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Abstract�Jamming attacks have been shown to disrupt secret
key generation (SKG) in systems that exploit the reciprocity of
the wireless medium to generate symmetric keys at two remote
locations through public discussion. In this study, the use of
frequency hopping/spreading in Rayleigh block fading additive
white Gaussian noise (BF-AWGN) channels is investigated as a
means to counteract such attacks. The competitive interaction
between a pair of legitimate users and a jammer is formulated
as a zero-sum game and the corresponding Nash equilibria (NE)
are characterized analytically and in closed form. It is found that
the jammer�s optimal strategy is to spread its power across the
entire spectrum. On the contrary, the pair of legitimate users
should use frequency spreading only in favorable transmission
conditions, and frequency hopping otherwise (e.g., low signal to
jamming power ratio). Numerical results show that frequency
hopping/spreading in BF-AWGN channels is an effective tech-
nique for combating jamming attacks in SKG systems; a modest
increase of the system bandwidth can substantially increase the
SKG rates.

Index Terms�Secret key generation, jamming, zero-sum
games, Nash equilibrium, frequency hopping/spreading

I. INTRODUCTION

Direct sequence spread spectrum (DSSS) and spread spec-

trum frequency hopping (SSFH) are the principal counter-

jamming approaches typically used in wireless systems [1]. In

essence, these systems require a pre-shared secret to establish

the spreading sequence or the hopping pattern between two

legitimate nodes; as such, they are not directly applicable

to secret key generation (SKG) systems that on the contrary

seek to establish a secret key [2]�[5]. Attempting to resolve

this contradiction and reconcile DSSS and SSFH with SKG,

uncoordinated frequency hopping/spreading techniques have

recently been investigated in [6], [7]. The main idea behind the

proposed approaches was the randomization of the selection

of the hopping/spreading sequences.

Such techniques typically employ long pseudo-random se-

quences and consequently often require a considerable ex-

pansion of the system bandwidth. On the other hand, fourth

(4G) and  fth generation (5G) systems have strict bandwidth

speci cations; it is therefore timely to investigate alternative

counter-jamming approaches for systems with limited spectral

resources. Furthermore, their compatibility with orthogonal

frequency division multiplexing (OFDM) modulation systems

used in 4G would also be desirable. Motivated by the above,

in the present work we extend the studies in [8], [9] to SKG

systems and investigate frequency hopping/spreading counter-

jamming policies in Rayleigh block fading additive white

Gaussian noise (BF-AWGN) channels.

The strategic interaction between a pair of SKG nodes and

a malicious jammer is modeled as a zero-sum non-cooperative

game in which the SKG capacity serves as the utility function.

By construction, this game has at least one Nash equilibrium

(NE); the set of all pure and mixed NE are characterized

in closed form. We show that optimally the jammer spreads

its power. On the other hand, if the transmission conditions

are poor (e.g., low transmit power or high jamming power),

then the legitimate users should use frequency hopping, while

when the transmission conditions are favorable they should

use frequency spreading. Employing the NE as opposed to

a  xed strategy can result in high gains in terms of SKG

rates for the legitimate nodes. As an example, our numerical

results demonstrate that more than 80% in relative utility can

be gained at the NE compared to a  xed frequency hopping

strategy. Importantly, it is shown that a mere doubling of the

spectral resources allows for a substantial increase in SKG

rates (relative gain > 40%), while this gain rises considerably

when quadrupling the system bandwidth (relative utility gain

> 60%). Thus, ef cient counter-jamming approaches for SKG

systems can be built even when spectral resources are limited.

The paper is organized as follows. In Section II the SKG

system model is introduced. In Section III the zero-sum game

is formulated and the NE are completely characterized in

closed form. Numerical illustrations and a detailed discussion

of the possible counter-jamming strategies are presented in

Section IV, while the conclusions of this work are included

in Section V.

