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In this article we review the Whittaker smoother for enhancing scatter-plots and
smoothing data in two dimensions. To optimise the behaviour of the smoother an
algorithm is introduced, which is easy to programme and computationally efficient.

Results: The methods are illustrated using a simple dataset and simulations in two
dimensions. Additionally, a noisy mammography is analysed. When smoothing
scatterplots the Whittaker smoother is a valuable tool that produces enhanced images
that are not distorted by the large number of points. The methods is also useful for
sharpening patterns or removing noise in distorted images.

Conclusion: The Whittaker smoother can be a valuable tool in producing better
visualisations of big data or filter distorted images. The suggested optimisation method
is easy to programme and can be applied with low computational cost.
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Background
The histogram -in all its simplicity- is one of the most powerful tools of data visualization.
Plotting the values of a variable x against a variable y will reveal whether there are is
some sort of correlation between the variables or not, whether the relationship is linear
or more complicated, whether there are interesting subgroups in the data or whether
outliers are present. A problem might rise however, when trying to plot many points onto
one simple graph. As the number of observations becomes larger and larger many scatter-
plots end up being to busy for the eye to understand. Often, in moderate to large datasets,
a collection of many observations on one plane will end up revealing a cloud of points
where all structure remains obscured by the superposition of one point onto another.
Depending on what is the medium where such a graph will be illustrated, it becomes a
waste of ink or space.

To address this problem, some researchers have suggested smoothing data to obtain
a heat plot image, rather than the original scatter plot. A heat plot will use colour, or
shades of black, to represent areas of great concentration of points. A common way is
via the use of Kernel smoothers [1], employed in R with the function smoothScatter
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which is part of the base distribution [2]. More recently, Eilers and Goeman [3] illus-
trated a way of smoothing scatter-plots in two directions using penalized b-splines or
p-splines. This approach has been implemented in package gamlss.util via command
scattersmooth [4].

In this work we are focusing on the paper by Eilers and Goeman [3] where a scatter-plot
is enhanced using smoothed densities. We will start off with the same approach, where
penalized splines are applied on the x and y directions, respectively. However, we will
also go a step further and so how the optimal smoothed scatter-plot can be obtained by
estimating the amount of penalty needed for each graph. We view penalized splines as
random effects whose variance depends on the penalty weight. This is not a completely
new approach but has only been applied to one dimension before (see [5-8]). We will
revise the algorithm and extend it to apply to two dimensional smoothing.

The paper will start by illustrating a simple spline, the Whittaker smoother [9] and how
this is applied in smoothing in one direction. In the next section we will introduce a simple
dataset on which we will show how to obtain an optimised smoother where the penalty
weight is estimated. We will then extend the method into two dimensions and show how
to optimise smoothing penalties. The paper is ended with a discussion.

Implementation
The Whittaker smoother
Consider a simple scatter-plot in which the logarithm of the ratio of received light from
two laser sources (given as y) is plotted against the distance travelled before the light is
reflected back to its source, or range x. These particular data are produced using the Light
Detection and Ranging (LIDAR) technique. The data have been used in [10] (Chapter 3)
and can be downloaded from http://matt-wand.utsacademics.info/webspr/data.html.
We would like to obtain a smooth function of y given by a vector «. That means that for
each observation in vector y, written as y; with i = 1,2, .., m an estimate «; is obtained.
Adding one parameter «; for each observation y; has the benefit of allowing the smoother
to be very flexible and follow any kind of pattern the data might have. The drawback of
course is that the number of parameters is as big as the number of observations which
can lead to over-fitting. To control for over-fitting, a roughness penalty is imposed based
on the differences of the parameters.
Let D; be a matrix that forms differences of order d. For example, a first order difference
is denoted as Ax; = o;—a;_1, while a second order difference would be A2q; = A(Aw;) =

a; — a1 — (a1 — aj_2), with corresponding D1 and D matrices given by:

-1 1 00 -1-2 1 00
D) = 0—-1 10 |;Dp= 0 1-2 10
0 0-11 0 0 1-21

The penalized Whittaker smoother is computed by minimising the following penalised
least-squares function:

S=lly —all* + AlIDga|* 1)


http://matt-wand.utsacademics.info/webspr/data.html.
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Then, to get an explicit solution for « one needs to minimise S in (1). That would lead
to penalized normal equations given as:

