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Abstract

Brain-computer interfaces (BCIs) rely on accurate classification of event-related potentials (ERP), a task

commonly delegated to a machine-learning algorithm, which investigates features derived from the volt-

ages (V) recorded at different scalp locations with the electro-encephalogram (EEG). The performance

of the machine-learning algorithm is an area that has captured the interest of the research community.

Although major advancements have been made, BCIs suffer from uncertainties that arise from assump-

tions such as that participants are “focused”, “still” and that no unpredictable events occurred during the

recording, for example abrupt sounds or light changes.

From the range of possible uses of BCIs, one of the most challenging is its adaptation to everyday

life situations. Addressing both participant and environmental related influences to the EEG could enable

the usage of BCIs outside the confines of the laboratory. In addition, in order to create a BCI that can

act as an “enhancement” for the able-bodied requires a way to identify recurrent events without prior

knowledge, thus providing the user with a way to increment the “understanding” of his BCI. Moreover,

information such as location, latency and shape of recurring events could provide solid grounds for future

researchers to build upon.

In the thesis the above problem is challenged by investigating two main topics: assuming that the

neuro-signals are additive (i.e. uncorrelated), (a) the usage of the first time derivative of V (dV) as fea-

ture regarding performance in classification of an ERP, and (b) unsupervised clustering of ERPs. Both

investigations tackle the problem of mining properties of unknown neuro-signals. Theoretical investiga-

tions carried out on in each topic are performed using synthetic signals to assess the expected behaviour.

Using real data from a P300 BCI mouse, both topics were evaluated; the classification performance of

dV was found to be significantly better than V while evaluating a baseline for comparison. Having such a

positive outcome encouraged an attempt to create a single linkage unsupervised clustering method based

on statistical significance. Without knowing if an ERP was generated or not, the developed clustering

algorithm, based on dV, is shown to be accurate in identifying the shape of the underlying, “unknown”

ERP.

For years researchers have been constructing experiments to uncover EEG events directly related to

stimuli. An outcome of this research is that recurring EEG responses which might have been neglected,

simply because they were not expected, are now identifiable.
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Chapter 1

Introduction

Being able to control machines without any musculoskeletal activity through brain-computer interfaces

(BCI) can have multiple applications [4, 5]. Assisted living technologies based on this could provide

people with severe neurological injuries with a means to a life unhindered by their condition [6]. The

earliest BCI tackled communicating, giving the user spelling capabilities only by means of the electroen-

cephalogram (EEG) [7]. Since the first appearance of the BCI spellers, researchers have extended the

capabilities of these interfaces and tested various other applications such as robotic control and naviga-

tion [8, 9]. Using EEG and understanding the response to stimulation (event-related potentials, ERPs) on

the basis of location and latency is required for the aforementioned BCIs to perform accurately. Either

through transformations or selected properties, one can generate features that can be used to identify the

above-mentioned responses. The Speller exploited the voltage features of the EEG (V), and later publi-

cations introduced their concepts based on these. BCIs have yet to be proven efficient in the environment

outside the confines of the laboratory.

The current state of BCIs makes it very hard for them to be efficient in an every-day scenario when

used by the able-bodied as an enhancement. Both classification performance and information transfer

rates are being successfully improved by machine learning and a careful construction of stimulus presen-

tation, but BCIs are still confined to recognise events solely based on a priori information. In the case of

a BCI that aims to enhance the capabilities of an able-bodied user, EEG responses not only need to be

accurately identified, but also recognised autonomously, thus providing a way for the user to evolve the

BCI system through its usage. Evolving the usage of the BCI could possibly come in the form of a finer

classification of a single response, or as an addition of more, previously unknown responses, that can be

associated to more machine actions. Assuming that a user can monitor occurring events, if a response

was generated due to an event, a combination of machine algorithm and features can accurately identify

that response, but acquiring this a priori information is challenging.

Feedback-oriented BCIs aim at increasing the accuracy of classification by helping users identify

times where they were correct or incorrect [10, 11]. Such BCI systems have been employed in re-

habilitation. Since BCIs are restricted to the usage of known information/characteristics, they cannot

encompass new information, such as stimuli that have not previously been defined but are presented to

13
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the user through the environment. The strict pre-defined setups commonly used during laboratory exper-

iments, which aim at having explainable results, mitigate the problems of unpredictability and evaluation

of performance. That is, in a laboratory setting one can argue that the EEG responses are a direct result

of the experiment. When the BCI is therefore taken out of the laboratory, it is uncertain whether the EEG

responses are relative to the experiment, the environment, or both. Without an unsupervised process of

identifying responses, there is no way of distinguishing between environmental and experimental stimuli

with certainty. Evaluating the performance of the BCI outside the laboratory, then, is currently biased

since the user now feeds on more information than that solely produced by the experiment specifica-

tions. Thus, when evaluating the performance of the BCI one can only accept this bias with no means of

handling it.

In this thesis we evaluate the relative benefits of using the first order temporal derivatives of V (dV)

as input to the BCI. The usage of dVs in this manner is beneficial, at least for stimuli that produce

responses with large deviations in terms of V. ERPs produced by such stimuli are bound to produce

ripples which correspond to large changes in the potentials of the electric field. The contribution in terms

of classification of dV-based features in BCIs has not yet been thoroughly investigated and as such it is

of interest to evaluate the relative benefits of these features.

In general, derivatives have been used before in EEG analysis [12, 13, 14], mostly as a tool for

identifying rapid inflexions commonly produced during epileptic seizures. Differentiation as a measure

of rapid change has also been used in detecting haemoglobin changes in order to enhance Steady State

Visually Evoked Potential (SSVEP) classification [15].

In BCIs the usage of derivatives in literature is limited. Least square estimates of derivatives were

used as features transformed via Principal Component Analysis (PCA) in a BCI matrix speller [16, 17].

There they were found to provide benefits both in terms of training times and reduced classification errors

over amplitude-based features. However, no statistical test was performed to assess the significance of

this finding. In addition, combining V and dV features as in the aforementioned publications produces

no information on the performance of dV-based features. Thus, the question of choice between V and

dV features remains unanswered.

From another point of view, a relation exists between differentiation and wavelet analysis: reverse bi-

orthogonal wavelets, e.g. rbio3.1, can be used to extract regularised estimates of the first order derivative.

Wavelets have been used in BCI research in a number of ways, e.g. to create synchronous [18] and

asynchronous [19] BCIs. Also, the use of the continuous wavelet transform is a widely accepted method

for generating features which can later be used to classify ERPs [20, 21, 22, 23, 24]. To the best of our

knowledge, however, the interpretation of wavelets as regularised derivatives has not been considered

in BCIs. It may be possible that an automatic production of wavelets used in feature generation had

derivative-like results.

In this thesis, I aim to ascertain if dV features hold information beneficial to BCIs. In addition to

a baseline examination of dV as a feature, I will also be examining the case of extracting unknowingly

produced event-related potentials. To show the viability of this premise, a single-linkage hierarchical

clustering method based on the Kruskal-Wallis test was created, while knowing a priori only of the
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timing of an event, not their respective labels.

To begin, in the literature review (chapter 2), findings using information from V feature vectors, infor-

mation regarding BCIs and processing of the EEG is presented, concluding with information regarding

the data sets used in the analyses carried out in the thesis. The chapter aims to show the current focus

of the research in order for the reader to appreciate the novelty of the enhancement-BCIs concept, while

also providing a general understanding of the area. In chapter 3, first an investigation of the feature bases

(V,dV) is carried out (latency, location and bandwidth) in terms of classification performance measured

by the area under the receiver operating characteristics curve (AUC). Secondly, statistical evidence of

the superiority of dV over V features is given. In chapter 4, an investigation of unsupervised clustering

methods and criteria is carried out followed by an evaluation of an unsupervised clustering algorithm

applied to both V and dV. Finally, in chapter 5 some conclusions are drawn and ideas regarding further

investigation of dV features and clustering are presented.



Chapter 2

Literature Review

2.1 Information Transfer and Processing in the Brain

Information processing in the brain can be glimpsed at by capturing the changes in the electrical field

using the EEG at the scalp of the participant. Potential differences between electrodes unveil the col-

lective activity of similarly-oriented neurons, including background activity at different locations of the

scalp. Neurons not only transmit information involuntarily as a result of stimuli (event-related poten-

tials, ERPs)[25], but also on demand, e.g. thinking of moving the body’s limbs (motor imagery, MI)[26].

ERPs and MI are examples of recognisable variability captured by the EEG; steady-state evoked poten-

tials (SSEP) [27] and major rhythms [28] such as the α rhythm are also contained in EEG recordings.

Each of the above reflects aspects of the functioning of the brain and although they are usually separately

characterised in literature, in reality they may occur concurrently.

Major rhythms found in the EEG are usually denoted by α , β , γ , δ and θ . These EEG fluctuations

lie approximately within the following frequency ranges: α between 8−12 Hz, β between 12−30 Hz,

γ between > 30 Hz, δ between 0.5−4 Hz and θ between 4−8 Hz [28]. Such oscillations are common

between people, which suggests that the brain makes use of oscillation generators in order to carry

out various operations [29]. Pathological conditions have been found to modulate these rhythms. For

instance, autism has been found to influence the α rhythm; autistic subjects are able to perceive a larger

amount of information from a stimulus when compared to healthy subjects [30, 31]. This in turn suggests

that the α rhythm could be related to inhibiting brain activity.

In an attempt to explain these variations in the EEG, research indicates there is a ’top-down’/’bottom-

up’ way of communication between regions in the brain that acts as a means of synchronisation between

neuron complexes [32, 33]. The highly inter-connected neurons of the brain make use of tolerances (at

the synapse) for the propagation of information when communicating with each other. The post-synaptic

neuron’s membrane potential, when surpassed by the pre-synaptic neuron’s potential level, allows for

information transferred. These membrane potentials as described in literature are not constant in all

contexts and environments, but rather vary due to several factors, such as those described in [34] for

decision-making tasks.

16
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Motivating the usage of machine learning in the topic of neuro-signal recognition is the high com-

plexity of the recordings. The brain is a part of the human living organism and operates constantly

throughout life. Chemicals affect the EEG readings, e.g. smoking [35]. The total resistance due to

the material, composition and structure of the hair, skin, skull [36, 37, 38], meninges, brain matter and

brain lesions [39, 40] also affect the EEG. Additionally, the functionality of internal organs introduces a

variable influence in the EEG. Variable abnormalities in the EEG such as those created by cardiac and

respiratory cycles affect the measurements not only due to the brain functioning to maintain their opera-

tion but also by their effect on the movement of the brain: with both respiratory and cardiac rhythms, the

brain moves as a result of changes in blood vessel pressure. Modulations in respiratory cycles introduce

EEG fluctuations [41] while modulations in cardiac rhythms can be correlated with conscious arousal

[42].

2.2 Brain Computer Interfaces

Brain Computer Interfaces (BCIs)[7] utilise signal acquisition techniques to capture brain activity (such

as EEG) and signal processing to trigger actions from human to machine. BCIs rely on identifying an

EEG response with known psycho-physiological properties, i.e. the latency, location and bandwidth of

the response. The connectivity characteristics of recognised EEG responses also contribute to BCIs. In

MI BCIs, for instance, responses could occur in the right or left hemisphere depending on the laterality

of the body part imagined. Hybrid BCI attempts [43], i.e. BCIs that combine the EEG with multiple

data acquisition techniques for their operation, have been successful to some extent. BCIs are currently

implemented primarily as an assistive technology to tackle a range of impairment issues, e.g. trauma

rehabilitation and the robotic hand application [44].

The authors of the above-mentioned publication suggested that the challenge is to dynamically es-

timate and represent the user’s intentions relative to a changing environment. A changing environment

is challenging as random stimuli are presented to the user at unknown times. A constant environment

where stimuli are timed and controlled poses the challenge of interpreting the meaning of the responses,

whereas in the open environment this challenge is shadowed by increased difficulty in identifying the

responses in the EEG.

Some reasons [44] for restrictions in the application and effectiveness of most BCIs are low informa-

tion transfer rates between the operator and the machine, the inefficiency of pattern recognition capabil-

ities under noisy conditions, the inconvenience of the required equipment and the missing knowledge of

unexplained variation in signals.

BCIs mainly follow a common pattern of operation. The way in which the machine will be interacting

with the participant is commonly referred to as the paradigm. A paradigm contains a set of rules and

stimulation characteristics for the participant. For instance: “You will first hear a beep which will indicate

that the machine has started working (focus request). As soon as the machine starts, mentally visualise

moving one of your limbs (task). Keep the movement and the choice of limb constant, try not to move,

blink or swallow while you visualise (reduce EEG complexity).” In the above example the user was
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asked to mentally visualise a movement. Cues such as “(focus request)”and “(task)” are commonly used

to inform the participant when to operate under the paradigm. There are many different types of BCIs,

but all fall into two categories, synchronous and asynchronous 1. Synchronous BCIs make use of cues

not only while training the machine to identify a specific response but also while the BCI is in use.

