.9992 0.9983 0.9961 0.9988 0.9991 0.9992 

Test 1 VS Test 3 0.9993 0.9996 0.9989 0.9991 0.9997 0.9990 0.9993 0.9969 

Test 2 VS Test 3 0.9985 0.9991 0.9976 0.9988 0.9979 0.9991 0.9994 0.9980 
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4.2 Condition classification 

The values of the acoustic energy and correlation coefficients calculated for the 8 

WT bands were used as features to construct training data matrix. The same process 

was repeated on the acoustic signals collected from unknown pipe condition and 

testing data matrix was constructed in the same way, see Table 3 and 4. Both 

matrices were used with K-nearest neighbors algorithm to determine the condition of 

the siphon from new testing data. The value of K was chosen 1 so that only the 

nearest neighbor from the training data could be found. Example of blockage 

condition matrices are shown in Table 3. 

 

Table 3 Training data matrix of energy percentage of blockage conditions 

Energy (%) (1) (2) (3) (4) (5) (6) (7) (8) 

Class1 (clean) 1.2463 7.5603 1.0493 0.5024 0.0368 0.7646 0.0575 1.1635 

Class2 (1bag) 0.1836 0.7319 0.3943 0.0366 0.0351 0.0364 0.3502 0.1288 

Class3 (2bags) 0.0283 0.0929 0.0496 0.0066 0.0079 0.0131 0.1304 0.0071 

Class4(3bags) 0.0235 0.0410 0.0098 0.0040 0.0150 0.0174 0.0194 0.0048 

Class5(4bags) 0.0300 0.0286 0.0037 0.0043 0.0017 0.0015 0.0575 0.0020 

Class6(5bags) 0.0094 0.0265 0.0118 0.0023 0.0030 0.0036 0.0257 0.0029 

Class7(6bags) 0.0054 0.0313 0.0015 0.0027 0.0021 0.0035 0.0115 0.0023 

Class8(7bags) 0.0064 0.0392 0.0115 0.0041 0.0185 0.0059 0.0357 0.0057 

Class9(8bags) 0.0033 0.0010 0.0009 0.0003 0.0011 0.0029 0.0014 0.0008 

Class10(9bags) 0.0015 0.0007 0.0002 0.0001 0.0032 0.0006 0.0009 0.0005 

Class11(10bags) 0.0017 0.0006 0.0017 0.0003 0.0018 0.0012 0.0051 0.0016 

 

Table 4 presents the testing data matrix which is composed of the values of the 

acoustic energy determined for the 8 WT bands. These data correspond to some new 

conditions against which the proposed method is to be tested. Each element in the 

testing data matrix is to be compared with the elements in the corresponding column 

in the training data matrix. In this way the training data closest to the testing data can 

be found. In this process a new matrix is constructed as shown in Table 5. This 

matrix lists all the Euclidean distance values which will indicate which training data 

was the closest to testing data by finding the smallest value of Euclidean distance. 

 

Table 4 Testing data matrix of energy percentage of blockage conditions 

Energy(%) (1) (2) (3) (4) (5) (6) (7) (8) 

Test data1     

1.4616 

18.0752 0.4818 0.2592 0.0705 0.1739 1.1908 0.1488 

Test data2   

0.1999 

2.2211 0.0540 0.1568 0.1112 0.0036 0.0964 0.0136 

Test data3   

0.0955 

0.1376 0.0119 0.0046 0.0015 0.0038 0.0168 0.0070 

Test data4   

0.0057 

0.0042 0.0036 0.0021 0.0028 0.0016 0.0144 0.0044 
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Table5 Euclidean distance matrix of energy percentage of blockage conditions 

Euclidean 

distances 
(1) (2) (3) (4) (5) (6) (7) (8) 

Class1(clean) 0.2152 10.5149 0.5675 0.2432 0.0337 0.0804 0.0273 0.0403 

Class2(1bag) 1.2779 17.3433 0.0876 0.2226 0.0355 0.1015 0.8406 0.0200 

Class3(2bags) 1.4333 17.9824 0.4322 0.2525 0.0626 0.1247 1.0604 0.1416 

Class4(3bags) 1.4381 18.0342 0.4720 0.2552 0.0555 0.1205 1.1714 0.1439 

Class5(4bags) 1.4316 18.0466 0.4781 0.2548 0.0688 0.1364 1.1333 0.1467 

Class6(5bags) 1.4521 18.0487 0.4701 0.2569 0.0675 0.1343 1.1651 0.1459 

Class7(6bags) 1.4561 18.0439 0.4803 0.2565 0.0684 0.1344 1.1793 0.1465 

Class8(7bags) 1.4551 18.0360 0.4703 0.2551 0.0520 0.1320 1.1551 0.1430 

Class9(8bags) 1.4583 18.0742 0.4809 0.2588 0.0694 0.1349 1.1894 0.1480 

Class10(9bags) 1.4600 18.0745 0.4816 0.2590 0.0674 0.1373 1.1899 0.1482 

Class11(10bags) 1.4599 18.0747 0.4801 0.2588 0.0688 0.1367 1.1857 0.1471 

 