& =+1D'D)"ly (2)

where I is an identity matrix of dimension m x m. The smoothed vector & depends, of
course, by the choice of the penalty weight. When A tends to zero, hardly any penalization
is imposed on the estimates giving a non-smoothed curve, close to the actual values. On
the other extreme, as A tends to infinity the penalty weight dominates and it results in
a straight line. Optimal values of A should provide a smooth curve that reveals the true
nature of the data whilst removing roughness and randomness. Figure 1 illustrates the raw
data along with three smooth curves based on different penalty weights. For small values
of A the data are undersmoothed, while as A increases the methods provides a smoother

curve.

Penalty optimization

A common way to choose the optimal weight is to perform a search for an optimal crite-
rion over a fine grid of A values. The user has to define a number of distinct possible values
of A, fit a model for each one of those and then decide which one is preferred based on
some sort of a loss function or a criterion. Common choices include cross-validation or
Akaikes-type criteria (including Akaike Information Criterion (AIC), Akaike Information
Criterion correction (AICc), Bayesian Information Criterion (BIC) etc, see [11-13]).

One popular approach is the use of Generalized Cross Validation (GCV) [14]. Define H
the hat matrix as H = (I + AD'D)~! and let ed= trace(H) be the effective dimensions,
given as the sum of the diagonal elements of H. Then

10 — di)? 3)
(m — tr(H))?

Here, we use an algorithm for penalty optimisation that treats the penalty weight as a

GCV(L) =

parameter to be estimated from the model. A penalized likelihood can be seen through
a Bayesian model framework [15], or a random effects framework [10], or an extended
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Fig. 1 Whittaker smoother on the LIDAR data using three different penalty weights
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likelihood of a random effect parameter [16]. These different viewpoints allow for the use
of an algorithm that was first suggested by [17] to estimate the variance of the random
effect in a random effects model. Variations of the algorithm have also been published
in [6, 7].

In the Whittaker smoother model, define e = y — & and let

A ee
o2 — 4
m — ed @)
where m and ed as before, and let
~  a'DD&
2 _ 5
% ed —2 ®)

More details can be found in [18] (Chapter 9).
The algorithm that chooses an optimal weight then has the following steps:

1. For given 1;2,02 find A = 2—2

Estimate vectors by: & = (I + AD'D)"ly
o2
o2

Iterate until convergence.

2
3. Given o update A =
4

The algorithm usually converges within a few steps. In rare cases convergence is sen-
sitive to starting values of A but we have found that this is rarely happening when both
02,02 are 1.

Smoothing a two dimensional histogram

Consider a two dimensional domain x — y that is being cut into rectangles and the num-
ber of observations that lie within each rectangle been counted. For such an x — y plain
a matrix Ry, x, is formed that contains counts. To smooth a two-dimensional histogram
based on R, one has to smooth first the columns R,,,, that form a vector y, using the same
algorithm defined before for one dimensional smoothing. That would produce a new
matrix G,x,. Then, using exactly the same procedure it is easy to smooth the columns
of G,,,,, which are the rows of G,,x,. The new smoothed matrix will be the transposed of
the desired outcome. This is the algorithm that was defined in [3]. There are two differ-
ent penalty weights in the algorithm, A; that penalises the smooth over columns of R,
and XAy which is used for the penalty in rows of G, . In the original paper, as well as
in the function scatterSmooth the penalties are not optimised, instead they are taken
with the default values: 11,12 = 1. Since this is a two step algorithm, it would be rather
straightforward to optimise A-s into both direction. In the first step, the algorithm for one
dimensional smoothing can be applied to get the optimal for the columns of R, and in
the second step, the same algorithm will be applied to optimize A,. That would result in
an overall better image of the data.

Results

The LIDAR data

For the LIDAR data, the GCV criterion was first used as a reference. A fine grid of values
was defined, ranging from a very small penalty weight 0.001 that would allow the esti-
mates to vary freely, to a large penalty of 100000 that would essentially make the estimates
close to zero. The optimal value was determined to be for a high value of A = 7943. Using
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the algorithm to optimise the penalty weight the estimated value was A = 5758. Although
the two values look different, in fact the smooth line they produce is not distinguishable,
as seen from Fig. 2, where one smooth lies on top of the other.

