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Non-Newtonian Flow in Incompressible Fluids

Part IIT Some problems in transient flow.

SUMMARY
Some transient flows are investigated, using & rheclogical equation
of state for an incompressible fluid of the form:
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where @ is a function of J; and Jo, the invariants of the Cauchy-Green
deformation tensor QlJ’ which relates the deformation at the present

time t with that at some past time +7. 0 is also o function of t and 7.

It is found that & material obeying the above equation of state will show
elastic and stress relaxation effects and may be of some use in investw
igating these properties in concentrated polymer solutions and melts.
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TLigt of Symbols

This 1ist defines the additional symbols used in this Note, and
should be taken in conjuncticn with the list in College of Aeronautics
Note No. 13k.

i} the acceleration of a particle at X,

Fi the body force per unit volume on the body at X,
vy the velocity of a parﬁicle at %,

Aij A

- the matrices defining a given homogeneous

(t) or A(t) or A \
{
- deformation.

+ 4 +7 ?
Aij(“ ) or A(t') or A

I the unit matrix.

P the matrixz of the stress tensor.

P P the invariants of the tensor Sij_l

diag (a,b,c) y @ matrix whose only non-zero terms are the

leading diasgonal terms a, b, C.
Ais A2y A3 3 the extension ratios on deformation of the sides
r of a parallelopiped whose sides are parallel to
+ the principal directions.

(pij)T the transient stress.

(z")T the transient normel force.

M, N, my nn constants in the definition of a particular

form of Q.

éo Lt A

B oo, T

P, 4y T, 8 } constents used for particular forms of éo

a, b, ¢, d -

T t-t!

a; or a (a,’ or a’) the position of a particle just before (or
- just after) a change in stress.

G the shear stress in constrained Ilow.

F(t) a function defining the amount of shear in

constralined flow.

Yis Y1 the recovery in constrained flow.




a) Introduction
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In Part I of this series (CoA Note 13L4) a rheclogical equation of
state for an incompressible fluid was obtained by a formal generalisation
of the rheological equation of state for an incompressible elastic solid
capable of sustaining large strains. The complete physical significance
of this generalisation is not understood but,; since the elastic eguation
of state has been used to describe the elastic behaviour of rubberw-like
polymers at large strains, it seems possible that this equation of state
for an incompressible fluid may be used to describe the properties of
materials such as polymer melts, concentrated polymer solutions and
even 'solid' rubber-like polymers which show time-dependent properties.

In Part IT (CoA Note 134) the equation of state was used to obtain
solutions to some problems in steady flow in which the velocity and stress
at any point in the fluid were independent of time.

In this Note (Part III) we investigate some problems in which the
stress and velocity are not independent of time. In particular we
investigate problems in which there is an instantaneous change in the
deformation, the rate of deformation, or the applied stress. Such
transient flow phencmena are of interest because they provide further
insight into the behaviour of the class of fluids which may be character-
ized by the general equation of state, and also because many experiments
involve Tlow of this type; for example, creep under coanstant load, stress
relaxation under constant deformation, and elastic recovery.

Many polymeric substances show marked elastic recovery in the sense
that the sudden removal of an applied stress, even after the steady flow
under this stress has been achieved, results in further deformation, even
when the inertia forces may be neglected. It is important to develop a

general formalism for the description and inter-relation of all these
phenomena..

The mathematical problem can be represented as that of finding a
solution to the eguation of motion

i "
B‘}f"l = pf, - F, (3.1)
subject to the eguation of continuity

—t = 0 (3.2)

for the rheoclogical equation of state

4 ‘
_ ) 30 -] -
Pij = POy - 2f {aa*l 85 = 3Ts °13 Ji e’ (3.3)



when the boundary conditions are specified and may be discontinuous
with respect to time t.

In these equations, ;. is the stress tensor at the point x5
3 :

referred to the rectangular cartesian co-ordinate system OXi. Fi is

the body force per unit volume at X, and fi is given by

5”‘;‘m Bvi
fi = vm“}:: + é—{" (5-}‘?)

where vi is the velocity of the particle at X, . The equation of
state (3.3) is discussed in detail in Part I, where a definition of

Q, J1s Jo, Sij-l and Sij will be found. The equation of continuity
is the mathematical expression of the assumption that the material is
incompressible. The general problem is, of course, too difficult and
it will be simplified by making the following assumptions; (l) body
forces do not exist (F. 0) and (2) inertial forces are negligible

(f. = 0). In addition, we shall consider only homogeneous deformations

(see Appendix I). For slow moving viscous liguids it is reasonable
to ignore inertial forces and most physical experiments are designed to
produce a deformation as nearly homogeneous as possible.

The effect of equating Fi and fi to zerc in the eguation of motlon

is to reduce it to the form

—d = 0 | (5.5)

and it is shown in section (b) that, for homogeneous deformation, the
stress, p, 3 is not a function of position, but only of time; therefore,

the equatlon of motion of the form (5.;) must be satisTied. Hence any
homogeneous deformation, for which the equation of continuity is
satisfied, is a possible deformation, and the stress may be calculated
directly from the equation of state. Similarly, any stress which is
not a functlion of position gives rise to a homogeneous deformation which
may be calculated directly from the equation of state, using as a
subsidiary condition the fact that the material is incompressible.

b) A special form of the equation of state when the deformations
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are hg§ogeneous.

We now consider only those deformations, (homogeneous deformations)
which convert any set of parallel planes into another set of parallel
planes, and in which the origin of co-ordinates remains fixed. It
can be shown, (Appendix I), that the most general deformation of this
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ij 73 i3

(3.6)

where X, and xg are, as in Part I, the rectangular cartesian co-

ordinates of & particle at times t and t' respectively and

AL,
Ld

a,(%)

it

‘l - 4
Aij Aij(t )

. . . .th
We denote the matrix whose element in the i
similar manner.

is Aij by A, and define A’ in a

matrix of Xi and x‘

[13e=d
[

XI

-

AI

or

1l

[

-é;l é_l </

The matrix of
ox.
1 s =1 p¢
S%r is A+ A
J

and therefore the matrix of

Dx: s
O‘Xl C 3 A -5
S. s = XY ] 1s A
ij T ox! ox =
07 04
Similarly, the matrix of
STt o is AATTT AT A
3_3 = = = =

For homogeneous deformations the

in matrix form where P is the matrix of pij, I is the matrix of o

AT A7 A

+
on
"'J 2557

- 03

1.

