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Abstract

Two component mixture distributions defined so that the component distributions do not neces-
sarily arise from the same parametric family are employed for the construction of Optimal Bonus-
malus Systems (BMS) with frequency and severity components. The proposed modelling framework
is used for the first time in actuarial literature research and includes an abundance of alternative
model choices to be considered by insurance companies when deciding on their Bonus-Malus pric-
ing strategies. Furthermore, we advance one step further by assuming that all the parameters and
mixing probabilities of the two component mixture distributions are modelled in terms of covariates,
extending our previous work in Tzougas, Vrontos and Frangos (2014). Applying Bayes theorem we
derive optimal BMS either by updating the posterior probability of the policyholders’ classes of risk
or by updating the posterior mean and the posterior variance. The resulting tailor-made premiums
are calculated via the expected value and variance principles and are compared to those based only
on the a posteriori criteria. The use of the variance principle in a Bonus-Malus ratemaking scheme
in a way that takes into consideration both the number and the costs of claims based on both the a
priori and the a posterior classification criteria has not yet been proposed and can alter the resulting
premiums significantly, providing the actuary with useful alternative tariff structures.

Keywords: Optimal BMS; Claim frequency; Claim severity; Two component mixture regression
models for location, scale, shape and prior probabilities; Expected value premium calculation prin-
ciple; Variance premium calculation principle.
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1 Introduction

Bonus-Malus Systems, BMS in short, are experience rating mechanisms which impose penalties on poli-
cyholders responsible for one or more accidents by premium surcharges (or maluses) and reward discounts
(or bonuses) to policyholders who had a claim-free year. In view of the economic importance of motor
third party liability (MTPL) insurance in developed countries a basic interest of recent actuarial liter-
ature research is their optimal design that takes into account both the number and the cost of claims
reported by policyholders. Optimal BMS are defined as systems obtained through Bayesian analysis
and are financially balanced for the insurer. For a detailed description of optimal BMS the interested
reader can refer to the seminal work of Lemaire (1995). Further references for BMS include, among
others, Picech (1994), Pinquet (1997, 1998) and Brouhns et al. (2003). Furthermore, the construction of
such systems based on the inclusion of important a priori rating variables for the number and/or costs
of claims plays a major role, see for example Dionne and Vanasse (1989, 1992), Denuit et al. (2007),
Boucher, Denuit and Guillen (2008), Frangos and Vrontos (2001), Tzougas and Frangos (2014) and
Tzougas, Vrontos and Frangos (2014). The aforementioned systems were constructed by assuming that
the claim frequency and severity components are independent. Gémez et al. (2014) presented a BMS
which takes into account of some kind of dependence between the two components by compounding the
claim frequency and severity distributions in order to obtain the distribution of the aggregated losses.

The main contributions of the present study are the following: a) We present a new methodology
for the design of optimal BMS which pioneers the allowance of both the number and costs of claims
through the use of two component mixture distributions, without necessarily assuming that the com-
ponent frequency/severity distributions arise from the same parametric family. In this respect, more
flexible systems are designed to include a large number of alternative possible model choices, which en-
larges substantially the pricing toolbox of general insurance companies. b) We extend the framework of
our previous work in Tzougas, Vrontos and Frangos (2014) by assuming that all the parameters and mix-
ing probabilities of the claim frequency/severity distributions can be modelled as functions of explanatory
variables with parametric linear functional forms, enabling the actuary to fit more representative dis-
tributions of the data that capture all their important stylized characteristics. ¢) We propose the use
of the variance principle, as an alternative to the expected value principle for calculating the premiums
derived by BMS, in a way that incorporates all the important a priori information from the individual
characteristics of the policyholders, both for the frequency and the severity components. This principle
provides a more complete picture to the actuary since it takes into account an additional characteristic
of the distribution, i.e. the variance of the number of claims and losses.

In what follows, we discuss in detail our motivation for proposing the aforementioned frameworks
and comment on how these extend current BMS literature research. Regarding our first contribution,
two component mixture models, which do not necessarily have all of their parameters in common, are
considered for the first time in an actuarial context, and we suggest their employment for designing
optimal BMS with frequency and severity components for the following academic and practical reasons.
Firstly, with respect to the frequency component, this modelling framework allows for a rich, flexible and
easily extensible family of claim frequency models instead of restricting attention to particular mixed
Poisson laws that have been widely applied for the construction of optimal BMS. Secondly, regarding
the severity component, it is common knowledge that in a competitive market an insurance company
has to design tariff structures that will fairly distribute the burden of large and small claim sizes among
policyholders. In other words, it is required that policyholders with large size claims or frequent smaller
claims should pay higher premiums and vice versa. Otherwise, the bonus-hunger phenomenon may
arise, i.e. the tendency of policyholders not to report low cost accidents to avoid premium surcharges.
However, when dealing with real insurance data sets insurers tend to partition losses in their portfolios
and innovate in designing new BMS because it is difficult to find a simple model that fits all claim
sizes. Specifically, heavy-tailed distributions are used for modelling large size claims while those with
a lighter tail are usually preferred for modelling small size claims. In this respect, a unified approach
for providing alternative options to the insurer when they are deciding on their Bonus-Malus pricing
strategies does not exist. Two component mixture models with no parameters in common is a very
rational solution to this problem as they provide the actuary with an abundance of alternative convex
combinations of heavy-tailed and light-tailed distributions which can generate tailor-made Bonus-Malus
premiums that fairly punish more for large size claims and less for small size claims, alleviating the bonus
hunger phenomenon. Furthermore, with respect to our second contribution, it should be noted that until
now the commonly used specification for the design of optimal BMS was that only the mean frequency
and/or severity is modelled as a function of risk factors. In this respect, any model for the mean in terms



of a priori risk factors indirectly yields a model for scale, shape and prior (mixing) probabilities in the
case of two component mixture models. Thus, even if the mean is the most commonly used measure
of the expected claim frequency and expected claim severity it fails to describe the scale and shape
parameters of a distributions as well as prior probabilities due to the unobserved heterogeneity changes
with covariates. Consequently, this situation affects the construction of optimal BMS with frequency and
severity components since the posterior frequency/severity distributions are used to calculate premiums.
Joint modelling of all the parameters in an experience ratemaking scheme enables us to use all the
available information in the estimation of the claim frequency/severity distribution in order to group
risks with similar risk characteristics and establish fair Bonus-Malus premiums employing the expected
value and variance principles. Moreover, using this formulation, the risk heterogeneity in the data is
modelled as the distribution of frequency and/or severity of claims changes between and within two sub-
populations in the following ways. Firstly, the population heterogeneity is accounted for by choosing two
unobserved latent components, each of which may be regarded as a sub-population. This is a discrete
representation of heterogeneity since the mean is approximated by two support points which are modelled
in terms of a priori rating variables by using the multinomial logit link function. Secondly, depending on
the choice of the component frequency/severity distribution, heterogeneity can also be accommodated
within each component through the use of known monotonic link functions chosen to ensure a valid
range for the distribution parameters, see Rigby and Stasinopoulos (2005 and 2009). Specifically, in
this paper, for the frequency component we assume that the number of claims is distributed according
to a two component (2C) Poisson mixture, 2C Negative Binomial mixture, 2C Sichel mixture (and 2C
Poisson Inverse Gaussian mixture and 2C Sichel-Poisson Inverse Gaussian mixture as special cases), 2C
Poisson-Negative Binomial mixture (i.e., in this case, the first component follows the Poisson distribution
and the second component follows the Negative Binomial distribution), 2C Poisson-Sichel mixture (2C
Poisson-Poisson Inverse Gaussian mixture as a special case) and 2C Negative Binomial-Sichel mixture
(2C Negative Binomial-Poisson Inverse Gaussian mixture as a special case) distributions. For the severity
component, we consider that the losses are distributed according to a 2C Exponential mixture, 2C Pareto
mixture, 2C Lognormal mixture, 2C Exponential-Pareto mixture (i.e., in this case, the first component
follows the Exponential distribution and the second component follows the Pareto distribution), 2C
Exponential-Lognormal mixture and 2C Lognormal-Pareto mixture distributions. Also, the Negative
Binomial, Sichel, Poisson-Inverse Gaussian and Pareto distributions are considered as special cases of the
aforementioned distributions. Within the adopted framework all the parameters and mixing probabilities
of these distributions are modelled in terms of covariates. Applying Bayes theorem, we derive optimal
BMS either by updating the posterior probability of the policyholders’ classes of risk or by updating the
posterior mean and the posterior variance. The aforementioned models are compared on the basis of
a sample of the automobile portfolio of a major insurance company employing the Generalized Akaike
Information Criterion (GAIC), which is valid for both nested or non-nested model comparisons (as
suggested by Rigby and Stasinopoulos, 2005 and 2009). Finally, regarding our third contribution, it
should be mentioned that traditionally the expected value principle was used with BMS by the majority
of authors, while the variance principle was recommended by, for example, Lemaire (1995), Heilmann
(1989) and Gémez et al. (2000 and 2002) in the construction of BMS with a frequency component based
only on the a posteriori criteria. However, the latter principle, as mentioned in Gémez et al. (2002), is
much more robust than the expected value principle when BMS is used. Furthermore, this is the first
time the variance principle is used with BMS with frequency and severity components that integrate a
priori information, thus our work expands on this setup also. The variance principle is more applicable
for an insurance company which would like to adopt a more conservative pricing profile in cases where
this is considered necessary. Overall, in the generalized systems we propose, the premiums calculated
by either principle are functions of the years that the policyholder is in the portfolio, the number and
costs of accidents and all the available information for the policyholder and the automobile taken into
consideration by assuming that every parameter of the response frequency /severity distribution as well
as the mixing probabilities are modelled in terms of covariates.

The rest of this paper proceeds as follows. Section 2 introduces the alternative models we employ for
modelling claim frequency and severity. Section 3 presents the optimal BMS derived by updating the
posterior probabilities and those determined by updating the posterior mean and the posterior variance.
Section 4 contains an application to a data set concerning car-insurance claims at fault. Finally, Section
5 concludes the paper.



2 Two Component Mixture Regression Models for Location,
Scale, Shape and Prior Probabilities

This section summarizes the characteristics of the alternative models used in this study for assessing claim
frequency and severity respectively. In what follows, each model will be given by a convex combination
of two frequency and/or severity distributions where each will be referred to as frequency and/or severity
component distributions defined so they do not necessarily have their parameters in common.