Simulated histogram

To illustrate the methods, a simple simulation dataset was created. Let x ~ N(0,1) and
y = 0.7 % x + 0.4x> 4+ 0.3e where e is Gaussian noise. A total of 10000 observations were
created and plotted in the upper left scatter-plot in Fig. 3. The relationship between the
two variables is obscured by random Gaussian noise (showing in upper right graph). The
latter scatter-plot was then smoothed using first a Whittaker smoother with optimised
penalties. The algorithm estimated a penalty close to zero along the columns A; < 0.001
and a second penalty A, = 4.3 along the rows. The image produced be the smoother
is shown in the lower left scatter-plot. The heatmap shows areas of great concentration
of points, towards the centre of the graph, and also clearly reveals the signal behind the
noise. A few randomly selected points are plotted around the heatmap. In the lower right
graph, the Kernel smoother (using smoothScatter in R) also reveals the true signal,
however, it is more sensitive to the noise and provides a heatmap with some features of
the noise still in it.

Simulated image

The Whittaker smoother can also be used of any 2-dimensional smoothing. To illustrate,
consider the image in Fig. 4 (upper left) in which some Gaussian noise was added to
mask the patterns (upper right). The addition of Gaussian noise masks completely the
previously clear patterns. The application of a Whittaker smoother without a penalty opti-
misation uses a default line for both weights, thus here: A.; = X, = 1. However, in this
case there is a need for bigger penalties that will control the smooth in both directions.
As seen in the Fig. 3 (lower right graph) the smoother does remove some noise and hints
on some of the patterns but it does not reveal the true image. Instead, when the weights
are optimised (here 11 = 23.8 and Ay = 33.4) the pattern is clearly revealed.
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Fig. 2 Whittaker smoother on the LIDAR data, using cross-validation and optimisation
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Fig. 3 Smoothing a two dimensional histogram: simulated histogram. [Upper left graph:] The true relation
between x and 'y, [Upper right graph:] obscured by noise, [Lower left graph:] smoothed by Whittaker smoother
with optimised penalties and [Lower right graph:] smoothed by Kernel smoother
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Fig. 4 Smoothing a two dimensional histogram: simulated image. [Upper left graph:] A simulated image
[Upper right graph:] obscured by Gaussian noise, [Lower left graph:] smoothed by Whittaker smoother with
optimised penalties and [Lower right graph:] smoothed by Whittaker smoother without optimisation
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Filtering a noisy mammography

Smoothing can also be used to filter out noise from a distorted image. As an exam-
ple we consider the case of a mammography. In the upper left part of Fig. 5 a
mammography is displayed. In the upper part of the breast, a white shade (marked
with a cross) shows signs of what might be a tumour. The original image can
be found online at: http://img.medscape.com/news/2014/dt_140703_mammography_
breast_cancer_800x600.jpg. To make the problem more challenging Gaussian noise has
been added to the image, in a way that distorts the definition of the tumour. In Fig. 5,
the original image has been slightly distorted, as it can be seen on the upper right part
of the graph. To filter noise out, a kernel smoother has been used that resulted in the
image shown in the lower left part of the figure. The smoother was created using function:
image.smooth from library fields [19]. The smoother has removed a lot of noise
and the image looks sharper, though not as sharp as the original. The Whittaker smoother
was applied, with an automated selection of penalty weights. In the lower right part of the
figure the Whittaker method produces a better image, has removed more noise than the
kernel smoother and defined the tumour more clearly.

The merit of the method can also be seen when the image is more noisy. Figure 6
presents the same mammograph, where the addition of noise now completely distorts the
image (upper right). The kernel smoother fails to reveal the original features of the image.
On the contrary, using a Whittaker smoother, the features of the image are restored (lower

Fig. 5 Smoothing a two dimensional histogram: Added some noise to mammography. [Upper left graph:] A
breast mammography. An area that seems like a tumour has been marked with a cross. [Upper right graph:]
obscured by Gaussian noise, [Lower left graph:] smoothed by kernel smoother [Lower right graph:] smoothed
by Whittaker smoother with optimisation
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Fig. 6 Smoothing a two dimensional histogram: Mammography completely distorted by noise. [Upper left
graph:] A breast mammography. An area that seems like a tumour has been marked with a cross. [Upper right
graph:] obscured by Gaussian noise, [Lower left graph:] smoothed by Whittaker smoother with optimised
penalties and [Lower right graph:] smoothed by Whittaker smoother without optimisation

right). Although there is still noise left, it is now more clear that there is a finding in the
mammography.