II. SYSTEM MODEL

SKG processes have been extensively studied and are con-

sidered a mature topic of physical layer security. They typi-

cally consists of three phases: a shared randomness distillation

phase, in which the legitimate nodes � commonly referred

to as Alice and Bob � observe dependent random variables

denoted in the following by YA, YB while an eavesdropper,

referred to as Eve observes YE . In the next two phases,

known as information reconciliation and privacy ampli cation,

side information is exchanged between Alice and Bob and

a common secret key is established with the aid of Slepian
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Wolf decoders. An upper bound on the SKG rate is given by

min [I(YA;YB), I(YA;YB|YE)] [2], [3].
A commonly used source of shared randomness is provided

by the fading coef cients in slowly varying rich multipath

environments [4], [5], exploiting channel reciprocity during

the channel coherence time. Particularly in Rayleigh and

Rician fading channels, the decorrelation properties of the

fading coef cients over short distances (of the order of a

wavelength) can be exploited to ensure that Eve�s observation

YE is uncorrelated from YA and YB [4], [5]; in this case,

the above upper bound becomes tight and the maximum SKG

rate, referred to as the SKG capacity, is simply given by

C = I(YA;YB) (Sec. II [2]). In the following, we assume

that the decorrelation property of the observations holds.

In this context in [5], Alice and Bob were assumed to ex-

change unit probe signals over a slow fading Rayleigh channel

during its coherence time and obtain respective observations

YA and YB expressed as:

YA = H + ZA, (1)

YB = H + ZB, (2)

where H denoted the fading coef cient, modeled as a zero

mean Gaussian random variable with variance σ2
H , H ∼

N (0, σ2
H), and, ZA and ZB modeled the effect of AWGN

and denoted independent zero mean Gaussian random vari-

ables with variances NA and NB respectively, (ZA, ZB) ∼
N (0, diag (NA, NB)). Using this notation, the SKG capacity

has been expressed as [5]:

C = I(YA;YB) =
1

2
log2

(

1 +
σ2
H

NA +NB + NANB

σ2

H

)

. (3)

However, SKG systems have been shown to be vulnerable to

jamming attacks [10]. In this work, we study a generalization

of the system model in [5] when N parallel subchannels

are available for transmission in the presence of a malicious

jammer. Alice�s and Bob�s observations on the i-th subchannel
� denoted by YA,i and YB,i respectively � are expressed as

YA,i =
√
piHi +

√
γiGA,i + ZA,i, (4)

YB,i =
√
piHi +

√
γiGB,i + ZB,i, (5)

where the following notation is employed: on the i-th sub-

channel, the fading coef cient in the link between Alice

and Bob is denoted by Hi, in the link between Eve and

Alice by GA,i and in the link between Eve and Bob by

GB,i and the links are reciprocal. The fading coef cients

are modeled as independent Gaussian random variables with

Hi ∼ N
(

0, σ2
H

)

, GA,i ∼ N
(

0, σ2
A

)

, GB,i ∼ N
(

0, σ2
B

)

, for

all i. The noise terms ZA,i and ZB,i are modeled as Gaussian

random variables with zero mean and unit variances. Alice and

Bob exchange constant probe signals with power pi and Eve

transmits constant jamming signals with power γi on the i-th
subchannel such that the following average power constraints

are satis ed:

1

N

N
∑

i=1

pi ≤ P,
1

N

N
∑

i=1

γi ≤ Γ. (6)

Under these assumptions, an easy calculation reveals that

the SKG capacity over the i-th subchannel can be expressed

as a function of pi and γi as:

C(pi, γi) = I(YA,i;YB,i)

=
1

2
log2

Ñ

1 +
σ2
Hpi

NA,i +NB,i +
NA,iNB,i

σ2

H
pi

é

, (7)

with NA,i = 1+ σ2
Aγi, NB,i = 1 + σ2

Bγi. (8)

By inspecting it�s  rst-order derivatives, we conclude that

C(pi, γi) is a strictly increasing function of pi for any  xed

γi, and a strictly decreasing function of γi for any  xed pi.
Furthermore, it is a strictly convex function with respect to

(w.r.t.) γi for any  xed pi > 0 as its second derivative w.r.t.

γi is strictly positive.