2.1 Claim Frequency Models

Suppose that the portfolio is considered to be heterogeneous, consisting of two homogeneous sub-
populations. In this respect, we have two fractions of drivers 7., z = 1,2, and the probability that
a policyholder has reported & claims to the insurer, k = 0, 1,2, ..., in each category is denoted by P, (k).
Henceforth, P, (k) will be referred to as frequency component distributions. Thus, the structure function
is a 2-point discrete distribution and the unconditional distribution of the number of claims, denoted by
P (k), is given by

2
Pk) =Y 7P (), (1)

2
for k =0,1,2,3,...,m, > 0, for 2 = 1,2, and > 7, = 1. Let us denote by FE, (k) and Var, (k) the
z=1
mean and the variance of the component frequency distributions. The expected value of the number

2 2
of claims is equal to E (k) = > w,E, (k) and its variance is equal to Var(k) = > n,Var, (k) +
z=1 z=1

m179 [E1 (k) — By (k))? . Furthermore, it is assumed that the component distributions P, (k) belong to
a family of mixed Poisson models defined so that E, (k) = X,, where A\, > 0, z = 1,2, is an explicit

parameter of them. Thus, we have that mean and the variance of Eq.(1) are simplified to E (k) =
2 2

S 7. )., is common for all the alternative models, and Var(k) = 3 . Var, (k) + m1m2 (A — X2)° . In

z=1 z=1

this respect, in what follows, we only report the probability density functions (pdf’s) of the component

distributions, i.e. P, (K; = k), and the variances, Var, (k) for z = 1,2 for each of the two component

mixture models we consider for modelling the number of claims.

e In the case of the 2C Poisson mixture distribution we have that

“Ank
P, (k) == k!AZ,z=1,2. 2)

The variance of the Poisson component distributions is given by

Var, (k) =X,z =1,2. (3)

e In the case of the 2C Negative Binomial Type I! (NBI) mixture distribution we have that

E+-L —1 oL\, k 1 CE
P _ o o =1,2. 4
= () ( k >(1—|—oz>\z> <1+0'z)\z) 02> 0,2 ’ (4)

The variance of the Negative Binomial Type I component distributions is given by

Var, (k) =\, + Mo,z =1,2. (5)
e In the case of the 2C Sichel® mixture distribution we have that

(3) Bi. (@)
k! (azaz)k'wz B,. (i) ,

Oz

P (k) = (6)

1'We use the parameterization of Negative Binomial Type I given by Johnson et al. (2005) and Rigby and Stasinopoulos
(2009).

2The construction of optimal BMS based on the use of the Sichel distribution for modelling claim frequency where
regression is only performed on the mean parameter has been recommended by Tzougas and Frangos (2014).



1,2, where 0, > 0 and —o0 < v, < oo , with ag = 0;2 + 2X, (czaz)f1 and where ¢, =
1

)
/ L (s )] o

is the modified Bessel function of the third kind of order v, with argument w.

dz
B(E) 7

, where

By, (w) =

N | =

e The variance of the Sichel component distributions is given by

QUZ(VZ+1)+1_1>

- > ~1,2. 8)

m@@:&+g(

e In the case of the 2C Poisson Inverse Gaussian (PIG) mixture distribution we have that P, (K; = k)
and Var, (k) are given by Eqs(6 and 8) if we let v, = —0.5 for z = 1, 2 respectively.

e In the case of the 2C Poisson-Negative Binomial Type I mixture distribution we have that P, (K; = k)
and Var, (k) are given by Eqs(2, 4, 3 and 5) for z = 1 and z = 2 respectively.

e In the case of the 2C Poisson-Sichel mixture distribution we have that P, (K; = k) and Var, (k)
are given by Eqgs(2, 6, 3 and 8) for z = 1 and z = 2 respectively.

e In the case of the 2C Poisson-Poisson Inverse Gaussian mixture distribution we have that P, (K; = k)
and Var, (k) are given by Eqs(2, 6, 3 and 8) for z =1 and z = 2 when v = —0.5 respectively.

e In the case of the 2C Negative Binomial Type I-Sichel mixture distribution we have that P, (K; = k)
and Var, (k) are given by Eqs(4, 6, 5 and 8) for z =1 and z = 2 respectively.

e In the case of the 2C Negative Binomial Type I-Poisson Inverse Gaussian mixture distribution we
have that P, (K; = k) and Var, (k) are given by Eqs(4, 6, 5 and 8) for z = 1 and z = 2 when
vy = —0.5 respectively.

e In the case of the 2C Poisson Inverse Gaussian-Sichel mixture distribution we have that P, (K; = k)
and Var, (k) are given by Eqs(6 and 8) for 1 = —0.5 and z = 1, 2 respectively.

2.2 Claim Severity Models

In this section we need to address the severity component. The portfolio is considered to be heterogeneous,
consisting of two fractions of drivers p,, z = 1,2, and the pdf of the claim size = in each category is
denoted by f, (z). In what follows f, (z) will be known as the severity component distributions. Thus,
the structure function is a 2-point discrete distribution and the unconditional distribution of claim size,
denoted by f (z), is given by

2= p.f. (@), ©)
z=1

2
for z,p, >0and > p, =1.Let E, (x) and Var, (x) represent the mean and the variance of the severity
z=1

2
component distributions. The expected value of the claim size is equal to E(z) = > p,E. () and

its variance is equal to Var(z) = Z p.Var, (z) + pipy [B1 (z) — By (z)]. In what follows, we present

the probability density functions (pdf s) of the component distributions, i.e. f, (z), and the variances,
Var, (z) for z = 1,2 for each of the models we consider for approximating claim severity.

e In the case of the 2C mixture Exponential distribution we have that

fol@) =2 g >0,2=1,2. (10)

z




e The mean and the variance of the Exponential component distributions are given by

E.(z) =y, and Var, (z) = 9%,z =1,2. (11)
e In the case of the 2C Lognormal distribution we have that

1 1 7[105(1)_?1,2]2
fz(z)zi—e{ },yz>0,sz>0,z:1,2. (12)

V2ms2 x

The mean and the variance of the Lognormal component distributions are given by
E, () = Ve2e¥: and Var, (z) = e (esi - 1) e 2 =1,2. (13)

e In the case of the 2C mixture Pareto distribution we have that

[(SZ - 1) yz]sz
@+ (5o - Dy

f2(z) =s, >0,8, >2,2=1,2. (14)

The mean and the variance of the Pareto component distributions are given by

2
E,(z) =y, and Var, (z) = [(s: = D] ( 2 ! > ,2=1,2. (15)

s, — 1 szfQ_sz—l

e In the case of the 2C Exponential-Lognormal mixture distribution we have that f, (z), E, (v) and
Var, (k) are given by Eqs(10, 12, 11 and 13) for z = 1 and z = 2 respectively.

e In the case of the 2C Exponential-Pareto mixture distribution we have that f, (z), F, () and
Var, (k) are given by Eqs(10, 14, 11 and 15) for z = 1 and z = 2 respectively.

e In the case of the 2C Lognormal-Pareto mixture distribution we have that f, (z), E, (z) and
Var, (k) are given by Eqs(12, 14, 13 and 15) for z = 1 and z = 2 respectively.

3 An Optimal Bonus-Malus System

It is assumed that the number of claims of each policyholder is independent from the severity of each
claim in order to deal with the frequency and severity components separately. The framework we develop
for both the claim frequency and the severity components is a generalization of the good risk/bad risk
model proposed by Lemaire (1995) and our previous work in Tzougas, Vrontos and Frangos (2014).

3.1 The Optimal Bonus-Malus System Derived by Updating the Posterior
Probability

3.1.1 Frequency Component

t

Consider a policyholder i with K}, ..., K! claim history for i = 1,...,n. Also, denote as K = Z Kl-j the
j=1

total number of claims that they had, where K7 is the number of claims of this individual in period

j. Following the framework of Righy and Stasinopoulos (2005, 2009) we can model the parameters and

mixing probabilities of the claim frequency distributions presented in Section 2.1 as

N, o= exp (), (16)
U;i = €&Xp (CJQ-z,i éz)7 (17)
v, = b, B, and (18)
. exp Ciz,i iz

Wi,i = ( ) ) (19)

Ut exp (450



where céz i (céz i1 Jd /) are covariate vectors of individual characteristics® of length 1 x ¢¢ and
’ e €206

B]T < 210 ,55 55) are the corresponding parameter vectors of length 1 x ¢, where { = 1,2,3,4,

where ¢ = 1, ...,n and where z =1, 2.
Let us denote with Rs the risk, imposed on the insurance company, associated with the second
category of policyholders. Moreover, the posterior probability of the policyholder ¢ belonging to the

second category is denoted by 7o (K . Kl,c§2 P c£2 1) for £ = 1,2,3,4. Applying Bayes theorem,
the posterior probability of the individual ¢ belonging to the second category is given by

P(K} ... Kbtcl, ., ... ciT Y Ry)md, .
P (K G K Cg gy e Cgi) - SRRk H ¥ : (20)

2
ZP(K L K 05“,.. cgﬂRz)wiz

z=1

K gy cgt) =1—1m9 (K}, o K g g cgi) . The setup we described pre-
viously is applied to the models presented in Section 2.1.

RN

Also, 7 (K

e In the case of the 2C Poisson mixture distribution Eq.(20) becomes

(M) =M

T (K GKlcky i cgi) - I (21)

2
\K ; ,
> (M) e
e In the case of the 2C Negative Binomial Type I mixture distribution Eq.(20) becomes

t j _ _t D K
H K +027i 1 1 o5 ‘72 z/\2 i 7Tj )
] K] 1+0’2 Z)\J lJra'2 l)\J 2,1

1 t. t+1) _  J=1
7T2(Ki, K 0521, 0521)*

2t Jo 1 £ K ’
ZH Ki+oii 1 1 7% ol M, e
Kj 140 leAi'L 140 Jzz)\11 2t

z=1j=1 i
(22)
e In the case of the 2C Sichel mixture distribution Eq.(20) becomes
2\ T o
(*) 115,700, (02
: .7:1,- o,

art) ey ()]

71'2 (K},.. Klicly iy cgi) - SN , (23)

— — B ; '1
j 2 j 2 j . j 1 . V]z 1\ ol
where (az,i) = (Jm) +2X) (cﬂzyiaw) and where ¢} ; = — % for z =1,2.
B\~
z,i \ 2,0

e In the case of the 2C Poisson-Negative Binomial Type I mixture distribution Eq.(20) becomes

1
U] (K Kt 052,“ . cé;l) =

t £ K
H ! 1) 7‘72 X s,
1+U;,i>‘§,i 1+‘72 i ,7, 2,8

Jj=1
— : . (24)
(k{,i) 1 171- + H 1 U%,i % 7rj )
1+aé,i/\;,i 1+‘7é,1)‘2,1 2,8

3 All the characteristics we consider are observable.




e In the case of the 2C Poisson-Sichel mixture distribution Eq.(20) becomes

1 t. t+1)
2 (KL Kl el g€} ) =
] K
Py )
2,i . i\t
( ) I, IBsza,i("’z»i)

K3

| i e ) T2,
: . (25)
(M

K J . 2 , .
_ . =1
11) e t>‘1,¢7(]1i_|_ = t”%i
s .

e In the case of the 2C Negative Binomial Type I-Sichel mixture distribution Eq.(20) becomes

1 t+1
2 (Ki,.. Kt 6521, 051> =

/N
o) >
Mb M&).
\/

N

S

+

'<

M
~

J . K '
¢ j, 1 ¢ K o Brip (az,
K/4+——1 v )\J . ey ! itva .
L S 1 1,4 ‘71 i J ’ j=1 J
H Klj‘z 1+0] M, T+od )\J T+ Ktvd T2,
j i ! N (G;L{T;L) 20 {B j ( ! )}

7=t Y2, U%,i
(26)
e In the case of the 2C Poisson Inverse Gaussian mixture distribution 7o (K L K 052 P cglz)
is given by Eq.(23) if we let VN- = —0.5 for z = 1, 2 respectively.
o In the case of the 2C Poisson-Poisson Inverse Gaussian mixture distribution (K L KL c‘52 P c?ﬁ)

is given by Eq.(25) if we let 1/2,2- = —0.5.

e In the case of the 2C Negative Binomial Type I-Poisson Inverse Gaussian mixture distribution
) (K L K 052 P 052 1) is given by Eq.(26) if we let 1/2 i =—0.5.