Asynchronous BCIs use cues only during the training of the machine; later the BCI is used without cues.

It is common to instruct participants to keep their movements to a minimum since muscle movement

produces artefacts that hinder the machine learning process.

In order for the machine to be able to efficiently identify an EEG component and return the clas-

sification, a series of steps is carried out - the BCI pipeline. The pipeline differs between training the

machine and using the BCI. Varying EEG responses are distinguishable in different ways depending on

the physiological characteristics of their generation, e.g. oscillatory (MI) and synchronised firing (ERP).

Hence, a BCI researcher has to adapt EEG processing to fit the nature of the response. That being said,

there are some common steps needed to access descriptive information of the chosen ERP response. The

common BCI pipeline starts by splitting the EEG recording into segments according to the cues used

in the paradigm; the resulting segments are called epochs. Since electrical activity can only be viewed

through potential difference the next step is to reference the epochs. Referencing usually makes use of

the average potential from the two earlobe electrodes. Although this referencing procedure is commonly

used, a different selection of reference electrodes can also be used, e.g. referencing to the mean of all

electrodes. With the EEG recording epoched and referenced the final step is filtering, which aims to

remove noise and select bands where the EEG response is most dominant. Once the epochs have been

filtered, the next portion of the pipeline usually considers artefact removal. Artefacts are generated for a

number of reasons stemming from the environment - screen flickering for instance - or from involuntary

muscle movement - swallowing, eye blinks and movement, cardiac rhythms, and so on. Their impact

on the EEG is often visible even without processing of the signals and their effect on machine learning

and classification is enormous. There are two main ways to handle artefacts in BCIs [45]: one can either

identify epochs where artefacts have distorted the signals and reject them, or attempt to restore responses

in the epochs by removing the effects of the artefacts.

The researcher now has epochs which are referenced, filtered and less contaminated by artefacts.

This is the stage at which BCI researchers usually extract features from the epochs. Feature extraction

has been a step at the core of BCI research since its very beginning [46, 47, 48, 49, 50]. Since this thesis

also evaluates the usage of the derivative as feature, a separate section is devoted to feature selection 2.4.

Once the features have been extracted from each epoch, the next step is usually referred to as the training

of the BCI; this focuses on machine learning [51]. The use of machine learning is very common in BCIs,

the main reason being its accuracy, despite the question of efficiency arising by the training required.

There is no unique machine learning classification algorithm used in BCIs, but common preferences

are evident throughout the literature. Linear classifiers such as Support vector machines (SVMs) and

the linear discriminant (LDA) are amongst the most popular in BCIs. The machine learns the feature

composition of the epochs – one representing a hand movement for instance – and is able to produce a

1In literature this categorisation can also be found as cue-based BCIs and non cue-based BCIs.
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classification for unseen data thereafter.

2.3 Event Related Potentials

Neurons within the brain tend to synchronise their firing in response to a specific event; this produces

measurable voltage variations on the scalp, which are called event related potentials (ERPs) [52]. Hence

ERPs are time-locked to a sensory event, i.e. a stimulus. Mental processes are associated to such events

and the EEG provides a means of capturing such ERPs. ERPs that appear approximately within 100

ms after stimulus presentation are termed “sensory” or “exogenous”; physical stimuli parameters have

been found to vary in these early ERPs [53]. Later ERPs are thought of as the subject’s evaluation of the

stimulus. Such ERPs are commonly referred to as “cognitive” or “endogenous” [46].

Currently ERPs are characterised by their latency and amplitude, i.e. when they appear relative to the

stimulus and the intensity of the reading. These are found to vary according to the psychological state

of the subject and stimulus characteristics. They can be told apart by their names as follows: if the wave

is positive then the prefix P is used followed by its approximate occurrence time after stimulus onset.

In contrast, if the wave is negative, then the prefix N is used and is similarly followed by its occurrence

time stamp. By using this convention, known waves can be distinguished, e.g. N200, P300. A second

convention for naming concerns a wave’s peaks; in addition to P or N, a number indicates the order of the

peaks time-wise, e.g. a first positive would be P1. The components of the wave are usually denoted by a

suffix letter; for instance for the auditory N200 wave (using the first convention), the first component is

denoted by N2a (using the second convention, also found as mismatch negativity, MMN).

There is a vast amount of ERPs that could be considered for the purposes of the thesis. Nevertheless,

to compare the derivative of the EEG as a feature, the counterpart of the comparison must be a feature

with known capabilities, i.e. the amplitude. Since amplitude features are very commonly used in P300-

based BCIs, selecting the P300 ERP would be suitable for the above-mentioned comparison.

2.3.1 The P300 Wave

As described in the previous section, the label “P300” refers to a positive inflection in the EEG which

occurred about 300 milliseconds after stimulus presentation. As a neuro-signal, the P300 is the synchro-

nised activation of neurons from a stimulated region of the cortex.

This cognitive wave appears when a mental task is associated with a stimulus. The P300 wave has

been observed in contexts other than BCIs [54, 55, 56], but as an example, the BCI-“speller” [7] will

be used. During this experiment, a participant with the EEG measuring their brain activity is positioned

facing a screen that depicts an array of letters flashing in random order. Prior to the trial the participant is

instructed to focus on a specific letter. If the column/row of the letter in focus flashes, the EEG recordings

show a positive fluctuation about 300 ms after the stimulus (flashing) has occurred.

The amplitude of the P300 wave has been found to vary due to inter-stimulus interval, sequence

length and target probability. More precisely, as described in [57], if stimuli are presented rapidly the

amplitude of the P300 wave and its latency decrease. Conversely, as the rate of stimulus presentation
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decreases, the amplitude of the P300 wave increases. The element of surprise also plays a role as the

amplitude of the P300 wave is greater in situations were the stimulus appearance cannot be predicted

from previous stimuli. 2

The P300 has two components, P3a [59] and P3b, associated with short-term memory updates. This

is the context update theory [60], which states that the P300 triggers the brain to update its context due to

a change, signified by the stimulus. The discrimination between P3a and P3b is that the former is elicited

by task-relevant stimuli, and the latter by a go-no go classification task [61]. Focusing on a particular

letter in the speller paradigm, therefore, creates a P300 wave signifying the need to update the context

due to the occurrence of a predefined requested change – the flash. If the subject was directed to keep a

mental count of the number of flashes, then a P3a would be generated.

There have been considerable advancements in our understanding of the characteristics of the P300

wave, using EEG (high temporal resolution) and joint EEG and fMRI (high spatial resolution) experi-

ments [57, 58, 62, 63, 64]. Joint EEG and fMRI analysis on P300 components has been conducted by

[62], and they have shown a clearer representation of both the neuronal network communication and the

occurrence of ERPs. A well aimed approach built on evidence from prior experiments revealed infor-

mation on stimuli relevant to the user (self-relevant) in the context of the P300 being seen as an index

of attentional resources [65]. The authors showed that when elicited by stimuli relevant to the user,

such as a picture of a family member, the amplitude of the P300 wave was higher than that of the P300

wave elicited by non user-relevant stimuli – a picture of an unknown person, for instance. This indicated

that the brain might use the wave to allocate resources such as memory or simply that the wave is a

manifestation of the process.

Previous investigative work summarised by [60] has also hinted that the P300 originates from task

definitions which involve the use of working memory. When the subject is instructed to watch a letter

and count the number of flashes of that letter, it has been found that the P300 amplitude decreases when

the primary task difficulty is increased. Also, ultradian rhythms have been found to contribute to P300

variation in latency and amplitude [66, 67]. These rhythms are recurrent cycles throughout a 24-hour

circadian day consisting of a collection of biological processes such as testosterone secretion and bowel

movement, which display oscillations of approximately one day.

In [68], the amplitude and latency of the P300 wave has been investigated in subjects with normal

and obscured vision. Results suggested that the amplitudes for subjects whose vision was obscured

were lower than for those with normal vision. Obscured vision is characterised by loss of information.

According to the context update theory, the P300 would signify a smaller amount of resources needed to

process the information received, when compared to normal vision subjects.

Experiments conducted on twin and family studies based on amplitude and latency of the peak of

ERPs suggest that genetic similarity can affect ERP similarity [69]. Thus, structural/functional similari-

ties of brain neuronal complexes between subjects are likely to become apparent in subjects with similar

genetic makeup.

Another topic of research that has received attention mainly due to the difficulty it produces in P300

2Work on the P300 amplitude also highlights the subjective and objective probability effects [58].
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measurements is eye-blinks [70]. Along with other ocular artefacts such as eye-moving muscle interfer-

ence, eye-blinks during a P300 experiment can severely distort ERPs. Unfortunately the probability of

blinking during an experiment is not small [71, 72]. Eye-blinks are also of general scientific interest as

their occurrence can be intentional or unintentional [73] and their function is associated with clearing

short-term memory.

Several studies tackle the interpretation of the P300 wave and its components, and the above is a very

small sample of the literature available on the topic. As suggested initially, the importance of the P300

wave in this thesis is that it is hidden within the noise; ’within’ here suggests that the signal to noise ratio

approaches unity, i.e. the noise amplitude is equal to the signal amplitude. As discussed in later sections,

this fact has resulted in the interpretation of ERPs (in an EEG experiment) being restricted to averages.

2.4 Features of Event Related Potentials

Attaining complete control of the machine without limb movement is the primary goal of BCIs. The

enormous quantity of information and complexity in inter-communication of the brain has created a

need for powerful, reliable feature extraction methods. Some which are considered in modern ERP

feature extraction and selection literature are stated below.

The main stumbling blocks these methods tackle are the accurate classification of an ERP, their

distinguishability and a reduction in dimensionality. Even current state-of-the-art classification methods

cannot cope with the vast amount of information at hand. Hence, in part feature extraction encompasses

areas such as feature selection [74]. The most common form of feature selection in literature is sub-

sampling, widely used to narrow down the choice of data in order for classification to be optimised and

avoid over-fitting when classification algorithm use is based on machine learning. Descriptive features,

e.g. [75], are usually extracted depending on the nature of the response, i.e. requiring prior information

to be known regarding the EEG response.

Feature extraction has resulted nowadays in a set of steps. Re-referencing is performed prior to

filtering, followed by down-sampling, thus accounting for aliasing. Then a desired window is selected,

usually based on a cue or label which represents events such as stimulus onset and response. This

process is known as epoching (sometimes referred to as “windowing”). The resulting epochs are then

further processed depending on the nature of the task [76]. For example, in motor imagery features can

be extracted through various frequency bands, whereas in cognitive-based ERPs, properties in the time

domain may prove to be more useful.

There are numerous methods reported in literature regarding the general category of feature ex-

traction/selection. These include features derived by mutual and other information-based approaches

[77, 78, 79], Fourier and other transforms [80, 22], power spectral density [81] and Fisher and other

ratios [82, 83]. Selecting between features has also been approached in the literature [74, 84, 85, 86].

Electrode selection could also be included as a part of feature extraction. It is common for a single

electrode not to be sufficient for the production of accurate results. Also, it may be the case that not all

electrodes capture the events taking place. Moreover, the electrode location can be used as a feature on
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its own, for instance to provide information regarding the laterality of the imagined movement. Selecting

a number of electrodes to use could be done empirically and systematically. Common spatial patterns is

an algorithm widely used for this purpose [87].

A feature vector is usually used to denote the resulting features that are passed to the classifier.

In literature it has been noticed that multiple features can boost the performance of the classification

[88, 89]. Features as such are referred to as combined features and they can be a simple concatenation

of different features, weighted sums or even complicated manipulations of sets of features.

2.4.1 Independent and Principal Component Analysis

Two of the most commonly used tools of ERP analysis are the Independent and Principal Component

Analysis (ICA, PCA respectively), methods widely used due to their power of decomposition of ERPs to

components by the use of different sources [90, 91]. Essentially both methods are transforms, commonly

used to produce features that are better separated than the original signal. Hence, in terms of feature

extraction, the methods are applied to each epoch and a set of transforms is extracted. From the set

of ICA/PCA features, a simple selection policy could be used in order to single out the features that

can differentiate different responses better. Thus, the decomposition of the epochs into components that

are separable from each other helps the classification process, especially when the machine is trying to

linearly separate the responses (using an SVM with a linear kernel, for example).

The method has shown promise in tackling the issue of blind source separation [92, 93] for the

purpose of identifying P300 components, provided it is performed on averaged ERPs, as a low signal-to-

noise ratio will jade the results of the methods. Although the element of blind source separation remains

a problem, it has attracted the attention of the research community, with further research being conducted

[94].

One of the possible pitfalls while attempting to yield physiologically meaningful results with these

methods is the likelihood of deriving significant relationships based on ERP components [95, 96]. Such

analysis has been used for the habituation of the P300 wave and further hypotheses [97, 98]. Although

there is no guarantee that the ICA/PCA components will have a physiological meaning, it is not unlikely

that some may.