A is a function of t

e {Jf *°2 20

od1
- 00

that

Ai

o]
i

the column matrix of x}

(3.7
(5.8)

.th
row and j column
If x is the column

i sthen

(3.9)
(3.10)
(3.11)
FEE) -4t BB (5.12)
(3.13)

equation of state (3.3) can be expressed
3o

o0 (3.14)

S ——

-
47 - 572

é El"l 'é/"l é}dtl

only, this has the alternative form,

Z\L/ dtﬂ_}"l _~.( ‘be gﬁ_@;._:&’“l AT gyelp

= J(z é‘j\ aJ;_; = = =
- 00

(3.15)
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It must be remembered that, in general, ¢ is a function of %+ and
Ji, J2 are functions of_ t; therefore the integrands are not simply
functions of t’ unless Q8 ,ag are constants. We also note that the

2
cendition J3 = 1 implies, for all t,

det A = constant (3.16)
and this constant may be taken to be one.
Moreover, since A, J; and Jo are not functions of position, P is not a
function of posifion. 1In fact Jy, Jz and Js are defined by

Ji1 = S = trace S’j

8

L

-8 8
Qo o Ba
Js = det 8., ; (3.17)

and, if J7 Js and Js are similarly defined invariants of 5131’ it can
be shown that

7oa L2 (3.18)
Js

7= gf—L (3.19)
3 .

% 1

I3 = 3 (3.20)

The incompressibility condition gives
J5 = Js = 1 (3.21)
and therefore
Ji = J2 (5.22)
Iz = J1 (3.23)

and hence, using (3.12) and (3.13), for a homogeneous deformation we
have :

Jy = trace Sij = trace AT A’ A" AL (3.24)
Jo = J3 = trace 8,71 = trace A AT AL A (3.25)
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c) Stress relaxation
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i Consider a deformation defined by A where
A =1 t<o
A4 = atag %, 054,05 t> 0 | (5.26)

J

where Ay, Az, A are constants independent of time. It can be seen,
by examining the equation (A9) in this special case, that the physical
meaning of this deformation is that the body is at rest until t = O,
when it is given an instantaneous extension of amount A; along the x;
direction.  If the stress is now measured as a function of time, this
represents a stress relaxation experiment. '

MAodz = 1

Therefore,
44 = I t<o )
~ cs mp o en ; (3.27)
A4 = diag{:;%, 22%, 257} t> o/
t>o0 [ Jp =28 +238 +28 t>o0 [ J1 =3 (5.28)
B - - 5
t< o L Jo = a1® + 22% + AsS t'> o 3 Ja =3

Inserting these results in the equation of state (3.15) we obtain,
for t less than zero,

P = p'I (3.29)

and for t greater than zero,

]

lrg

0 e
s 2 [ P - - - o0 i
-rpl diag{a3, 25, l%}k/ 2 §§;dt - diag{ni% 252 KBE}L/ 2 53;at'
[29] -0

t\..\
+ diag{xfg 23, 28} | 2 gﬂ“diag{le 125 As=}at!

JoTody
©
by
. s =p = 0 .
- diag(215 225 157} /‘2 SroitesD, 25, a5)av (3.30)
‘JO

where we have used the fact that diagonal matrices commute; hence we
obtain,for t > o,
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P - p'I = diag(rf, 22, 23} /~2 %%“dt'- diag(215 125 237) [[2 2 g4

- B - UL . Sda
(3.31)

and,
S o
" ) . o] /
P'= 7D +h/\2 gj:dt k/Nz 53;dt (3.32)
s} (o]

If such a stress relaxation experiment is carried out, the quantities
which can be measured practically are pii = P2z, Paz = P33, and D1y - P33

e} o]
R RO
These depend onh/‘ %%*dt‘ andk/’ ngdt’ which, of course, depend on t.
1
- 00 = 00

dJ2
Since, in this stress relaxation experiment, Jy and Jp can be varied
independently by changing A1, Xz, A3, & measurement of %%—dt’ and
1

= 00

o

k/ %%~dt’ for various J, and Jp will be sufficient to determine o completely
=

- CO

as a function of J;, Jo and v = (t~t’). Thus, if we consider the case
where 0 is given by (2.20) (Part II) and the initial deformation is a
simple elongation, that is,

1

2

A = A Az = A3 = A (3.33)

we find,

]

Poz = P33 = P2y =

(3.34)

1
el
|
Ul
il
Hd
Ll
[Y]
il
(@)
et

[

r 4
Pll - ng 2(}&2 - -3\:-) {?—-l- e-Klt 3 3.‘. _C:_a e"'KZtW\

Ky A Ko {

g

and we note that pi; =~ Pz falls to zero as t tends to infinity, as we
would expect for a liquid. A measurement of pyy ~ P2z as a function
of t for various values of A will ensble Cy, Cp, K; and Kz to be found.

The equation of state (3.3) may be useful in investigating the
properties of 'golid' substances. By a solid we mean that, in the stress
relaxation experiment outlined asbove, the stress does not become isotropic
as t tends to infinity, as it must if it 1s of the form given by (1.120)
and (2.22). The equation of state could be altered by suitably changing
the form of ¢ in equation 2.22, as a function of t-t’, in such a manner
that the stress does not tend to zero as t tends to infinity. In this
case, an experiment on homogeneous stress relaxation may throw some
1ight on the remarks by Cifferi and Flory (1961) on the connection between
the Cp term (see equation (2.20)) and hysteresis.
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ii) Stress relaxation in simple shear

Consider the deformation defined by

A = I t<o

- 1 (3.35)
/l - 0\ J,

A ={0 I0 ) t>0

- \O 01/

therefore,

x, = %! if t< o t<o

i Ih s 0t o (3.36)

X{ = X3 - oxp

xb = Xo ift' <o t>o0 (3.37)

X5 = X3
By examining the physical meaning of equations (3.36) and (3.37) we see
that the deformation is such that the body is at rest until t = O, when
it is given an instantaneous simple shear of amount ¢.

We find, for t > o, that

o2 o O 1
S = o 1 O) t < o
- N0 o 1 (3~58)
g = 1L th > 0

1 = 0 ;
s =10 0 )t <o | THE T, .
= Mo 0o 1/ | e - (3.39)
g1 = 1 > o D
Jy = J2 = 3+« V<o t>o0 ﬁi S g (3.40)
Jp = J2 = 3 t/>0 t>o0 4

and the equation of state becomes, for t> o,

2
o o 1o 0N S 1 - 0
p,.pu_]_:=f 2%—-—~( 1 0 dt' [2:%—-(—0/ l+o:20\/€tt’
= = © N / bYa .0 0 1/

o 00 £

0 DQ

vhere S5~ and S are evaluated with Jq = Jz = 3 + ¢©



Hence,
0
20,
- = 2 === gt 2
P11 = P33 Uzb/\ 5T, , (3.42)
- 00
o
N
Poa = P33 = =0F /92 %%"dt' (3.43)
J T ode
- co

20 gy (3.144)

Piz )JZ J

it
Q‘\ﬁ
o
Qs
c.;
E?:
o+
T
m

Thus a simple shear stress relaxation experiment is sufficient to
Tind @ when J; = Jo. It is probably more convenient to carry out the
experiment either by the torsion of a cylinder of the fluid beltween
parallel plates or the torsion of the fluid between a cone and plate.
Although these deformations are not homogeneous, they give essentially
the same information as & simple shear experiment and it will be
convenient to quote the results here.