¢ In the case of the 2C Poisson-Inverse Gaussian-Sichel mixture distribution 7 (K o K 052 49 cgll)
is given by Eq.(23) if we let I/l,i = —0.5.
Note that due to the existence of K f in Eqs(22, 23, 24, 25 and 26), the explicit claim frequency history
determines the calculation of the posterior probabilities and thus of premium rates to be calculated with

the expected value and variance principles and not just the total number of claims as in the case of the
2C Poisson mixture.

Calculation of the Premiums According to the Expected Value and Variance Principles
Under a quadratic error loss function, the optimal estimate of Aﬁ“,the mean claim frequency of the
individual ¢ at ¢ 4+ 1, is the mean of the posterior structure function given by

n
E ()\f"'l\Kil, o K ng is o cgll) = Zﬂ'z (Kzl, ...,Kit;céz,i7 . céji) A (27)
z=1

and the variance of the posterior structure function is given by



allie t4+1
Var ()\ |K}, ..., K}; ng isees Cer 1)

7?"

2
z:: ( .. cgz is e ngz) Var, ( i) +

, 12
™ (K GKLeh . cgﬂ) 2 (K GKlichy cgt) [)\{’i - Ag} . (28)
The premium rates calculated according to the expected value principle are given by

Pr= (1 wn) B (XK, o Kl gy L) (29)
where wy > 0 is a risk load.
The premium rates calculated according to the variance principle are given by

P B (Pl ) s (R i) (0

where ws > 0 is a risk load.

Note that the premium rates calculated according to the expected value and variance premium
principles based only on the a posteriori criteria are obtained if the regression components are limited
to constants.

3.1.2 Severity Component

Similarly to the case of the frequency component, we assume that a policyholder stays in the portfolio for
t years, the number of claims in year j is denoted by K; J — k. Denote by X/ & the loss incurred from their

claim k for the period j. Then, the information we have for their claim size history will be in the form
K

of a vector Xil) . ¢ f . and the total claim amount will be equal to Z X f ;- Following the framework
k=1

of Rigby and Stasinopoulos (2005, 2009), we can model the parameters and mixing proportions of the

2C Exponential, 2C Pareto and 2C Exponential-Pareto mixture models as

v = exp(d ). (31)

sl = e (d. %), (32)
exp (déz,z7%2>

P = (33)

1+ exp (d%z,zfy?’)z)

while in the case when one or both of the component distributions is the Lognormal, i.e. in the case
of the 2C Lognormal mixture, 2C Exponential-Lognormal mixture and 2C Pareto-Lognormal mixture
models, we can model the location parameter as

y] = exp dlz z’ylz’ (34)
where the scale parameters and mixing probabilities are again given by Eqs(32 and 33) and where

dém <d§“ 1 ...,dz s é> are covariate vectors of individual characteristics® of length 1 x ¢, where

véT <’Ygz 1 ...,’yé £/> are the corresponding parameter vectors of length 1 x ¢¢, where £ = 1,2,3 and
s z,€¢
where i =1,...,n and z = 1, 2.

Let us denote as Q)2 the risk that it is imposed on the insurance company if we assume that a
policyholder 7 belongs to the second category of drivers based on the severity of their claims. More-

over, the posterior probability of the policyholder ¢ belonging to the second category is denoted by
P2 (XZ Loy XE K],d52 P dg%) for £ = 1,2,3. Applying Bayes theorem, the posterior probability of

the individual ¢ belonglng to the second category is given by

4All the characteristics we consider are observable.
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f( K”dgz 77---7d§§,i|Q2) P%,z‘

2
1 .
Z (XL117"'7 Ki’d%z i d?;JQz) pi,i

z=

P (Xi{h o X il e dgi) = (35)

=

Also, p, (X“,.. XfK,déQZ,.. dgt) =1-p (X217" Xth,d%h,.. dgt) The setup we de-

scribed above is applied to the models presented in Section 2.2.

e In the case of the 2C Exponential mixture distribution Eq.(35) becomes

po (X1 X il oy dESY)

K K —1
k=1 =
J n J
e y2,i . e Yz
= AR\ R P (36)
CORNNES (yi’z)
e In the case of the 2C Lognormal mixture distribution Eq.(35) becomes
Do (Xi{l,...,Xf7Kf;dé27i,.. dgt)
K
Z[log(xf.w*y%,i]z
k=1 " -
K 2(+2.1)
1 1 J
1 L e _
[ Qﬂ(sg,f] e P
= 7 (37)
Z[log(xf.k)*yi,i}g
k=1 _ i
9 K g 2(«1)
1 1 J
T —C Pzi
; [ 2w(8i,i)2‘| 7:1_‘[1 X o
e In the case of the 2C Pareto mixture distribution Eq.(35) becomes
P (Xhis oo XL il s 5
-1
. K . sél K K . st i K
R (R R VR (I
K i\ D& b (39)
j i 52,7’,+1 z=1 j J 52t
[T [xle+ (s = 1) e [T [+ (2= 1)
j=1 Jj=1
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e In the case of the 2C mixture of Exponential-Lognormal Eq.(35) becomes

P2 (X Xth’dgz Qv dg%)
K
Z[log(xz B~ ’/2,i]2
K g 2(+3,:)°
[ M?] e -
= : = : (39)

K
K E log(XJk) 7/21
J k=1
E Xk
2(+4.:)

52,1

7 +
(yl 1) plz

e In the case of the 2C mixture of Exponential-Pareto Eq.(35) becomes
po (X 1s s X! peri b i dE5Y)
i VK
(4,0 {[(eal D] 2}
K .
H s% i Uz]sé’iJrl

= =t . (40)

Zx

— ; sj . K
S )" {[(s;,i—nyz] Sy
( j )K pl,i K ) anz
Y1, s 41
H Uz] 2%
e In the case of the 2C mixture of Lognormal-Pareto Eq.(35) becomes
Do (X Xt K“d@ is o dgll)
K
(4.0 {[(shm1)m] %}
K P2
TIixi (3 -1)we) 2
= = (41)
S ety
k=1

5 2
J
2(51,1')

Calculation of the Premiums According to the Expected Value and Variance Principles Us-

ing a quadratic error loss function, the optimal estimate of y;

1 the mean claim severity of the individual

i at t + 1, is the mean of the posterior structure function given by

n
t+1) v 1 Ll t+1) _ 1 t+1
E (yi+ |X11,17~'~7Xit7Kf;d§2,iv' 7d522) = ZPZ (Xi,h" zKudgz FEREE dgL) ym‘ (42)
z=1

and the variance of the posterior structure function is given by

Var (y X e X iy dE5 )
= sz (X71171’ .. i Kt’d£2 i ...7dé-5é) VG/TZ (yf"’_l) +
. 92
P (Xz 1 Xth,d@Z,.. déﬁ) P2 (X Xth’dEQZV" dgi) [E(y{z) - E(yé,i) - (43)
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The premium rates calculated according to the expected value principle are given by
Pr= (14 wn) B (g XL o X i dby o i) (44)

where w1 > 0 is a risk load.
The premium rates calculated according to the variance principle are given by

Py= B (g X o XL il gy dESE) +waVar (X, Xy dES)), (45)

where wy > 0 is a risk load.
The premium rates calculated according to these principles based only on the a posteriori criteria are
obtained if the regression components are limited to constants.

3.2 The Optimal Bonus-Malus System Derived by Updating the Posterior
Mean and the Posterior Variance

3.2.1 Frequency Component

Assume that given a continuous random variable u > 0 with probability density function v (u) defined
on R, K/ follows the Poisson distribution with parameter Au, where A > 0. Then, the marginal
distribution of Kg is a mixed Poisson distribution. The following are well-known results applied to the
above situation (see, for example, Dionne and Vanasse, 1989 and 1992, Lemaire, 1995, and Boucher et
al., 2007, 2008). We consider that E(u) = 1. Depending on the chosen parametric form of u, the mixed
Poisson distribution will lead to different distributions. In what follows we consider the optimal BMS
derived by updating the posterior mean and the posterior variance in the case of the 2C Negative Binomial
Type I mixture, 2C Sichel mixture and 2C Negative Binomial Type I-Sichel mixture models. Note that
the systems determined by the 2C Poisson Inverse Gaussian mixture, 2C Sichel-Poisson Inverse Gaussian
mixture, 2C Negative Binomial-Poisson Inverse Gaussian mixture, Negative Binomial, Sichel and Poisson
Inverse Gaussian models can be obtained as special cases of those for the case of the aforementioned
models.

e Let u follow a 2C Gamma mixture distribution with pdf

1 1
2 U°= 1L°’z eXp (_Lu)
" o
U) = E Tz 1 I
r(z)
2

for z = 1,2, Zﬂ'z = 1, where o, > 0. Under this assumption the unconditional distribution of
z=1
K f becomes a 2C Negative Binomial Type I mixture distribution, where the frequency component
distributions, P, (K; = k), are given by Eq.(4) for z = 1,2. We can allow the parameters and the
mixing probabilities of this model to vary from one individual to another. Let X}, o ; and 7] ; be
given by Eqs(16, 17 and 19). Then, the posterior distribution of )\t+118 obtained by employmg a fully
Bayesian approach (i.e. by updating both the parameters and the mixing proportions of the mixing
distribution) and is given by a 2C Gamma mixture with updated parameters wy _ ; = Ujl» + K and

z,i

.. qele 4] j M
, for 2 = 1,2, and updated mixing probabilities 7/ ; = 7/ ;— P (KiXs03.1) ,

2,0

2,1 . . .
Z ﬂi,iPZ(K;Ag;Ui,i)

z=1

where P, (K M o? Z) are given by Eq.(4), for z = 1, 2.

Using a quadratic error loss function, the optimal estimate of Aﬁ“is the mean of the posterior
structure function given by

2 j
W
t+1 1 , 1,2,
E()\i KL Kl el cg'l) =3,k (46)

z=1 w2,z,z
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and the variance of the posterior structure function is given by

1) el t+1
Var ()\i K} Kl e cgz) =

2 7 J J
. . w . w .
. J 1 | 1,12 o 1,2,4
E T 5 T 71,72 [ ' ' . (47)

; J J
—1 (w2 ; l) W31, Wao,

e Now let u be distributed according to a 2C Generalized Inverse Gaussian, GIG, mixture distribution
with probability density function given by

B 2 (c.)"urs"texp [ (czu + —)}
v(u) = ;772 25, ( ; ) ; (48)

Oz

B, L
for z = 1,2,2772 = 1, where o, > 0, where —co < v, < oo and where ¢, = #(iz))
z=1 z\ oy

B, . is the modified Bessel function of the third kind of order v, with argument w given by Eq.(7).
Then, K follows a 2C Sichel mixture distribution, where the frequency component distributions,
P, (K; =k), are given by Eq.(6) for z = 1,2. We assume that the parameters and the mixing
probablhtles of this model are modelled in terms of a priori rating variables. Specifically, let
X, o! v . and 7l , be given by Eqs(16, 17, 18 and 19). The posterior dlstrlbution of )\Hl'

obtalned by employlng a fully Bayesian approach and is given by a 2C GIG( 120 t i K+ vl )

cl i +20) § A

, where

)\

mixture, with updated parameters i = ]—/\j:l, ty ;= T and K +v7 s with el =
5, ( , ) o
Vit \ el .. Y i P.(K3Aj00 vl
=4, for z = 1,2, and updated mixing probabilities 7/ , = 7/ ,— (KXo i) ,
1 . .
B”ii(ﬂii> E ”i,ip (K >‘7 zz’y;i)
' z=1
where P, (K )\J ol Z; vl Z) are given by Eq.(6), for z = 1,2.

