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� Chemical separation is used for racemate resolution.
� NMR analyses are used for single enantiomer structure education.
� Intermolecular interactions are observed by X-ray study.
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a b s t r a c t

The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently
been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal
structures of this novel compound have been fully analyzed. The relative and absolute configurations
have been determined by using a combination of analytical tools including X-ray crystallography,
X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Introduction

The indane moiety is present in many bioactive pharmaceutical
products including the non-steroidal anti-inflammatory indane
sulindac (Clinoril, Merck) [1–3] and the protease inhibitor indina-
vir (Crixivan, Merck) used as a component of highly active antiret-
roviral therapy (HAART) [4,5]. As part of our ongoing drug
discovery programme, we have synthesized a variety of indane
molecules using different synthetic approaches [6–12]. Many of
these novel molecules have been shown to possess smooth muscle
relaxation properties as well as mediator release inhibition [6–8].
More recently, a series of anti-inflammatory dimeric indane com-
pounds with potential therapeutic value have been synthesized
and characterized in our group [10,11,13,14].

This work has been challenged by the need to synthesis and
resolve single enantiomeric forms of bioactive compounds. In the
current study we report the separation of the single enantiomers
(2) and (3) of a potent anti-inflammatory diastereoisomeric mix-
ture (1) [10]. The molecular structure of enantiomer (2) was inves-
tigated using its derivative, compound (4) (Scheme 1) and the
relative & absolute configurations of enantiomer (2) were also sub-
sequently determined. In this paper, we report the synthetic chem-
istry including separation of enantiomers (Scheme 2) and indanol
esterification (Scheme 3). Single crystal X-ray crystallographic
analysis, X-ray Powder Diffraction (XRPD) and Nuclear Magnetic
Resonance (NMR) analysis were performed on compound (4).
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Experimental

Chemical separation of constituent enantiomers (2) & (3) from
diastereoisomer (1)

Diastereoisomer (1), 2-benzyl-2,3-dihydro-1H,10H-[2,20-biin-
den]-1-ol, was prepared as detailed by Sheridan et al. [10]. This sin-
gle diastereoisomer was derivatized with N-BOC D-phenylalanine
(Scheme 2); the diastereoisomers (5) and (6) formed from this
reaction were chromatographically separated and subsequently
the phenylalanine group was removed by hydrolysis to give two
enantiomers (2) and (3) (Scheme 3).

Preparation of N-BOC D-phenylalanine derivative of (5) & (6)
To a stirred solution of compound (1) (0.41 g, 1.201 mmol) and

N-BOC D-phenylalanine (0.40 g, 1.509 mmol) in acetonitrile (8 mL)
was added pyridine (0.12 mL, 1.5 mmol). The mixture was stirred
at room temperature and a solution of N,N0-dicyclohexylcarbodi-
imide (DCC) (1.5 mmol, 0.309 g) and 4-dimethylaminopyridine
(DMAP) (0.02 g, 10 mol%,) in acetonitrile (2 mL) was added drop-
wise. After a short time, a white precipitate was seen. The reaction
was heated to 50–60 �C for 2 h. On cooling, the reaction mixture
was filtered and the dicyclohexylurea precipitate was washed well
with acetonitrile. The acetonitrile was evaporated in vacuo and the
residue was taken up in ethyl acetate (20 mL). The ethyl acetate
extract was washed with 1 N sulfuric acid (20 mL), saturated
sodium bicarbonate solution (20 mL), brine (20 mL), dried over
anhydrous magnesium sulphate and evaporated to give a yellow
oil which contained two diastereoisomers (5) and (6) (TLC analysis:
hexane:methyl tert-butyl ether (MTBE), 4:1). The diastereoisomers
were separated by flash column chromatography (stationary
phase: silica gel 230–400 mesh; mobile phase: 95:5, hex-
ane:MTBE) to give diastereoisomer (5): 0.335 g (48%); diastereo-
isomer (6) 0.323 g (46%).