In order to evaluate the N -subchannel BF-AWGN SKG

capacity, we formalize the frequency hopping and spreading

model for the legitimate users and the adversary similarly to

[8], [9]. Frequency spreading can be simply implemented as a

wideband transmission across N parallel subchannels employ-

ing a uniform power allocation policy, i.e., pi = P, ∀i ≤ N for

the legitimate users and γi = Γ ∀i ≤ N for the jammer. From

an implementation point of view, this is equivalent to a stan-

dard OFDM transmission. On the other hand, frequency hop-

ping corresponds to transmitting on a single, randomly chosen

subchannel with full power so that when the legitimate users

employ frequency hopping on subchannel i, then pi = NP
and pk = 0 for k 6= i, while when the jammer frequency hops
on subchannel i then γi = NΓ and γk = 0, k 6= i. In OFDM

systems, this could be ef ciently implemented by setting all

the inputs of the inverse fast Fourier transform (IFFT) block

to zero, except for one (randomly chosen). Importantly, for

both frequency spreading or frequency hopping modes, no

coordination is assumed between transmitting and receiving

terminals; all receiving terminals blindly employ wideband

detection using standard OFDM receivers, so that the need

for a pre-shared frequency hopping or frequency spreading

sequence is alleviated.

The hopping versus spreading strategies are randomly cho-

sen as follows: αi, ∀i ≤ N represents the probability of

frequency hopping on subchannel i and αN+1 the proba-

bility of spreading the available power uniformly over the

whole spectrum for the legitimate users. Similarly, we de ne

βi, 1 ≤ i ≤ N+1 for the jammer. Since α = [α1, . . . , αN+1]
and β = [β1, . . . , βN+1] are discrete probability distributions,
we have: αj ≥ 0, ∀j, ∑N+1

i=1 αi = 1, βj ≥ 0, ∀j,
and

∑N+1
i=1 βi = 1. These probabilities are assumed publicly

known. Given all the above, the SKG capacity over the N
parallel subchannels (measured in bits/sec/Hz) is given by:

u(α, β) =
1

N

N
∑

i=1

{αi(1− βi − βN+1)C(NP, 0)

+αiβiC(NP,NΓ) + αiβN+1C(NP,Γ)

+αN+1βi[(N − 1)C(P, 0) + C(P,NΓ)]}
+αN+1βN+1NC(P,Γ). (9)



In (9), the  rst term corresponds to the case in which the

legitimate users hop on subchannel i and the jammer hops on
a different subchannel; the second term to the case in which

the legitimate users and the jammer both hop on subchannel

i; the third term to the case in which the legitimate users hop

on subchannel i and the jammer spreads; the fourth term to

the case in which the legitimate users spread and the jammer

hops on subchannel i. Finally, the last term corresponds to the

case in which they both spread their power.

III. ANALYSIS OF NASH EQUILIBRIA

Here, we investigate the optimality of frequency hopping

versus frequency spreading. For simplicity, in the following

Alice and Bob will be collectively referred to as player L and

Eve as player J. We model the competitive interaction between

L and J as the following zero-sum game:

G (P,Γ) = {AL,AJ , u}, (10)

where the payoff u is given in (9). The players� objective is

to identify the optimal probability vectors α and β to maxi-

mize/minimize, respectively, the payoff u. Their corresponding
action sets, denoted by AL and AJ are de ned as

AL = {α ∈ [0, 1]N+1|
N+1
∑

i=1

αi = 1}, (11)

AJ = {β ∈ [0, 1]N+1|
N+1
∑

i=1

βi = 1}.

From the utility expression (9), none of the players can

choose their best strategies unilaterally since they depend on

the opponent�s choice. In such interactive situations, the Nash

equilibrium (NE) is a natural solution [11]. Intuitively, a NE is

a system state (α, β) that is stable to unilateral deviations. At
the NE, none of the players can bene t by deviating knowing

that their opponent plays the NE strategy.

To derive the game�s NE we begin by studying a  nite

discrete game, denoted by Gd with action sets EL ≡ EJ ,

{e1, . . . , eN , eN+1} where ei ∈ {0, 1}N+1 are the canonical

vectors containing 1 on the i-th position and 0 otherwise. The
i-th action ei represents frequency hopping on subchannel i for
all i ≤ N and eN+1 represents spreading the power across the

spectrum. Such  nite discrete games always have at least one

NE in mixed strategy (α∗, β∗) [11, Sec. 1.3.1]. We observe

that our game G represents the mixed strategy extension of

Gd, which directly implies that G has at least one NE.

Corollary 1: [11, Thm. 1.1] The strategic form game G has

at least one NE.