Under a quadratic error loss function, the optimal estimate of )\Eﬂis the mean of the posterior

structure function given by
[;J K47 +1 (\/ t{z2t221>
2,2, 2%

2
t+1) -1 t. t+1) _ . J
B (NFUKE, o Kl e dih) = 07, . (49)
z=1 1,2,i BK+1/'iyi (Htjl .. 7t2 . 7)
and the variance of the posterior structure function is given by
t41) 71 t. t41) _
Var ()\i K oo Kl cby gy el ) -
2
2 . té i BK—i—ui ;T2 (\/ tjl,z,th z z) BK—‘,—I/i ;1 (\/ tjl 2, zt2 z z)
29 ,Z,0 ’ s
Z sz,itj - +
#=1 Lz BK—H/iﬂ. < \/ tjl 32, zt2 z z) BK—H/”Z‘J. < \/ t{ 2, zt2 z z)
(13 4 X v [43  4d
o BK+V1 1 < tl,l,itZ,l,i) t%QZ_BKﬂﬂMH ( t1,2,it2,2,i>
.75, - = (50)

- - J - -
. J J t1_2 ) . J J
BK+VJ“. <\/t1,z,it2,1,i> ot BK+D;J (\/ t1,2,it2,2,i>

e Finally, let u be distributed according to a 2C Gamma-Generalized Inverse Gaussian mixture
distribution with probability density function given by

L1 & 1 vy vo—1 1
o — 01 - = 2 - = —_—
(A exp ol (02) U exp 39, | C2U u + ot

v(u) =m - (%) + 2 28, (J%) )

(51)
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2 Bl,2+1( 1 )
for z =1, 2, sz =1, where o, > 0, where —0co < v5 < 0o and where ¢y = m where B,
v2

z=1
is the modified Bessel function of the third kind of order vo with argument w. Then, K f follows a 2C
Negative Binomial Type I-Sichel mixture distribution where the frequency component distributions,
P, (K; = k), are given by Eqs(4 and 6) for z = 1 and z = 2 respectively. We assume that the para-
meters and the mlxmg probablhtles of this model are modelled in terms of a priori rating variables.
Specifically, let A/, o7 ;, 1/; ; and 7, be given by Eqs(16, 17, 18 and 19). The posterior distribution
of )\H'l is obtained by employing a fully Bayesian approach and is given by a 2C Gamma-Generalized
Inverse Gaussian mixture (wl 16 Wh 1 45 tl 2.4 t2 0.0 K+ 17 Z) (i.e. the first component follows the

Gamma, distribution and the second component follows the Generalized Inverse Gaussian distrib-

t
0; +§ A 3,205 ; E A
1, .

. . i 1 7 _ j=1 J _
ution), with updated parameters wy ; ; = p— + K, wy,,; = ¥ s b0 = = /\J
1
J X J : j vh,i Tl 7% - eps
s by = 75— and K + vy, with ¢y; = ———=x, and updated mixing probabilities
2,1 72,1
K k2 BVJ ( Jl )
B2 . . .
L , Py (KM 07, Po(KiN305,43V5,
7'["{1, :ﬂjl ( 1) and #7 J ( Rz

Vo Pl(K )\ 01,1)+7T2,1P2(K?)‘Z?0g l;u% l) 24 ’/T2 Z‘n'1 lPl(K )\ a’{ i)+rr§ iPQ(K')\z;a;i;V;i)’

where Py (K; )‘i§‘71,i) is given by Eq.(4) and P, (K Mol sV ) is given by Eq.(6).

7’L

Under a quadratic error loss function, the optimal estimate of )\Hl

structure function given by

is the mean of the posterior

J J
BK+V2 1 (\/ t1,2,it2,2,i>

1) g t. t+1
E(A I oy K el gy e t — (52)
1,2, . J 4
2 By, (\/ t1,2,it2,2,i)
and the variance of the posterior structure function is given by
1) ¢ t. t+1\ _
Var ()\ K}, ..., KL 05”,.. Cer. l) =
2
. . ) J J ) J J
wl .. BK+u; +2 <\/ t1,2,it22 i) BK+V; +1 (\/ t1,2,it2,2,i>
.7 1,1,2 L7 02,2, " )i
7 + 72 +
1,2 j 2 2,0 tj - -
. 1,2, . / , I 4
(wz,m) et BK+,,;i ( t 2,i 221> BK+V;i ( t1,2,z‘t2,2,i>
o w{'l BK+u2 +1< t121222>
£ 2 L
TiT20 | Ty T (53)
W3 1,4

BK+V;"1. (\/ tl,?,it2,2,i>

The posterior mean and posterior variance of the 2C Poisson Inverse Gaussian mixture distribution
are given by Eqs(49 and 50) if we let v, = —0.5 for z = 1, 2 respectively.

The posterior mean and posterior variance of the 2C Negative Binomial Type I-Poisson Inverse
Gaussian mixture distribution are given by Eqs(52 and 53) for z = 1 and z = 2 when vy = —0.5
respectively.

The posterior mean and posterior variance of the 2C Poisson Inverse Gaussian-Sichel mixture
distribution are given by Eqs(49 and 50) for v; = —0.5 and z = 1, 2 respectively.

The posterior mean and the posterior variance of the Negative Binomial Type I, Sichel and Poisson
Inverse Gaussian distributions can be obtained as special cases of those for the case of the two
component mixtures of these distributions.



Calculation of the Premiums According to the Expected Value and Variance Principles

The premium rates calculated according to the expected value principle are given by
Pi=(1+w) B (AKL o Klsel ), (54)

where wy > 0 is a risk load.
The premium rates calculated according to the variance principle are given by

P2:(1+w2)E(A;?+1|K},.. Kliet, poon cgll)—&-wg [Var ()\t+1| L Kl cgt)}, (55)

where ws > 0 is a risk load®.
Note that the premiums derived by Eqs(54 and 55) in the case when only the a posteriori criteria is
considered are obtained by assuming that the regression components are limited to constants.

3.2.2 Severity Component

Let us consider now the severity component. In what follows we construct an optimal BMS derived by
updating the posterior mean and the posterior variance in the case of the 2C Pareto mixture model.
Note that the system resulting from the Pareto model can be obtained as special cases of the one for the
case of the 2C Pareto mixture model.

Assume that X f i follows the Exponential distribution with mean yw, where y > 0 and where w > 0
is a continuous random variable distributed according to a 2C Inverse Gamma mixture distribution with

pdf
2 S%exp _(Szw;l)
w(w) =) p. )

D ) (56)

s,—1

for i = 1,...,n and s > 0, with mean E(w) = 1. Then, the unconditional distribution of ka is a
Pareto distribution where the severity component distributions are given by Eq.(14). We can allow the
parameters and the mixing probabilities of this model to vary from one individual to another. Let yz i

sju and ,OJZZ be given by Eqs(31, 32 and 33). The posterior distribution of yt+1ls obtained by employing a

fully Bayesian approach (i.e. by updating both the parameters and the mixing proportions of the mixing

distribution) and is given by a 2C Inverse Gamma mixture (v{“,'vé“), with updated parameters

K
v{“ = s]“ + K and 'U%“ = (311 — 1) yil + X, for z = 1,2, with X = ZXZJC, and updated mixing
k=1
Y B S (X392 3582 ) R | : —
probabilities p; ; = p ;— , where f, (X;y] ;51 ;) are given by Eq.(14), for z = 1,2.

Zpi,ifz(X;yi,i;s;i)

Using the quadratic error loss function, the optimal estimator of y;
structure function and is given by

1 will be the mean of the posterior

2
v221
E ( AP CHD IR S dg;) Zp“ (57)

and the variance of the posterior structure function is given by

5Notice the difference between Eq.(30) and Eq.(55). The alternative mixed Poisson models we consider in this Section
were derived based on the assumption that their structure functions follow two component mixtures of alternative continuous
distributions (rather than a two point discrete distributions). Thus, with the variance principle the premium is consequently
given by

1 1
Py = E(u (,\§+ )|K},...,Kf;c%zyi,... ?L)Jr

wa [E (02 (Aﬁ“) K2, o K e lf ) +Var< (Af“) KL, Kb, iy, gll)] ,

where p ()\?1) = o2 <A§+1) = )\§+1 are the mean and the variance of the Poisson distribution. For more details the

interested reader can refer to Lemaire(1995).

15



t+l t gl t+1
Var( DETINND S Y dg‘gl)

j 2
- (’U2,z,i>
i . 2 .
z=1 (v{.z i 1) (’U{ zd4 2)

Note that the posterior mean and the posterior variance of the Pareto distribution are obtained as
special cases of those for the case of the 2C Pareto mixture distribution.

. . 2
J J
. . (Y . (¥ :
Y 2,12 2,24
+ PP, L}j —~ : (58)

J
1,14 1 V1,24 — 1

Calculation of the Premiums According to the Expected Value and Variance Principles
The premium rates calculated according to the expected value principle are given by

Pi=(1+w)E (y§+1|xz.1717 o Xy dgi) : (59)

where w; > 0 is a risk load.
The premium rates calculated according to the variance principle are given by

Pyo= By e X, i dig s dE)) wa [B2 (g0 XL o X i by oo dif)
+2Var(t+1\ o X il dgi)}, (60)

where wq > 0 is a risk loadS.

Note also that in the case when only the a posteriori criteria is considered the premiums rates
determined by Eqs(59 and 59) are obtained by assuming that the regression components are limited to
constants.