2.4.2 Common Spatial Patterns

Another major transform frequently used in BCI research are the common spatial patterns (CSP) [87].

The method produces sub-components that are separated maximally in terms of variance. In essence,

this technique uses filtering to establish the best sub-component to use for the purposes of classification.

In multi-class BCIs it is very common for the classes to be intertwined in the feature space and with the

help of CSP these features can gain the separability required for the classification process to be accurate.
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2.4.3 Eigenbrains

A recent representation of EEG signals proposed by [95] uses a different transformation. The method

constructs a model of the brain, such that neurons are represented by masses and connections as springs.

The interaction between electrodes is represented as weights in a matrix wi j where i, j are the sources

(electrodes) and si j the voltage difference between sources, hence for two distinct electrode locations

their interaction is described as wi j = 1/(0.001+ f (si j)). The f (si j) function as reported by [95] can be

the mean absolute error or the root mean squared value of si j. The eigenvectors of the matrix wi j have

been named eigenbrains.

Compared to other methods such as PCA and ICA, eigenbrains are shown to be competent and

provide a clearer depiction of relationships between electrodes.

2.4.4 Filtering

Filters in signal processing cover the time, space and frequency domains. Their characterisation refers

to the functionality of the filter and the nature of the data. Two major categories of filters can be used

to separate the majority of filters with respect to data: discrete/digital and continuous/analogue. Filters

are further distinguished in terms of linearity, time-variance, usage of external power (e.g. amplification)

and impulse response [99]. Filtering is extensively used in signal and image processing to separate noise

from valuable data or even to remove unwanted correlations within the data.

EEG recordings are a product of oscillatory and excitatory superposition, both from inter-cranial

processes and external influences. One of the most common influences one may find in the recording is

that of the power mains, which introduce a steady oscillation. Filtering has been extensively used in BCI

research and literature on filtering techniques is continuously being refined for specific BCI types (e.g.

[100, 101, 102]).

Band-pass filtering is one of the most commonly used filtering techniques in feature extraction since

it provides a way to target specific bands. Filtering can be used to estimate the derivative of a time

series and has been introduced in literature as an edge detection approach [103]. This technique has been

applied to the analysis of medical images such as for the extraction of retinal vessels [104, 105].

2.4.5 Wavelet Analysis

Wavelets have been used in the analysis of the EEG by various researchers; either as a feature or a

pattern recognition method, wavelets show promising results in various applications [106]. A wavelet

is best described as a short-term oscillation which begins with zero amplitude and ends similarly. An

example of a wavelet is the widely known mexican hat. The convolution of the wavelet with a signal can

show areas with high correlation between the two. In literature the term “mother wavelet” is commonly

used to denote the prototype wavelet. By changing the shift and/or scale parameters of that mother

wavelet, one can generate an infinite amount of children wavelets. Although discrete wavelets exist, the

majority of EEG analysis is conducted by continuous wavelets transforms (CWT) [107].
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The mother wavelet, depending on its definition, could provide results similar to the Fourier trans-

form or differentiation. For example, the mexican hat has been used in the identification of the extrema

of a signal, i.e. its maxima and minima. The definition of the “mother wavelet” can be changed to

indicate the behaviour of the 1st derivative. Since the CWT is in essence a convolution, similar results

can be obtained by using filtering. For instance, when the synthetic data are filtered using the first order

derivative of the Gaussian the resulting signal is near identical to the differentiation process.

Wavelets in BCI research have been used in different ways. Many researchers use the CWT in order

to generate features which can later be used to classify ERPs [20, 21, 22, 23, 24]. The versatile, adaptable

and smoothing nature of wavelets is valuable in EEG analysis. In the literature various researchers have

published single trial, adaptive [18] and asynchronous [19] BCI systems based on wavelets.

2.5 Averaging

The possible applications of BCIs are constantly increasing but in their current state they are limited

in terms of speed and accuracy [44]. A reasonable cause of the error could be that ERP variants were

elicited during the test or training phase of the experiment, which may heavily affect the classification

process. These variants, which were shown in [96] to differ from the output of the average, can be

important; however they cannot be captured by the traditional averaging process [52].

This masking of ERP variants can partially be attributed to the fact that the signal to noise ratio (SNR)

of the ERPs is very low. Hence, a large sample is needed by the average in order to produce an ERP of

recognisable shape. The presence of noise and the limitations of averaging (and any variants) are known

and have been investigated in [108, 109, 110].

Shape and latency characteristics are very difficult to retrieve for individual trials. Most ERPs are

hidden within the brain’s ongoing activity, which can severely deform their characteristics. Variations

of the averaging method such as weighted averaging and probabilistic averaging [111, 112] have been

introduced to minimise the deformation of the averaged ERP due to the presence of out-liers. Still, there

is no averaging method currently available that could extract or describe any variability among the ERPs

in an experiment.

Although optimistic, it would be beneficial to capture any distinct variability of the shapes, latencies

and amplitudes of ERPs, that is, if such variations manifest during the experiment. A powerful moti-

vation in this research are the results of [96]. The authors have shown that variants of the same ERPs

could be elicited within an experiment. Moreover, the authors contemplated the use of traditional av-

eraged EEG responses due to the keyhole effect of the averaging process, i.e. identifying the common

variation between signals but destroying any non-common variation. This effect helps uncover common

characteristics between ERPs but it does so at the expense of minor, possibly valuable, variability.
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2.6 Clustering

Clustering of EEG signals has been investigated before; in [113], clustering was used to allocate similar

responses to groups using recordings from monkeys. The majority of non-invasive BCIs has been em-

ployed in topographical analyses of EEG sources [114, 115]. Their programme of research is concerned

with the classification of different ERP components (e.g. the N100, N200, P100 and P300 components)

and their relations with neural network functionality. In our line of research we aim to use clustering to

identify similar mental processes between different trials that elicited the same ERP.

2.6.1 Distances and Similarity Measures Between Feature Vectors

There are many clustering criteria; the ones commonly used in the literature are based on non-parametric

similarity tests, distances from centroids, and information theory measures [116, 117]. Since the number

of samples taken by the EEG are countable, the discrete versions of distances will be used.

n-Euclidean is the multidimensional version of the geometric distance metric evaluated as dED(p,q) =√
n
∑

i=1
(pi−qi)2, for i being the elements of a feature vector.

Manhattan is a block distance between points; it is calculated by dMan(p,q) =
n
∑

i=1
|pi−qi|

Kolmogorov-Smirnov is a non-parametric test between two empirical cumulative distribution functions

with test statistic Dn,n′(p,q) = sup |qecd f − pecd f |, where Xecd f (x ∈ X) = 1
n

n
∑

i=1

1, i f xi ≤ x

0, otherwise

Wilcoxon rank sum is a non-parametric test between paired data with test statistic W (p,q) =

|∑sgn(pi−qi)ri|, where sgn(pi− qi) is the sign of the result and ri is the rank of the difference

when sorted, with r = 1 being the smallest.

2.6.2 Comparison Methods for Groups of Feature Vectors

Kruskal-Wallis is a non parametric test for homogeneity between groups. If the group is non homoge-

neous, then the method fails to identify which elements of the group are causing the homogeneity

to fail.

Centroids of groups and distances between them could be used to estimate how far apart groups are

from each other. By selecting any of the proposed distance or similarity measures a new Centroid-

based method could be generated.

Temporal Evaluations are based on a similarity measure. They apply the similarity method temporally,

i.e. at each given time, hence evaluating the temporal similarity between members of two groups.

2.7 Considerations on Handling Event Related Potentials

Specifically, in P300-based BCI literature it is common practice to perform a series of trials to compen-

sate for the high noise levels where the ERP is hidden, e.g. [118, 7]. There are current studies which
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evaluate performance of classifiers using single trial methods and low trial methods (typically < 3) but

their accuracy is easily affected by the rate of stimulus presentation [44]. The methods used to improve

the signals, as discussed in the previous sub-section, mostly depend on variations of averaging, e.g.

[119, 111].

Averaging distorts the original signal, revealing its main components but destroying any other minor

variability. As shown in [120] and discussed in [121], stimulus-induced rhythmic EEG activity, which

is not phase-locked to an event, is also contained within individual trials; this activity is not detected by

averaging. Time domain processing techniques such as linear averaging remove non phase-locked EEG

activity by phase cancellation. Existent variants of the mean are prone to outliers and heavy tails, e.g.

[109].

In the work done by [122], spectral analysis has been criticised on its use in the analysis of evoked

potentials. The authors comment on the validity of spectral analysis and suggest that although brain

dynamics are commonly analysed by linear systems (such as the fast Fourier transform), the brain is a

highly complex, non-linear system. Moreover, the authors point out the need for multiple trials for the

averaging process and also showed that the spectral power curves for the input signal were vastly different

when compared to the output from the above methods. The authors conclude suggesting that the evoked

potentials hidden within other brain activity cannot be estimated by the results of such analysis.

Regarding the interpretation of averaged ERPs, suggesting that they approximate the true ERPs is

wrong [96]. The average of a collection of epochs, thought to contain an ERP, is no more than an

estimator of any time-locked events that occurred throughout the epochs. The method’s output cannot

be regarded as an ERP itself. The authors suggested that the current averaging methods fail to provide

inference on the true ERP. Thus, inferring to a P300 response using an averaged response could be

erroneous. It is difficult to assume that there is a distinct ERP or that target stimuli elicit the same ERP

without a pre-averaging classification of ERPs. Yet in literature averaged ERPs are widely used as a

method of finding ERPs and evaluating their physiological meaning.

Recent research has shown that different averaging methods used for the same data-set yield different

results; a binning method was proposed to increase the resolving power of ERP averages, and the results

reported showed significant variations in the components of resulting ERP epochs [96].

2.8 Paradigm and Data Acquisition

The data-set used in the thesis was acquired using a P300-based BCI mouse [123, 96, 124, 125, 126],

with a periodic stimulation protocol. In the paradigm, 8 circles were distributed around the centre of the

screen in front of the participants (see Figure 2.1, page 27). The circles flashed in a sequential manner in

different colours: green and red. The participant was instructed to focus on the circle corresponding to

the desired direction of pointer motion and to mentally name the colour of its flashes to strengthen ERP

responses. Non-flashing circles were coloured grey and the duration of the flash (stimulus) was 100 ms,

with no delay between flashes. The experiment was carried out with 16 participants. All participants

were comfortably seated and asked to minimise movements and blinks during the experiment. Data
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Figure 2.1: Stimulus presentation of the P300 based BCI mouse. From left to right: initial display and

three sequential stimuli.

were acquired from the Active-II BioSemi system at 2048 Hz, using 64 electrodes, allocated according

to the international 10-20 system, while measurements from the earlobes were used for referencing.



Chapter 3

Derivatives and Features

The majority of BCI literature focuses on amplitude-based features since the P300 is characterised as an

intense wave captured throughout the surface of the scalp. In BCIs, the existence of an ERP is not the

only information that is sought after; differences between the characteristics of ERPs, i.e. their source,

latency, and propagation, may provide useful information. The amount of information a BCI can extract

relevant to a task is a major factor of its applicability.

3.1 Theoretical Investigation of the Derivative

Theoretically one can show that the variance of the derivative is twice that of the amplitudes. Let us

assume that the equation of the amplitude of the EEG can be given by:

vi(t) = si(t)+ni(t)

where i is class, e.g. P300 ERPs, s is signal and n is noise, i.e. any influences from the working of the

brain coming from deeper regions, are assumed to be additive and uncorrelated to si. Then the standard

deviation of the amplitude can be calculated as:

σ
2[vi(t)] = E[vi(t)2]− (E[vi(t)])2 =

E[(si(t)+ni(t))2]− (E[si(t)+ni(t)])2 =

E[si(t)2]− (E[si(t)])2 +E[ni(t)2]− (E[ni(t)])2 +2E[si(t)ni(t)]−2E[si(t)]E[ni(t)] =

σ
2[si(t)]+σ

2[ni(t)]+2E[si(t)ni(t)]−2E[si(t)]E[ni(t)] =

σ
2[si(t)]+σ

2[ni(t)].