To compute the NE, one possibility is to use the Minimax

Theorem which allows us to numerically evaluate mixed NE

of any two-player zero-sum game via linear programming;

albeit, in our game, we show that the NE can be characterized

analytically and in closed-form instead. We begin with a

de nition of the NE that follows directly from De nition 1.2

in [11, Sec.1.2.1]:

De nition 1: A strategy pro le (α∗, β∗) ∈ AL × AJ is a

NE of the game G if both of the following hold:

i) both players are indifferent among the pure actions that

are played with positive probability at the NE, i.e.,

u(α∗, ei) = u(α∗, ek), ∀i, k,∈ IJ ,
u(ei, β

∗) = u(ek, β
∗), ∀i, k,∈ IL,

ii) the pure actions that result in strictly smaller payoffs are

played with zero probability at the NE, i.e.,

if u(α∗, ei) < u(α∗, ek), i ∈ IJ , then k ∈ NJ ,

if u(ei, β
∗) > u(ek, β

∗), i ∈ IL, then k ∈ NL,

where the sets NL, IL ⊆ {1, . . . , N +1} denote, respectively,

the indices of the pure actions that are never used at the NE

and those that are used at the NE by player L: NL = {i|α∗

i =
0}, IL = {1, . . . , N + 1} \ NL; similarly, the sets NJ , IJ ⊆
{1, . . . , N + 1} denote, respectively, the set of indices of the

pure actions that are never used or are used by player J at

the NE: NJ = {i|β∗

i = 0}, and IJ = {1, . . . , N + 1} \ NJ .

De nition 1 provides a method to compute the NE of the

game G by solving a system of linear equations as long as

the faces of the simplex AL × AJ on which the NE lie are

known, i.e., IL, IJ need to be known in advance for all NE.

An exhaustive search has a prohibitive complexity (the number

of faces in the simplex of dimension 2(N +1) is of the order
of 22(N+1)). For general discrete non-cooperative games, the

problem of  nding its mixed strategy NE remains a dif cult

problem [12]. Nevertheless, as we will see in the following

section, the NE of our game G have a special structure which

allows us to exploit De nition 1 and fully characterize the set

of NE in a simple manner.

In the particular case of a single subchannel, N = 1, the
NE is trivial and consists in both players transmitting with

maximum power (P,Γ) or equivalently α∗ = β∗ = 1. Indeed,
since the utility function is increasing as a function of the

power of player L and decreasing as a function of player�s J

power, P and Γ are strictly dominant strategies.

Now, let us focus on the more challenging case N ≥ 2.
From Corollary 1, we know that the game G has at least one

NE. Examining the matrix structure of the discrete game Gd

given in Table I, we notice that there is a symmetry between

the frequency hopping strategies. In particular, the utility does

not depend on the particular index of the chosen subchannel

but only on whether both players hop on the same subchannel

or not. This symmetry allows us to show that the NE of the

game G have a particular structure speci ed in the following

propositions. The proofs of the propositions are omitted due

to space limitations.

Proposition 1: At the NE (α∗, β∗), a player uses either all

channel hopping actions with non-zero probability or none of

them: either α∗

i = 0, ∀i ≤ N or α∗

i 6= 0, ∀i ≤ N , and

similarly, either β∗

i = 0, ∀i ≤ N or β∗

i 6= 0, ∀i ≤ N .

Proposition 2: If both players employ frequency hopping

with non-zero probability at the NE, i.e., α∗

i > 0 and β∗

i >
0 ∀i ≤ N , then the players will hop uniformly across all

channels and the NE will have the following structure: α∗ =



TABLE I
TWO PLAYER ZERO-SUM DESCRIPTION OF Gd

ei, i ≤ N ek , k ≤ N, k 6= i eN+1

ei, i ≤ N C(NP,NΓ) C(NP, 0) C(NP,Γ)

ek , k ≤ N, k 6= i C(NP, 0) C(NP,NΓ) C(NP,Γ)

eN+1 (N − 1)C(P, 0) + C(P,NΓ) (N − 1)C(P, 0) + C(P,NΓ) NC(P,Γ)

(a, . . . , a, (1−Na)), β∗ = (b, . . . , b, (1−Nb)) for some 0 ≤
a ≤ 1/N , 0 ≤ b ≤ 1/N .