4 Numerical Illustration

The data were kindly provided by a major insurance company operating in Greece and concern a motor
third party liability (MTPL) insurance portfolio observed over 3 years. The data set comprises 146129
policies. In our application, for the sake of brevity, we analyze the six best fitted claim frequency
models from those presented in Section 2.1 and their special cases and all the seven claim severity
models presented in Section 2.2. Specifically, the Negative Binomial Type I (NBI), the Poisson Inverse
Gaussian (PIG), the Sichel (SICH), the two component Poisson mixture (2C POIS), the two component
Negative Binomial Type I mixture (2C NBI) and the two component Poisson-Negative Binomial Type I
mixture (2C POIS-NBI) distribution on the number of claims and the Pareto (PAR), the two component
Exponential mixture (2C EXP), the two component Pareto mixture (2C PAR), the two component
Lognormal mixture (2C LNO), the two component Exponential-Pareto mixture (2C EXP-PAR), the
two component Exponential-Lognormal mixture (2C EXP-LNO) and the two component Lognormal-
Pareto mixture (2C LNO-PAR) distribution” on the claim sizes. Furthermore, regression components

6Notice the difference between Eq.(45) and Eq.(60). The two component Pareto mixture we consider in this Section
was derived by assuming that the structure function follows a two component Inverse Gamma mixture distribution (rather
than a two point discrete distribution). Thus, with the variance principle the premium is consequently given by

1 t+1
P, = E (u( * ) X 17~~~:X:,Kj5dé2,i"' dél) +
ws [E (U ( t+1) IXH, X:’K?;d%z,i,.. dgll) +Var( < t+1) X7, ,X;K_j;déziw ,dglz)} ;

2
where p (yt+1> = yf+1 and o2 (Nijt41) = (yf+1) are the mean and the variance of the Exponential distribution.

"Note that the in the case of the Pareto, 2C Pareto mixture, 2C Exponential -Pareto mixture and 2C Lognormal-
Pareto mixture models the GAMLSS package allows us to find the maximum likelihood estimators of the parameters of the

—s'—1
Pareto2o (y',s') distribution, with pdf given by f (z) = s'y'* (z +¢') . The Pareto(y, s) distribution can be derived
from a reparameterization of the pdf of the Pareto2o (y’,s’) distribution with s’ = s and y’ = (s’ — 1)y. Thus § = § and

~1
A 4
8 -1
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are introduced in all the parameters and the mixing proportions of the aforementioned models and we
include risk classifying characteristics so as to use all the available information in the estimation of the
claim frequency and severity distributions. The log-likelihood function of these models is maximized
with respect to their parameters and mixing probabilities, using the EM algorithm (for more details see
Rigby and Stasinopoulos, 2009). In what follows, the aforementioned distributions/regression models for
location, scale, shape and mixing probabilities will be used to construct optimal BMS either by updating
the posterior probability of the policyholders’ classes of risk or by updating the posterior mean and the
posterior variance. The Bonus-Malus premium rates resulting from these systems will be calculated via
the expected value and variance principles with independence between the claim frequency and severity
components assumed.

4.1 Modelling Results

This subsection describes the modelling results of the distributions and regression models for location
scale, shape and mixing probabilities that have been applied to model claim frequency and claim severity
respectively.

The maximum likelihood estimators of the parameters and the mixing probabilities for the frequency
and severity distributions are presented in Table 1 and Table 2 respectively.

Table 1: Results of the Fitted Claim Frequency Distributions

NBI [ PIG ] SICH [ 2C POIS [ 2C NBI [ 2C POIS-NBI
A A A A Az A1 Az A1 Az
0.4029 0.4029 0.4029 0.0852  0.8118 | 0.2256  0.6328 | 0.1919 | 0.6189
o o o st o1 o2 - o2
1.0285 1.1045 1.1649 0.5627 1.9054  0.3070 - 0.6850
- - v - - T T1
- - —0.2407 - - 0.5646 0.5058

Note: NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are the Negative

Binomial Type I, Poisson Inverse Gaussian, Sichel, two component Poisson
mixture, two component Negative Binomial Type I mixture and two component
Poisson-Negative Binomial Type I mixture distributions respectively.
A, o0 and v are the location, scale and shape parameters, \; and o; are the location

and shape parameters of the first, if ¢ = 1 and the second, if ¢ = 2, component

distributions respectively and 71 and w2 = (1 — 71) are the mixing probabilities.

Table 2: Results of the Fitted Claim Severity Distributions

PAR | 2C EXP [ 2C LNO [ 2C PAR [ 2CEXP-LNO [ 2C EXP-PAR | 2C LNO-PAR
Y’ Y1 Y2 v Y2 Y1 Y5 Y1 Y2 Y1 Y5 Y1 Y5
3676.44 | 1025.69 6815.81 | 6.9950 7.7481 | 979.46 6491.23 | 1514.89 828 | 841.34 2429.55 | 7.1592  3962.92
s’ Py s1 s s1 sh - S - sh s1 sh
2.7605 0.8165 0.2554 13629 | 2.9359  1.9224 - 0.2741 - 1.5646 | 0.2749  1.7877

- - - P1 P1 P1 P1 P1
- - - 0.7972 0.7577 0.7763 0.6399 0.7963

Note: PAR, 2C EXP, 2C LNO, 2C PAR, 2C EXP-LNO, 2C EXP-PAR and 2C LNO-PAR are the Pareto,
the two component Exponential mixture, the two component Pareto mixture, the two component
Lognormal mixture, the two component Exponential-Pareto mixture, the two component Exponential-
Lognormal mixture and the two component Lognormal-Pareto mixture distributions respectively.

y' and s’ are the location and shape parameters, yi,y; are the location parameters and si,s; are the
shape parameters of the first, if 4 = 1 and the second, if i = 2, component distributions respectively

and p; and p, = (1 — p;) are the mixing probabilities.

Let us now consider the regression models for approximating the number and the costs of claims
respectively. The available a priori rating variables we employ are the Bonus Malus (BM) class, the
horsepower (HP) of the car and the age of the car (AC). Only policyholders with complete records, i.e.
where all of the variables under consideration were available, were considered. This BMS has 20 classes
and the transition rules are described as follows: Each claim free year is rewarded by one class discount
and each accident in a given year is penalized by one class. The variable BM class divides the classes of
the current Greek BMS into four categories of drivers, those who belong to BM classes: Cl= "1-2", C2
= "3-5", C3 = "6-9" and C4 = "10-20". The variable HP consists of three categories of cars, those with
a HP: C1 = "0-1400 cc", C2 = "1400-1800 cc", C3 = "greater than 1800 cc". Finally, the variable AC
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consists of three categories of cars, those of age: C1 = "between 0 to 8 years", C2 = "between 8 to 16
years" and C3 = "greater than 16 years".

As suggested by Rigby and Stasinopoulos (2005, 2009) the claim frequency and severity regression
models have been calibrated with respect to GAIC goodness of fit index. The Generalized Akaike
Information Criterion (GAIC) is defined as

GAIC = D + & x df, (61)

where D = —2[ is the fitted Global deviance (DEV), [ is the fitted log-likelihood, df is the degrees
of freedom used in the model (i.e. the sum of the degrees of freedom used for the location, scale, shape
parameters and mixing probabilities) and  is a constant. The Akaike information criterion (AIC) and the
Schwartz Bayesian criterion (SBC) are special cases of the GAIC. Specifically, if we let kK = 2 we have the
AIC, while if we let k = log (n) we have the SBC, where n is the number of the independent observations
assumed by a regression model. We followed a model selection technique close to that presented in
Heller et al. (2007). Specifically, our variable selection began by examining the mean parameter of each
frequency/severity model. This was achieved by adding all available explanatory variables and testing
whether the exclusion of each lowered the GAIC, AIC and SBC values. After selecting the best predictor
for the mean parameter, we proceeded in determining the remaining predictors by testing which rating
variable of those used in the mean parameter would result in a further decrease of the GAIC when
inserted in the scale and shape parameters and mixing proportions of the claim frequency and severity
models respectively. Furthermore, if between the same frequency/severity distributions with different
parameter specifications several models have similar AIC and BIC values, we preferred the simpler model
so as to avoid overfitting. Therefore, the scale and shape parameters and the mixing probabilities of the
models have fewer predictors than the mean parameter (see Tables 3 and 4). With regard to this, the
final claim frequency and severity models we selected are those that yield the lowest GAIC, AIC, and
SBC values. Also, every explanatory variable they contain is statistically significant at a 5% threshold”.

8Heller et al. (2007) used generalized additive models for location scale and shape (GAMLSS) for the statistical analysis
of the total amount of insurance paid out on a policy.

9Note that, as we have already mentioned, the location, scale, shape and mixing proportions of the alternative claim
frequency models can be modelled according to Eqs(16, 17, 18 and 19) and the location and scale parameters and the
mixing proportions of the various claim severity models can be modelled according to Eqs(31, 34, 32 and 33 ).
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The models presented in Tables 3 and 4 extend the commonly used specification that assumes that
only the mean claim frequency /severity is modelled in terms of risk factors, which was widely accepted for
experience ratemaking. Moreover, the results for the location parameter of the claim frequency /severity
models correspond with the existing results, based on the examination of the relative data sets, in recent
Bonus-Malus literature research. Specifically, as expected, the values of the estimated regression coef-
ficients of the explanatory variables for this parameter will lead to Bonus-Malus premiums calculated
with the expected value principle which vary little under different distributional assumptions regarding a
group of individuals that share the same characteristics. In the setup we consider, the systematic part of
these models was extended to permit modelling of all the parameters and/or the mixing proportions of
the claim frequency/severity distribution as functions of a priori rating variables enabling us to produce
tailor-made premiums. Furthermore, in a Bonus-Malus ratemaking scheme that incorporates a priori risk
characteristics, joint modelling of all the parameters breaks the nexus between the mean and variance
implied by the standard procedure using GLM models. In this respect, the differences in the variance val-
ues of the posterior frequency/severity distributions alter significantly the premiums calculated through
the variance principle since it is understood that in this case the loading is related to the variability of
the loss. Moreover, our analysis shows that the employment of two component mixture models with no
parameters in common captures the stylized characteristics of the data and is beneficial for the insurance
company as it can provide the actuary with alternative pricing strategies in addition to those already
existing in the Bonus-Malus literature.

Finally, as suggested by Stasinopoulos et al. (2008), we rely on normalized quantile residuals, see
Dunn and Smyth (1996), as an exploratory graphical device for investigating the adequacy of the fit of
the competing response distributions for the claim frequency and severity component. For continuous
response distributions, the normalized randomized quantile residuals are defined as #; = ®~! (u;) , where
®~! is the inverse cumulative distribution function of a standard Normal distribution and u; = F; (x1|{9),
where F; is the cumulative distribution function estimated for the ith individual, ¥ contains all estimated
model parameters and z; is the corresponding observation. For discrete response distributions, the
aforementioned definition is extended and w; is defined as a random value from the uniform distribution

on the interval [FZ (z; — 1|9, Fl(:nl|{9)] . In both cases, the model fit can be evaluated by means of usual

quantile-quantile plots. Specifically, if the data indeed follow the assumed distribution, then the residual
on the quantile-quantile plot will fall approximately on a straight line.

Figure 1 shows the normalized (random) quantiles for the Negative Binomial Type I, Poisson Inverse
Gaussian, Sichel, 2C Poisson mixture, 2C Negative Binomial Type I mixture and 2C Poisson-Negative
Binomial Type I mixture claim frequency regression models for location, scale, shape and mixing pro-
portions.

Figure 1. Normalized quantiles for the claim frequency models
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Figure 2 shows the normalized (random) quantiles for the Pareto, 2C Exponential mixture, 2C Pareto
mixture, 2C Lognormal mixture, 2C Exponential-Pareto mixture, 2C Exponential-Lognormal mixture
and the 2C Lognormal-Pareto mixture regression models for location, scale, shape and mixing probabil-
ities.