Hydrolysis of N-BOC D-phenylalanine derivative of diastereoisomer
(1)

To a stirred solution of N-BOC D-phenylalanine derivative of
diastereoisomer (5) or (6) (0.66 g, 1.128 mmol) in methanol
(25 mL) was added potassium carbonate (0.17 g, 1.232 mmol).
The reaction mixture was heated at reflux and monitored by TLC
Scheme 1. Formation of enantiome
(hexane:MTBE, 80:20). After 2 h, no further starting material was
seen. The methanol was removed in vacuo and the solid residue
taken up in water and ethyl acetate. The layers were separated
and the aqueous layer extracted with ethyl acetate (3 � 25 mL).
The combined organic layers were washed with water
(3 � 50 mL), brine (50 mL), dried over anhydrous magnesium sul-
phate and evaporated. The crude product was purified by flash col-
umn chromatograph (stationary phase: silica gel 230–400 mesh;
mobile phase: hexane:MTBE, 90:10) as eluent to give 0.34 g
(90%) of the product as off-white solid.

Enantiomer (2). M.P. 59–64 �C; [a]D: �65.52 (7.67%, CHCl3); dH

(400 MHz, CDCl3): 2.80 (1H, d, J = 13.40 Hz, CH2), 3.02 (1H, d,
J = 15.56 Hz, CH2), 3.12 (1H, d, J = 15.56 Hz, CH2), 3.24 (1H, d,
J = 13.40 Hz, CH2), 3.49 (1H, d, J = 22.60 Hz, CH2), 3.62 (1H, d,
J = 22.60 Hz, CH2), 5.27 (1H, s, CHOH), 6.53 (1H, s, CH@C), 6.93
(2H, s, Ar–H), 7.20–7.30 (9H, 2 �m, Ar–H), 7.46–7.48 (2H, m, Ar–
H); dC (86.5 MHz, CDCl3): 2 � 38.0 (2� CH2), 39.6 (CH2), 55.4 (quat.
C), 82.7 (CHOH), 120.0 (tert. C), 123.1 (tert. C), 123.5 (tert. C), 123.6
(tert. C), 124.5 (tert. C), 125.7 (tert. C), 125.9 (tert. C), 126.5 (tert. C),
2 � 127.4 (2 � tert. C), 127.8 (tert. C), 128.0 (tert. C), 2 � 129.7
(2 � tert. C), 137.9 (quat. C), 140.3 (quat. C), 142.5 (quat. C),
143.4 (quat. C), 144.3 (quat. C), 152.7 (quat. C).

Enantiomer (3). M.P. 57–60 �C; [a]D: +64.72 (7.79%, CHCl3); dH

(400 MHz, CDCl3): 2.80 (1H, d, J = 13.40 Hz, CH2), 3.02 (1H, d,
J = 15.56 Hz, CH2), 3.12 (1H, d, J = 15.56 Hz, CH2), 3.24 (1H, d,
J = 13.40 Hz, CH2), 3.49 (1H, d, J = 22.60 Hz, CH2), 3.62 (1H, d,
J = 22.60 Hz, CH2), 5.27 (1H, s, CHOH), 6.53 (1H, s, CH@C), 6.93
(2H, s, Ar–H), 7.20–7.30 (9H, 2 �m, Ar–H), 7.46–7.48 (2H, m, Ar–
H); dC (86.5 MHz, CDCl3): 2 � 38.0 (2� CH2), 39.6 (CH2), 55.4 (quat.
C), 82.7 (CHOH), 120.0 (tert. C), 123.1 (tert. C), 123.5 (tert. C), 123.6
(tert. C), 124.5 (tert. C), 125.7 (tert. C), 125.9 (tert. C), 126.5 (tert. C),
2 � 127.4 (2 � tert. C), 127.8 (tert. C), 128.0 (tert. C), 2 � 129.7
(2 � tert. C), 137.9 (quat. C), 140.3 (quat. C), 142.5 (quat. C),
143.4 (quat. C), 144.3 (quat. C), 152.7 (quat. C).

Derivatisation of enantiomer (2)

Enantiomer (2), (1S,2S)-2-benzyl-2,3-dihydro-1H,10H-[2,20-
biinden]-1-ol, was derivatized with 4-bromobenzoic acid to give
r (2) derivative, compound (4).



Scheme 2. Chemical separation of enantiomers (2) and (3): formations of N-BOC D-phenylalanine derivative of compounds (5) and (6).

Scheme 3. Chemical separation of enantiomers (2) and (3): isolation of enantiomers (2) and (3).

Fig. 1. The molecule structure of the enantiomeric compound (4) with the atom
numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
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enantiomeric compound (4). All subsequent molecular structure
analysis were performed on this derivative (Scheme 4).