Notice that Propositions 1 and 2 shape the special structure

of the NE of G. This structure alongside with De nition 1

and the strict convexity of C(p, γ) w.r.t. γ, allows us to fully

characterize the set of NE in a very simple and explicit manner

as a function of the system parameters.

Theorem 1: The set of NE of the game G is characterized

as follows:

1. If C(NP,Γ) < NC(P,Γ), then the game has a unique

pure-strategy NE: both players spread their powers , i.e.,

α∗ = β∗ = eN+1.

2. If C(NP,Γ) > NC(P,Γ), then player L hops and player

J spreads at the NE: α∗ = (α1, . . . , αN , 0) and β∗ =
eN+1. The NE strategies of player L are given by the

(in nite number of) solutions to the following system of

linear inequalities:
®

0 ≤ αi ≤ 1, ∀i ≤ N,
∑N

j=1 αj = 1,

αi <
C(NP,0)−C(NP,Γ)

C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

In particular, the uniform probability distribution is one

of the NE solutions: α∗ = (1/N, . . . , 1/N, 0). All NEs
are equivalent in the sense that the utility is identical.

3. If C(NP,Γ) = NC(P,Γ), player L employs all

its actions and player J spreads at the NE: α∗ =
(α1, . . . , αN , αN+1) and β∗ = eN+1. The NE strategies

of player L are the (in nite number of) solutions to the

following linear system of inequalities:










0 ≤ αi ≤ 1, ∀i ≤ N,
∑N

j=1
αj = 1,

αi[C(NP,NΓ) − C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ)− C(NP, 0) + C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)−C(NP, 0), ∀i ≤ N.

In this case, both players spreading (case 1) is an NE.

Also, player J spreading and player L hopping strategies

(case 2) are all NEs. All NEs are equivalent in the sense

that the utility is identical.

Proof: The proof is detailed in Appendix A.

We remark that the NE can be unique and in pure strategies

if C(NP,Γ) < NC(P,Γ) and the outcome of the game

provides a utility equal to u(α∗, β∗) = NC(P,Γ). On the

contrary, if C(NP,Γ) ≥ NC(P,Γ), there are an in nite

number of NE which are generally in mixed strategies for

player L. All these NEs are equivalent in terms of achieved

utility, which equals u(α∗, β∗) = C(NP,Γ). Since the jam-

mer�s NE strategy is always spreading, even though there may

be an in nite number of NEs, the outcome of the game can

always be predicted exactly based solely on the knowledge

Fig. 1. NE regions as a function of P/Γ ≥ 0 and N ≥ 2 for Γ = σ2
A

=
σ2
B

= σ2
H

= 1.

of the game�s payoffs in Table I. Both players can choose

their NE strategies without the need for implementing iterative

or learning procedures, which would require some kind of

information exchange or signaling among the players.

Theorem 1 also shows that the optimal strategy of the

jammer is always spreading. Intuitively, if the jammer were

to use frequency hopping, player L would exploit this fact

and would also hop; this scenario is unfavorable for the

jammer as the probability that both players hop on the same

subchannel becomes small with increasing N . On the contrary,

for player L the best strategy can be either frequency hopping

of frequency spreading depending on the channel conditions,

which we will further investigate in the next section.

IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION

The best strategy for the legitimate users at the NE is illus-

trated in numerical examples of the NE regions as functions

of the system parameters. There exist two regions delimited

by the curve C(NP,Γ) = NC(P,Γ): a region in which

the NE is unique and both players spread their powers, and

a region in which the jammer spreads and the legitimate

users employ frequency hopping. In our benchmark setting

we assume that Γ = σ2
A = σ2

B = σ2
H = 1. The NE

regions as functions of P/Γ ≥ 0 and N ∈ {2, . . . , 100}
are depicted in Fig. 1. Player L hops at the NE below the

curve, when the signal to interference ratio (SIR) P/Γ is

relatively small. This is intuitive since, in the low transmit

power regime, the legitimate users should not split their scarce

power across different subchannels but should concentrate it

all on a single subchannel. Furthermore, in Fig. 2 the curve



Fig. 2. NE regions as a function of P/Γ ≥ 0 and N ≥ 2 for different values
of σ2

A
, σ2

B
, σ2

H
and Γ = 1.