Figure 2. Normalized quantiles for the claim severity models
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From Figures 1 and 2 we see that the residuals of the claim frequency and severity models are very
close to the diagonal and indicate a very good fit to the distribution of the claim frequencies and claim
severities respectively.

4.2 Models Comparison

Thus far, we have several competing models for the claim frequency and severity components. The
differences between models produce different premiums calculated according to the expected value and
variance principles. Consequently, to differentiate between these models, this section compares them so
as to select the best for each case. Following Rigby and Stasinopoulos (2009), we resort to the information
criteria, such as the Global Deviance, AIC or the SBC which are valid for both nested or non-nested
model comparisons. The resulting Global Deviance, AIC and SBC are given in Table 5 for the different
claim frequency (Panel A) and claim severity (Panel B) fitted distributions and regression models for
location, scale, shape and mixing probabilities.
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Table 5: Models Comparison

Panel A: Frequency Component

Distributions Regression Models for Location,

Scale, Shape and Mixing Probabilities

Model df  AIC SBC df Global Deviance  AIC SBC
NBI 2 245841 245861 | 13 244897 244922 245051
PIG 2 245767 245787 | 13 244830 244856 244984
SICH 3 245755 245775 | 14 244817 244845 244970
2C POIS 3 245862 245882 | 22 244851 244875 245013
2C NBI 5 245749 245768 | 24 244721 244743 244889
2C NBI-POIS | 4 245792 245815 | 23 244789 244810 244929

Panel B: Severity Component
Distributions Regression Models for Location,

Scale, Shape and Mixing Probabilities

Model df  AIC SBC df Global Deviance AIC SBC
PAR 2 691872 691889 | 13 681649 681687 681953
2C EXP 3 691925 691951 | 22 681592 681632 681906
2C LNO 5 688101 688145 | 32 677529 677573 677943
2C PAR 5 686911 686954 | 32 676308 676356 676726
2C EXP-LNO | 4 690557 690592 | 27 680120 680153 680426
2C EXP-PAR | 4 690300 690335 | 27 679839 679876 680150
2C LNO-PAR | 5 685929 685972 | 32 675411 675463 675842

Note: df is the degrees of freedom, AIC is the Akaike information
criterion and SBC is Schwartz Bayesian criterion.

NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are the Negative
Binomial Type I, Poisson Inverse Gaussian, Sichel, two component
Poisson mixture, two component Negative Binomial Type I mixture
and two component Poisson-Negative Binomial Type I mixture
models respectively.

PAR, 2C EXP, 2C LNO, 2C PAR, 2C EXP-LNO, 2C EXP-PAR and
2C LNO-PAR are the Pareto, the two component Exponential mixture,
the two component Pareto mixture, the two component Lognormal
mixture, the two component Exponential-Pareto mixture, the two
component Exponential-Lognormal mixture, two component
Lognormal-Pareto mixture models respectively.

Overall, from Panel A we observe that the best fit is given by the 2C Negative Binomial Type I
mixture distribution/regression model for location, scale, shape and prior probabilities. From Panel B,
we see that the best fit is given by the 2C Lognormal-Pareto mixture distribution/regression model for
location, scale, shape and prior probabilities.

4.3 Optimal Bonus-Malus Premiums Calculated Via the Expected Value and
Variance Principles

Following the current methodology, as presented in sections 3.1 and 3.2, we derive optimal BMS with
a frequency and a severity component both by updating the posterior probability of the policyholders’
classes of risk and by updating the posterior mean and the posterior variance based on the a posteriori
criteria and based both on the a priori and the a posteriori criteria. For the case of updating the posterior
probability we assume that a policyholder who belongs to the first category is a good risk while one who
belongs to the second category is a bad risk. In our application we consider that the specific policyholder
belongs to the second category'®. Furthermore, when both criteria are considered, we examine a group
of policyholders who share the following common characteristics: We consider that the policyholder 4
belongs to the first BM class, and has a car between 0 to 8 years old with HP between 0-1400 cc. In
(Section 1 and Section 2) the Bonus- Malus premiums rates will be calculated via the expected value and

10The analogous procedure can be applied for a policyholder who belongs in the first category.
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the variance premium principle respectively. These premium rates will be divided by the premium when
t = 0, since we are interested in the differences between various classes. The results are presented so that
the premium for a new policyholder is 100. Thus, in what follows, when the expected value principle
is used note the disappearance of the factors (1 +wj) and (1 + wq)from Eqs(29, 44, 54 and 59). Also,
when the variance principle is used, following and extending the framework of Lemaire (1995) for two
component mixtures with no parameters in common of frequency and severity distributions/regression
models for location, scale, shape and prior probabilities we assume that ws = wy = 0.235 in Eqs(30, 45,
55 and 60) which corresponds to a safety loading of 25% of the net premium.

4.3.1 Expected Value Premium Calculation Principle

We consider first the optimal BMS resulting from the Negative Binomial Type I, Poisson Inverse
Gaussian, Sichel, 2C Poisson mixture, 2C Negative Binomial Type I mixture and 2C Poisson-Negative
Binomial Type I mixture claim frequency distributions/regression models for location, scale, shape and
mixing proportions. The results are presented in Table 6 and Table 7 respectively.

As we mentioned previously, for the optimal BMS derived by updating the posterior probability in the
case of the 2C Negative Binomial Type I mixture and the 2C Poisson-Negative Binomial Type I mixture
distributions/regression models, the explicit claim frequency history determines the calculation of the
posterior probabilities and thus of premium rates to be calculated with the expected value principle, and
not just the total number of claims as in the case of the 2C Poisson mixture distribution/regression model.
Also, for the system resulting from updating the posterior mean in the case of the Negative Binomial
Type I, Poisson Inverse Gaussian, Sichel and 2C Negative Binomial Type I mixture regression models
the explanatory variable Bonus-Malus class varies substantially depending on the number of claims of
policyholder ¢ for period j. Thus, in this case also, the explicit claim frequency history determines the
calculation of the premium rates. Due to the aforementioned reasons, in Tables 6 and 7 we specify the
exact order of the claims history in order to derive the scaled premiums that must be paid by the specific
group of policyholders that we consider, assuming that the age of the policy is up to 2 years. From both of
these tables we observe that if the policyholder ¢ has a claim free year, the premium rates reduce, whereas
if they have one or more claims, the premium rates increase, resulting in bonus or malus respectively. For
example, from Table 6 we see that policyholders who had two claims over the second year of observation
will have to pay a malus of 144.78%,158.61%,157.31%,130.43% and 97.59% of the basic premium in the
case of the Negative Binomial Type I, Poisson Inverse Gaussian, Sichel, 2C Negative Binomial Type I
mixture distributions derived by updating the posterior mean and the 2C Poisson mixture distribution
derived by updating the posterior probability respectively. Also, we see that policyholders who had at
t = 2 claim frequency history k1 = 0, ka = 2 (i.e. total number of claims K = 2 at ¢ = 2) will have to pay
a malus of 27.67% and 36.87% of the basic premium and those who had k; = 1, ks = 1 claim frequency
history (i.e. total number of claims K = 2 at ¢t = 2) will have to pay a malus of 41.32% and 39.15%
of the basic premium in the case of the 2C NBI mixture and 2C Poisson-NBI mixture distributions
derived by updating the posterior probability. Furthermore, from Table 7 when both the a priori and
the a posteriori criteria are considered, we see, for instance, that policyholders who had at ¢ = 2 claim
frequency history k1 = 0, ko = 2 will have to pay a malus of 132.14%,113.49%,125.16%, 89.80%, 26.54%
and 36.87% and those who had k; = 1,ky = 1 claim frequency history will have to pay a malus of
132.36%,114.00%,125.62%, 90.16%, 29.55% and 39.15% in the case of the Negative Binomial Type I,
Poisson Inverse Gaussian, Sichel and 2C Negative Binomial Type I mixture regression models derived
by updating the posterior mean and the 2C Negative Binomial Type I mixture and 2C Poisson-Negative
Binomial Type I mixture models derived by updating the posterior probability respectively. Also, we
observe that a group of policyholders who had two claims over the second year of observation will have
to pay a malus of 161.51% in the case of the 2C Poisson mixture model derived by updating the posterior
probability.
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Table 6: Optimal BMS, Expected Value Principle, Distributions for Assessing Claim Frequency

NBI \ PIG
Year Number of Claims k Year Number of Claims k
t 0 1 2 3 4 t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00 0 100.00 0.00 0.00 0.00 0.00
1 88.93 180.40 271.87 363.34 454.80 1 88.83 176.00 306.31 461.55 627.20
2  80.07 162.43 244.78 327.14 409.49 2 80.73 152.70 258.61 385.09 520.77
SICH \ 2C POIS
Year Number of Claims k Year Number of Claims k
t 0 1 2 3 4 t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00 0 100.00 0.00 0.00 0.00 0.00
1 88.82 177.01 300.76 442.09 590.18 1 90.49 175.52 198.33 201.12 201.42
2 80.57 154.45 257.31 375.28 499.42 2 81.44 170.28 197.59 201.04 201.41
2C NBI
(Post. Mean)
Year Number of Claims k
t 0 1 2 3 4
0 100.00  0.00 0.00 0.00 0.00
1 92.46  183.03 246.61 306.97 370.47
2 86.10 171.01 230.43 286.34 344.52
Vear Number of 2C NBI 2C POIS-
Claims k; (Post. Prob.) NBI
t=0 ko=0 100 100
kr=0 97.02 96.9
t=1 ki=1 123.87 123.21
ki=2 130.13 138.46
k1=0,ks =0 94.11 93.82
t=2 k1=0,ky=1 121.12 120.61
k1 =0,ky =2 127.67 136.87
ki=1,ky=0 121.12 120.61
t=2 kp=1,ky =1 141.32 139.15
ki=1,ko=2 144.88 147.10
k1=2,ko =0 127.67 136.87
t=2 k1=2,ko=1 144.88 147.10
k1 =2,ko=2 147.72 150.81

Note: NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are the Negative
Binomial Type I, Poisson Inverse Gaussian, Sichel, two component Poisson
mixture, two component Negative Binomial Type I mixture and two component
Poisson-Negative Binomial Type I mixture distributions respectively.