To a stirred solution of enantiomer (2) (0.06 g, 0.177 mmol) and
4-bromobenzoic acid (0.05 g, 0.266 mmol) in dry dichloromethane
(5 mL) was added 4-dimethylaminopyridine (0.03 g, 0.266 mmol),
diisopropylethylamine (0.05 mL, 0.266 mmol) and 2,6-dic-
hlorobenzoyl chloride (0.04 mL, 0.266 mmol) under an atmosphere
of nitrogen. After an hour the reaction was quenched by the addi-
tion of saturated sodium bicarbonate solution (10 mL) and the
product was extracted with diethyl ether (3 � 20 mL). The organic
layers were combined and dried over anhydrous magnesium sul-
phate and concentrated in vacuo. The resulting oily residue was
then purified by flash column chromatography (stationary phase:
silica gel 230–400 mesh; mobile phase: 10:1, hexane:ethyl ace-
tate,) to yield target ester product, (1S,2S)-2-benzyl-2,3-dihydro-
2-(1H-inden-2-yl)-1H-inden-1-yl 4-bromobenzoate (4), as a pale
yellow oil (0.08 g, 99%). Analytical data of this ester is shown
below. Compound (4) was then crystallized from the mixture of
acetonitrile and isopropanol (v:v, 1:1).
Scheme 4. Formation of enantiomer derivative (4).

H atoms are omitted for clarity.

Table 1
List of short-range contacts in the crystal lattice of compound (4).

Atom 1 Atom 2 Length (Å) Length-VdW (Å) Symmetry

C23 H18b 2.883 �0.034 x, �1 + y, z
H23a H18b 2.340 �0.117 x, �1 + y, z
C4 H9b 2.585 �0.307 x, �1 + y, z
H4a H9b 2.169 �0.201 x, �1 + y, z
H6a C34 2.821 �0.089 �x, �1/2 + y, �z
H4a C6 2.911 �0.005 �x, �1/2 + y, �z
C22 H9a 2.858 �0.069 �x, �1/2 + y, 1 � z
C15 Br01 3.468 �0.081 1 � x, �1/2 + y, �z
C14 Br01 3.385 �0.172 1 � x, �1/2 + y, �z



Fig. 2. Short range contacts in crystal lattice of compound (4) along b axis.

Fingerprint plots and corresponding Hirshfield su

C-Br 4.4% 

H-Br 7.7% 

Fig. 3. Fingerprint plots and corresponding Hir
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M.P. 156–158 �C; HRMS (+Na+): 543.0930m/z, required
543.0912m/z, C32H25O2BrNa; dH(600 MHz, CDCl3): 3.17 (1H, d,
J = 13.56 Hz, CH2), 3.19 (1H, d, J = 15.42 Hz, CH2), 3.27 (1H,
d, J = 22.52 Hz, CH2), 3.366 (1H, d, J = 13.56 Hz, CH2), 3.371 (1H, d,
J = 15.42 Hz, CH2), 3.41 (1H, d, J = 22.52 Hz, CH2), 6.57 (1H, s,
CH@C), 6.64 (1H, s, CHOC@O), 6.94–6.95 (2H, overlapping signals,
Ar–H), 7.15 (1H, dt, J1 = 1.23 Hz, J2 = 7.29 Hz, Ar–H), 7.15–7.19
(3H, m, Ar–H), 7.21–7.24 (2H, m, Ar–H), 7.27 (1H, d, J = 7.16 Hz,
Ar–H), 7.31–7.32 (2H, m, Ar–H), 7.36 (1H, overlapping d,
J = 7.60 Hz, Ar–H), 7.39 (1H, overlapping d, J = 7.42 Hz, Ar–H), 7.67
(2H, overlapping d, J = 8.68 Hz, Ar–H), 8.05 (2H, overlapping d,
J = 8.52 Hz, Ar–H); dC(150 MHz, CDCl3): 39.6 (CH2), 40.4 (CH2),
40.8 (CH2), 54.9 (quat. C), 83.8 (CHOC@O), 120.6 (tert. C), 123.5
(tert. C), 124.3 (tert. C), 124.6 (tert. C), 125.7 (tert. C), 126.31 (tert.
C), 126.33 (tert. C), 126.9 (tert. C), 2 � 127.9 (2 � tert. C), 128.5
(quat. C), 129.08 (tert. C), 129.1 (quat. C), 129.5 (CH@C),
2 � 130.0 (2 � tert. C), 2 � 131.3 (2 � tert. C), 2 � 131.9 (2 � tert.
C), 137.9 (quat. C), 140.4 (quat. C), 142.2 (quat. C), 142.7 (quat.
C), 144.4 (quat. C), 151.6 (CH@C), 165.6 (C@OOAr).
rface coverage of 3 

shfeld surface coverage of compound (4).