Similarly for the derivative, using the forward approximation (forward difference) and the same

assumptions, the standard deviation is:

σ
2[di(t)] = E[di(t)2]− (E[di(t)])2 =

E[(si(t +1)− si(t)+ni(t +1)−ni(t))2]− (E[si(t +1)− si(t)+ni(t +1)−ni(t)])2 =

28
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E[si(t +1)2]+E[si(t)2]+E[ni(t)2]+E[ni(t)2]

−2E[si(t +1)si(t)]+2E[si(t +1)ni(t +1)]−2E[si(t +1)ni(t)]

+2E[si(t)ni(t)]−2E[si(t)ni(t +1)]−2E[ni(t)ni(t +1)]

−((E[si(t +1)])2 +(E[si(t)])2 +(E[ni(t)])2 +(E[ni(t +1)])2

−2E[si(t +1)]E[si(t)]+2E[si(t +1)]E[ni(t +1)]−2E[si(t +1)]E[ni(t)]

+2E[si(t)]E[ni(t)]−2E[si(t)]E[ni(t +1)]−2E[ni(t)]E[ni(t +1)]) =

E[si(t+1)2]−(E[si(t+1)])2+E[si(t)2]−(E[si(t)])2+E[ni(t)2]−(E[ni(t)])2+E[ni(t+1)2]−(E[ni(t+1)])2

−2E[si(t +1)si(t)]+2E[si(t +1)ni(t +1)]−2E[si(t +1)ni(t)]+2E[si(t)ni(t)]

−2E[si(t)ni(t +1)]−2E[ni(t)ni(t +1)]+2E[si(t +1)]E[si(t)]−2E[si(t +1)]E[ni(t +1)]

+2E[si(t +1)]E[ni(t)]−2E[si(t)]E[ni(t)]+2E[si(t)]E[ni(t +1)]+2E[ni(t)]E[ni(t +1)].

By assuming that the noise is white, the above becomes:

σ
2[si(t +1)]+σ

2[ni(t +1)]+σ
2[si(t +1)]+σ

2[ni(t +1)]−2E[si(t +1)si(t)]+2E[si(t +1)]E[si(t)].

If one sample corresponds to a very short amount of time, then

σ
2
i (t +1)∼= σ

2
i (t).

Thus,

σ
2[di(t)]∼= 2σ

2[si(t)]+2σ
2[ni(t)]−2E[si(t +1)si(t)]+2E[si(t +1)]E[si(t)].

Now, given that a baseline removal process was applied it is reasonable to assume that si has zero

mean, hence

σ
2[di(t)]∼= 2σ

2[si(t)]+2σ
2[ni(t)]−2E[si(t +1)si(t)].

The derivative in terms of signal processing acts as a high-pass filter. From the equations above,

one can understand that if the si is a low-band signal then the expectation of the product of the signal

at adjacent samples is positive, thus reducing the variance of the derivative. On the other hand, if the

signal is high-band then the expectation of the product of the signal at adjacent times is negative, which

consecutively adds to the variance. If the expectation of the product is zero, then it is clear that the

information from the derivative is similar to that of the amplitudes, while the variance of the derivative

is twice that of the amplitudes.

In theory, the EEG can be re-constructed from its derivative, thus suggesting that the derivative holds

important information about the amplitude. The increase in variance for high-band signals shows that

there is more information hidden within the derivative rather than the amplitudes. One cannot be certain

whether this increase in information contributes to the ERP or is irrelevant. Since the focus of researchers

has been the identification of the ERP and amplitudes have produced reasonably good results, literature

on exploiting derivatives is scarce. It is still unknown whether the increased variance of the derivative

can provide more valuable information than the amplitudes.
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3.1.1 Empirical Validation of the Theory

To test the theoretical analysis, firstly synthetic signals are created as shown in Figure A.1, page 71.

Using a sinusoidal model, the signal (a) is added to white noise, thus creating a first set of synthetic

signals to test (b). Since the construction of the synthetic data (a) is very close to the definition used in

the theoretical analysis, it is expected that the standard deviation is going to behave as predicted by the

theory. In this case, the amplitude is expected to have half the variance of the derivative since for the

synthetic data, si(t +1)∼= si(t).

In the synthetic data used to produce Figure A.2, on page 72, there is no filtering performed. On

page 72, Figure A.3 shows the effect on standard deviation having low-passed the data. The standard

deviation of the resulting synthetic ERPs is now clearly not abiding by the theory. The same behaviour

can be seen in real data (described in section 2.8, page 26).

In the real data we can expect three responses;(1) a P300, which is elicited by the stimulus, (2)

a SSVEP which is the direct outcome of the periodic stimulus presentation and finally, due to colour

changes and the expectation of the participant, there is a chance that (3) an MMN is also elicited. Figure

A.4 (page 73) shows the standard deviation of both the first derivative and the potentials, using the raw

data.

The standard deviation of both the voltages and the derivative is very similar to that of the low-passed

synthetic data results. After closer investigation on the hardware used in the experiment, the digitisation

process has been found to make use of a low-pass filter. By introducing a notch filter and clearing the

data from the SSVEP component the standard deviation of the potentials drops significantly (Figure A.5,

page 74). The removal of further contamination such as MMN, respiratory and cardiac cycles requires

information which was unavailable at the time of this research.

3.2 The First Derivative as a Feature

EEG recordings can provide data with high temporal resolution. The core of a BCI’s operational capacity

is the classification part, commonly tackled by machine learning. In the process of teaching the machine

to recognise or distinguish between classes, there is always the challenge of over- and under-fitting the

data-set. The majority of BCI experiments split their recordings into training and testing sets. While

training the classifier, one must have at least as many examples as the amount of information passed to

the classifier (features).

Since the sampling rate of the recording in time is usually more than the number of ERPs one can

capture during a training experiment, the machine learning element of the system cannot learn properly,

so the research community has developed several methods to mitigate this. Sub-sampling is one of the

most commonly used methods for simplicity. Window selection is an approach which aims at both the

dimensionality reduction and the quality of the feature vectors. Another way researchers go about this

issue is splitting the feature set into different classifiers which are later used in deciding the classification

outcome.

The quality of a feature can be estimated in terms of the resulting accuracy and success of the clas-
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sification process. Ultimately, a perfect set of features in the case of a P300 BCI would consistently

identify the existence of the P300 when stimulus is presented. Hence, for the purpose of this compari-

son an ensemble of linear SVM classifiers is used. To ensure that each classifier performs adequately, a

grid search was conducted using the mutual information criterion, in order to select the best possible C

parameter.

3.2.1 Window Selection for P300 Features

Figure A.6 shows the theoretical AUC calculated by using the assumption that the temporal distributions

of dV are normally distributed, that is, the distribution of the dV at each sample. By assuming such a

premise one can obtain per-sample theoretical AUCs (area under the receiver operating characteristics

curve) by calculating the overlap of the probability density functions for dV(T) and dV(NT) epochs (T

if the stimulus was the target of interest and as NT otherwise).

In practice, most researchers follow the same feature extraction methods for the detection of a P300:

epochs of 800ms and sampling rates of 32-64Hz. As seen in Figure A.6 (page 75), the amplitudes of

the P300 differ between Ts and NTs in a wide centre part of the epoch. Hence, sub-sampling from

the initial recording frequency (2048Hz) to lower ranges not only improves the difference by removing

samples that contain cumbersome oscillations, but also reduces the number of features that are correlated.

Contrary to the above, theoretical AUCs based on the first derivative indicate dV have differences in a

narrow window at 300-400ms after stimulus presentation (see Figure A.7, on page 76). The time period

indicated by this process is compatible with the ERP at hand (here believed to be a P300, i.e., an increase

in activity 300ms after stimulus onset).

In this case, excessive sub-sampling and a wide window would hinder the classification performance.

Furthermore, the usage of the whole epoch as a feature will hinder classification performance since the

amount of valuable information can only be derived from a small set of samples. The above can be

confirmed by looking at the AUCs calculated using a moving window and a real classifier. As seen in

Tables 3.1 and 3.2, as the window moves from 0ms (after stimulus onset) to 800ms in steps of 100ms,

the AUCs for the derivative are attaining their maximum at only one step. As expected, in the same test,

the ERP itself shows increased AUCs in most of the 100ms windows, including that of the derivative.

It is of interest that the classification here, for different participants, is better at varying time intervals.

Although the probability of partially capturing the P300 in both windows (200-300ms and 300-400ms)

exists, it is also possible that participants with high AUCs during the 200-300ms time window actually

elicited a MMN rather than a P300.

3.2.2 Sparse Window Selection using Amplitude Features

The generation of the P300 wave consists of synchronised firing of neurons. When the firing of a neuron

is completed, a resting (or decay) period follows [52]. In between these two processes the ERP attains its

maximum potency and it is usually in this region that researchers can identify the existence of an ERP.

Selecting features according to ADM is justifiable since it is assumed that the noise present in the
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P .0-.1 .1-.2 .2-.3 .3-.4 .4-.5 .5-.6 .6-.7 .7-.8

1 62.0 55.5 67.9 72.0 60.9 58.0 62.2 54.5

2 55.8 63.4 65.1 80.1 63.1 59.2 59.8 57.4

3 57.1 65.3 75.5 69.6 63.5 62.7 53.6 58.8

4 56.0 60.9 65.4 69.3 67.3 56.4 56.1 51.3

5 55.5 70.0 61.2 73.5 64.2 60.2 54.3 57.0

6 55.4 55.8 56.6 56.1 57.2 53.1 56.6 56.5

7 58.6 64.5 72.0 73.1 64.1 63.3 55.9 53.3

8 58.5 66.8 69.2 65.6 57.0 52.8 62.0 59.5

9 56.3 62.6 70.5 68.5 65.8 66.0 59.9 55.2

10 63.6 72.2 75.4 74.0 63.6 52.3 59.8 61.0

11 62.3 65.3 61.4 62.4 71.5 65.1 58.0 52.3

12 59.0 66.7 71.6 78.7 75.7 70.2 57.9 56.8

13 52.8 69.3 72.9 65.1 62.0 53.9 54.2 54.3

14 59.4 68.3 82.4 79.9 63.1 68.7 65.9 53.4

15 54.1 54.9 66.2 64.8 62.9 63.2 52.7 50.2

16 62.7 57.2 56.2 61.4 58.3 60.2 64.5 56.5

Table 3.1: Area under the receiver operating characteristics curve (AUC) as a percentage resulting from

an 8-fold cross-validation using an ensemble of 3 SVMs and a moving window of 100ms. Results for

dV.

P .0-.1 .1-.2 .2-.3 .3-.4 .4-.5 .5-.6 .6-.7 .7-.8

1 69.8 74.1 82.2 89.9 85.1 85.1 75.8 70.0

2 68.6 73.0 77.7 85.5 82.0 77.3 68.7 59.6

3 67.6 74.0 85.3 84.3 71.7 67.0 62.2 63.3

4 69.3 74.8 77.1 81.7 82.4 72.6 67.1 64.3

5 77.5 79.6 76.1 84.2 76.9 74.4 71.8 69.4

6 65.6 68.2 70.3 77.8 75.4 68.9 64.1 64.9

7 70.9 74.7 79.4 81.9 79.2 77.4 68.2 68.1

8 71.7 79.4 84.7 87.7 84.6 82.2 81.6 74.3

9 69.5 74.6 81.9 84.1 82.9 79.7 69.1 65.8

10 76.6 86.7 88.2 87.8 81.3 77.8 72.2 70.7

11 65.8 69.7 74.6 77.7 80.2 78.6 70.3 64.7

12 72.0 77.6 84.6 87.9 85.7 79.8 65.5 63.9

13 72.5 81.0 86.2 87.1 77.7 71.5 67.3 66.2

14 75.9 80.0 91.5 92.0 85.3 82.0 75.2 65.6

15 60.8 64.6 77.9 76.2 74.8 75.2 64.1 60.4

16 70.8 67.8 69.2 78.2 74.4 78.2 79.3 74.0

Table 3.2: Area under the receiver operating characteristics curve (AUC) as a percentage resulting from

an 8-fold cross-validation using an ensemble of 3 SVMs and a moving window of 100ms. Results for V.
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data in each class is approximately identically distributed. Thus the ADMs correlate well with the clas-

sification accuracy provided by the selected feature (used in isolation). The application of this feature

selection method to each channel independently ensures that feature vectors contain an equal number of

samples from every recording site. This was expected to give more robustness to the resulting classifiers

as noise at distant sites is less likely correlated, and more likely to cancel out. Furthermore, we made

available the whole epoch to the selection method as ERPs manifest themselves at different times at

different sites. Also, dV may pick up useful information from both the polarisation and depolarisation

fronts of an ERP, which are, perforce, before and after the traditional locations of known ERPs.

Figures A.8 and A.9 (pages 77, 78) illustrate the behaviour of our sample selection algorithm for each

channel, participant and EEG representation (V and dV). For each channel and participant we selected

the 24 samples with the highest ADM (for either V or dV, estimated via cross-validation) and plotted

them as small segments in the figure. The vertical position of each segment represents the time within

the epoch at which the corresponding sample was acquired (see temporal scale next to the label “P1” in

the top left corner of each panel).

If we look at each participant individually, the figure shows that there are significant variations in

choice of optimal samples across electrodes. For V, with some participants, one fixed time window

corresponding approximately to the P300 ERP would have worked well across all channels (e.g. P12 or

P15), but for many a fixed time window would have been sub-optimal (e.g. P5, P11, or P13). For the

latter, our sample selection method can provide significant advantages. Also, if we look at dV, we find

that no single window would have been ideal, as at the very least both fronts of the P300 would need to

be captured, and these are often quite far apart. Also, we see much more variability across channels as to

the temporal location of the optimal samples. If we then look across participants, we see that really, any

fixed set of time windows would have provided sub-optimal results for both V and, even more so, dV.