25



Table 7: Optimal BMS, Expected Value Principle, Regression Models for Location, Scale, Shape and
Mixing Probabilities for Assessing Claim Frequency

Year ~ umber of NBI PIG SICH
Claims k;
t=0 ko=0 100 100 100
ki=0 88.34 88.30 88.29
t=1 k=1 173.37 162.47 169.74
ki =2 259.20 272.18 283.69
k1 =0,ke =0 79.12 79.94 78.70
t=2 ki1 =0,k =1 155.27 134.82 140.25
ki =0,ky =2 232.14 213.49 225.16
ki=1,ky=0 156.85 136.40 141.87
t=2 ki=1,k =1 232.36 214.00 225.62
ki =1,ky =2 336.45 336.00 352.18
ki=2ke=0 232.36 214.00 225.62
t=2 ki=2ky=1 336.45 336.00 352.18
By =2,ky =2 420.14 447.84 464.83
Year Number of 2C NBI 2C NBI 2C POIS-
Claims k; (Post. Mean) (Post. Prob.) NBI
t=0 ko=0 100 100 100
k=0 90.44 97.22 96.9
t=1 k=1 150.36 117.18 123.21
ki =2 207.40 128.17 138.46
k1 =0,ke =0 82.59 94.45 93.82
t=2 ki=0ky=1 137.44 114.83 120.61
k1 =0,ko =2 189.80 126.54 136.87
ki =1,ky=0 141.11 114.83 120.61
t=2 ki=1,k =1 190.16 129.55 139.15
ki=1,ky =2 250.75 135.92 147.10
ki =2,ky =0 190.16 126.54 136.87
t=2 ki=2ky=1 250.75 135.92 147.10
k1 =2,ky=2 301.66 139.48 150.81
2C POIS
Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 88.00 177.74 275.62 309.70 316.51
2 78.74 154.96 261.51 306.36 315.91

Note: NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are
the Negative Binomial Type I, Poisson Inverse Gaussian,

Sichel, two component Poisson mixture, two component
Negative Binomial Type I mixture and two component
Poisson-Negative Binomial Type I mixture regression models

for location, scale, shape and mixing probabilities respectively.

Let us now consider the severity component and the optimal BMS derived by updating the posterior
mean in the case of the Pareto, and the systems resulting from updating the posterior probability in
the case of the 2C Exponential mixture, 2C Pareto mixture, 2C Lognormal mixture, 2C Exponential-
Pareto mixture, 2C Exponential-Lognormal mixture and the 2C Lognormal-Pareto mixture distribu-
tions/regression models for location, scale, shape and mixing probabilities. Table 8 (Panels A and B)
displays the premium rates resulting from these models with respect to the a posteriori criteria (Panel A)
and to both the a priori and the a posteriori criteria (Panel B). From Table 8 we observe that the premium
values increase proportionally to the claim costs. For example, from Panel A we see that for one claim
size of 3500 in the first year the premium increases from 100 to 124.49, 154.59, 280.72, 268.32, 149.39,
150.49 and 236.18 in the case of the Pareto, 2C Exponential mixture, 2C Lognormal mixture, 2C Pareto
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mixture, 2C Exponential-Lognormal mixture, 2C Exponential-Pareto mixture and 2C Lognormal-Pareto
mixture distributions respectively. Furthermore, from Panel B we observe that for one claim size of 3500
in the first year the premium increases from 100 to 136.61, 158.36, 267.13, 192.23, 153.82, 117.73 and
247.57 in the case of the Pareto, 2C Exponential mixture, 2C Lognormal mixture, 2C Pareto mixture,
2C Exponential-Lognormal mixture, 2C Exponential-Pareto mixture and 2C Lognormal-Pareto mixture
regression models respectively.

Table 8: Optimal BMS, Expected Value Principle, One Claim in the First Year of Observation
Panel A: Distributions for Assessing Claim Severity

. . 2C EXP- 2C EXP- 2C LNO-
Claim Size | PAR | 2C EXP | 2C LNO | 2C PAR LNO PAR PAR
1500 89.79 78.20 74.32 149.23 72.84 97.61 73.50
2500 107.14 | 107.75 258.73 | 224.88 103.75 121.91 150.01
3500 124.49 | 154.59 | 280.72 | 268.32 149.39 150.49 236.18
4500 141.83 | 211.13 | 280.87 | 291.95 159.51 175.16 240.81
Panel B: Regression Models for Location, Scale, Shape
" and Mixing Probabilities for Assessing Claim Severity
. . 2C EXP- 2C EXP- 2C LNO-
Claim Size | PAR 2C 2C LNO | 2C PAR LNO PAR PAR
1500 95.66 86.10 86.20 122.53 77.49 95.39 80.37
2500 116.14 | 114.66 | 248.15 164.26 131.16 104.29 212.95
3500 136.61 | 158.36 | 267.13 192.23 153.82 117.73 247.57
4500 157.09 | 208.99 | 267.39 | 210.36 153.82 133.50 248.19

Note: PAR, 2C EXP, 2C LNO, 2C PAR, 2C EXP-LNO, 2C EXP-PAR and
2C LNO-PAR are the Pareto, the two component Exponential mixture,
the two component Pareto mixture, the two component Lognormal
mixture, the two component Exponential-Pareto mixture, the two
component Exponential-Lognormal mixture and the two component
Lognormal-Pareto mixture models respectively.

Finally, we compute the optimal BMS with a frequency and a severity component using the expected
value premium calculation principle. The premiums resulting from this system are calculated via the
product of the premiums calculated for frequency component and those calculated for severity component
with independence between the two components assumed. Table 9 (Panels A, B, C, D, E, F and G)
summarizes our findings with respect to the a posteriori criteria and Table 10 (Panels A, B, C, D, E, F
and G) presents our findings with respect to both criteria.
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4.3.2 Variance Premium Calculation Principle

In this case as well we consider first the optimal BMS resulting from the claim frequency distribu-
tions/regression models for location, scale, shape and prior probabilities. The results are shown in Table
11 and Table 12 respectively. Note that similarly to the results shown in the previous section, in the
case of the optimal BMS derived by updating the posterior probability when the number of claims follow
a 2C Negative Binomial Type I mixture and a 2C Poisson-Negative Binomial Type I mixture distrib-
ution/regression model, the explicit claim frequency history determines the calculation of the posterior
probabilities and therefore of premium rates to be calculated with the variance principle, and not only
the total number of claims as with the 2C Poisson mixture. Also, in the case of the systems derived by
updating the posterior mean and variance when the number of accidents is approximated by the Negative
Binomial Type I, Poisson Inverse Gaussian, Sichel and 2C Negative Binomial Type I mixture regression
models, the explicit claim frequency history determines the calculation of the premium rates.

Overall, from Tables 11 and 12 we observe that these seven systems are fair since if the policyholder
has a claim free year the premium is reduced, while if the policyholder has one or more claims the
premium is increased. For instance, from Table 11 we see that policyholders who had two claims over
the second year of observation will have to pay a malus of 143.65%, 159.54%, 157.82%, 132.33% and
94.17% of the basic premium in the case of the Negative Binomial Type I, Poisson Inverse Gaussian,
Sichel and 2C Negative Binomial Type I mixture distributions derived by updating the posterior mean
and the posterior variance and the 2C Poisson mixture distribution derived by updating the posterior
probability respectively. Also, we see that policyholders who had at ¢ = 2 claim frequency history
k1 = 0,ky = 2 will have to pay a malus of 27.11% and 37.00% of the basic premium and those who
had k1 = 1, ks = 1 claim frequency history will have to pay a malus of 40.35% and 39.21% of the basic
premium in the case of the 2C Negative Binomial Type I mixture and 2C Poisson-Negative Binomial
Type I mixture distributions derived by updating the posterior probability. When both the a priori and
a posteriori criteria are considered, from Table 12 one can see that, for example, policyholders who had
at t = 2 claim frequency history k1 = 0, ko = 2 will have to pay a malus of 130.69%, 114.88%, 122.46%,
107.05%, 26.35% and 44.43% and those who had k; = 1,k = 1 claim frequency history will have to pay
a malus of 130.91%,115.35%, 122.92%, 107.48%, 29.31%, 32.39% in the case of the Negative Binomial
Type I, Poisson Inverse Gaussian, Sichel and 2C Negative Binomial Type I mixture regression models
derived by updating the posterior mean and the posterior variance and the 2C Negative Binomial Type
I mixture and 2C Poisson-Negative Binomial Type I mixture models derived by updating the posterior
probability respectively. Also, we observe that a group of policyholders who had two claims over the
second year of observation will have to pay a malus of 157.87% in the case of the 2C Poisson mixture
model derived by updating the posterior probability.
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Table 11: Optimal BMS, Variance Principle, Distributions for Assessing Claim Frequency

NBI \ PIG
Year Number of Claims k Year Number of Claims k
t 0 1 2 3 4 t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00 0 100.00 0.00 0.00 0.00 0.00
1 88.71 179.94 271.17 362.41 453.64 1 88.37 176.77 309.39 467.27 635.56
2 79.70 161.68 243.65 325.63 407.60 2 80.03 152.55 259.54 387.27 524.17
SICH \ 2C POIS
Year Number of Claims k Year Number of Claims k
t 0 1 2 3 4 t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00 0 100.00 0.00 0.00 0.00 0.00
1 88.40 177.59 302.93 446.00 595.68 1 90.59 173.25 194.87 197.50 197.78
2 79.93 154.23 257.82 376.54 501.38 2 81.60 168.26 194.17 197.42 197.76
2C NBI
(Post. Mean
& Post. Var.)
Year Number of Claims k
t 0 1 2 3 4
0 100.00  0.00 0.00 0.00 0.00
1 92.26  183.84 249.53 313.99 385.10
2 85.77 171.33 232.33 291.43 355.63
Yoar Number of 2C NBI 2C POIS-
Claims k; (Post. Prob.) NBI
t=0 ko=0 100 100
ki=0 97.06 96.86
t=1 k1= 123.40 123.33
ki =2 129.50 138.53
k1=0,ks =0 94.19 93.75
t=2 k1 =0,k =1 120.72 120.72
k1 =0,k =2 127.11 137.00
ki =1,ky =0 120.72 120.72
t=2 ki=1,ky=1 140.35 139.21
ki=1,ky =2 143.80 147.08
k1=2,ks=0 127.11 137.00
t=2 k1 =2,ky = 143.80 147.08
ki1 =2,ko=2 146.53 150.75

Note: NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are the Negative
Binomial Type I, Poisson Inverse Gaussian, Sichel, two component Poisson
mixture, two component Negative Binomial Type I mixture and two component
Poisson-Negative Binomial Type I mixture distributions respectively.
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Table 12: Optimal BMS, Variance Principle, Regression Models for Location, Scale, Shape and Mixing
Probabilities for Assessing Claim Frequency

Year ~ umber of NBI PIG SICH
Claims k;
t=0 ko=0 100 100 100
ki=0 88.01 87.80 86.53
t=1 kr=1 172.67 163.26 167.63
ki =2 258.15 275.35 281.28
k1 =0,ke =0 78.64 79.18 76.88
t=2 ki =0,ky=1 154.30 134.80 138.00
k1 =0,ky =2 230.69 214.88 222.46
ki =1,ks =0 155.90 136.42 139.63
t=2 ki=1,k=1 230.91 215.35 222.92
ki =1,k =2 334.91 340.43 349.53
ki=2ke=0 230.91 215.35 222.92
t=2 ki =2,ky=1 334.91 340.43 349.53
ki1 =2,ky =2 418.22 454.48 461.72
Number of 2C NBI 2C NBI 2C POIS-
Year  Claims k (Post. Mean | 50 “prob.) NBI
¢ & Post. Var.) ' '
t=0 ko=0 100 100 100
k1=0 96.31 97.22 97.39
t=1 k=1 162.47 117.10 116.70
ki =2 227.61 128.00 146.15
ki1 =0,k =0 87.46 94.44 94.84
t=2 ki=0k =1 147.81 114.77 114.01
k1=0,ky =2 207.05 126.35 144.43
ki=1,ke=0 151.83 114.77 114.01
t=2 ki=1,k=1 207.48 129.31 132.39
ki =1,ky =2 281.43 135.57 154.73
ki =2,ky =0 207.48 126.35 144.43
t=2 ki =2k =1 281.43 135.57 154.73
k1 =2ky =2 342.62 139.05 163.85
2C POIS
Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 87.75 177.60 271.04 302.46 308.70
2 78.26 155.17 257.87 299.41 308.13

Note: NBI, PIG, SICH, 2C POIS, 2C NBI and 2C POIS-NBI are
the Negative Binomial Type I, Poisson Inverse Gaussian,

Sichel, two component Poisson mixture, two component
Negative Binomial Type I mixture and two component
Poisson-Negative Binomial Type I mixture regression models

for location, scale, shape and mixing probabilities respectively.