H-O 6% 

H-C 31.4% 

H-H 49.7% 

Fig. 3 (continued)
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Fig. 4. XPRD analysis of compound (4): (a) experimental XPRD pattern for
compound (4); (b) the simulated XPRD pattern calculated from single-crystal
structure of compound (4).
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Fig. 5. Chemical structure of compound (4).

1 For interpretation of color in Fig. 2, the reader is referred to the web version o
this article.
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X-ray crystallography

A single crystal X-ray analysis of compound (4) was carried
out (Fig. 1). A specimen of C32H25BrO2, approximate dimen-
sions 0.180 mm � 0.200 mm � 0.250 mm, was used for the X-ray
crystallographic analysis. The X-ray intensity data were measured
at 150(2) K using an Oxford Cryosystems Cobra low temperature
device. A total of 3355 frames were collected. The total exposure
time was 11.37 h. Cell parameters were obtained using CELL_-
NOW-2008/4 [15] giving a two component twin, with the second
domain rotated from first domain by 179.7� about the reciprocal
axis �0.080, 1.000, 0.020; and real axis �0.010, 1.000, 0.000. The
frames were integrated with the Bruker SAINT software package
using a narrow-frame algorithm. The integration of the data using
a monoclinic unit cell yielded a total of 7391 reflections to a maxi-
mum h angle of 67.14� (0.84 Å resolution). The final cell constants
are based upon the refinement of the XYZ-centroids of 8691 reflec-
tions above 20 r(I) with 10.25� < 2h < 134.2�. Data were corrected
for absorption effects using the multi-scan method TWINABS-
2012/1. The calculated minimum and maximum transmission
coefficients (based on crystal size) are 0.5217 and 0.7529. The
structure was solved and refined using the Bruker SHELXTL-2014
Software Package. The largest peak in the final difference electron
density synthesis was 0.724 e�/Å3 and the largest hole
was �0.420 e�/Å3 with an RMS deviation of 0.079 e�/Å3. On the
basis of the final model, the calculated density was 1.450 g/cm3 -
and F(000), 536 e�. The crystallographic data was analyzed using:
Mercury 2.2 [16] and Ortep-3 [17].

Crystal data
Compound (4), C32H25BrO2, M = 521.43, Monoclinic, a = 13.7096(6),

b = 6.0743(3), c = 14.8934(7) Å, b = 105.613(2)�, U = 1194.50(10) Å3,
T = 146(2) K, space group P21, Z = 2, l (Cu Ka) = 2.562 mm�1,
q = 1.450 Mg/cm3, 7391 reflections collected, 6935 unique, (Rint =
0.0750), R indices (all data) a

R1 = 0.0409, wR2 [I > 2r(I)] = 0.1069, Gof
on F2 = 0.814, Flack = 0.010(14), BASF (twin ratio) = 0.43974. Solved
as a rotational twin using CELL_NOW-2008/4.

X-ray Powder Diffraction (XRPD)

The crystals of compound (4) was subsequently characterized
by XRPD. XRPD analysis was conducted using a Rigaku Miniflex II
Desktop X-ray diffractometer (Tokyo, Japan) with an Haskris cool-
ing unit (Grove Village, IL, USA). The tube output voltage used was
30 kV and tube output current was 15 mA. A Cu-tube with Ni-filter
suppressing Kb radiation was used. Measurements were taken
from 5 to 40 on the 2 theta scale at a step size of 0.05� per second
in each case. Scans were performed at room temperature.

Nuclear magnetic resonance

Bruker Avance DRX-600 Spectrometer was used for NMR
studies. 1H and 13C NMR spectra were recorded at 600 MHz with
chemical shifts expressed in parts per million (ppm or d) down
field from the standard and 150 MHz respectively. The number of
scans was appropriate to generate good quality spectra for analy-
sis. Both 1D and 2D NMR experiments were analysed with Bruker
Topspin 2.1™ software.

Results and discussion

X-ray crystallographic analysis and short-range contacts network
study

The absolute stereochemistry of for compound (4) was deter-
mined as S, S at C1 and C2 positions. The assignment was made
from consideration of both the Flack parameter which was deter-
mined to be 0.010(14) and from the a priori knowledge of the ste-
reochemistry of this ester former. The absolute configuration of the
ester precursor, compound (3) was therefore believed to be S, S.