Fig. 3. Relative utility gain between the NE vs. always hopping: DH =
(uNE−uHop,Spread)/uNE as a function of P/Γ for N = 32 for different
values of σ2

H
, σ2

A
, σ2

B
and Γ = 1.

C(NP,Γ) = NC(P,Γ) is illustrated for different channel

parameters. When σ2
H increases, the region in which player

L should employ frequency hopping at the NE shrinks down

while when σ2
A, σ

2
B increase, the region expands.

Furthermore, in Fig. 3, the relative gain obtained by player L

when employing the NE strategy as opposed to a  xed hopping

strategy is depicted. The relative utility gain DH = (uNE −
uHop,Spread)/uNE is relatively large (up to 85%) in the high

SIR regime (good transmission conditions). Finally, in Fig. 4,

the relative utility gain when using the NE strategy over N
subchannels as opposed to a single channel is investigated for

Γ = σ2
H = σ2

A = σ2
B = 1 as a function of P/Γ for N ∈

{2, 4, 8, 16, 32, 64}. We observe that even a modest increase

in the spectral resources of the SKG system can lead to a

substantial increase in the relative utility. E.g., for N = 2 this
gain is in the range of 40% while for N = 4 it is in the range
of 60%. Importantly, the relative gain is even higher at low

SIR P/Γ < 1. This shows that in SKG systems, the impact of

malicious jamming can be decisively limited by even a modest

increase of the bandwidth resources.

Fig. 4. Relative utility gain between the NE vs. single channel SKG: D1 =
(uNE−usingle)/uNE as a function of P/Γ for Γ = σ2

H
= σ2

A
= σ2

B
= 1

and N ∈ {2, 4, 8, 16, 32, 64}.

V. CONCLUSIONS

In this work, the interaction between a pair of legitimate

users and a malicious jammer in SKG systems was investi-

gated. Frequency hopping vs. frequency spreading in Rayleigh

BF-AWGN channels was formulated as a zero-sum game for

which a complete characterization (in closed-form) of the

NE was provided. It was found that the jammer�s optimal

strategy is always to spread its available power over the entire

spectrum while the legitimate users should either spread or

hop depending on the transmission conditions. At poor SIR,

the legitimate users should concentrate all of their power on a

single subchannel, while when the transmission conditions are

favorable, they should spread. Importantly, numerical simula-

tions showed that even a modest increase in spectral resources

compared to single channel SKG can substantially limit the

jammer�s impact, particularly at low SIR.

APPENDIX A

PROOF OF THEOREM 1

Proof: Given the strict convexity of C(p, γ) in γ, we have
the following inequality for all p, γ1 6= γ2 and λ ∈ (0, 1):

C(p, λγ1 + (1 − λ)γ2) < λC(p, γ1) + (1− λ)C(p, γ2).

By taking p = P , γ1 = 0, γ2 = NΓ, λ = N−1
N

, we obtain:

NC(P,Γ) < (N − 1)C(P, 0) + C(P,NΓ). (12)

Similarly, by taking p = NP , γ1 = 0, γ2 = NΓ, λ = N−1
N

,

we obtain:

NC(NP,Γ) < (N − 1)C(NP, 0) + C(NP,NΓ). (13)

Now, given Proposition 1 and Proposition 2, the NE can only

take nine forms which are not all mutually exclusive and which

will be detailed below. Each case is studied by using De nition

1 and developing the necessary and suf cient conditions for

each of the nine cases to occur. Then, by using (12) and (13),

we show that only three of the nine cases are possible.



1) Both players spread at the NE (i.e., α∗ = β∗ = eN+1),

iff C(NP,Γ) < NC(P,Γ) and (N−1)C(P, 0)+C(P,NΓ) >
NC(P,Γ). The second condition is always true due to (12).

2) Both players use only channel hopping at the NE

(i.e., α∗ = β∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) +
(N − 1)C(NP, 0) > N(N − 1)C(P, 0) + NC(P,NΓ) and
C(NP,NΓ) + (N − 1)C(NP, 0) < NC(NP,Γ). This case
is impossible because of (13).