Then, for the severity component we consider the optimal BMS derived by updating the posterior
mean and the posterior variance in the case of the Pareto, and the BMS resulting from updating the
posterior probability in the case of the 2C Exponential, 2C Lognormal, 2C Pareto, 2C Exponential-
Lognormal, 2C Exponential-Pareto and 2C Lognormal-Pareto mixture distributions/regression models.
Table 13 (Panels A and B) shows the premium rates calculated according to the variance principle when
the a posteriori criteria are taken into account (Panel A) and when both the a priori and the a posteriori
criteria are considered (Panel B). Similarly to the results obtained when the expected value principle was
used, from Table 13 we can see that the premium values calculated according to the variance principle
increase proportionally to the claim severities. For instance, from Panel A we observe that for one claim
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size of 3500 in the first year the premium increases from 100 to 138.04,182.03, 448.77, 332.27, 102.31,
253.10 and 521.61 in the case of the Pareto, 2C Exponential mixture, 2C Lognormal mixture, 2C Pareto
mixture, 2C Exponential-Lognormal mixture, 2C Exponential-Pareto mixture and 2C Lognormal-Pareto
mixture distributions respectively. Also, from Panel B we can see that for one claim size of 3500 in the
first year the premium increases from 100 to 113.75,198.39,463.86,239.20,105.89,154.44 and 599.99 in the
case of the Pareto, 2C Exponential mixture, 2C Lognormal mixture, 2C Pareto mixture, 2C Exponential-
Lognormal mixture, 2C Exponential-Pareto mixture and 2C Lognormal-Pareto mixture regression models

respectively.

Table 13: Optimal BMS, Variance Principle, One Claim in the First Year of Observation
Panel A: Distributions for Assessing Claim Severity

s 2C EXP- 2C EXP- 2C LNO-
Claim Size | PAR | 2C EXP | 2C LNO | 2C PAR LNO PAR PAR
1500 88.23 | 62.20 44.87 166.88 71.88 94.01 25.60
2500 111.74 | 112.75 | 410.00 | 271.36 102.31 160.27 247.19
3500 138.04 | 182.03 | 448.77 | 332.27 102.31 253.10 521.61
4500 167.10 | 247.96 | 449.03 | 365.69 102.31 346.24 537.10
Panel B: Regression Models for Location, Scale, Shape
anet B and Mixing Probabilities for Assessing Claim Severity
N 2C EXP- 2C EXP- 2C LNO-
Claim Size | PAR | 2C EXP | 2C LNO | 2C PAR LNO PAR PAR
1500 55.78 | 72.95 67.48 134.67 79.35 86.35 43.28
2500 82.21 | 127.02 | 425.32 | 197.75 105.89 112.89 471.05
3500 113.75 | 198.39 | 463.86 | 239.20 105.89 154.44 599.99
4500 150.39 | 263.95 | 464.39 | 265.73 105.89 205.54 602.37

Note: PAR, 2C EXP, 2C LNO, 2C PAR, 2C EXP-LNO, 2C EXP-PAR and
2C LNO-PAR are the Pareto, the two component Exponential mixture,
the two component Pareto mixture, the two component Lognormal
mixture, the two component Exponential-Pareto mixture, the two
component Exponential-Lognormal mixture and the two component
Lognormal-Pareto mixture models respectively.

Let us finally present the optimal BMS with a frequency and severity component when the variance
principle is used. The premiums determined by this system are calculated via the product of the pre-
miums calculated for frequency component and those calculated for severity component assuming that
the frequency and severity components are independent. Table 14 (Panels A, B, C, D, E, F and G)
summarizes our findings with respect to the a posteriori criteria and Table 15 (Panels A, B, C, D, E, F

and G) presents our findings with respect to both criteria.
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5 Conclusions

This paper was mainly concerned with the construction of optimal BMS using two component mixture
distributions defined so that the component distributions do not necessarily arise from the same para-
metric family. Based on this newly proposed framework we were able to present an abundance of model
choices that account for unobserved heterogeneity in alternative ways and can be employed by an insurer
when deciding on their Bonus-Malus pricing strategies. Specifically, claim frequency was modelled using
a 2C Poisson mixture, 2C Negative Binomial Type I mixture, 2C Sichel mixture (2C Poisson Inverse
Gaussian mixture and 2C Sichel-Poisson Inverse Gaussian mixture as special cases), 2C Poisson-Negative
Binomial Type I mixture, 2C Poisson-Sichel mixture (2C Poisson-Poisson Inverse Gaussian mixture as
a special case) and 2C Negative Binomial Type I -Sichel mixture (2C Negative Binomial Type I-Poisson
Inverse Gaussian mixture as a special case) distributions. Claim severity was approximated by employing
a 2C Exponential mixture, 2C Pareto mixture, 2C Lognormal mixture, 2C Exponential-Pareto mixture,
2C Exponential-Lognormal mixture and 2C Lognormal-Pareto mixture distributions. Also, the Negative
Binomial Type I, Sichel, Poisson Inverse Gaussian and Pareto distributions were considered as special
cases of the previously mentioned distributions. Extending the framework used by Tzougas, Vrontos and
Frangos (2014), all the parameters and mixing probabilities of these models were modelled in terms of risk
factors. These models were calibrated employing a Generalized Akaike Information Criterion (GAIC),
which is valid for both nested or non-nested model comparisons (see Righy and Stasinopoulos, 2005 and
2009). On the path towards actuarial relevance the Bayesian view was taken and BMS were derived by
updating the posterior probability of policyholders’ classes of risk and by updating the posterior mean
and the posterior variance. The premium rates were calculated via the expected value and variance prin-
ciples with independence between the claim frequency and severity components assumed. Extensions
to other frequency/severity regression models for location scale, shape and mixing probabilities can be
obtained in a similar straightforward way.

A potentially interesting line of further research would be to go through the Bonus-Malus ratemaking
exercise when functional forms other than the linear are included, based on the generalized additive
models for location scale and shape and prior probabilities approach of Righy and Stasinopoulos (2005
and 2009). Also see, for example, a recent paper by Klein et al. (2014) in which Bayesian generalized
additive models for location, scale and shape claim frequency models are employed for nonlife ratemaking
and risk management. Moreover, the proposed modelling framework could be employed with longitudinal
data, see, for instance, Boucher et al. (2007).

References

[1] Boucher, J. P., M. Denuit and M. Guillen (2007). Risk Classification for Claim Counts: A Compara-
tive Analysis of Various Zero-Inflated Mixed Poisson and Hurdle Models. North American Actuarial
Journal, 11, 4, 110-131.

[2] Boucher, J. P., M. Denuit and M. Guillen (2008). Models of Insurance Claim Counts with Time
Dependence Based on Generalisation of Poisson and Negative Binomial Distributions. Variance, 2,
1, 135-162.

[3] Brouhns, N., M. Guillen, M. Denuit and J. Pinquet (2003). Bonus-malus scales in segmented tariffs
with stochastic migration between segments. Journal of Risk and Insurance, 70, 577-599.

[4] Denuit, M., X. Marechal, S. Pitrebois and J. F. Walhin (2007). Actuarial Modelling of Claim Counts:
Risk Classification, Credibility and Bonus-Malus Systems. Wiley.

[5] Dionne, G. and C. Vanasse (1989). A generalization of actuarial automobile insurance rating models:
the negative binomial distribution with a regression component. ASTIN Bulletin, 19, 199-212.

[6] Dionne, G. and C. Vanasse (1992). Automobile insurance ratemaking in the presence of asymmetrical
information. Journal of Applied Econometrics, 7, 149-165.

[7] Dunn, P.K. and G.K. Smyth, (1996). Randomized quantile residuals. Computational and Graphical
Statistics 5, 236-245.

[8] Frangos, N. and S. Vrontos (2001). Design of optimal bonus-malus systems with a frequency and a
severity component on an individual basis in automobile insurance. ASTIN Bulletin, 31, 1, 1-22.

36



Goémez, E., A. Herndndez and F. Vdzquez-Polo (2000). Robust Bayesian premium principles in
Actuarial Science. Journal of the Royal Statistical Society, 49, 241-252.

Gomez, E., J. Pérez, A. Herndndez and F. Vézquez-Polo (2002). Measuring sensitivity in a bonus—
malus system. Insurance: Mathematics & Economics, 31, 105-113.

Gomez-Déniz, E., A. Herndndez-Bastida and M.P. Ferndndez-Sanchez (2014). Computing credibility
bonus-malus premiums using the aggregate claims distribution. Hacettepe Journal of Mathematics
and Statistics, 43, 6, 1047-1061.

Heilmann, W. (1989). Decision theoretic foundations of credibility theory. Insurance: Mathematics
& Economics, 8, 77-95.

Heller, G. Z., M. D. Stasinopoulos, R. A. Rigby and P. de Jong (2007). Mean and dispersion modeling
for policy claims costs. Scandinavian Actuarial Journal, 4, 281-292.

Johnson, N. L., S. Kotz, and A. W. Kemp (2005). Univariate Discrete Distributions. Wiley.

Klein, N. , M. Denuit, S. Lang and K. Thomas (2014). Nonlife ratemaking and risk management with
Bayesian generalized additive models for location, scale, and shape. In: Insurance: Mathematics and
Economics, 55, 225-249.

Lemaire, J. (1995). Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publishers.

Picech, L. (1994). The Merit-Rating Factor in a Multiplicating Rate-Making model. ASTIN Collo-
quium, Cannes.

Pinquet, J. (1997). Allowance for cost of claims in bonus-malus systems, ASTIN Bulletin, 27, 33-57.

Pinquet, J. (1998). Designing Optimal Bonus-Malus Systems From Different Types of Claims.
ASTIN Bulletin, 28, 205-220.

Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale and
shape, (with discussion). Applied Statistics, 54, 507-554.

Rigby, R. A., and D. M. Stasinopoulos (2009). A flexible regression approach using GAMLSS in R.

Stasinopoulos, D.M., B. Rigby and C. Akantziliotou (2008). Instructions on how to use the gamlss
package in R, Second Edition.

Tzougas, G.and N. Frangos (2014). The Design of an Optimal Bonus-Malus System Based on the
Sichel Distribution. Collective book: Modern Problems in Insurance Mathematics, Springer Verlag.

Tzougas, G., S. Vrontos and N. Frangos (2014): Optimal Bonus-Malus Systems Using Finite Mixture
Models. ASTIN Bulletin, Volume 44, Issue 02, May 2014, pp 417-444.

37