In the crystal lattice of compound (4), there is no hydrogen
bonds. All present short-range contacts are intermolecular (Table 1
and Fig. 2). The majority of the short-range contacts are formed
between indene moieties of compound (4) in addition the benzene
ring contacts with indene moiety and with bromine atom attached
to the benzene ring of compound (4).

All short-range contacts in Table 1 were depicted in Hirshfeld
surface (HS) analysis [18] as a red hotspots (Fig. 2) corresponding
to dnorm reciprocal interactions [19–21]. Red1 hot spots indicate
interactions stronger than Van der Waals interactions such as hydro-
gen bonds and/or weaker short-range contacts. HS analysis allows to
calculate a percentage of involvement of inter- and intra-molecular
atoms reciprocal interactions into overall coverage of HS which is
generated on boundary of intermolecular interactions. HS may be
converted to two-dimensional presentation of interactions called
fingerprint plot (Fig. 3) [22]. C15–Br01 and C14–Br01 short-range
contact corresponds only to 4.4% of overall HS and covers shorter
de/di distance interactions from 1.6–1.8 Å up to 2.2–2.2 Å [23]. Even
weaker than short-range interactions were depicted between hydro-
gens and bromine or oxygen atoms of carbonyl group, though they
covered larger HS area. Respectively H–Br and H–O interactions cov-
ered 7.7% and 6.0% of HS. The largest input in HS coverage have
f



Table 2
1H and 13C NMR Spectral Assignments of compound (4).

Atom number 1H chemical shift (ppm) Pattern Coupling constant (Hz) 13C chemical shift (ppm)

1 – – – 54.9
2 6.64 Singlet – 83.8
3 – – – 140.4
4 7.39 Overlapping doublet 7.42 125.7
5 7.23 Overlapping signals N/A 126.9
6 7.319 Overlapping signals N/A 129.08
7 7.311 Doublet 4.09 124.6
8 – – – 142.2
9 3.371 Doublet 15.42 40.4

3.19 Doublet 15.42
10 3.17 Doublet 13.56 40.8

3.366 Doublet
11 – – – 137.9
12 6.94 Overlapping signals – 130.0
13 7.178 Overlapping signals – 127.9
14 7.18 Overlapping signals – 126.31
15 7.178 Overlapping signals – 127.9
16 6.94 Overlapping signals – 130.0
17 – – – 151.6
18 3.27 Doublet 22.52 39.6

3.41 Doublet 22.52
19 – – – 142.7
20 7.36 Overlapping doublet 7.60 123.5
21 7.15 Double triplet 1.23, 7.29 124.3
22 7.24 Overlapping signals – 126.33
23 7.27 Triplet 7.16 120.6
24 – – – 144.4
25 6.57 Singlet – 129.5
27 – – – 165.6
29 – – – 129.1
30 8.05 Overlapping doublet 8.52 131.3
31 7.67 Overlapping doublet 8.68 131.9
32 – – – 128.5
33 7.67 Overlapping doublet 8.68 131.9
34 8.05 Overlapping doublet 8.52 131.3
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Fig. 6. 1H NMR spectrum of compound (4).
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inter- and intra-molecular interactions between hydrogens itself and
hydrogens and carbons of compound (4). Respectively H–C and H–H
interactions cover 31.4% and 49.7% of HS in Fig. 3. Apart they cover
the largest HS area, taking into account that the shorter is distance
between interacting atoms the stronger is its reciprocal interaction,
H–C and H–H interactions form the strongest short range contacts
respectively between C4–H9b and H6a–H9b both related to indene
moiety of compound (4) structure.
X-ray Powder Diffraction (XRPD)

The theoretical XRPD pattern of compound (4) generated from
the single crystal X-ray analysis at wavelength 1.54056 Å, is con-
sistent with the experimental XRPD pattern of the bulk materials
determined at ambient conditions (Fig. 4), which confirmed the
structure of compound (4) determined by single crystal analysis
is representative of the bulk material. The differences between