In the parallel plate experiment, the normal force 7 per unit avea on
the plate is given by ;

o fgasz 467 + .....f fz:;%.l.at'. dr (3.45)

and the tangential force, T, per unit ares on the plate is given by

rﬂ) f ~ e 3
(JQ L
f 53:; +.\-/;2 J2 duj (3.46)
Tca :
where J, = =3 + ~£§~ and w, is the angle the cylinder is twisted

about its axis; L is the ﬂ*staace between the ends of the cylinder, which
are held at a fixed distance apart, and r is the distance between a point
on the end plate and the axis of rotation.

In the cone and plate experiment, the normal force A per unit area
on the plate is given by

2 2 o}
w o
= 0 o0 ; O & f ofl ' 9 ny ]
7 “52/2-———-&2&1: +é-g{longlf2\Jldt 255 &

and the tangential force, T, per unit area is given by




. where G is

- 10 =

w nO e}
_w.ezf/ 30 e 20 4]
T=5"7) 25z @+ 23 1&1:/{ (3.48)
- O LR ve]

| where Jy =da =3+ gg, @, is the angle the cone turns through about

its axis and B 1s the complement of the semivertical angle of the cone.
Hence, in both these experiments, measurements of Z° and T as functions
of radius will enable ( to be found as a function of Jq,Js and t-t',

: when Jy = Ja.

' d) Simple shear flow
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i)  Instantaneous application of simple shear flow
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Let us envisage a situation in which the fluid has been at rest

L until t = o, when a deformation corresponding to a simple shear flow

is suddenly applied. We proceed to investigate how the stress varies

| with time.

It is easy to see that in this case we have,

A=1 t<o

L (3.49)
A

i
PN
(@R
i
ot
G
o O

the shear rate. Obviously, for t < o, pij is Jjust an isotropic

pressure. For t> o we find
= 3 - 262

=3+ (t-t/)%62.

I < - {
t O Jl J ? (5.50)

tf > 0 Jl = J

Inserting the wvalue of A into (3.15) we find,

P-pl-=
= = N 0 0 0 0 17
1 -G - 1 ~(t=t’)g O
(—“LC 1+t562 0 \ / 2(\ at/ +J/ (?}2 ) ( (t=t’ )G 1+(t-t’)=G= 0 >dt’
~ 0 0 1 w t'>o Y 2 t>o0n 0 0 1
Lt 1+(t-t YBZ (£=t7 )G 0 v 1 ~(t-t)a 0O~
+ (3‘} ) / (t~L’)G 1 0 ,dt’-/ 2(-5‘-}-‘- <»(t—t’ )G 1+(t-t' )% 0 )@
Yo 1 tr>0n 0 1/ o 2 £>0 0 0 1./

1+4262 G N 1+(t-t/)362 (t-t')e O
( G 1 o\f (QQ | d‘c"—j 2(%%—) (t-t")c 1 0\)dt’
L’<o Y CUL g0l

(3.51)

o £
G



ol) : o0 2
t £ er = e + T
where (<32Q1,< is the value of ST when J; = Jo = 3 + t2G

o0 . oQ 122
and (BJl)t’>o is the value of S5a when Jy = Ja = 3 + (t=-t'Z)g
and (2@“ (ﬁg-ﬂ have similar meanings

oJz’t!<o? YodJz’t’>o - s

We recognise the last pair of integrals as the stress that is
obtained when & simple shear flow has been maintained for an infinite
tine. The other integrals therefore represent the transient stress,
due to starting the flow at t=0, which decays to zero as t tends to
infinity.

This transient stress (Pij)T cannot be evaluated until the form

of o is known. Using the form (2.20) (Part II) we find,

(2Cy K;t 20, Kot |
= e { L = 2 .
(PlQ )T G ‘IK? € + Kg € “(

(P11=P)m = = 4C + == - G2 (3.52)
117l g K2 J
Kot
_ [ e %, Kot | .2

(933-P)T = 0

Once again, the most convenient way to examine these simple shear
transients is to carry out experiments in a cone and plate or parallel
plate visccmeter. It can be shown that the transient force on the plate
of a cone and plate viscometer is given by,

Kot [ 1 t )
(Z%), = lUcp L5 e™2 5 t %20
T B= | K3 X3 |
2
o [1.21f —Kzt(l £ -Klt(;;,. t_
* 32 ]log r [ ]hCQ =t rel i Ley = Ki ]
(3.53)
where @ is the angular velocity of the cone. Now the sign of (z“‘)T is

determined, for sufficiently small r, by
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Kzt ., [1 .t ) Kit (1 t )
T e T 5k

It can be shown that this fupction of t can change sign as t goes from
0 tow. We observe that (Z“)T becomes zero as t tends to infinity;

we would expect this, since the steady state force distribution is
produced at large times. The fact that (Z'"\)T nay change sign as t

increases means that the force on the plate may go through a maximum,

which is higher than the steady state value of the force when the transient
has died away. This effect has been observed by Lodge and Adams during
experiments on polymethylmethacrylate dissolved in dimethyl phthalate.

Considering now the shear stress in the case of simple shear, using
the form of O given by (2.20) (Part II), the shear stress is given by,

2c, . [ Kit ) , 22 q [, _ Kat)
Piz = sz'G'il - € ) + reuiin I (3.55)

This shows that the shear stress grows monotonically from 0 at t=o to
the steady state value of

/20, 2C5 v e
Q\Kl * Ko >3 : ()')6)

at large times.

If we define the viscosity n(t) = §£§, we see that the viscosity
increases monotonically with time, becoming constant after a very long
time. The variation of viscosity with time is usually called thixotropy:
an increase of viscosity with time we call negative thixotropy, and a fall
of viscosity with time we call positive thixotropy. It is more usual
to observe positive thixctropy. We can express the time behaviocur of
pio in equation (3.54) by saying that if o takes the form given by (2.20)
(Part II), then the fluid shows negative thixotropy. Of course, whether
the variation of pj;e with time could be observed experimentally would
depend on the relative values of C;, Cz, K; and Kz.

It can be shown (see Appendix II) that if o takes the form given by
(2.6) (Part II) then it is not possible for the liquid to show positive
thixotropy if Sio and Sb; are non-negative for all .

However, this is not true for all forms of O, as we can see by an
example.
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Let
0 =M e-m(t"tg){Jl - 3} - Ll e-n(t"tl){Jl - 33)2 (3.57)
M, N, my n> o

ol

Evaluating the shear stress, using equation (3.51), we find

pro = %% (1 - eimt} 6uG> (1 - -nt} §YG (2tn e -nt | 220 nt}

na’L
(3.58)
The steady state viscosity is given by,
) M 6NG=2
Lt 1}%‘3}* wZ T n (3.59)

'{C‘—) foe)

We note that the steady state viscosity falls with G, as 1s usually
found in practice. Obviously we must have

2
J e (3.60)

n

%JE

or the form (3.57) can only be valid for sufficiently small G. Now it
can be shown that, if m > n aad condition (3.60) is obeyed, then piz,
given by (3.57), does not tend monotonically to the steady state value
(5.59) but first passes it and then slowly falls to the valuve given by
(3.59). Moreover, if m>> n the initial rise may only take a very

short time and experimentally we would only observe the positive thixotropy.