We should note that in the figure we have distinguished between the best 12 samples (in red) and the

following 12 best samples (in blue). The reason is that we wanted to see to what degree the information

contained in the second half of the selected features is different from that provided by the top half and

adds to the classification accuracy. As we can see in the figure, the red and blue bars tend to cluster

more in the V panel than in the dV panel. Indeed, for dV we see that with only 12 samples per channel,

for many participants and channels one can only capture either the positive or the negative fronts of the

P300, but not both.

3.2.3 Filtering and Sub-sampling

As seen in the introduction of this section, the use of filtering can be beneficial in terms of reducing the

variance of the recordings. The notch filter used had the property of extracting a specific oscillation at

a certain phase. Hence, even if information were extracted from the recordings, that information would

be specific and could be accounted for. Although the notch filter is very helpful in such situations, the

recordings hold information that is derived from a wide range of frequencies. Depending on the BCI’s

nature, one might want to separate, extract or discard these frequencies. The band-pass filter is one of

the most commonly used for the extraction of frequency information from the recordings and clearing
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them of unwanted disturbances such as electrical influence from the mains.

The amount of sub-sampling that can be performed without loss of information is bound by the

sampling rate of the recording, the filtering that has been applied prior to the sub-sampling process and

the length of the labels. The lower cut-off point can be calculated as twice that of the lower cut-off

frequency of the filter. For example, if the data had been low-passed at 15Hz one could sub-sample as

low as 30Hz. The length of the labels could also limit the amount of sub-sampling that can be safely

performed because they might overlap. In our data, sub-sampling to rates lower than 256Hz will create

overlaps in the labels of the responses, hence for comparing V to dV, this sampling rate or a higher one

should be used. Regardless of the label overlap, when using amplitude features it is common to sub-

sample the original recordings down to 32Hz, 64Hz or 128; such sub-sampling diminishes the need for

a feature selection process since the whole epoch could be used. Just as the amplitude has a range of

sampling rates that perform better in classification, so the derivative should have a range of sampling

rates that better fit the information it holds.

Reducing the amount of data at hand is usually tackled initially by sub-sampling before using more

sophisticated feature selection methods. Aliasing is one of the most common pitfalls of sub-sampling.

Although there is a wealth of data from the recordings, an ERP such as the P300 will still only be

observable for a short period . To put things in perspective, an 800ms epoch will have an ERP which

lasts about 300− 400ms. According to the labels in our data the epoch accounts for one T stimulus

presentation and seven consecutive NT stimuli. Hence, if the recording was first sampled at 2048Hz, the

resulting epoch would contain 1638 samples (approx. 205 samples for each stimulus, T or NT). This

translates to approximately 615−820 samples where the ERP is discernible. A very low sampling rate

such as 32Hz would only have 9−12 where the ERP would be captured.

As regards classification, if an experiment produced 24 ERPs, the feature vector should have ap-

proximately 24 features that could be selected from the total number of samples per epoch in order to

account for over- and under-fitting of the classifier. Since the feature vector length depends on the sam-

pling rate, a simple feature selection process is carried out. For ranking the samples, the ADM was

used as previously described. Hence 24 samples were selected per electrode (all electrodes used) as

features to train a simple LDA classifier. A more sophisticated classifier, such as an SVM ensemble

trained to use mutual information coefficients and a grid search for the optimal C value, would pro-

duce higher classification performances but at the cost of increased training times. Since here we are

essentially conducting a grid search of the size (sampling rates)× (filtering upper cut−off)×

(amount of derivative features)×(cross−validation folds) per participant, we have to train

the machine 7 ∗ 3 ∗ 4 ∗ 8 ∗ 16 = 10,752 times for all participants. Using an ensemble with a grid search

to optimise its performance would increase that number dramatically, so if one were to search for each

SVM in an ensemble of three, the optimal C value out of ten possible results in 10752∗3∗10 = 322,560

training rounds.

Mixing features from both the amplitude and the derivative could increase the performance of classifi-

cation. In Figures A.10—A.12 (pages 79—81), the results of a concatenated feature vector are displayed

for different sampling rates and cut-off frequencies. The varying components of this exploration is the
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upper limit of the filter, set to vary between 5Hz, 15Hz and 30Hz, and the sampling rate. Initially, the

experiment considered a feature vector derived entirely from the amplitude, while every repetition of the

experiment switched V-features with dV-features, and so the final experiment concluded with a feature

vector completely comprised by dV-features.

#dV 5Hz 15Hz 30Hz

5 - - -

20 0.0017 0.0022 0.0042

24 0.0033 0.0017 0.0041

Table 3.3: Significance testing using the 1-tail Wilcoxon test of AUCs from V-based feature vectors and

dV concatenated features (when the #dV is 24 the feature vector is completely comprised of dV features)

at different filtering strengths for 2048Hz sampling rate

Reducing the resolution of the epochs follows an increase in the classification accuracy of both the

derivative and amplitude feature vectors. The general tendency of the participants is in favour of the

15Hz filter upper limit. Also, it is clearly displayed that using a high cut-off frequency (30Hz) hinders

the classification of the derivative-based features for most participants, irrespective of the sub-sampling

performed. Furthermore, low sampling rates show that both V and dV can yield high classification

performances; as the sampling rate increases, it is evident that dV features are more robust than V.

Finally, the results suggest that selecting features from high sample rates significantly reduces (Table

3.3) the classification performance for V when compared to dV.

3.3 Combining Amplitude and Derivative Based Selection of Fea-

tures

The slope as a feature is complementary with the amplitudes, i.e. the samples that seem to differ greatly

from the slope are not the same as the ones reported by the amplitudes (see Figures A.8, A.9) (pages

77, 78). In the figure we show the absolute difference in the medians, according to target direction

flashes and non-target flashes. For some participants, the complementary nature of the amplitudes and

the derivatives as features can be clearly seen (e.g., P12).

The following experiment aims to show the impact to amplitude classification, thanks to the inclusion

of samples selected by the slope. Hence, instead of selecting a sparse window solely based on the ADM

of the amplitudes, here the window for the amplitudes is selected using both ADMs, derivative-based

and amplitude-based.

Although previous sections have stated that sampling lower than 256Hz the labels from the experi-

ment will start to overlap, the sampling rates chosen were 64Hz and 128Hz. Here we aim to push the

boundaries of classification performance and as suggested beforehand, using amplitude features one may

further down-sample at an epoch level. Since differences between Ts and NTs in terms of amplitude are

widely spread over the duration of the epoch, further sub-sampling would only remove samples holding
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information which is also held by neighbouring samples. Conversely, the derivative has differences in a

much shorter window than that of amplitudes. Initially, 24 samples from each electrode location were

picked (out of 51 and 102 samples for 64Hz and 128Hz sampling rates, respectively) using an amplitude-

based ADM. The number of amplitude selected samples used in the final feature vector were thereafter

gradually decreased by replacing them with derivative-based ADM selected samples, until all samples

were selected using the derivative. The exchange process employs a worst out, best in policy according

to the value of the ADM.

An ensemble of 3 linear SVMs was used for classification. According to the labels (T or NT),

the training set was split evenly amongst these classifiers. A grid search was conducted and the mutual

information coefficient was used to estimate the best possible C parameter for each SVM in the ensemble.

The classification process consisted of an 8-fold cross-validation. Epochs were mixed in such a way that

each training set always contained epochs from all directions. The mean of the ensembles output was

used to compute the Receiver Operating Characteristics (ROC).

During training of the ensemble, participant 6 was problematic when the upper bound of the filter

was at 5Hz and hence removed from this analysis. Table 3.4 shows the configurations that provided the

best AUC for each subject, whereas 3.5 shows the worst possible. The classification accuracy, described

by the AUC, is increased for each subject when more samples are selected by the derivative. Significance

testing on the AUCs show that by using higher sampling rates, the derivative-based ADM selection yields

better classification results when using amplitude features (see table 3.6). Depending on the subject, the

slope shows that it can either completely replace the use of amplitude differences in the selection process

or enhance it.

Although the number of derivative samples is not the same for all participants, including derivative

selected samples in feature vectors seems to have a positive outcome. Also, the majority of the partici-

pants reached their highest classification rate when the feature vectors contained combined information

from both the slope and the amplitudes. Not surprisingly, the configurations yielding the lowest possi-

ble AUCs resulted from data being filtered up to 5Hz. This confirms that a poorly preprocessed ERP

contains variation that is not beneficial to classification, irrespective of the sample selection method.

The above investigation of sample selection based on the derivative of the ERPs has been shown to

benefit a portion of the participants. Table 3.6 summarises the results in terms of statistical significance

across participants. The increase in AUC is significant at a 5% confidence limit and from the results stated

above few things can be deduced. Firstly, the use of derivatives can be beneficial in terms of increase

in AUC when used to select samples for amplitude-based feature vectors. Secondly, not all participants

are greatly benefited by this selection process; in such cases the samples selected by the slope certainly

did not have a major impact on the AUCs. It has also been shown that filtering and sampling rate

combinations can have a massive impact on classification performance. In our understanding, derivative

selected samples are more robust than the amplitude selections which focus on the resting period of

the ERP. Finally, the combined features proved to be rewarding with the majority having an inclination

towards slope selected samples.
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Participant SR(Hz) UC(Hz) dV AUC

1 64 15 20 91

2 64 15 20 90

3 64 15 12 86

4 64 15 24 87

5 64 15 20 86

6 64 30 20 88

7 64 15 0 90

8 64 15 0 88

9 128 15 24 90

10 64 15 12 83

11 64 30 24 90

12 64 15 12 90

13 128 15 20 95

14 128 30 12 84

15 64 15 20 84

Table 3.4: Table containing the best possible configurations for sampling rate (SR), filter upper cut-off

frequency (UC) and number of derivative samples selected (dV).

Participant SR(Hz) UC(Hz) dV AUC

1 64 5 0 70

2 128 5 24 72

3 128 5 0 72

4 128 5 0 75

5 128 5 0 73

6 128 5 24 78

7 128 5 24 79

8 128 5 12 77

9 128 5 5 80

10 64 5 24 78

11 64 5 20 77

12 128 5 0 76

13 128 5 0 78

14 128 5 20 71

15 128 5 0 75

Table 3.5: Table containing the worst possible configurations for sampling rate (SR), filter upper cut-off

frequency (UC) and number of derivative samples selected (dV).
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dV 5Hz 15HZ 30Hz

5 0.2562 0.2062 0.3719

12 0.2562 0.1164 0.2181

20 0.3264 0.0936 0.1427

24 0.3719 0.1084 0.2834

dV 5Hz 15HZ 30Hz

5 0.1248 0.1164 0.2562

12 0.1623 0.0685 0.1008

20 0.0803 0.0306 0.0742

24 0.1523 0.0488 0.1834

Table 3.6: Table containing p-values from the Wilcoxon one-tailed test between AUCs resulting from

amplitude only against AUCs of combined features; dV denotes the number of samples selected accord-

ing to the derivative. Results shown across participants for the different filter upper cut-off frequencies,

number of features selected by the derivative and sampling rates (left 64Hz, right 128Hz).

3.4 Comparing the EEG to its Time Derivative

According to previous investigations on filtering, in order to increase the signal to noise ratio and remove

any contamination from the mains (and any other high frequency artefacts), the data were band-passed

between 0.15 Hz and 15 Hz. As suggested, the periodicity of the flashing stimuli introduced a SSVEP.

We used a Notch filter to remove the corresponding 10 Hz frequency. Despite our instructions, there

were involuntary eye movements and eye blinks that introduced artefacts in the EEG. To reduce their

effects, a correction was performed by using correlations and a standard subtraction method was applied

using the average of the paired differences of channels Fp1/F1 and Fp2/F2 [127].

Prior to feature extraction and selection, the EEG was epoched. Windows of 800 ms starting from

each stimulus onset were extracted and labelled as T if the stimulus was the target of interest and as NT

otherwise. Epochs were then down sampled at 256 Hz (resulting in 205 samples per epoch). A baseline

removal process for each epoch was also used: the baseline was calculated by averaging 100 ms of signal

prior to the epoch. A total of 16 recordings per participant were available, each including approximately

22 Ts and 154 NTs.

In this analysis we are interested in the performance yielded by three feature vectors formed by

selecting samples from: (1) the EEG, V, (2) its time derivative, dV, and (3) their combination, VdV. If vt

is the recorded voltage at time t at a particular channel i, then the amplitude feature vector for a given

stimulus is Vi = v0, . . . ,vt , . . . ,vn. The first order derivative of this feature vector, dV, is calculated using

the central differences method:

dVi =


vt+1− vt , if t = 0

vt+1−vt−1
2 , if 1≤ t ≤ n−1

vt − vt−1 if t = n

Finally the combined feature vector VdV was constructed by simply concatenating V and dV.