Table 6 Index of nearest neighbor’s class from the training data matrix to 

testing data matrix 

Index No. (1) (2) (3) (4) (5) (6) (7) (8) 

Test data1 1 1 2 2 1 1 1 2 

Test data2 2 2 2 2 3 6 3 3 

Test data3  5 3 6 5 5 6 4 3 

Test data4 7 9 5 6 6 5 7 4 

 

Majority voting was then applied to discover the most common class in the index 

matrix. In the index matrix Table 6, number 1 appeared 5 times as the most common 

number of test data 1, number 2 and 5 of test data 2 and test data 3. No obvious 

majority of any class was found for test data 4 with number 5, 6 and 7 appeared 

equal times. These results suggest that test data 1, 2 and 3 belong to class 1, 2 and 5, 

respectively. It is difficult to draw a clear conclusion on test data 4, but it is possible 

to suggest that its condition was close to any of classes 5, 6 and 7.  

Figures of energy percentage against frequency bands of both testing data and 

training data support the results derived from K-nearest neighbors classification. 

Figure 5(a) shows the energy percentage against frequency bands of testing data 1 

and 6 of training data sets, testing data 1 can be seen is closest to the training data of 

clean siphon condition which is class 1. It is the result similar to that obtained via the 

KNN classification method (see Table 6). Figure 5(b), (c) and (d) are testing data 2, 

3 and 4 plotted in the same way with same training data sets as in Figure 5(a). All 4 
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figures illustrate the results consistent with those obtained via the KNN classification 

method. 
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Testing data 1: Blockage conditions, energy percentage at different frequency bands
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c) 

 

d) 

Figure 5 (a-d) Energy percentage against frequency plots of testing and training 

data  

 

5. Conclusions 

Discrete wavelet transform was used as a main signal processing method in 

reproducibility test, feature extraction and condition classification. Acoustic signals 

were decomposed into different frequency ranges up to 5512Hz. The energy 

percentage and cross-correlation coefficients between individual data sets in each 

frequency band were calculated as characteristic features to describe the degree of 

similarity between these signals. The reproducibility analysis suggests that the data 

are reproducible if the condition does not change.  

K-nearest neighbor algorithm was used as classification method to classify the 

condition of the siphon. For this purpose the siphon was blocked with a controlled 
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amount of sand. The results suggest that the acoustic technique and the adopted 

classification system are capable of discriminating different pipe conditions, but 

further refinements are needed to tuneits sensitivity and improve its accuracy. 

Meanwhile, it is also can be seen that the low frequency components of the signal 

appear to show more accurate results than their high frequency counterparts. 

Therefore, choosing frequency bands carefully helps to achieve better performance 

of the adopted classification method and it deserves a further investigation. 
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Abstract 

Underground pipes are an important part of urban water infrastructure. These pipes are gradually 

deteriorating due to aging, operational stresses and environmental conditions. In order to be able to 

manage the underground pipe system efficiently, condition monitoring is needed to provide a clear 

understanding of the behavior of sewer systems under various hydraulic conditions. This paper reports 

on the application of a novel acoustic method to study the evolution of blockages and various types of 

damage in a full scale life sewer pipe which has been installed in the hydraulic laboratory at the 

University of Bradford. Temporal and frequency characteristics in the behavior of the acoustic 

intensity are extracted from the acoustic signals recorded on an array of microphones. These 

characteristics are used for pattern recognition which is based on K-nearest neighbors (KNN) 

classifier. The obtained results indicate that the pattern recognition system can provide a reliable 

classification of the pipe condition in the presence and absence of flow. 