Figs. 1 and 2 demonstrate this effect.

ii) Instantaneous stopping of 51mple shear flow

N P L e Lt b - e o ]

In this case, A is defined by,

=
1

1 -tG 0 : .

<o 1 0 )=w<t< : , (3.61)
0 o 1/ o

I t>o0

e
1
(S

Obviously for t < o we get the stress for steady flow. For t> o
we get,

30 1+t75G2 ~t/G O 30
P-p'I= /JD ST ( -t'G 1 0 )t -fe S5 <t’G 1+G2t'2 Ovdt'
- oo 0 0 1~ 2N o

- - oo

(3.62)
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~ N
where %%I and Z? are evaluated with
Jy =Jo =3 + G3t/'2 (3.63)

This is obviously a transient which starts at t=0 as the steady state
stress, and decays to an isotropic stress as t tends to infinity.
Evaluating this for the simple form of § in equation (2.20) (Part II)
we find,

{ =4
1 . 263 _XKit 1] Kot
! - e EX L iv o =l ™2
Pii~P 201 %{Kl + K’z j e 2Co ]sz
ro L] Kt ( 1 , 267) Kot
Po2-p = 203 - ’Kl( - 202 KE_)
(3.64)
1] <Kit (1) Kot
P33’ = 201 }f@‘e B
(2C1 K4t 2Co Kot
Poi = Gj\Klg e -+ I‘ng e —)(

P31 = P32 = 0

We first note that the transient obtained when the simple shear is
removed is different from that obtained when it is applied. Lodge (1956)
has shown that in the case of the removal of simple shear flow, the stress
decays in such a manner that the normal stress, pii;~pPaz, falls to zero
less rapidly than does the shear stress, pis, when O = Sig (t-t').

This result is not true for all forms of ¢ in the general equation
of state.

e) Elongational flow

i " - D S Cod G Vot R o

In Part II we have examined elongational flow (Trouton flow) in the
steady state and we now consider the transients assoclated with starting
and stopping this type of flow.

i) Instantaneous application of elongational flow

In this case we have

PR m o 1 (5.65)
. -at 2 2 ] { :
A = diag {e ", e , e } £> o~
For t > o we have
- =28t t
B <o Ty =28 4 e g, 2 o7B8E | 5B (3.66)
- Ny 2o bt £t

o >0 Iy = 2a(t-t )+ e a(t-t’) Jo=e (t )+ Eea( t')

(3.67)
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Inserting this value of A into (3.15) we find,

. ot ot {10 2
P - pl = disg(e™™", e, o a“}{ | 2 aw
- T S
° 2 2at! t'r ‘ 1
C . ~-28C a at
»u/\2(§%~) alag(e™ ™" , e™" , e )at’ s
. , 1 t/>o 4
- ; O D
- diagfe Qat’ eat, eat}-( /\ 2(§3~ at’
{:‘jm Qd2 ti<o
0 6 N +/ N B
-u[\ 2(5%—) diag(egab , e e as }
2 ti>0 J
- OO
t
. e - 3 - ’ ’ !
+-{diag{egax, e at’ e ai} /\2(§%~) diag(e Eat, 8t s &t yat!
e 1 t~>o0
. -2gt at at ¢ 30 . 2at! . eat! =at! ’ 1
- diagle s e ,e '} 2(§3~) diag(e , e , € )at JL‘
--w 2 -tl>0 .
(3.68)
where (%%I) is the value of %%; when J, and Jp are given by (3.66)
t'<o
3¢ . , oQ . .
&Jl) is the value of ST when J, and J» are given by (3.67)
t’>0 :
N 5
and (%%E- and (%%—) are similarly defined.
t/<o 2 t>o0

The last two integrals in (3.68) give the stress due to the steady
state flow already obtained in equation (2.19) (Part II).. For the
transient flow, assuming the form of Q in equation (2.20) (Part II), we
obtain psz = P33z Piz = Poz = P31 = 0 v

_ Kyt [ 2at 1l 1 ~at,l 141

(Pll - PEE)T = 201 e {e Kl - Kl_ea) - e <Kl - Kl+a‘)j
Kot [ -2at 1 _ 1 at;l 1 )

- 2Cs & “]52 (Kg - K2+2a) - € (KE - Kg-a) (3'69)

and we note that at t = o, this reduces to minus the stress for steady
Trouton flow, as it should.
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ii) Instantaneous stopping of elongational flow

We now consider the situation when a steady elongational flow is
suddenly stopped. In this case we have

a a

ot ot

jat 22t

~0 < t<o diag(e™@", e

=
i

s € ‘1
S (3.70)
t> o J

e
i

L

Obviously for t < o we have the steady state stress; and for t> o we
have

- ‘ 7 ! ot
bico Ty = e 20y 0B g o &2 pe@t (3.71)
t'>0 Jy=Jz=3 (3.72)

By inserting the value of A in equation (3.15), we find, for %o,

o
) Dt ! 1
Z - p,—I-_ = 2 %%; diag (e cat s eat P) eat )at’
S
© ) . 2at! ~at’ ~at’ ;
- 2 STo diag(e , € ; € yat’ (3.73)
-0

This gives, in the simple case when Q is of the form (2.20) (Part II)

_ Kt {1 1) Kot [ 1 1
P - Pa2 =201 ¢ U ETE TRl T o2 ° |Ges Kaea )

Pop = Ps3 = Doz = P33 = Pip =0 (3.74)

Again we note the difference between the transients in the 'switch
on' and'switch off'cases.

(f) Shear stress

- - - - -

We have so far considered the application of transient deformations.
We now consider the application of impulsive stresses and investigate the
deformations that arise from them.

i) Instantaneous application of a shear stress

o woa e e o A D S A VD D B B T B DO S UL DO N o P S D S O S G N . G s o S

We have seen that the stress in the case of uniform steady simple
chear is given by equation (2.3) (Part II). We investigate the
deformation when the stress P is isotropic for all <o, and equal to the
gimple steady state shear stress for all t>o. That 1s,
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P = pl vhen t< o , (3.75)
and P is given by equation (2.3) (Part II) when t > o.

Since for an isotropic stress there is no deformation, for t < o we
get

=

]
]

For t > o, é(t) is to be determined, and it must satisfy the equation

o)
P i ..a_\Q_.. ! DQ I I :I -1
P-pl=A4A {fzaa.l;db +f WA @acjg

o \
v [ o S0 %=1 pr=1 1
"éif’zmé"‘t' +u 25—3;& A'TE av! fé (3.76)
- o}

This equation for A is subject to the condition
detA = 1 (3.77)

A need not change continuously with ©. In fact, Lt A = I need not be
equal totLL A. We investigate the lnstantaneoustﬁﬁange in A vhen the
stress is a$plled. Mathematically, we look for a solution of (3.60)

for A (t) when t — o

Op

Let &, = I, 4 (%) (3.78)
and therefore
- - -1 W~ aQ i ¢ (39 2
P-pl=A"*A i 2 oo dt A A | 255zat (3.79)
- 00 - O
subject to detéo =1
N+ -MO G(Nq+My) 0 \

and P = G(+8,)° N-GRMpMo O ) (3.80)

We now consider the special case when g is given by (2.6), in this case

o0
Lt 2 = dt! = N/
t-’D+ Jl . (] N
- - (3.81)
o
o0 P,
t_a:ﬁg% 25J at = M4
= 00

(see equations (2.4) and (2.5)).
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Hence we required to find a solution of

. - it AR R LAY { ‘
E p£ éo 4q mo éo éo Mo (5°82)
subject to condition (3.77)
/Ggmémé-mgj G(14+M4) 0 \
vhere P’ = [ G(W{+M{) |TNo-GRMaME O (3e83)
N 0 0 N4 -

We consider two special cases; when o = S4{0(J;-3)(Case I), and when
= S6:(J2~3)(Case II). The more general case is discussed in Appendix
IIT.