3) The game has a strictly mixed NE, i.e., all actions

are used with non-zero probability, of the form α∗ =
(a, . . . , a, (1−Na)), β∗ = (b, . . . , b, (1−Nb)) iff there exist
0 < a < 1/N and 0 < b < 1/N such that both players are

indifferent among all their pure strategies. Let us write the

condition for (a, . . . , a, 1−Na) to be a NE and for which the

jammer is indifferent among its pure strategies by De nition

1. This yields the following linear equation:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] =

(1−Na)[(N − 1)C(P, 0) + C(P,NΓ)−NC(P,Γ)],

where the term on the LHS is a strictly negative value from

a > 0 and (13) and the RHS is a strictly positive value from

a < 1/N and (12). Thus, this case can never occur.

4) Player L only channel hops and player J uses both chan-

nel hopping and spreading at the NE: α∗ = (1/N, . . . , 1/N, 0)
and β∗ = (b, . . . , b, (1 − Nb)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = NC(NP,Γ), 0 < b < 1/N , and

Nb[(N − 1)C(P, 0) + C(P,NΓ)] + (1 − Nb)NC(P,Γ) <
bC(NP,NΓ)+(N−1)bC(NP, 0)+(1−Nb)C(NP,Γ), where
b is chosen such that player L is indifferent among its pure

strategies. Given (13), the above equality never holds.

5) Player J only channel hops and player L uses both chan-

nel hopping and spreading at the NE (i.e., α∗ = (a, . . . , a, (1−
Na)) and β∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = N(N−1)C(P, 0)+C(P,NΓ), 0 < a < 1/N ,

and MaC(NP,Γ) + (1 − Na)NC(P,Γ) > aC(NP,NΓ) +
(N − 1)aC(NP, 0)+ (1−Na)[(N− 1)C(P, 0)+C(P,NΓ)]
where a is chosen such that player J is indifferent among its

pure strategies. The last inequality condition can be rewritten

as follows:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] >

(1−Na)[(N − 1)C(P, 0) + C(P,NΓ)−NC(P,Γ)]

where the term on the LHS is a strictly negative value from

a > 0 and (13) and the RHS is a strictly positive value from

a < 1/N and (12). Thus, this case can never occur.

6) Player L spreads and player J channel hops at the

NE (i.e., α∗ = eN+1 and β∗ = (β1, . . . , βN , 0)), iff

NC(P,Γ) > (N − 1)C(P, 0) + C(P,NΓ), NC(NP, 0) −
N(N − 1)C(P, 0)−NC(P,NΓ) < C(NP, 0)−C(NP,NΓ)
and βi meet some additional constraints. Because of (12) this

case never occurs as the  rst condition is never satis ed.

7) Player J spreads and player L channel hops at the NE

(i.e., β∗ = eN+1 and α∗ = (α1, . . . , αN , 0)), iff C(NP,Γ) >
NC(P,Γ) and NC(NP, 0) − NC(NP,Γ) > C(NP, 0) −
C(NP,NΓ). The NE strategies of player L are given by the

(in nite number) of solutions to the following system of linear

inequalities:
®

0 ≤ αi ≤ 0, ∀i, ∑N
i=1 αi = 1

αi <
C(NP,0)−C(NP,Γ)
C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

The second condition is always true (13). From (13), the above

system of inequality always has the uniform probability over

the channels solution α∗ = (1/N, . . . , 1/N, 0).
8) Player L spreads and player J employs all its actions

at the NE (i.e., α∗ = eN+1, β
∗ = (β1, . . . , βN+1)), iff (N −

1)C(P, 0) + C(P,NΓ) = NC(P,Γ) and βi, ∀i meet some
additional constraints that are not detailed here. The reason is

that, given (12), the equality condition never holds and, hence,

this case is impossible.

9) Player J spreads and player L employs all its actions

at the NE (i.e., β∗ = eN+1 and α∗ = (α1, . . . , αN , αN+1)),
iff C(NP,Γ) = NC(P,Γ) and the solutions to the following

linear system of inequalities are NE strategies for player L:










0 ≤ αi ≤ 1, ∀i,
∑N

i=1
αi = 1

αi[C(NP,NΓ)− C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ) −C(NP, 0) + C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)− C(NP, 0), ∀i ≤ N.

By taking αN+1 = 0, the above system of linear equations is

precisely the one in case 7.
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