Keywords: Underground pipe, acoustic intensity, pattern recognition, condition classification 

 

I. Introduction 

 

Internal inspection of pipelines is done by detection systems ranging from simple 

visual inspection to complex imaging systems. Unlike conventional CCTV system 

and many other alternatives, acoustic-based methods for inspection of sewers to 

recognize pipe conditions can be fast, non-invasive and performed on those life pipes 

which are impassable for a CCTV robot. A laboratory experimental set-up to study 

the evolution of blockages and effect of damage on the acoustic signal propagation 

has been installed in Hydraulic Laboratory at the University ofBradford. The results 

presented in this paper are based on the analysis of acoustic signals which are 

reflected from various objects deposited in the partly filled pipe. It is shown that 

these signals carrysufficient information about the conditions of pipe, amount of 

deposited sedimentsand presence of lateral connections. Sound intensity data are 

used to extract meaningful features for classification purpose. Sound pressure has 

been used traditionally to analyze the conditions in pipes. This paper is based on the 

analysis of sound intensity which is, unlike sound pressure, is vector which direction 

coincides with the direction in which the acoustic energy propagates. Features 

mailto:Z.feng2@bradford.ac.uk
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extracted from the intensity data from a signaturedatabase for a range of different 

pipe conditions which are then used as training and testing data in classification 

procedures. 

 

The classification algorithm applied in this work is K-nearest neighbors (KNN) 

method. The KNN is a distance-based classifier which is easy to perform.The 

method doesn‘t require any knowledge about the system of posterior probabilities. 

The acoustic intensity data which are used in this work are filtered in several 

frequency bands so that temporal and frequency features of the reflected acoustic 

energy could be used as main the features in the KNN trainingand subsequent 

recognition process.  

 

This paper is organized as follows: Section II presents the experimental set-up and 

data collection, and signal pre-processing methods. Section III presents a brief 

introduction of the classification methodology, feature extraction and classification 

results. Section IV presents the discussion of the accuracy and stability of this 

method. 

. 

 

II. Experimental Testing 
 

 

A 150mm diameter, 14.4meter long clay pipe was constructed in the Hydraulics 

Laboratory at the University of Bradford. This type of pipe is representative of small 

and medium pipes typically found in the UK‘s underground sewer network. A lateral 

connected was installed in the middle of the pipe through which simulated blockage 

can be implanted. The end of the pipe was connected to a water tank which was 

capable of discharging water at a change of flow rates. The pipe was set on a solid 

steel beam of the same length. This experimental setup is shown inFigure 1 (a) and 

(b). 

 

An acoustic sensor which was used in these experiments consisted of four in-line 

MEMS microphones arranged a PCB board. It was attached to a small loudspeaker 

which was able to reproduce sound in the audio band. The spacing between the 

microphones was less than the acoustic wavelength to allow for the intensity 

measurements. The sensor was connected to a sound card which installed in PC (see 

Figure 1 (c)). The sensor was attached to the pipe wall of one end of the clay pipe 

and another end was either open or blocked. Broadband signals of 30 seconds were 

generated via loudspeaker and its reflections were recorded on four microphones to 

obtain acoustic intensity. 

 

Three sets of experiments were carried out with water level which was varied from 0 

to 20mm inside the pipe to simulate the dry flow conditions typical for real 

underground life sewers. Acoustic signals were collected for the followingconditions: 
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(1)empty pipe with closed lateral connection; (2) empty pipe with open lateral 

connection; (3)pipe with a blockage and closed lateral connection.  

 

 (a) 

 

    (b)           (c) 

 

Figure 1.The 150mm clay pipe facility (a); the lateral connection (b) and sensor positioned at the 

downstream end of the pipe (c). 

 

A 10 second sinusoidal sweep in the frequency range of 50Hz to 15000Hz was used 

as input signal. This type of time-invariant signal is widely used to measure the 

transfer function and it is well suited for outdoor measurements. It is less vulnerable 

to the deleterious effect of time variance [1] and presence of background noise. 

Recorded reflection signal was deconvolved to obtain the acoustic pressure impulse 

response which contained information onpipe geometry, sound speed and operational 

conditions. The broadband impulse response filtered in several narrow bands signal 

using a digital Butterworth filter. Figure 2 (left) shows an example of the original 

sinusoidal sweep signal recorded on the four microphones in the clean 150mm pipe. 

Figure 2 (right) shows the corresponding impulse response filtered in the frequency 

range of100-1000Hz. 

 

 
Figure 2 Recorded pressure signal (left) and its filtered impulse response (right) of clean pipe 
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The acoustic intensity I(t) can be calculated from data recorded on one pair of 

microphones using equation (1) and (2), where p(t) is the acoustic pressure, u(t) is 

the acoustic (particle) velocity in the direction of the normal n that coincides with the 

direction of sound wave propagation, Here 
0  is the density of air. However, it is 

difficult to extract exact value of p and
p

n




at the same position, therefore, the 

approximation (3) and (4) are commonly used, where 
1( )p t and 

2 ( )p t are the sound 

pressures measured on the two microphones which are spaced at the distance   , 

 is the acoustic wavelength [1]. 