In both V and dV, out of the 205 available samples 24 were selected with the highest ADM between T

and NT epochs in the train set, for each electrode location. For comparison fairness, the combined feature

vector was constructed from both V and dV, but using only the 12 best samples from each, resulting in

24 samples per electrode.
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F Band-pass only Band-pass and Notch

S 12 24 12 24

P V dV V dV VdV V dV V dV VdV

1 82 86 84 88 88 82 86 84 88 88

2 78 87 80 90 86 79 87 79 90 85

3 80 82 81 84 82 78 81 81 84 81

4 78 79 81 83 79 77 79 83 83 80

5 74 86 74 88 81 74 85 75 87 79

6 72 72 71 74 73 71 73 71 74 73

7 80 80 81 83 83 80 81 81 83 83

8 88 84 89 88 89 89 84 89 86 89

9 81 85 84 87 85 83 85 84 87 86

10 77 86 80 87 86 78 86 80 89 86

11 79 79 78 80 80 79 78 80 79 80

12 85 84 86 89 87 84 85 86 88 87

13 89 86 89 88 90 90 86 90 88 88

14 86 93 88 95 91 85 93 89 95 91

15 72 75 72 76 76 71 76 72 76 77

16 79 75 82 78 80 79 75 80 77 80

Med. 80 84 81 87 83 79 84 81 86 83

Table 3.7: AUC for each participant when using 12 and 24 samples (S) for V and dV and combining 12

samples of each into VdV. Results without the notch filter (F) are displayed in the left half of the table.

Best results in each half of the table and for each row are shown in bold face.

An ensemble of 3 linear SVMs was used for classification. According to the labels (T or NT),

the training set was split evenly amongst these classifiers. A grid search was conducted and the mutual

information coefficient was used to estimate the best possible C parameter for each SVM in the ensemble.

The classification process consisted of an 8-fold cross-validation. Epochs were mixed in such a way that

each training set always contained epochs from all directions. The mean of the ensembles output was

used to compute the ROC.

Classification performance was assessed using the AUC, as a percentage. As indicated above, an

8-fold cross-validation process was used and thus the average AUC across folds was used as a reliable

description of classification performance. Table 3.7 shows individual AUC results using both 12 and 24

samples per electrode, selected using the ADM for V and dV, with and without the application of the

notch filter. The table also reports the median AUC across participants.

From the table we can see that generally using samples of the first derivative of the EEG provides

better performance than using the voltages themselves, whether 12 or 24 samples are used. However, 24
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Table 3.8: Mann-Whitney one-tailed test of statistical significance of the AUCs obtained when using

V, dV and VdV, using 12 and 24 samples (S), with and without notch filtering. We have omitted tests

comparing configurations with different numbers of features.

Band-pass only Band-pass and Notch

S VdV>V VdV>dV dV>V VdV>V VdV>dV dV>V

12 — — 0.102 — — 0.081

24 0.145 0.225 0.050 0.224 0.248 0.087

samples increase classification accuracy significantly over 12 irrespective of the representation used.

In relation to VdV we see that it somehow appears to be half way between V and dV in terms

of performance. While this is reasonable, it goes against previous results obtained with a BCI matrix

speller which suggested that combining the two representations was best [16, 17].

Finally, comparing the left and right sides of the table reveals that the notch filter has very little

effect on classification accuracy. Visually, we found that the ERP averages (not reported) produced with

notch filtering better resemble textbook type ERPs. However, because the ripples caused by the SSVEP

associated with the periodicity of stimulation are present with approximately the same amplitude in both

targets and non-targets, the filter makes relatively little difference to the separability of the two classes.

We have performed statistical tests to assess the veracity of these observations. Results are reported

in Table 3.8. As one can see, while V and VdV are not significantly different statistically, in almost

all comparisons between V and dV, dV was either significantly superior statistically or close to being

statistically superior to V. This suggests that dV may be a better representation of ERPs, at least in the

BCI system considered here.

3.5 Chapter Conclusions

Derivative based features are rarely used in BCIs, although at least theoretically, they contain almost the

same information as the EEG itself since one can be reconstructed from the other.

In this chapter I evaluated the performance of the first temporal derivatives of the EEG for the clas-

sification of ERPs with data from 16 participants using a P300 based BCI mouse. A sample selection

method was introduced (ADM) based on the temporal absolute difference between the medians of re-

sponses to target and non-target stimuli and a comparison was conducted between the classification

performance of voltages, derivatives and a combined feature vector, i.e. by using both the amplitudes

and their derivative.

The results indicate that the use of the derivative improves classification accuracy, both in combina-

tion with amplitudes and even more so when used on their own. Taken together with findings reported

in previous literature, where derivatives were used in conjunction with PCA, our results suggest that

temporal derivatives warrant further investigation as features for BCI systems.
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In the future, more sophisticated methods of extracting the derivative could be used, e.g. least squares

approximation, a Savinsky-Golay and even certain families of wavelets such as rbio3,1. In addition, the

behaviour of transformations such as ICA, PCA and eigenbrains could be investigated to further boost

the classification performance. Finally, for the purposes of this thesis all electrode locations were used,

thus keeping a higher spatial resolution; future work could evaluate the relative benefits of performing

source selection based on the first derivative of the EEG.



Chapter 4

Clustering

4.1 Enhancing ERP Analysis and BCIs by Clustering

It has recently been suggested [96] that binning ERPs based on user response times (before averaging)

could allow one to distinguish and observe with a higher resolving power the ERPs associated with

distinct mental responses to identical stimuli. However, this technique relies on the availability of a

physical manifestation of a user’s mental processes (a response, e.g. in the form of a key press), and

could not be used in experiments where such a manifestation is not desirable or possible, for instance in

the case of an enhancement-BCI.

In this chapter, we attempt to go beyond this limitation by using forms of unsupervised clustering

of ERPs. The idea is that different mental processes are bound to produce different ERPs. It should

therefore be possible, at least in theory, to group ERPs elicited by certain classes of stimuli (e.g. targets

or non-targets) into smaller subsets in such a way that the members of each subset are likely to represent

the same mental processes and vice versa. If this were achieved, there would be some noteworthy

consequences. Firstly, it would be possible to do averages only across each subset of ERPs, thereby

increasing their resolving power even without any external manifestations of mental state. Secondly, it

would be possible to create distinct (and much cleaner) training sets for the range of behaviours triggered

by an event as well as build a whole new form of classifiers, each specialised in dealing with a specific

mental response. Thirdly, one would be able to first classify unseen ERPs as belonging to one of only a

few possible mental processes, and then pass them only to suitable classifiers.

Figure 4.1 gives an example of the new possibilities made available by this approach in the analysis

of mental processes. Here we imagined that there are two kinds of stimuli - targets and non-targets -

and that for each there can be two mental processes taking place: either the participant is focused on

the task and does it competently or the participant is daydreaming. The corresponding four kinds of

ERPs elicited in these conditions are shown at the very top of the figure. The traditional analysis, which

applies averaging based on external conditions (target vs non-target), is represented by the two triangles

just below the ERPs. This can only produce the target and non-target averages below the triangles,

which are blurred mixtures of the “focused” and “daydreaming” conditions. However, if clustering (the

42
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Figure 4.1: Pictorial example of research objectives; enhancing traditional classification via clustering to

include the participant’s condition.
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pentagon) could reveal which ERPs represent a focused mind as opposed to a daydreaming one, not only

could we glean information on the wave-forms produced in these states (the two plots to the far left of

the figure) but also obtain four new averages representing the response to targets (non-targets) when the

user was focused on the task, and corresponding responses when they were daydreaming.

While we recognise that our program is ambitious, it is important to discover to what extent the above

can be achieved. In this chapter, we make a start by focusing on studying to what degree a particular

form of clustering is suitable for dealing with ERPs. Note that there is a small number of papers where

the concept of clustering has been applied on ERPs in topographical analyses ([114, 115]). However,

this has been done to differentiate between types of ERP components, e.g. N100, P100, N200 and P300

in terms of location, rather than to group entire responses.

4.1.1 Mental Processes and ERPs

It has been shown that within an experiment, even when the same stimuli are presented, morphologically

distinct ERPs can be elicited [96]. Distinguishing between such ERP variants can be important as they

may represent different mental processes, yet these ERPs would normally be averaged together with

standard averaging techniques [52], thereby blurring any distinctions and limiting our ability to infer

mental states and processes from ERPs. Research has shown that conclusively mental processes are also

affected by a number of environmental conditions, such as tiredness, food intake, or drugs, which are

known to affect the shape, latency and peak values of ERPs [68, 65, 57]. Ultimately, analysing the grand

average of ERPs has questionable validity.

This problem also affects BCIs, many of which are based on recognising selected ERPs and trans-

forming them into controls and commands [128, 44, 129, 130]. There are two reasons for this. Firstly,

there are still many BCIs that require averaging the responses obtained in multiple repetitions of a

stimulus-task pair so as to be able to reliably recognise commands. Since we are essentially unable

to differentiate the repetitions where a participant was focused on the task from those where, say, the

participant was daydreaming, the signals acquired in the two conditions are inevitably blended, thereby

affecting classification accuracy. Secondly, most BCIs rely on forms of machine learning which need

to be trained on data with high signal to noise ratio. However, since one cannot distinguish among the

alternative mental processes taking place after an event (including some, such as daydreaming, not even

triggered by it), we can not build optimum classifiers either.

The literature lacks methods that can successfully classify different kinds of ERPs during an exper-

iment without prior knowledge. The generated ERP could have been classified separately for when the

user is distracted, instead of using a classifier trained on data where users were focused. Such a classifi-

cation process could identify multiple EEG responses, each having a probability of successful acceptance

in a separate group measured by TP/FP/TN/FN. By using such a classification method, it is hoped that

one could achieve higher levels of communication in BCIs by extending the number of events that the

classifier would “recognise” to trigger actions.

To achieve the above, the exploration of several areas is required. In general unsupervised grouping

some form of similarity or distance measure is required in order to allocate ERPs to groups. The per-
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formance of relevant distance/similarity measures needs to be evaluated; a selection of such measures

will be used to describe similarities between groups and the composition of each group of ERPs, i.e. an

evaluation of how close groups appear to be (inter connectivity) and how the elements in a group agree

with each other (intra-connectivity).

Different similarity methods interpret the data in different ways, so combinations of these methods

can also be used to form a more precise measure of similarity. Each group would then be associated with

a membership criterion based on the similarity methods used to describe it. With a working grouping

criterion the final step would be to consider deriving a way to perform the grouping without referring to

stimuli presentation labelling, therefore without knowledge of the stimuli or where and if an ERP was

elicited.

4.2 Comparing Similarity Measures in the Presence of White Noise

In order to evaluate and compare methods for clustering ERPs into classes one must have knowledge of

the ground truth, or the processes taking place in a participant’s mind, for instance in which trials partic-

ipants were focused on the task and in which they were not. While it is possible to imagine experiments

where one could gather real ERP data approximating this, the clarity of such data would be difficult to

ascertain with certainty. For this reason, we decided to begin by using synthetic ERP data with charac-

teristics similar to those found in real ERP data, but where we have full control over the ground truth and

the signal-to-noise ratio (SNR).

The objective here is to investigate the behaviour of different distance/similarity measures while

the SNR is varied to see to what degree the clustering method under study could identify the origin

of different ERPs. For this reason, we will evaluate such measures on all possible cluster grouping

combinations of such ERPs. Let us call these clusters “partitions”. Out of all such partitions, only one,

which we will call the ”ideal partition”, perfectly reproduces the ground truth. All other partitions will

have one or more ERP in the wrong class.

4.2.1 Similarity Criteria Based on Centroids

Centroid-based clustering evaluates a distance/similarity measure between the centroids of groups. Here

we study and compare three distance/similarity measures: the Euclidean distance, the Manhattan (or city

block) distance and finally the Kolmogorov-Smirnoff two-tailed test for similarity of distributions, which

is a widely-used non-parametric statistical test.

If p and q are the n-dimensional centroids of two groups, the Euclidean and Manhattan distances are

defined as

ED(p,q) =

√
n

∑
i=1

(pi−qi)2 and MAN(p,q) =
n

∑
i=1
|pi−qi|,

respectively. For the Kolmogorov-Smirnov test, we define KS(p,q) as the p-value returned by the KS

test when the two data sets {qi}n
i=1 and {pi}n

i=1 are fed into it.
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Figure 4.2: On the top-left plot the artificial ERPs used to create the two ERP groups are shown. On the

top-right, bottom-right and bottom-left, the same ERPs are degraded by Gaussian noise as described in

the text to generate artificial ERPs at different SNR levels.

4.2.2 Artificial ERPs and Noise Generation

Our synthetic ERP set contains 10 ERPs originating from two ideal prototypes obtained by superimpos-

ing various mixtures of Gaussians. The prototypes are shown in the top left panel of Figure 4.2.