- - -

éo is not uniquely determined by equation (5.82). It is instructive

to find a solution in the form

P ¢ O
(O r 0

AL =
0 0 s/

(5.84)

It will be found that it is possible to satisfy (3.82) when
Q = 8{g(Jy ~3) with this form of éo' This sclution can be interpreted
physically by examining the meaning of égl. A particle which was at a

osition a’ just before time zero moves to a Jjust after time zero where
P & J &

or
on = ral } (3.86)
asz = sas
or
o] i
ay 1 *fr 0N, O O ,ab
<a2\=<0 1 o\//o r O (’\ (3.87)
o 0 o 1/% o s/ \a&

This deformation has the physical meaning that a unit cube of
material, whose edges are parallel to the axes, is glven two successive
deformations at t=o; firstly, an instantaneous deformation so that it
becomes a rectangular parallelopiped with edges of length p, r, s, parallel
to the co-ordinate axes, and secondly, a simple shear whose angle is



.19 =

tan™ 3 (See Fig. III).

We find, using (3.84), (3.83) and (3.82) with o = S{o(J1=3) and
condition (3.77) that

5 = T (5489)

p = lT{r‘? | (3.90)

@ = HE . (5.91)
O

where r is a root of

6 4 pt {N;\?‘fzj - 2 fl%f%f} -1=0 (3.92)

It is shown in Appendix IV that this cublc in r® has only one
positive root and that this p051tlwe root is greater or less than one
according to whether NANS - N{2 is negative or positive. Lodge (1958)
has shown that when Q takes the form

= 8{o(T1-3) Sio(t=t’) > o all t-t' > o (3.93)
then
NANS - N4> o (3.9%)

In this case, r < 1 and therefore p> 1; thus the instant the stress
is applied there is an elongation in the x; direction with equal instant- .
aneous conbractions in the xp and xs directions, followed by an instantaneous

simple shear.

- - o

When © takes the form 841(J2-3), let us suppose

a d o
A = o b o (3.95)
\o o ¢/

where a, b, ¢, and d are to be determined. We find from (3.82) and (3.77)
that

a=c b=1/a® adc-%% ' (3.96)

where a is a root of

a8 +

MEGE . MiEGE | A
i ot S ff-1s0 (3.97)
EA O .




Again we see that this has only one positive root. Whether this *oot
is greater or less than one 1is &eﬁermlned by the sign of M54 Mé - M

If we suppose this is positive, then a < 1. It may be shown, in the
same manner as Lodge (195o), that M5 M - Mi3 0 when 0 tekes the
foxrm,

0 = 862(32-3)  Sba(t-t')> 0 all (-t')> 0 (3.98)
In this particular case we have,
0<a<l 0<ec<l Db>1 (3.99)

By considering the meaning of éo’ we see that the instant stress is

applied there is an elongation in the x; direction, an elongation in the
xz direction, a contraction in the xp direction, and an instantaneous
simple shear.

It seems plausible, therefore, that when @ is given by (2.6), in
addition to the simple shear there will be an elongation in the x;
direction and a contraction in the xp direction, with the behaviour in
the x5 direction being dependent on the relative magnitudes of the Mé
and N}.

ii) Instantaneous removal of shear stress

o o O A o G U B S N A W D T T O D A e A0 TS s . T O A T S . S ok

Let us suppose that the stress (2.3) needed to maintain a simple
shear flow has been applied for all time in the past and is suddenly
removed at time zero.

In this case;
1 <Gt O
A =(b 1 O)t<o (3.100)
B 0 O 1/

since the shear stress has been applied for an infinite time and there-
fore the steady state deformation must have been established. -

an isotropic pressure.

E:—-p’g t> o0

A(t) for t > o is unknown and to be determined. For t> o, A is
determined by, -

Il E?

dt{}g—ln il /‘2 o0 O U dt{}é

I(p'-p) = A% /“2 57, & 32 2

(3.102)



and
det 1_32. = 1
Again we only consider the behaviour at the instant the stress is
removed for the special case when 0 = 8{o(J1-3) + 86:(J2-3)
Let, &, = oM A

If t—o, in equation (3.102) we get,

N/ +Ngc,2 NG O N
(pf = © )L = A7 ( e Ny O N

/ =0
0 0 N,
M/ M4G
~ ] L
- A //-MiG MAHIAGE O .\ A
=0 \ =0

'
0 0 MO

with det éo = 1.

Let us consider the special cases when Q = 8{5(J,-3) (case 1
0 = 861(72+3) (case 2

Lodge (1958) has investigated the particular case when,
0 = 840(Jy - 3)
Let us suppose that,

a d o
A = (5 b o \
=0

o o ¢/

(3.103)

(3.10k4)

) and

).

(3.105)

where a, b, ¢ and d are to be determined. We find from equations (5.10&)

and (3.105) that
2 )'/>

a -{1 + (WANY - NIZ)N,,EJ

oy s
b=c ﬁll + (NENO - q‘12) l\?/Zk

2""'1
a CNl-{i + (VAN - M43) N,%} /e

(3.106)
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If we examine the meaning of A, we find that when the shearing

forces are removed, the liquid suffers an instantanecus deformation
which may be considered to be composed of two successive deformations
such that a unit cube of material whose edges are parallel to the
co-ordinate axes first changes to a rectangular parallelopiped whose
edges are parallel to the co-ordinate axes and whose lengths are

i i, %, this parallelopiped being then sheared by an angle - tan % %.
Since NANY - W{3 o, we have

a>1 b=c<l (3.107)

and we find that there is an instantaneous contraction in the direction
of flow and instantaneocus expansions in the two perpendicular directions

followed by an instantaneous simple shear recovery of angle tan™t &,
a

- -

When 0 is of the form S43(Js - 3), let,

AY = C; 3 g) | (3.108)

e 0 8

We then find,

G= 1] 12 k/3
r.—.11+ — (MEM) - Mf )J
O

2 - 3./
r &
p= J\ ,e (Mamy - M4=) \r (%.109)
J
- MiG 1 e

a= ——-——1+-—~z(M2M - ug2) ©
M/ J
0
when,
JRVe, 12
MEMQ - Ml > O
r>1 o<p=s<1 (3.1120)

The meaning of AO shows that, as well as an instantaneous simple
shear, there are equal contractions in the x; and xs directions, and an
expansion in the xp direction immediately the stress is removed.