 

Figure 3 present the acoustic intensity in the clean pipe and the clean pipe with an 

open lateral connection calculated according to this method in the frequency range of 

300 – 450 Hz. A strong reflection at approximately 15mand a smaller reflection at 

8m (right) can be seen clearly in the intensity plotspresented as a function of distance.  

 
~

( ) ( ) ( )I t p t u t  (1) 

 (2) 

 

 (3) 

 

                                   

 1 2

0

1
( ) ( ) ( )

t

u t p p d  




  
                                       (4) 

 

Figure 3 The intensity response of clean 150mm pipe (left) and the pipe with an open lateral 

connection (right) calculated in the 300 - 450 Hz range 
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III. Classification and Results 

 

 

―Each pattern is rule describing relation between certain context, problem and 

solution.‖ is the definition of pattern from Christopher Alexander[2]. Pattern is not 

considered a solution but a description and generalization of the experience which 

leads to the method how to solve the problem. Pattern classification is the 

organization of patterns into groupsof those sharing the same set of properties. A 

typical classification system normally contains four steps: data processing, feature 

extraction, feature selection and pattern classification [3].  

 

The K-nearest neighbors (KNN) method has proved to be a simple but effective non-

parametric classification algorithm. It is based on the use of distance measurement. 

Given training data  1 1( , ),..., ( , )n nR x y x y as a set of labeled samples, KNN 

classifier assigns a test sample ( , )i iT x y to the label associates with its K number of 

closest neighbors in R. The Euclidean distance is normally used to calculate the 

distance between test sample and training samples, i.e.
2

1

n

i j

j

d R T


  . The 

classification is done by a majority-voting rule, which states that the label assigned 

to the test sample should be the one which occurs the most among the K nearest 

neighbors.  

 

Pipe end, blockage and lateral connection were 3 conditions for which the reflected 

acoustic energy was extracted and used as the signatures in the classification process. 

For each pipe condition, 20 experiments were carried out with variable water level. 

A half of these signatures were used to train for the KNN classifier and the other half 

were used for testing. The acoustic energy was calculated from the intensity signals 

filtered in the 20 frequency bands. It was used as the main feature in the 

classification process. Figure 4 shows examples of signatures of recorded from the 

pipe end and lateral connection. From the intensity plots it can be seen clearly that 

there are recognizable difference in the sound intensity patterns which can be used 

for the signature classification. 

 

These intensity data were used to calculate the acoustic energy was obtained for each 

frequency band according to the following equation:  

 

 

(5) 

 

 

 

2

2

1

( )

t

t

E I t dt 
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where [
1t 2t ] is the time window chosen for this integration process. Each signature 

in the signature database was basically a testing data matrix which contained 10 rows 

corresponding to different water levels and 20 columns corresponding to different 

frequency bands. Therefore, each element of this matrix was the energy value in one 

specific frequency band and for one particular water level.  

 

 

 
Figure 4 Signature intensity plot of pipe end (left) and lateral connection (right) 

 

 

 

 

Figure 5. An example of the signature plot 

Figure 5 presents the frequency dependence of the energy extracted for the following 

pipe conditions: pipe end of the clean pipe; pipe end of the clean pipe with an open 

lateral connection; lateral connection and the blockage. The figure illustrates unique 
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patterns in each of the four signatures and shows that these patterns can be 

discriminated clearly within the frequency range of 150-450Hz. 

 

The main advantage of the KNN algorithm is that it leads to a very simple 

approximation of the Bayesian classifier, called the majority voting rule. Assume a 

training data set  1 2, NX X X  containing total N samples, among which n samples 

are labeled, 
nX class 

i  (1 n N  ), i is the number of classes. Here comes an 

unknown sample x which needs to be classified. Draw a hyper-sphere of volume V 

around x as the estimation range, among which m samples are labeled, m iX   

(1 m V  ). Pick K number of samples which are the nearest neighbors of x from 

 mX The likelihood function of density estimation using the KNN is: 

( | )i

K
P x

nV
  , similarly,  the unconditional density is estimated by: ( )

m
P x

NV
 , 

and the priors are approximated by: ( )i

n
P

N
  . Therefore, the Bayesian classifier [4] 

becomes: 

( | ) ( )
( | )

( )

i i
i

K n
P x P KnV NP x

mP x m

NV

 




  

                                                                    

(6) 

 

A large value of K yields smoother decision regions, a smaller value of K improves 

the classification efficiency. Normally choose K N  for N number of samples 

using the rule of thumb. It is expected that K should be an odd integer to avoid ties. 