Noise was introduced in our ERPs by adding zero-mean Gaussian deviates. The SNR was then varied

by modifying the standard deviation of these deviates. Examples of the resulting ERPs with different

levels of noise degradation are shown in Figure 4.2. Note that SNR=0 dB corresponds to approximately

the level of noise of real ERPs, while -27 dB is effectively pure noise, and +17 dB is what one would

expect after averaging tens of real ERPs. The two groups of artificial ERPs, shown in the figure, represent

two responses elicited by different stimuli.

4.2.3 Error Evaluation

As there are only two classes, partitions can be represented as 10-digit binary strings, where a 0 (1)

in a certain position means that the corresponding ERP has been assigned to group 0 (1). Because of

this, we can then compare partitions by using the Hamming distance. This is particularly useful when

comparing partitions to the ideal partition (that we have conventionally chosen to be string 0000011111
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Figure 4.3: Mean p-values of the Wilcoxon rank sum test, comparing the ideal with partitions having

non-zero Hamming distances at different SNR levels.

or 1111100000), as this effectively denotes the number of changes needed to transform a partition into

the ideal one.

While the Hamming distance is a useful error measure, it is not sufficient to tell us to what degree

the assignment of some ERPs to incorrect groups can affect the homogeneity of such groups. This then

determines how close measures of central tendency (the mean or the median) for a partition are to those

obtained from the ideal partitions.

In order to assess this, for each group in a partition we applied the Wilcoxon rank sum test (the data

are paired by time) to see to what degree the actual average resembles the ideal average for the group.

Then by averaging the p-values across the groups in the partition, we obtained an indicator of the degree

to which clustering errors induce errors in the evaluation of ERP central tendencies.

Figure 4.3, on page 47, reports the mean p-values returned by the test for different partitions at

Hamming distance 1, 2, and so on from the ideal partition, and for different SNR levels. As the box plots

illustrate, for any one Hamming distance and SNR, there are ample variations in p values, reflecting the

fact that assigning some ERPs to the wrong class has very little effect, while with others there can be

very serious errors. As was to be expected, we also see that the higher the number of misclassifications

the greater the effect on the averages.
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4.2.4 Comparison Between the Criteria

The more the centroids of two classes differ (using ED, MAN or KS), the greater the separation between

the classes, and the better the clustering. So, we look at the degree to which our similarity measures

vary as we vary the Hamming distance of partitions from the optimal partition and the SNR of our

synthetic ERPs. The left column of Figures 4.4—4.6 (pages 49—51) reports the ED(p,q), MAN(p,q)

and 1−KS(p,q) for different values of SNR and different Hamming distances. (We used 1−KS(p,q)

instead of KS(p,q) so that higher values represent better partitions for all measures.)

If we look at the figures we see that for the highest SNR, the ED and MAN measures indicate that the

best partitions are indeed those with higher ED and MAN distances, while KS is not very sensitive. At

SNR=0 dB, a large proportion of sub-optimal partitions are “better” (the centroids of their two groups

being more apart) than the ideal partition. At the lowest SNR, the Hamming distance from the ideal

partition becomes almost irrelevant in predicting the quality of the clustering.

The probability of a partition other than the ideal appearing to be better than the ideal to a similarity

measure is reported in the right column of Figures 4.4—4.6 on pages 49—51. Again, for the high-

est SNR, we see that the probability of accepting as optimal (the centroids being maximally distant) a

configuration that actually is not, decreases with the Hamming distance.

This means that a search algorithm attempting to identify the optimum clusters would probably settle

for a configuration that is either the ideal or one with not too many ERPs incorrectly attributed to groups.

However, as the SNR decreases, the situation rapidly deteriorates with the exception of KS which seems

to be more resistant to noise than the other methods.
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Figure 4.4: Box-plots of the three similarity measures under study (ED, MAN and KS) as a function of

the SNR of ERPs and the Hamming distance of partitions (left column), and probability that a partition

other than the ideal appears to be better than the ideal to a similarity measure (right column).
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Figure 4.5: Similarly to 4.4
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Figure 4.6: Similarly to 4.4
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4.3 Extracting Groups of ERPs Based on their Medians

In previous sub-sections, the ERPs were considered to modulate depending on the participants’ mental

state. Hence clustering was theoretically evaluated in the presence of white noise for two model signals

that were similar. In this section, clustering is employed to extract groups of epochs from a set of epochs

depending on a confidence level; thus no assumption on the number of different ERPs is made. Although

no results from unsupervised methods can be thoroughly explained due to the black box phenomenon, it

is possible that they contain valuable information.

The biggest difference between NT and T activity, i.e. the presence of an ERP according to the

labelling of epochs during the experiment or not, is the amplitude. In the previous chapter, it was shown

that the first derivative can be used as a feature for classification. Differences in magnitudes can be

investigated using the Kruskal-Wallis test for similarity in the medians. The following test uses the p-

values of the test in order to extract groups of epochs that have similar medians. The precision of the

process can be tuned by selecting an appropriate limit for the p-values. Here, the level of significance is

chosen to vary from 5% to 1% in steps of 1%. To aid visual comparison the epochs have been passed

through a Notch filter prior to the calculation.

In this experiment, the first 5 groups of epochs are extracted. Initially, the algorithm is fed 150

epochs from each class and uses a single electrode location, CPz. At each turn of the process a group

of epochs is extracted, while the remaining epochs are retained for the next pass. After 5 passes, if any

of the resulting groups contain more than 2 members, then their averages are plotted. Since this is an

unsupervised method, the means according to the labels of the experiment are also depicted using dotted

lines (see pages 115—130 Figures B.33—B.48 for reference).

Similarly to the exhaustive extraction of groups described above and as shown in Figures B.17—B.32

(pages 99—114), only the first 2 groups are extracted and their averages plotted. The remaining epochs

that were not selected during the extraction of these two major groups are averaged and shown. The

aim of the process here is to extract epochs containing targets/near-targets and artefacts while rejecting

non-targets. As seen in the figures, the unsupervised algorithm manages the above to an extent so that

visual interpretation of the results is possible.

As seen in the figures, the results of an almost exhaustive extraction can contain both large and small

groups of epochs. It is unknown whether in either the algorithm chose epochs that represent identical or

similar processes. In the BCI-Mouse, there were 8 circles used as stimuli, one being the target each time.

Since the protocol used was sequential, the expectations of the participant grew during the presentation

of the non-target stimuli. If the participant was not focusing and was taken by surprise, a post-target ERP

may have been elicited. On the other hand, if the participant was following the rhythm of the experiment

in order to respond “as soon as possible” a pre-target ERP could be elicited.

Due to the above, it is not accurate to investigate classes that contain a small number of epochs, since

they may even represent similar types of noise. It can be suggested that the first major group that is

extracted shows either the group of epochs containing the targets and near targets, or the non-targets and

near misses. To make this distinction clearer, the first group of epochs is extracted while the remaining
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epochs of the set are used as a second group. Figures B.1—B.16 in pages 99—114, show the results of

this evaluation for each participant respectively.

Although the evaluation of these results cannot be conclusive in terms of selection of known ERP,

they can be evaluated using the size and the percentage of target epochs selected according to the labels

of the experiment. Ideally, for a perfect user, i.e. a participant that elicited distinguishable ERPs only

during target stimuli, the number of epochs selected by the algorithm should be 150 and the number of

target epochs selected should either be 100% or 0%. In the following Tables 4.1 and 4.2 this evaluation

is displayed for all participants. It is clearly visible that for specific confidence levels a higher percentage

of Ts, rather than NTs, has been selected. Thus, if one initially guessed that the first group represents an

unknown ERP and that the unknown ERP was actually elicited, one has gained knowledge of the shape,

latency and amplitude of the unknown ERP.

It is evident that the EEG and its first time derivative do not follow the same behaviour at simi-

lar grouping strengths. Moreover the resulting percentage of targets selected for a grouping is better

with respect to the derivative at 1% when comparing it to the results of the EEG at 5% significance

level. V seems to distinguish between epochs even at a low grouping strength, whereas dV requires a

smaller significance level to distinguish epochs. This comes as no surprise; the nature of the signals at

hand is oscillatory, hence the derivative of the epochs follows a specific rhythm which deviates slightly

during target-related epochs. Thus when forming groups using the derivative, by increasing the group-

ing strength gradually the following can be expected: a) epochs are grouped together depending on the

phase of the oscillation; b) artefacts such as eye-blinks and muscle movements are discarded, c) far-target

epochs are grouped together, and d) a group contains targets and near-targets.

This method did not aim at reaching the point of having the members allocated into groups as spec-

ified by the labels. Its main purpose is to provide researchers with a new tool to investigate responses

acquired during an experiment when nothing is known regarding the processes undertaken by the brain

of the participant. This is an invaluable addition to the toolbox researchers rely on in EEG analysis, since

it may now allow for the extraction of responses that can be meaningful and usable in BCIs without prior

knowledge. Although there is no certainty regarding the specifics of the results - stimuli characteristics,

property identification or reproducibility - the results of this experiment corroborate the results of the

previous chapter that it is better to investigate the derivative of the EEG rather than the EEG itself when

evaluating ERPs.
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P 5% 4% 3% 2% 1%

1 122(56%) 107(49%) 89(41%) 61(30%) 29(13%)

2 124(61%) 108(52%) 91(47%) 66(35%) 36(18%)

3 119(57%) 107(51%) 87(44%) 56(29%) 26(13%)

4 130(62%) 108(53%) 95(47%) 63(29%) 36(15%)

5 107(51%) 90(45%) 75(39%) 48(25%) 23(13%)

6 120(58%) 98(49%) 78(39%) 62(31%) 36(18%)

7 131(60%) 113(52%) 95(43%) 69(34%) 41(21%)

8 132(68%) 111(58%) 91(51%) 67(39%) 36(21%)

9 131(63%) 108(54%) 93(45%) 70(33%) 36(19%)

10 106(51%) 94(46%) 74(37%) 59(29%) 33(17%)

11 110(55%) 100(51%) 83(42%) 57(33%) 28(17%)

12 141(64%) 122(53%) 106(47%) 75(34%) 42(20%)

13 106(49%) 88(41%) 68(35%) 54(28%) 29(17%)

14 128(57%) 113(51%) 84(39%) 72(33%) 39(19%)

15 144(67%) 129(59%) 102(43%) 74(34%) 45(22%)

16 130(57%) 110(47%) 92(39%) 62(27%) 25(11%)

Table 4.1: Size of extracted group (S) and amount of targets selected (T%) shown as “S(T%)”. Results

from using V.

P 5% 4% 3% 2% 1%

1 271(100%) 265(99%) 251(99%) 227(95%) 181(79%)

2 266(100%) 253(100%) 236(98%) 215(91%) 167(78%)

3 271(100%) 263(100%) 255(98%) 223(88%) 161(69%)

4 274(100%) 260(99%) 252(96%) 228(91%) 172(75%)

5 257(99%) 244(97%) 225(92%) 200(85%) 147(65%)

6 259(99%) 253(98%) 242(97%) 223(93%) 168(75%)

7 275(100%) 270(100%) 259(99%) 239(97%) 176(77%)

8 285(100%) 280(100%) 274(100%) 261(100%) 220(94%)

9 267(100%) 255(100%) 243(99%) 212(96%) 156(78%)

10 274(100%) 265(100%) 257(100%) 241(97%) 189(85%)

11 269(100%) 262(100%) 250(99%) 217(92%) 171(79%)

12 256(100%) 253(99%) 242(97%) 219(95%) 163(77%)

13 275(100%) 264(99%) 254(98%) 227(94%) 174(81%)

14 272(100%) 267(99%) 250(97%) 224(90%) 169(75%)

15 268(100%) 263(100%) 249(99%) 232(95%) 179(75%)

16 263(99%) 259(99%) 247(97%) 226(93%) 174(75%)

Table 4.2: Size of extracted group (S) and amount of targets selected (T%) shown as “S(T%)”. Results

from using the dV.
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4.4 Chapter conclusions

In this thesis I have conducted an initial exploration of the possibility of using unsupervised clustering

criteria based on centroids to group ERPs. I found that while the ED and MAN criteria appear to work

well at low noise levels (high SNR), noise influences the quality of the clustering one could hope to

obtain very much. Slightly more encouraging results were obtained with the KS method.

While the above results are disappointing, there are a number of elements that ought to be considered.

Firstly, it should be noted that one of the noise levels used in this exploration (SNR=-27dB) was expected

to be problematic, as it is way above that experienced in real ERPs. Secondly, while the analysis was

based on generating multiple simulated ERP data sets so as to give more reliable statistics, all such data

sets were very small (10 ERPs) compared with the sets used in psycho-physiology or in BCI. Moreover,

the artificial ERPs constructed were similar in characteristics, making their comparison very difficult.