405060708090100110120130140150160170 ppm

3
9
.
6
4

4
0
.
3
5

4
0
.
7
6

5
4
.
9
2

8
3
.
8
0

1
2
0
.
6
0

1
2
3
.
4
7

1
2
4
.
2
8

1
2
4
.
6
4

1
2
5
.
7
1

1
2
6
.
3
1

1
2
6
.
3
3

1
2
6
.
9
3

1
2
7
.
9
3

1
2
8
.
4
5

1
2
9
.
0
8

1
2
9
.
1
1

1
2
9
.
4
9

1
2
9
.
9
9

1
3
1
.
3
3

1
3
1
.
9
2

1
3
7
.
8
7

1
4
0
.
3
6

1
4
2
.
2
4

1
4
2
.
7
4

1
4
4
.
4
5

1
5
1
.
5
6

1
6
5
.
5
8

121122123124125126127128129130131132 ppm

1
2
0
.
6
0

1
2
3
.
4
7

1
2
4
.
2
8

1
2
4
.
6
4

1
2
5
.
7
1

1
2
6
.
3
1

1
2
6
.
3
3

1
2
6
.
9
3

1
2
7
.
9
3

1
2
8
.
4
5

1
2
9
.
0
8

1
2
9
.
1
1

1
2
9
.
4
9

1
2
9
.
9
9

1
3
1
.
3
3

1
3
1
.
9
2

41 ppm

3
9
.
6
4

4
0
.
3
5

4
0
.
7
6

Fig. 7. 13C NMR spectrum of compound (4).

Fig. 8. Aliphatic (upper) and aromatic (lower) regions of HMBC NMR spectrum of compound (4).
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the two patterns in relation to peaks intensity and broadening may
be respectively related to crystal habit of the material, preferred
orientation of crystallites in the sample holder and thermal aniso-
tropic expansion of the lattice.
Nuclear magnetic resonance

The enantiomeric derivative (4) was also subjected to NMR
analysis. A variety of 1D and 2D NMR spectroscopic methods were



(a)

(b)

3.163.183.203.223.243.263.283.303.323.343.363.383.403.423.44 ppm

Fig. 9. (a) Expansion of aliphatic region of 1H NMR spectrum of compound (4); (b) spectral deconvolution of aliphatic region of compound (4).

(a)

(b)

7.147.167.187.207.227.247.267.287.307.327.347.367.387.40 ppm

H7
H6

Fig. 10. (a) Expansion of aromatic region of 1H NMR spectrum of compound (4); (b) spectral deconvolution of aromatic region of compound (4).

Fig. 11. Aliphatic (upper) and aromatic (lower) regions of HSQC NMR spectrum of compound (4).
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used to characterise the compound (Fig. 5). These include various
1D and 2D NMR techniques including 1H, 13C, Distortionless
Enhancement of Polarisation Transfer (DEPT), 2D Proton–Proton
Correlation Spectroscopy (H–H COSY), 2D Heteronuclear Single
Quantum Coherence (HSQC), 2D Heteronuclear Multiple-Bond
Correlation Spectroscopy (HMBC), 1D selective Total Correlation
Spectroscopy (TOSY), 1D selective Nuclear Overhauser Enhance-
ment Spectroscopy (NOSEY) and 2D NOSEY. As a result, all atoms
of compound (4) were successfully assigned and the relative/
absolute configuration was further confirmed (Table 2).



Fig. 12. Expansions of aromatic regions of HMBC NMR spectrum of compound (4).
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The most logical approach was to identify a proton in 1H NMR
spectrum (Fig. 6) (or a carbon in 13C NMR spectrum in Fig. 7) that
displayed a well-defined chemical shift value and subsequently to
employ HSQC spectra to identify its corresponding carbon (or pro-
ton). The most distinct peak in the 13C NMR spectrum (the starting
point) was that of the benzylic tertiary carbon (C2) linking to the
ester group at 83.8 ppm. From HSQC spectrum, the corresponding
proton (H2) was seen at 6.64 ppm as a sharp singlet. The double
bond proton (H25) and carbon (C25) was subsequently identified
(a)

(b)

H7
H4 H5

6.06.57.07.58.0

7.37.4 ppm 3.

Fig. 13. (a) 1H NMR spectrum of compound (4); (b) 1D selective
at 6.57 ppm as a singlet in 1H spectrum and at 129.5 ppm in 13C
NMR spectrum.

The three-bond couplings of H25 to a secondary carbon, C18,
resonating at 39.6 ppm and a tertiary carbon, C23, resonating at
120.6 ppm were observed in HMBC spectrum (Fig. 8).