In this paper, N=60 at one frequency band, hence K=7 was chosen. The frequency 

range of 100 – 450 Hz was found to be the useful range to determine signature types 

(see Figure 5). This frequency range was split in 5 frequency bands which were used 

in the classification process. The signature types ‗PE‘, ‗BK‘ and ‗LC‘ stand for pipe 

end, blockage and lateral connection, respectively.  

 

Table 1 gives majority odds results for 6 signature types of 3 pipe conditions in 5 

frequency bands. Table 2 shows the classification results using the adapted KNN 

algorithm. Estimations of testing data were based on the majority votes and were 

correct of all signatures. The majority votes were calculated by using equation (6) 

and the standard deviations were calculated using following equation: 
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2

1

1
( )

N

i

i

s x x
N 

  ,   
1

1 N

i

i

x x
N 

 
                                                                               

(7) 

where 
ix are data samples of one signature, x  is the mean of  these data. 

  

Table 1. Majority odds(%) of 5 frequency bands 

 

Signature types 
Freq Hz 
[100-

250] 

Freq Hz 
[200-

350] 

Freq Hz 
[300-

450] 

Freq Hz 
[400-

550] 

Freq Hz 
[500-

650] 

PE of empty pipe 100% 100% 100% 100% 85.7% 

PE with open lateral connection 71.4% 100% 100% 57.1% 28.6% 

PE with blockage inside pipe 100% 100% 100% 100% 42.8% 

PE with blockage inside and open 

LC 

85.7% 100% 71.4% 57.1% 28.6% 

BK inside pipe 14.3% 100% 100% 100% 85.7% 

LC of empty pipe 100% 100% 42.8% 85.7% 42.8% 

 

 

Table 2. Signature classification results using KNN algorithm 

 

Signature types Majority 

votes 

Estimation Standard  

Deviation 

PE of empty pipe 97.2% PE 1.65 

PE with open lateral connection 71.4% PE 0.74 

PE with blockage inside pipe 88.6% PE 1.16 

PE with blockage inside and open 

LC 
65.7% PE 0.62 

BK inside pipe 80.0% BK 0.56 

LC of empty pipe 74.3% LC 0.52 

 

 

V. Conclusion 

 

A K-nearest neighbours (KNN) algorithm has been developed and used for pipe 

condition classification. This system is capable of identifying pipe objects of a 

water-filled pipe using its acoustic signatures. 3 pipe conditions of 20 water levels 

were studied in this work including: empty pipe, pipe with open lateral connection 

and blockage inside pipe. Pipe end, lateral connection and blockage signatures were 

obtained and used in classification. Signatures in frequency 100Hz to 1000Hz were 
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filtered in 20 frequency bands to improve the resolution of classification, a frequency 

range of 150Hz-450Hz of 5 bands was found to be more useful to discriminate 

patterns, the amount of data samples in calculation can be reduced using these 5 

frequency bands instead of the original 20 bands, as a result, the classification results 

can be more sensitive to the condition change and the calculations are more efficient. 

The acoustic energy has been used as the main feature in the classification process. It 

has been found a useful characteristic which enables discernible difference between 

signatures to be measured. The proposed system has proved to be reliable to enable 

to discriminate typical conditions in a partly-filled pipe. Other acoustic parameters 

will be studied in the future to provide additional dimensions for the classification 

process and improve its robustness and resolution. 
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Abstract—Underground pipeline infrastructure can decay at 

an accelerating rate due to insufficient quality control, 

ineffective condition monitoring and maintenance and a 

general lack of uniformity in design and operation. An 

intelligent system that is a rapid and reliable decision-making 

tool to measure the condition of buried water and sewer 

pipeline infrastructure systems is urgently required by water 

companies. This paper proposes a novel approach of 

discriminating and classifying different pipe conditions under 

various hydraulic conditions. A full scale live pipe was 

installed in the Hydraulic Laboratory at University of 

Bradford to study the evolution of blockage and damage 

effects on acoustic signal propagation. Pattern classification 

algorithms were studied and applied. In this work, the 

acoustic intensity and reflected energy were regarded as 

meaningful signatures that could used for feature extraction 

and recognition. K-nearest neighbours (KNN) was used as 

classifier to recognize pipe conditions. The experimental 

results show that the proposed acoustic based pattern 

recognition system is a reliable tool that can be used to 

discriminate between pipe ends, lateral connections and 

sediment blockages in the presence and absence of flow. 