The uptake of these results is that even if distance measures are jaded by the increased noise levels,

a statistical test could be performed adequately. By using this encouraging outcome, an unsupervised

algorithm was implemented using the Kruskal-Wallis test, without using any information from the labels

of the experiment, i.e. targets and non-targets. The algorithm was able to extract groups of ERPs which

where very similar. Both the EEG and its first-time derivative were able to produce with this method av-

erages that closely represented those derived by the labels of the experiment. The above could eventually

result in a very powerful tool for BCIs, enabling the cross-validation of ERP occurrence and separabil-

ity based solely on the data and not the paradigm specification. Thus, current methods of classification

performance could be enhanced.

In future work, there are a number of other techniques to evaluate the quality of partitions, which

may well give significantly better results. For instance, it is common to combine measures of separation

between clusters with measures of separation within a cluster. A combined criterion such as this would

likely produce better ERP clusters. The current status of the research indicates that better results can be

obtained. I aim to investigate the above and relative issues in future research.



Chapter 5

Conclusions and Remarks

The future of enhancement-BCIs is intriguing; novel ideas are being developed constantly and the un-

derstanding of the working brain is gradually increasing. Currently, the functioning of the brain is con-

sidered to be highly related to its anatomy. The communication between different parts and structures

of the brain may hold the missing information required to fully integrate man and machine. Ethical

and technological limitations regarding the usage of invasive electrodes in humans, for commercial use,

hinder the progression of such BCIs.

Enhancement or augmentation of human capabilities using a BCI is surely a topic that will carry

forward the next generation of BCIs. Although it was not attempted to create such an algorithm, a major

component of this new generation of BCIs has been introduced. In this case clustering was used to

reverse the process of the BCI, i.e., instead of using a priori information regarding the shape, latency

and intensity of an ERP, the BCI reported back to the user these properties. Additionally the usage of

a statistical as a measure of similarity in the clustering process can be used to provide confidence at a

user-defined level.

Figure 5.1: Pictorial example of a clustering-enhanced BCI-Mouse.
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Although the above conclusions contribute to the area of BCIs by providing a new base for feature

extraction and a way to find ERPs without any a priori knowledge, these results have further important

ramifications. In the case of the BCI-mouse, the clustering algorithm could be used for the machine to

guess the choice of the user without it being previously specified. As a result the guessing could be used

to create a two-way communication link (Figure 5.1) between man and machine.

The above is a revolutionary approach to BCIs, which are currently only recognising ERPs that are

known and expected to appear. This current state of BCIs is the major flaw of the DARPA initiative

regarding target identification. The initiative contemplated the usage of BCIs for the identification of

hostile intentions; satellite images were presented to an analyst while the stimuli used were aeroplanes.

In collaboration with NASA JPL, we investigated the application of brain fusion for improving the

performance of the classification; while the performance was improved, an unknown threat, i.e. other

than aeroplanes, could not be detected.

The weakness in the training of machine learning was ultimately responsible for the approach to

threat detection being incomplete. The application of the clustering algorithm proposed will enable the

BCI to grasp essential properties of ERPs without any training required. Finally and most importantly,

the method could also be used to report back to the analyst. Both applications of the proposed algorithm

as described above can be used to mitigate the needs of target identification, thus providing an entirely

fresh perspective on the topic.
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Figure A.1: (a) A synthetic ERP, (b) resulting data under white noise influence.
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Figure A.2: Standard deviation of V and dV using synthetic data
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Figure A.3: The effect of lowpassing to the standard deviation, using synthetic data.
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Figure A.4: Standard deviation calculation using raw data. Showing results for participant 1 at location

CPz.
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Figure A.5: Effects of the Notch filter on the standard deviation of dV and V. Data from participant 1 at

location CPz.
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Figure A.8: Temporal differences of T and NT epochs according to ADM, V-based. Only the 24 selected

samples per electrode are shown: the 12 best in red and the following 12 best in blue. The vertical

position of each segment holds the time information (in ms) whereas the electrode locations are plotted

on the horizontal axis.
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Figure A.9: Temporal differences of T and NT epochs according to ADM, dV-based. Only the 24

selected samples per electrode are shown: the 12 best in red and the following 12 best in blue. The

vertical position of each segment holds the time information (in ms) whereas the electrode locations are

plotted on the horizontal axis.
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Figure A.10: Using 5Hz filter upper bound and a simple LDA for classification; averaged AUCs over

participants for varying sampling rates
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Figure A.11: Using 15Hz filter upper bound and a simple LDA for classification; averaged AUCs over

participants for varying sampling rates
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Figure A.12: Using 30Hz filter upper bound and a simple LDA for classification; averaged AUCs over

participants for varying sampling rates
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Figure B.1: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 1
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Figure B.2: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 2
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Figure B.3: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 3
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Figure B.4: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 4
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Figure B.5: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 5
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Figure B.6: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 6
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Figure B.7: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 7
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Figure B.8: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 8
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Figure B.9: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 9
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Figure B.10: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 10



93

0 100 200 300 400 500 600 700 800
time (ms)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Po

te
n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.1

0.0

0.1

0.2

0.3

0.4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

0 100 200 300 400 500 600 700 800
time (ms)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
class A
class B

Figure B.11: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 11
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Figure B.12: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 12
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Figure B.13: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 13
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Figure B.14: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 14
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Figure B.15: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 15
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Figure B.16: Extracting the first group of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 16
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Figure B.17: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 1
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Figure B.18: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 2



101

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 175
T/NT: 65/35%
Group(2) 45
T/NT: 47/53%
Remainder 80
T/NT: 20/80%

0 100 200 300 400 500 600 700 800
time (ms)

8

6

4

2

0

2

4

6

8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 288
T/NT: 52/48%
Group(2) 3
T/NT: 0/100%
Remainder 9
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 155
T/NT: 65/35%
Group(2) 42
T/NT: 55/45%
Remainder 103
T/NT: 25/75%

0 100 200 300 400 500 600 700 800
time (ms)

6

4

2

0

2

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 282
T/NT: 53/47%
Group(2) 7
T/NT: 0/100%
Remainder 11
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 132
T/NT: 64/36%
Group(2) 46
T/NT: 67/33%
Remainder 122
T/NT: 28/72%

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 275
T/NT: 55/45%
Group(2) 11
T/NT: 0/100%
Remainder 14
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 98
T/NT: 60/40%
Group(2) 46
T/NT: 65/35%
Remainder 156
T/NT: 39/61%

0 100 200 300 400 500 600 700 800
time (ms)

5

4

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 267
T/NT: 56/44%
Group(2) 11
T/NT: 0/100%
Remainder 22
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 55
T/NT: 69/31%
Group(2) 40
T/NT: 65/35%
Remainder 205
T/NT: 42/58%

0 100 200 300 400 500 600 700 800
time (ms)

4

3

2

1

0

1

2

3

4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 217
T/NT: 61/39%
Group(2) 34
T/NT: 35/65%
Remainder 49
T/NT: 12/88%

Figure B.19: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 3
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Figure B.20: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 4
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Figure B.21: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 5
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Figure B.22: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 6
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Figure B.23: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 7
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Figure B.24: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 8
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Figure B.25: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 9
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Figure B.26: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 10
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Figure B.27: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 11
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Figure B.28: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 12
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Figure B.29: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 13
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Figure B.30: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 14
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Figure B.31: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 15
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Figure B.32: Extracting two groups of epochs using the Kruskal-Walis test. On the left V, right dV.

Showing results for participant 16
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Figure B.33: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 1
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Figure B.34: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 2
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Figure B.35: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 3
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Figure B.36: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 4



119

0 100 200 300 400 500 600 700 800
time (ms)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 111
T/NT: 70/30%
Group(2) 52
T/NT: 65/35%
Group(3) 32
T/NT: 50/50%
Group(4) 23
T/NT: 48/52%
Group(5) 12
T/NT: 25/75%

0 100 200 300 400 500 600 700 800
time (ms)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 267
T/NT: 56/44%
Group(2) 10
T/NT: 10/90%
Group(3) 8
T/NT: 0/100%
Group(4) 4
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 96
T/NT: 72/28%
Group(2) 54
T/NT: 63/37%
Group(3) 27
T/NT: 52/48%
Group(4) 22
T/NT: 36/64%
Group(5) 17
T/NT: 24/76%

0 100 200 300 400 500 600 700 800
time (ms)

1.5

1.0

0.5

0.0

0.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 253
T/NT: 58/42%
Group(2) 17
T/NT: 6/94%
Group(3) 7
T/NT: 14/86%
Group(4) 5
T/NT: 0/100%
Group(5) 3
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 78
T/NT: 74/26%
Group(2) 50
T/NT: 68/32%
Group(3) 32
T/NT: 53/47%
Group(4) 20
T/NT: 35/65%
Group(5) 16
T/NT: 31/69%

0 100 200 300 400 500 600 700 800
time (ms)

1.0

0.5

0.0

0.5

1.0

1.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 236
T/NT: 61/39%
Group(2) 26
T/NT: 19/81%
Group(3) 9
T/NT: 11/89%
Group(4) 5
T/NT: 20/80%
Group(5) 3
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.2

0.0

0.2

0.4

0.6

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 61
T/NT: 72/28%
Group(2) 41
T/NT: 59/41%
Group(3) 31
T/NT: 65/35%
Group(4) 21
T/NT: 71/29%
Group(5) 17
T/NT: 65/35%

0 100 200 300 400 500 600 700 800
time (ms)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 199
T/NT: 62/38%
Group(2) 44
T/NT: 39/61%
Group(3) 16
T/NT: 19/81%
Group(4) 8
T/NT: 13/88%
Group(5) 5
T/NT: 20/80%

0 100 200 300 400 500 600 700 800
time (ms)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 31
T/NT: 65/35%
Group(2) 26
T/NT: 65/35%
Group(3) 20
T/NT: 75/25%
Group(4) 17
T/NT: 65/35%
Group(5) 15
T/NT: 67/33%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.2

0.0

0.2

0.4

0.6

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 133
T/NT: 65/35%
Group(2) 49
T/NT: 59/41%
Group(3) 25
T/NT: 48/52%
Group(4) 18
T/NT: 44/56%
Group(5) 12
T/NT: 50/50%

Figure B.37: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 5
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Figure B.38: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 6
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Figure B.39: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 7
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Figure B.40: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 8
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Figure B.41: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 9
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Figure B.42: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 10



125

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 130
T/NT: 66/34%
Group(2) 61
T/NT: 49/51%
Group(3) 24
T/NT: 50/50%
Group(4) 19
T/NT: 42/58%
Group(5) 11
T/NT: 36/64%

0 100 200 300 400 500 600 700 800
time (ms)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 270
T/NT: 55/45%
Group(2) 11
T/NT: 9/91%
Group(3) 6
T/NT: 0/100%
Group(4) 2
T/NT: 0/100%
Group(5) 2
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 111
T/NT: 68/32%
Group(2) 57
T/NT: 49/51%
Group(3) 33
T/NT: 48/52%
Group(4) 18
T/NT: 39/61%
Group(5) 8
T/NT: 38/63%

0 100 200 300 400 500 600 700 800
time (ms)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 258
T/NT: 58/42%
Group(2) 22
T/NT: 5/95%
Group(3) 3
T/NT: 0/100%
Group(4) 2
T/NT: 0/100%
Group(5) 2
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 81
T/NT: 72/28%
Group(2) 52
T/NT: 65/35%
Group(3) 35
T/NT: 71/29%
Group(4) 23
T/NT: 52/48%
Group(5) 16
T/NT: 50/50%

0 100 200 300 400 500 600 700 800
time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 245
T/NT: 60/40%
Group(2) 23
T/NT: 17/83%
Group(3) 11
T/NT: 0/100%
Group(4) 5
T/NT: 0/100%
Group(5) 2
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 53
T/NT: 75/25%
Group(2) 39
T/NT: 72/28%
Group(3) 36
T/NT: 78/22%
Group(4) 27
T/NT: 70/30%
Group(5) 19
T/NT: 42/58%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 221
T/NT: 62/38%
Group(2) 35
T/NT: 37/63%
Group(3) 10
T/NT: 0/100%
Group(4) 9
T/NT: 11/89%
Group(5) 5
T/NT: 0/100%

0 100 200 300 400 500 600 700 800
time (ms)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 30
T/NT: 80/20%
Group(2) 23
T/NT: 83/17%
Group(3) 23
T/NT: 83/17%
Group(4) 19
T/NT: 79/21%
Group(5) 17
T/NT: 65/35%

0 100 200 300 400 500 600 700 800
time (ms)

0.6

0.4

0.2

0.0

0.2

0.4

Po
te

n
ti
al

 (
m

V
)

T(label)
NT(label)
Group(1) 150
T/NT: 65/35%
Group(2) 52
T/NT: 54/46%
Group(3) 24
T/NT: 46/54%
Group(4) 17
T/NT: 35/65%
Group(5) 10
T/NT: 20/80%

Figure B.43: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 11
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Figure B.44: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 12
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Figure B.45: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 13
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Figure B.46: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 14
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Figure B.47: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 15
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Figure B.48: Extracting 5 groups of epochs using the Kruskal-Walis test. On the left V, right dV. Showing

results for participant 16
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