Unfortunately, the signals in the 1H NMR spectrum were poorly
resolved and broad in the aliphatic region. HSQC correlation there-
fore could not accurately identify the corresponding methylene
protons (Fig. 9a). To achieve some form of measurement noise
H9
H9

H10
H10

3.54.04.55.05.5 ppm

3.203.253.303.3540 ppm

TOCSY NMR spectrum of compound (4) with o1p 6.64 ppm.



(a)

(b)

3.54.04.55.05.56.06.57.07.58.0 ppm

Fig. 14. (a) 1H NMR spectrum of compound (4); (b) 1D selective NOE spectrum of compound (4) following irradiation of signal at 8.05 ppm.

(a)

(b)

H10
H9

H13&H15

3.54.04.55.05.56.06.57.07.58.0 ppm

6.66.76.86.97.07.17.2 ppm
3.153.203.253.303.353.40 ppm

H10

H25

Fig. 15. (a) 1H NMR spectrum of compound (4); (b) 1D selective NOE spectrum following irradiation of signal at 6.94 ppm.

(a)

(b)

3.54.04.55.05.56.06.57.07.58.0 ppm

7.40 ppm 3.153.203.253.303.353.40 ppm

H18 H9

H4

H-17

Fig. 16. (a) 1H NMR spectrum of compound (4); (b) 1D selective NOE spectrum following irradiation of signal at 6.64 ppm.

(a)

(b)

H23

H9

H2

3.54.04.55.05.56.06.57.07.58.0 ppm

7.3 ppm

3.153.203.253.303.353.403.45 ppm

Fig. 17. (a) 1H NMR spectrum of compound (4); (b) 1D selective NOE NMR spectrum following irradiation of signal at 6.57 ppm.
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H-25

H-24
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H-17

H-7
H-9H-9

H-7

Fig. 18. Aromatic (upper) and aliphatic (lower) region of 2D NOE NMR spectrum of compound (4).
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reduction, and to more accurately distinguish the different chemi-
cal constituents, spectral deconvolution technique was employed
by using a Gaussian multi-function (Fig. 9b). The signals in both
aliphatic and aromatic regions (Fig. 10) were sharpened and well
separated.
With an aid of HSQC experiment, two methylene protons at
H18, were located at 3.27 and 3.41 ppm as two doublets
(J = 22.52 Hz) (Fig. 11), while H23 at 7.27 ppm as a triplet
(J = 7.16 Hz). C20 was identified at 123.5 ppm via three-bond cou-
pling with H18 in HMBC spectrum. Its corresponding proton, H20,
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resonated at 7.36 ppm as an overlapping doublet (J = 7.60 Hz). Two
weak contours representing the couplings of H23 to C22 at
126.33 ppm and H22 to C21 at 124.3 ppm were evident in HSQC
spectrum. H5 and H22 offered a complex overlapped spectra pat-
tern in the region from 7.21 to 7.24 ppm, which prohibited reliable
measurements of coupling constants. However, it was believed
that signals centered at 7.23 and 7.24 ppm were represented as
H5 and H22 respectively. H21 at 7.15 ppm appeared as a double
triplet (J1 = 1.23 Hz and J2 = 7.29 Hz), resulting from the direct cou-
plings to H22 and H20, as well as meta-coupling to H23.

Correlation of H2 to a tertiary carbon, C4, at 125.7 ppm and a
carbonyl carbon, C27, at most downfield at 165.6 ppm were evi-
dent from HMBC spectrum (Fig. 12). From HSQC spectrum
(Fig. 11), it was clear that the H4 doublet at 7.39 ppm correlated
with two carbon atoms at 125.7 and 126.9 ppm with unequal cou-
pling intensities, suggesting the stronger and weaker contours to
be C4 (at 125.7 ppm) and C5 (at 126.9 pm) respectively. HSQC
analysis further indicated H5 with a resonance position of being
centered at 7.23 ppm. A contour in HMBC spectrum indicative of
correction of C5 to H7 (over three bonds) and H6 (over two bonds)
demonstrated the overlapped signal in the region from 7.30 to
7.33 ppm was attributed to H6 and H7 (Fig. 8). Application of signal
deconvolution resulted in the observations of an apparent doublet
(at 7.311 ppm) and unwell-solved triplet (at 7.319 ppm), in which
were accounted for H7 and H6 respectively (Fig. 10). Three-bond
coupling existed between H7 and C9, which was found to resonate
at 40.4 ppm in HMBC spectrum, while its corresponding proton,
H9, presented at 3.19 and 3.371 ppm as two doublets
(J = 15.42 Hz). These assignments were in agreement with the 1D
selective TOCSY spectral data (Fig. 13).