Tt has been pointed out by Lodge (1960) that when

Q=0 e H1t (g, - 3) (3.111)
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the instantaneous solution is true for all time. That is, when the
stress is removed, there is an instantaneous deformation, after which
the fluid does not move, It can be shown that a similar state of
affairs exists for a more general equation of state defined by

~Ky % Kot
0= Cpe  t(Jy -3)+C2e 2 (J2 - 3) (3.112)
if Kl ="-K2°
The above analysis has a certain practical significance. Consider

a liquid which has been pumped through a long pipe and which suddenly
emerges from the end of the pipe. While it was in the pipe it was
being sheared, the walls exerting shearing force on the liquid. When
the liquid emerges from the end of the pipe the shearing force is
suddenly removed, and the situation considered by the above analysis is
realized. Of course the comparison is only descriptive, since the
geometries are different and the deformation of the liguid flowing through
the tube is certainly inhomogeneous. However, it is found in practice
that an expansion usually takes place as the liquid emerges from the
pipe. This expansion is to be expected, in a qualitative manner, if
the liquid was governed by an equation of state for which Q = 8{o(J1-3).

g)

peuindpon --.—--mt—bd--U‘u-‘v‘iﬂ‘-‘ﬂv—.&”v‘num-—-—“bum— - - --—----.—..--.-;

We choose the co-ordinate axes to be along the principal directions;
the stress P is given by diag. (Py(t), Pa(t), Ps(t)).
i)‘ Suddenly applied stress

| e e O R Sy D S P B07 GNR R SN S N n T B

We consider what happens when such a stress is suddenly applied to
the fluid; that is, we have,

P=plt< o and hence A=1Iall t<o (3.113)

P = diag (P, Pg, P3) t > ©
and A(t) is to be determined for t> o. For t> o, the equation which
determined A is

J [
ag(Pl(tL Pz(t), Pz,(t)> pl = AF - 25y Lav
t t
' ~ r ~ -
o[22 g oalzr g . ~14a at’ + | 2 9 K7 40 ae
ody = = J = dds = 4 oJs = =
. -0




Consider first the instantaneous deformastion. If tao+, é—gb,
Pi(t)~%i(0) and @ is of the form (2.6), we obtain
i _L - = AL X710 o '
diag {P:.(o), P2(0), P3(0>j pL= A AN -K A M/ (3.115)
where det A =1 (3.116)
and N7, M| are given by equations (2.7) and (2.8). Obviously A, is
diagonal, say 4
. l 1 1 ' '
Ao = diae-(55, §gr 5T) (5.127)
and ve obtain
o= N
P.(0) = 122 N,-M AR i=1,2,3 (3.118)
. ©_0 _0
with M A2z = 1 (3.119)

o, N . . . .
ki 1s the instantaneous extension on applying the stress; if we

consider the particular case of simple elongation, that is, P(0) =
diag(P, 0, 0), we find that =

o e} 1 o 1
Mo=d da= S Az = A (3.120)
o e}

where lo is the positive root of
P = (A2 - ;~)(N’ + ;~‘M’) (3.121)
B W 0 Ao ©

For t > o we consider a special case.

P
P

il

diag (P, 0, 0) P is constant for all ¢ )

T (3.122)

1f

p'I t<o
and Q is given by the special form (2.20).

Inserting these values in equation (3.11%) and noting that
- 1 1 ‘
1 = aseg (A1), 2%(w), ) (5.123)

we find, with some manipulation,
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_ (2 _ Ly 2Ci =K1t 1 20, Kzt

K2
120 ST ESUp SARHY o, eFalt-t' Y22 2 gy
+ 1€ 2 TN y, - 2 € T d
o] ]
(3.12k4)
where
o= 2a(t) A =2a(t!) (3.125)

This equation is to be solved for x(t). We note that as 0,
(3.124) tends to the equation (3.121) where N/ and M/ are evaluate
using (2.20) and 2% _. Now equation (3.124) has an’approximate solution
for large values of T. We have already solved the problem of steady
state elongation flow, Part IIL, and obviously the solution of (5.12&)
must tend to this solution, for after a long time, the fluid will have
! rorgotten' the effect of starting the flow at time zero. Mathematically
we expect that there will be an asymptotic solution to equation (3.12k4)
of the form,

A = BeaﬁC (3.126)

where a is given by

68,(:' . 6&(}
Fos (Kl+a)(f<2-2a) * (K2+2a)‘(21<2-a) (3.127)

and B is a constant.

That this is an asymptotic solution can be verified analytically.
Tnserting (3.126) in eguation (3.124) we find,

/e'(Klf2a7t en(Ki+a)t (e-(xg+aa)t e-(Kz-a)b\
2C1 \K1~22 T T Kita ‘> 22 | Fov2a " T Ko-a

[z 2at 1 _-at\2C; Kt (g;, -2at at\2Cs _-Kat
= <? e 3 € s e \32 e -Be > e

hS

(3.128)

This cannot be satisfied by any constant value of By, so A = Beai
is not an exact solution. However, we can choose B so that (3.126)

is a good fit for large values of t. For large values of t,

e_(Ka-ajt S e«(Eang)t and e-(K:L"Qa)t > e"(a*Kl)t (3.129)




and if (Kp-a) is greater than{X,-2a) say,

m(Kema)t . =(Ka-2a)t (3.130)

and hence we get the best fit for large t by taking,

|_XK
B = “\m (3.131)

i.e. equation (3.124) has an asymptotic solution of the form

X k¥
Me) ~ gt e® (3.132)

ii) Instantaneous removal of stress
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We have considered the case of the sudden application of stress
whose principal directions remain constant in time. We now consider
what happens when such a stress is suddenly removed. We have

[

diag(Py(t), Pa(t), Ps(t)) t< o) (3.133)
plg t> o

irg i
1

The value cf A for t < o must be found by solving

dTSg(Pl, Po, P3) - pI = l(f aJl =l led{,'>A 1 g‘[ .S_____'él ~1 él _ld't">é

For t > o, we have

€
\\ IS oo ' ’ ~2 - -
(P"P )I_Al/j 5(2 A’ Ar at’ él_ij Qg%zél lél ld’t’)é

-
(3.135)
Now A must be diagonal, say
A = diag (4;(t), Ax(t), As(t))
and for the instantaneous deformation we have, letting t-o,,
. o ,0 ,0 ‘ ' ‘ :
t”% ' é = d-lag(Al: Az, AB) (3-136)

+
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and
. 1 1 1 s . . ‘|
I(p=p’) = dlaé(Agz AZ? A§?>alag(nl, nz, nz) - dlaéggzx A%, A%%)dlag(ml,lﬁg, ms )
/ i

hN

(3.137)
subject to
det A =1
where ,
o - Y
diag(n;, ns, nz) = t;,;%f diag(Al®, A22 A53) 2 %%—- at’ (3.138)
1
- o0
and
° 30,
diag(my, 1z, ms) =tggL/ﬁaiag(Ai %, 8273, a57%)2 S at (3.139)

It must not be forgotten that n, and m; are not only fungtiogs of
the flow history up to time zero, vut also Functions of Ay, Ao, As.