 

I. Introduction 

The economic and social costs associated with collapse of 

buried underground infrastructure can be significant. Many 

pipelines were installed in the first part of the 20th century. 

The condition of these assets is largely unknown and they 

continue to deteriorate largely unnoticed [1]. Therefore, 

regular inspection of these assets is needed. Efficient 

method for inspection and monitoring of pipelines has been 

an active area of research for many years and several 

solutions have been proposed.However, the most common 

inspection method which is used at present is the close 

circuit television inspection. It is a detailed method of 

inspection, but it is slow, expensive and subjective.  

     Acoustics provides alternative means to inspect pipes 

more rapidly and objectively. In underground sewer pipes, 

it is relatively straightforward to inject an acoustic signal 

into the pipe and listen for the reflections which would 

inevitably occur when there is a cross-sectional change or 

change in the acoustic impedance in the pipe wall [2]. The 

signals reflected from an artefact in the pipe carries 

information about the nature of this artefact, its extent and 

severity. It is attractive to have a system in place which can 

process this information and classify the nature and severity 

of these defects automatically. This paper presents a 

novelcondition classification system that has been designed 

and tested to detect defects of live sewer pipeline using 

acoustic intensity data. K-nearest neighbours (KNN) is 

applied in this work and proved to be capable of 

discriminating pipe segments and defects under dry flow 

conditions. 

 

I. Experimental Setup 

A 150mm diameter, 14.4meter long clay pipe was 

constructed in the Hydraulics Laboratory at the University 

of Bradford. A lateral connected was installed in the middle 

of the pipe through which simulated blockage can be 

implanted. The end of the pipe was connected to a water 

tank which was capable of discharging water at a change of 

flow rates. The pipe was set on a solid steel beam of the 

same length as shown in Fig. 1(a) and (b). An acoustic 

sensor which was used in these experiments consisted of an 

array of four microphones. A small loudspeaker was used 

to reproduce sound in the audio band. The spacing between 

the microphones was less than the acoustic wavelength to 

allow for the intensity measurements. The sensor was 

connected to a sound card which installed in a PC. The 

sensor was attached to the top of the clay pipe near a pipe 

end. The other end of the pipe was either open or blocked 

as illustrated in Fig.1(c).  

 

 

 

 

 

 

 

(a) 

(b) (c) 
Fig. 1. The 150mm clay pipe facility (a); the lateral connection (b) and sensor 
position (c). 
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Four sets of experiments were carried out with water level 

which was varied from 0 to 20mm inside the pipe to 

simulate the dry flow conditions typical for real 

underground life sewers. Acoustic signals were collected 

for the following conditions: (1) empty pipe with closed 

lateral connection; (2) empty pipe with an open lateral 

connection; (3) pipe with a blockage and closed 

lateralconnection; (4) pipe with blockage and an open 

lateral connection. 

I. Signal Processing 

     A sine sweep of 10 second long was generated via 

loudspeaker in the frequency range of 50 – 15000 Hz and 

its reflections were recorded on four microphones. The 

signals recorded on the four microphones were 

deconvolved to obtain the acoustic pressure impulse 

response which contained information on pipe geometry, 

sound speed and operational conditions. Fig. 2 shows an 

example of the acoustic pressure impulse response recorded 

in the clean, empty pipe which is plotted against the 

propagated distance ( ctd  , where c is the speed of 

sound and t is the time). These calculated impulse 

responses were filtered using a digital Butterworth filter of 

3
rd

 order. The filtered signals recorded on the six 

microphone pairs were used to calculate the instantaneous 

acoustic intensity using the method detained in [3] and [4]. 

The instantaneous intensity data calculated for the six 

microphone pairs were compensated for the time delay and 

combined synchronously.  

 

 

 

 

 

 

Fig. 3 presents the acoustic intensity in the clean pipe (Fig. 

3 (a)) and the clean pipe with an open lateral connection 

(Fig. 3 (b)) calculated according to this method and filtered 

in the frequency range of 300 – 450 Hz. A strong reflection 

at approximately 15m and a smaller reflection at 8m can be 

seen clearly in the intensity plots presented as a function of 

distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. Classification 

 

A. Theory Background 

Pattern recognition aims to classify data based either on a 

priori knowledge or statistical information extracted from 

the measurements. In our work statistical information was 

used to carry out the training and automatic classification of 

pipe defects. For this purpose, a common non-parametric 

method of the K-nearest neighbours (KNN) classifier was 

adopted [5]. According to this method, K-nearest 

neighbours are computed and majority voting can be 

applied among the computed samples in the neighbourhood 

to make classification. This classification is based on the 

class label of the testing sample which is decided by the 

majority class of its k closest neighbours to which the 

distance is calculated as Euclidean distance. 