Conclusions

A simple - yet powerful addition to a Whittaker smoother was presented. The addition is
based on an efficient algorithm that will lead to an optimised penalty weight. Thus, the
degree of smoothing that is needed can be objectively decided by the procedure rather
than subjectively by the user. The methods can be applied to one or two dimensional
smoothing.

The methods presented here are intended as a tool for the applied user who would like
to have an effective and computationally efficient way to smooth scatter-plots or images.
The approach was illustrated and compared to a Kernel smoother or a simple Whittaker
smoother. When compared with the Kernel smoother the optimised Whittaker approach
produced an image with less noise and closer to the true relationship between the vari-
ables. We see a two-fold advantage here; first the optimised smoother can be used as a
simple data visualisation device. It will produce a plot that is visually more compelling
whilst on the same hand communicating significant information on the data. As such the
differences with the Kernel smoother are minimal. Another advantage however, is that the
optimised smoother can be used to gain a better insight and understanding at the data,
since it removes more noise than a Kernel smoother when needed. As such, the Whittaker

smooth can be used as a more in-depth explanatory method for making sense out of data.
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The benefits of optimising penalty weights were also illustrated further in a second
example of smoothing a simulated image. Of course, an experienced researcher will prob-
ably have been able to identify the need of a larger penalty in Fig. 4 (lower right) and
experiment with larger values for the penalties. That would probably led to a better image
but leads to a subjective fit that depends on the used. On the other hand, one could also
optimise penalty weights by minimising some sort of loss function or criterion, as illus-
trated in “Background” section, but this would be a computational expensive method to
follow, especially in two dimensions.

When working with real mammography images, the method was able to outperform
kernel smoothers. In further investigation of the same problem, Gaussian filters have been
used, to blur the image and obtain better results. When specifying a Gaussian blur, the
user has to specify the variance of the Gaussian distribution. With some trial and error
approach, we where able to filter the noise out to a satisfactory level, but we could not
outperform the Whittaker smoother (data not shown). Additionally, the filter did require
tuning from the user and was not based on an automated procedure.

A merit of our approach is that it can work even in cases where smoothing is not
required. When the image is not noisy, the algorithm with converge to extremely small
values for the penalty weights, thus removing the effect of the penalty altogether. The
more noisy the image the bigger the penalty weights will be. These are situations where
the method has great advantages over other approaches.

The algorithm presented in this paper was coded in R in just a few lines of code. It is
very easy however to implement it in another programming language like Matlab or Java.
The appendix contains the R programme.

Availability and requirements
Operating System: Windows 7
Language: R

Appendix: R code

smooth2D = function (Hraw, lambda=1) {
### Hraw: A plane given as an m x m matrix
### lambda: penalty weight
if (length(lambda) == 1)
lambda = c(lambda, lambda)
m <— nrow (Hraw)
n <— ncol (Hraw)
El <— diag(m)

E2 <— diag(n)
Dx <— diff(E1)
Dy <— diff(E2)

dz <— 5
while (dz>1e —5){
Qx <— E1 + lambda[1l] * t(Dx)
sQx <— solve (Qx)
z1l <— sQx
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HQx <— sQx
edx <— sum(diag (HQx))
s2 <— sum( t(Hraw—z1)
su2 <— sum(t(zl)
dz <— abs(lambda[l]—s2/su2)
lambda[1]<— s2/su2}
dz <— 5
while (dz>1e —5){
Qy <— E2 + lambda[2] x t(Dy)
sQy <— solve (Qy)
z2 <— sQy
HQy <— sQy
edy <— sum(diag(HQy))
s2 <— sum(t(Hraw—z2)
su2 <— sum(t(z2)
dz <— abs(lambda[2] —s2/su2)
lambda[2]<— s2/su2}
out <— list(H=t(z2), Hx = HQx, Hy=HQy, Dx=Dx, Dy=Dy,
Hraw=Hraw, lambda=lambda)
out}
Abbreviations

AIC: Akaike information criterion; AlCc: Akaike information criterion correction; BIC: Bayesian information criterion;
GCV: Generalized cross validation
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