If the instantaneous change is elongation 12 along the x; axis,
then

2° = X5 (3.140)
M

p-p' =29% 0, - 2 ®my i=1,2,3 (not summed) (3.141)

subject to

2228 = 2 (3.142)

If we consider the particular case when P = disg(P, 0, 0), where P
is constant for all time, we have simple elongational flow with the stress
suddenly removed. Using the form of  given by equation (2.20) we
obtain

/3T = di 02 402 .02y g3 2Cy 2C, 204
(p-p’)I = diag(21® 227 13%) dlad(Klnza’ K ta’ Kita

2Cs 20s 20 \)

Kot2a’? Ko-a’ Ko-a /

- diag(a$™2 2372 A372)diag (3.143)

Obviously, using det A = 1, we may take
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diag(di, 22, 23) = diag (xo; = =) (3.144)
Ao 2o /

and we find an equation for 10,

Ca
25 < -2a> Ty \Kl+a " 32 <K +2a> * 2o (Kg-a> =0 (5.145)

The solution of this guartic gives Ags the instantaneous extension
along the axis Xi.

Again it can be shown that, if Ky = Ko in the particular form of
Q in equation (2.20), then A is a solution for all time.

h) Constrained flow

We have considered so far those problems in which either the
deformation is given for all time and the stress is to be determined,
or those in which the stress is defined and the deformation is to be
determined. However, it is possible that a situation might arise in
which only some of the components of the stress tensor are defined, and
the deformation is restricted by constraints. Such a situation is
commonly investigated in some recovery experiments. For example, if a
liguid is sheared in a concentric cylinder viscometer by rotating the
inner cylinder, and the torque is suddenly removed from the inner cylinder,
we are effectively defining the shear stress for all time. Since the
distance between the cylinders is fixed, the liquid is constrained in
such a manner that only a simple shear recovery is possible. Of course,
the problem is not restricted to recovery; the transients associated with
the sudden gpplication of a constant shear stress can be similarly
investigated.

We now investigate this situation mathematically.

1) Application of a_shear stress to a_constrained syste
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Let us suppose we apply a shear stress pip, which is given by,

P = 0 t< o]
12 (5.146)

to a system which is constrained in such a manner that only a simple shear
deformation is possible. Physically we may think of the ligquid as being
constrained between two infinite parallel plates whose distance apart is
fixed. We must have

A =1 t<o (3.147)

=

since there is no force on the liguid for all t < o.
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and
1 -F(t) ©
A = (o 1 0 t> o0 (3.148)
- - 0 0 1/

vwhere F(t) is to be determined, since the only allowed deformetion is

a simple shear. Moreover, we wish to find pji, Doz, P33 as functions

of t. This problem has been considered by Lodge (1958 B) for the case

where 0 = 8{0(J1~3). We shall follow his method. BEvaluating §;; and
1 from (3.12) and (3.13) and using (3.14), we find for t > o.

' 14+F2 F t asz /l+(F-F’)2 F-F/ 0O
5.@:]2(\;() (F 1 O)dt' +f ;3-—) \FF‘ 1 o\dtf
T Y “lticon0 0 L gi>0N 0 o 1/
° 5o 1 ~F_ 0 -(F-F') O
..f 2(-53—) EF 1472 O>d“c’ 2( ) ,>O((F-F') 1+(F-F' )% O)dt’
Y, EBtlcoo 0 1 0 1
(3.149)
where
F = F(t)
t>0 t'<o Jy =Js =3 + F=2 (3.151)
t>0 t'>0 Jy =Jda =3 + (F-F/ )% (3.152)
(& is evaluated usi ion (3.151)
S5 is evaluated using equation (3.15
1 ti<o
(asz 90y - . o
ST is evaluated using egquation (3.152)
1 J—!>O
(SJE <o (BJg o e evaluated in a similar manner.
Piz P12 O N
P = (éla P2z O ' (3.153)
0 0 P33 /

where pio is known and equal to ¢ and pi; - Ps3 and Psz ~ P3s are to be
determined. We consider the special case when Q is given by (2.6), i.e.,

Q = 8io(J1-3) + 861(J2-3) (3.154%)
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From (3.149) we find
o =f2F(t){ fo(t-t") + Sél(t—-t’)}dt’ +fe{y(t) - F(t')}{sio(t-tf )+8by (-t )}dt’

(3.155)

This is an integral equation for F(t).  We note that t-o, F(t) — F(o),
where
0

c=Fb{/\asbuwv)+S&0»V)mﬂ (3.156)

= 0a

or from (2.7) and (2.8),

o = Flo)(W, + M} (3.157)
F(o)zm £ O | (3.158)
o} e}

Physically there is an instantaneous shear of amount F(o) the
instant the shear stress is applied. Following Lodge (1958 B) we find
that (3.155) has an asymptotic solution for large t of the form

Lo MY (Ng + M5)(WS, + ML)
F(t) ~ o) {57 - ¢t A T N0 2} (3.159)

and we note that the shear rate %%iﬁl’ for large t is given by

( ) (N' + M) . ' 16
T = o) (NZ T Mif (5160)

or, using (3.158),

@& g
55 = Ni+Mi"‘G say (3.161)
This of course is the steady value we would expect from (2.3). From
(3.149) we find
o fﬁ
P11-D33 =M/N2 S{o(t-t') FZ(t)at’ t] e Sio(t=t/ ){F(t) - F(t/)}Zat’ (3.162)
- 00 O

o] t
P33-P2s =f2 S{o(t-t! )F3(t)at’ +f 2 861(t-t/ ){F(t) - P(t/)}%at’ (3.163)

- o
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and hence
2ard 7 I\2
P11-P33 = G(NO(Nl +)1§l) as t — o, (3.164)
N+ ML)E
0 )
P11-P33 = GoNb as t —o (3.165)
GAML(NY + M{)2 |
P33Pz = ?{ = - ;l} as t = o, (3.166)
(N + ML)
D33-Poz = G7Mb as t —w (3.167)

These results are plotted in Fig. IV. It will be noted that yi,
the extrapolated value of the asymptotic form of F(t) at t = o, i.e.

£

(3.168)

_ G
71 = 2

2'2«’
"“’;{1

+ M{

is probably more easily measured experimentally than F(o).