 

 

B. Feature Extraction 

 

Pipe end, blockage and lateral connection were 3 objects 

for which the reflected acoustic energy was extracted and 

used as the signatures in the classification process. For each 

pipe object, 20 experiments were carried out with variable 

water level from 0 to 20mm to extract individual acoustic 

signatures. A half of these signatures were used to train for 

the KNN classifier and the other half were used for testing. 

The acoustic energy was calculated from the intensity 

signals filtered in 20 frequency bands from 100 to 1000Hz 

with bandwidth equals to 150Hz. The energy of the signals 

filtered in these frequency bands was then calculated as  

 


2

1

)(2
t

t

tIE  (1) 

where )(tI is the instantaneous acoustic intensity and 1t

and 2t are some time limits which correspond to the time 

window used for the acoustic signature selection. Figure 4 

shows examples of signatures of intensity recorded from 

the pipe end (Fig. 4(a)) and blockage (Fig. 4(b)).  

 

 

 
Fig. 2. Recorded pressure impulse response of clean empty pipe 
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(b) 

Fig. 3. The intensity response of clean  pipe (a) and the pipe with an 

open lateral connection (b) filtered between 300 - 450 Hz 
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An energy data matrix was constructed for each intensity 

signature for training which contains 10 sets of energy data 

corresponding to 10 different water levels at 20 different 

frequency bands from 100 to 1000Hz. A testing data matrix 

can also be constructed in the same way but only 

corresponds to 1 water level chosen randomly from the 

other 10 sets of data of the signature. Therefore, the size of 

each training data matrix is 10 × 20, each testing data 

vector is 1 × 20. 

     In total, 6energy data matrices were constructed: (1) 

PE1: pipe end of empty pipe; (2) PE2: pipe end of empty 

pipe with an open lateral connection; (3) PE3: pipe end of 

pipe with blockage inside; (4) PE4: pipe end of pipe with 

blockage and an open lateral connection; (5) BK: blockage 

in the pipe; (6) LC: open lateral connection of empty pipe. 

 

A. KNN Classification 

K-Nearest Neighbours (KNN) method is a distance-based 

classification algorithm, by calculating the distance 

between the sample data and all labelled data, number K of 

its closest neighbour samples are selected. The sample data 

will be assigned by majority vote rule to the class most 

common among its K nearest neighbours. The value of K 

depends on the data, normally, a larger value of K yields 

smoother decision ranges but increases the computational 

burden. Empirically, K N 
 

, N is the number of 

labelled data in one observation. 

In this work, there were6 classes of signature with 60 

training samples in each class obtained from 10 random 

water levels data of each acoustic signature in 5 selected 

frequency bands. Testing samples were chosen from the 

other water level data in the same frequency range. The 

original training data matrix and testing data matrix both 

have 20 rows corresponding to 20 frequency bands, after 

feature selection only 5 frequency bands remained, 

therefore, the size of training data and testing data matrices 

of each signature reduced to 10 × 5 and 1 × 5, respectively. 

Both training and testing data matrices were in the form of 

 ljEE (see equation 1), where l is the index for the 

water level experiment, j is the frequency band. 

Training data in each frequency band from all 6 classes 

were considered as one observation and KNN was applied 

to each observation. Each observation contained 60 training 

data samples, hence K=7 was picked for each testing data 

sample. Fig.5 is the plot of the acoustic energy as a function 

of the frequency band determined for the training data and 

for one set of the testing data which consisted of 5 

signatures. In this figure the frequency range of 150 -450Hz 

is marked with the dashed lines in Fig. 5. This is the most 

useful range for condition classification in which individual 

signature classes are clearly separated in terms of their 

spectral energy values.It can be seen that there 

areconsiderable overlaps of signature classesin the low 

frequency range below 150 Hz. In the higher frequency 

range (above 450 Hz) different signatures fell close to each 

other. These two frequency ranges are deemed unreliable 

for condition classification. One set of testing data was 

picked randomly from the testing database, 7 nearest 

neighbours of the testing data at each frequency band will 

be computed for decision making of classification. 