HMBC spectrum illustrated correlations of C27 to a doublet
(J = 8.52 Hz), H34 and H30, locating at most downfield 8.05 ppm
via three-bond coupling (Fig. 12). Analysis of HSQC suggested cor-
relations of H34 and C30 to an aromatic tertiary carbon at
131.3 ppm. The doublet at 8.05 ppm therefore represented two
equivalent protons attached to C34 and C30. C32 was easily located
at 128.5 ppm in HMBC spectrum over three-bond coupling to H34
and H30. Due to the electronegativity of bromine atom, the doublet
(J = 8.68 Hz) at 7.67 ppm was believed to be account for H33 and
H31, while their corresponding carbons, C33 and C31 had an over-
lapped chemical shift of 131.9 ppm. 1D selective NOE spectral data
confirmed such assignments. Strong correlations between
H34&H30 and H33&H31 were clearly observed (Fig. 14).

Having identified methylene protons of H9 and H18, the last
pair of methylene protons, H10, was straightforwardly confirmed
at 3.17 and 3.366 ppm as two doublets (J = 13.56 Hz), while the
corresponding carbon, C10, at 40.8 ppm by HSQC analysis. Correla-
tion of C10 via three-bond coupling to a multiplet centered at
6.94 ppm identified H12 and H16. HSQC spectrum presented the
strong contour of H12 and H16 to aromatic carbon C12 and C16
at 130.0 ppm, and the weaker contour at 127.9 ppm representing
as C13 and C15 ppm. Their protons, H13 and H15 were located in
HSQC spectrum as an overlapped signal, multiplet, with a chemical
shift range of 7.16–7.19 ppm. The last remaining unassigned ter-
tiary carbon, C14, was identified at 126.31 ppm. From HSQC anal-
ysis, the signal of H14 was also overlapped with those of H13
and H15, showing as a complex multiplet between 7.16 and
7.19 ppm. Very strong through-space correlations of H12&H16
with H13&H15 and H10 were seen, with the detections of medium
correlation with one proton at C9 and weak correlation with H25 in
1D selective NOE spectrum (Fig. 15). HMBC experiment proved to
be a very powerful technique in determining the exact positions
of all remaining aromatic quaternary carbons.

Having assigned all proton and carbon signals, the relative
chemical structure of compound (4) required confirmation. To
assess the molecular configuration, a 3D physical molecular model
was employed. It was expected that the stereochemical orienta-
tions of the benzylic proton, H2, and the indene moiety, C17 to
C18, should be the identical, both either coming out of or pointing
away from the plane. Such arrangement was conveniently and suc-
cessfully confirmed following inspections of both 1D and 2D NMR
NOSEY experiments.

In Figs. 16–18, strong correlations indicating through-space
coupling among the protons at positions of H2, H25, H18 (one pro-
ton involved only) and H9 (one proton involved only) established
that both groups (benzylic H2 and indene ring) were situated in
the same orientation.
Conclusion

The molecular structure and the absolute configuration of the
pure single enantiomer (2), (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-
inden-2-yl)-1H-inden-1-ol, was determined based on the studies
carried out on its corresponding brominated derivate (4), (1S,2S)-
2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-yl 4-bro-
mobenzoate. The insertion of a heavy atom, like bromine in our
case, proved to be very useful during the process of crystallisation
and crystallographic analysis. Various 1D (1H, 13C, selective TOC-
SY, ROSEY and NOESY) and 2D (COSY, HSQC, HMBC and NOESY)
NMR spectroscopic experiments were carried out successfully for
the structural elucidation process. We found HMBC NMR spectral
data extremely useful in the course of compound characterisation.
NMR TOCSY and NOESY experiments also allowed us to determine
the relative configuration of enantiomer (4), in which both benzylic
protons at H25 position and the indene functionality of the mole-
cule had the same chemical orientations. The absolute configura-
tion (as S, S) at C1 and C2 positions was established by
crystallographic analysis, the Flack parameter was determined to
be 0.010(14). The XPRD analysis confirmed the pattern of com-
pound (4) generated from the single crystal X-ray was in agree-
ment with the experimental XPRD pattern of the bulk materials.
H–H and H–C intermolecular interactions related to indene moiety
play predominant role in stabilization of crystal lattice of com-
pound (4) molecular structure.
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