 

 

 

 

 

 

 

 

 

Majority vote is the decision rule in KNN classification 

final process that normally picks the number appearing 

more than half out of all numbers or simply picks the 

number has the highest appearance among all. A new class 

label matrix can be constructed for each testing data set 

using the class labels of all nearest neighbours: 

(a) 

(b) 
Fig. 4. Intensity signature of pipe end (a) and blockage (b) 
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Fig.5. Energy plot of training data and testing data of signatures 
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 7
: min training testing iK

i


 Λ E E  

where N is the number of all signature estimations,  is the 

correct class label of the testing data and N is the time of 

 shown in the label matrix. The results are shown in 

the last row of Table I. 

Class label matrices of 6 sets of testing data from each 

signature constructed using equation (2) were given in 

Table I. Majority vote was applied to each matrix and 

picked the class number had the highest appearance of all, 

the proportion of which was calculated using the following: 

Pr( | )
N

X N
N


   (3) 

 

 

 

 

 

 

 

I. Summary 

 

Pipe end, blockage and lateral connection were studied in 

this work to develop a classification system which would 

be able to discriminate these pipe objects under different 

hydraulic conditions. Acoustic signals were collected from 

the dry flow conditions realistically simulated in the 

laboratory. The acoustic intensity and reflected energy were 

calculated and used as main features in the classification 

process to recognise automatically pipe conditions based on 

their unique acoustic signatures. Initially, the acoustic 

energy data were presented in 20 frequency bands from 100 

to 1000Hz to study their dependence on the condition in the 

pipe. Ultimately, only 5 frequency bands from 150 to 

450Hz were selected as it was found that in this frequency 

range the acoustic energy in the response from different 

pipe conditions had clearly cognizable patterns.  

 

K-Nearest Neighbours (KNN) method was applied to the 

acoustic energy data within the selected frequency range, K 

was chosen to be 7 in this work based on the amount ofdata 

and class.Classification results suggest that using reflected 

energy from a suitable frequency range to identify 

Where N is the number of all signature estimations,  is the 

correct class label of the testing data and  is the time of  

shown in the label matrix. The results are shown in the last 

row of Table I. 

KNN classification was able to discriminate different pipe 

objects under different conditions when applied carefully to 

acoustic data within a selected frequency range. The 

percentages of the correction estimation of all signatures 

were higher than 70% as shown in Table I. Lateral 

connection (LC) and pipe ends with open lateral connection 

(PE2 and PE4) were relatively lower in accuracy of 

condition classification compared with the others, suggests 

that lateral connection is the object which could cause more 

complicated acoustic field in the pipe. Reflected acoustic 

intensity energy can be used as main feature in KNN 

classification to discriminate pipe objects but choosing a 

useful frequency range is crucial. 

 

 

 

 

 

 

 

 

 

pipe objects under various hydraulic conditions is possible. 

Acoustic energy distributions against frequency of 

differentpipe objects have unique patterns and can be useful 

to take into further study of pipe condition classification. 
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TABLE I. Example Applications of 7-NN Classification Results 

File Group of Testing Data PE1 PE2 PE3 PE4 BK LC 

Class label matrix Λ 

K=7 

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     2

 
 
 
 
 
 
 
 
 
  

 

2     2     2     2     3

2     2     2     3     2

4     2     2     3     3

2     2     2     2     1

2     2     2     2     3

2     2     2     3     2

4     2     2     2     3

 
 
 
 
 
 
 
 
 
  

 
3     3     3     3     2

3     3     3     3     3

3     3     3     3     2

3     3     3     3     3

3     3     3     3     2

3     3     3     3     3

3     3     3     3     2

 
 
 
 
 
 
 
 
 
  

 
4     4     4     4     4

4     4     4     7     4

4     4     4     6     4

4     4     5     7     4

4     4     5     4     4

2     4     4     6     6

4     4     4     7     4

 
 
 
 
 
 
 
 
 
  

 

4     5     5     5     6

4     5     5     5     5

4     5     5     5     5

5     5     5     5     5

4     5     5     5     5

4     5     5     5     5

4     5     5     5     5

 
 
 
 
 
 
 
 
 
  

 
6     6     3     6     6

6     6     6     6     6

6     6     3     3     5

6     6     6     6     5

6     6     3     6     5

6     6     6     6     6

6     6     5     6     5

 
 
 
 
 
 
 
 
 
  

 

Majority Vote 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 5 

Signature Estimation PE1 PE2 PE3 PE4 BK LC 

Correct Estimation % of Λ 97.14% 71.43% 88.57% 74.28% 80% 74.28% 
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