2) Removal of shear stress from a constrained system
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Consider a system in which a constant shear stress ¢ has been applied
for a very long time and is suddenly removed at time t = 0. The system
is constrained so that only a simple shear recovery is possible. That
is, we must have

Pz = oct<o (3.169)
Piz = O t> o0

and therefore, since the constant stress has been maintained for a very
long time, we have

l b ¥ ¥ O'\
A .-:(o 1 o) t< o (3.170)
0 0 1/
1 -F (%) 0 |
A = (o 1 o> t> o0 (3.171)
- 0 0 1

where F (t) is to be determined. We find, from (3.14), that for t > o,
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° <o 1+(F'gt)2 Fiot! o
P - pl =j 2(5y- ( FU gt 1 0 >dt"
. 1 t'<o 0 0 1
.t l‘f‘(F.::.-F;:" )2 (F”::'—F*’ ) 0
+ f 2(%—%— (F*F 1) 1 O>dt’
I t>0 N\ 0 0 1
© 5o 1 ~(F'-Gt') o©
-.f 2(5«5- =(F'=Gt!) 1+(F gt/ )2 O)dt’
Yo 20N 0 0 1

£ 0 1 -gF"‘-F”’ 0
- fg(aJ ) (-(F"-F""’) +H(F"-F"1)2 o )dt’ (3.172)
t>o0 0 6] 1~
where ¥ = F (t) Fio= Fi(40)
t>0 t'<o Jy=Jdo=(F -0t 4+
pmde=lF -G 3 (3.173)
t>0 t'>0 Jp=Jdp=(F ~F'}2+3
on . .
and (53“ ; etc., have their usual meanings.
1 ti<o

For t > o we have
Pz O 0 v
P = <o pzz O > (3.17%)
0 0 P33

where Pii, Poos P33 are to be determined. Again, considering the special
case when Q tekes the form (2.6), we Tind that F (t) is determined by

- O : t
0 =J 2(F -gt?) { {o(t=t’) + Sél(t-t’)}dt’ +J 2(F" F ){Sib(t-’c’HSél(t«t’ )}dt'
a .

- 00
(3.175)
and it can be shownéthat

ey -g _ =g + M)
F'(o) = (Mo +M5) = W+ Ml (3.176)

and, the total recovery, Yli is
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Fe) = 7n = - Se i (3.277)

From (5.172) we see that pyy - D33 and Doz = D3z are determined by

==

o} t
P11 = P33 =f2 Sio(t=t! ){F*(t) - Gt;}--gdtf +f2 Sio(t—t’){ﬁ’*(t) - Tt )}gdt’
- J o L

(3.178)

° [ ) t [ BN
P33 - Doz =f2 Sél("t-t')}F"(t) - Gt’j«ad't’ + /2 Sb1(t-t" ) F"(t)-—F“(t’)radt’
L v 4 4
- g0 o]

(3.179)

The instantaneous change in pi1 = P33, when the stress is removed, is
found by taking Lttr+q+

.2 G2y + ) T . .
tng+(pll - pss) = G2WL - ’MN& Ty e + 2MLNY - M_{Néj}- (3.180)

Lt ( ) = 2N G32(M4 + 4 (N/M: OWIMY MM \l‘ ( 181)
"5~'D+ P33 = P22/ = lé - N{) + Mé)z _1 11g + \‘OMJ. - Maly j‘ 3.

We note that the instantaneous change in the normal force 1s not
necesgarily the same for the sudden removal of shear stress as for the
sudden application of shear stress. Lodge, using O = S1o(t=t ){T1~3},
found these instantaneous changes to be the same.

1)  Discussion

It was pointed out in CoA Note 134 that equations of state may be
divided into two classes; those which have as their basis microrheclogy
(that is a description of the macroscovic rheological properties of a material
croscopic elements which may evexn be mol cular) and those which

}..J
]
o
0
g
(6]
o]
%
i,
i
H

3 1

two categories; the Tirst we shsll call the strain history type and the second
the point derivative type. In the polnt derivetive type of eguation of state
the stress &t the current time t at z given particle is a pelynomial function
of the matrices representing the rate of strain ténsor, 2nd rate of strain
tensor, etc., where the rate of strain and its derivatives are evaluated

at the current time and at the given particle. A typical example of

this type of equation of state is the Stokesian fluid defined by

- (1), . ala) , (4}
Py = B4t pAi:}:j * vAﬂ{;_ A}ijl (3.182)

urely phenomenologleal. It is possible to gubdivide both these types into |
d
(¥
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where
- axj o%;

and vy is the wvelocity of the particle at X, and time t.4

The equations of state discussed in this paper and that of Lodge
(1956) are of the strain history type. That is, the stress is a function
of all the strains between any time t’in the past and the current time t.
It should be possible to relate these two types of equations of state.

This Note discusses transient behaviour in liquids whose flow
properties are governed by an equation of state (3.3) which is of the
strain history type. In order to simplify the mathematics we have
considered only homogeneous deformations, and it has been necessary to
assume that we may ignore inertial effects. The most useful deformation
to study is, of course, shear flow, since in general this is the deformation
most often found in practice.

Two major differences between Newtonian and non-Newtonian fluids are
that, even in the absence of inertial forces, non-Newtonian fluids usually
show elastic effects and stress relaxation effects. In this Note it has
been shown that, by considering the variation of stress on changing the
deformation, the equation of state (3.3) predicts stress relaxation effects
and, by considering the change in deformation on rapidly altering the
stress, the equation of state also predicts elastic effects.

Moreover, by considering special systems, it is shown that the elastic
effect may be divided into two parts; an instantaneous deformation followed
by a time-dependent deformation. These deformations may be compared with
experiment. Pollett (1958) has in fact measured the total elastic recovery
in polyvinyl chloride melts when a shear flow is suddenly stopped. The
elastic properties of the fluids obeying the point derivative type of
equation of state are discussed by Ericksen (1960). While he is able to
give a mathematical justification for calling the fluid described by such
an equation of state elastic, it is difficult to interpret his results in
terms of the deformation one would obtain if the stress produced by a
given deformation were suddenly removed. The strain history equations of
state are, in this sense, more useful in describing elastic effects.

Since, in a physical system, inertia is always present, in practice
it will never be possible to produce an instantaneous elastic recovery,
although the recovery may be so rapid initially that it may be possible
experimentally to identify the first recovery with the instantaneous
recovery of the theory. Although in designing a physical experiment some
effort may be made to keep the deformation homogeneous, in general the
deformation will be inhomogeneous. The problem of predicting the deforme
ation on the sudden change of the boundary conditions becomes very difficult
and in fact a deformation which i1s a continuous function of position may
not exist - see Lodge (1958) for example.
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However, if experiments could be interpreted in terms of the theory,
and this is possible with well-designed experiments, stress relaxation
and elastic recovery experiments would be invalusble in defining the
form of O in equation (3.3). An examination of equations (2.3), (2.L)
and (2.5) of Part II shows that even if all the stresses needed to
maintain a state of simple shear flow (or an equivalent shear flow) are
measured for all shear rates, then these measnrements are not sufficient
to define @ completely. However, i1t has been pointed out in this Note
that stress relaxation experiments do give sufficient information.

Most experiments in this field have investigated the steady state behaviour
of non-Newtonian fluids. Experiments on stress relaxation and elastic
recovery are needed. A further Note will deal with the interpretation
of the existing experimental results in terms of this equation of state.
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APPENDIX T
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To prove that a homogeneous deformation can be represented by Ai.xj = Al x!
J 1d_J
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Consider a transformation which transforms the point X, into Xi’ the

origin being fixed.

The most general transformation which converts planes
into planes is

X, = a11%; * apakp + ay5Xs o = 821Xy * 822Xp * 803z oy
' byXy + baXp + bsks + e DXy + DoXo + 03Kz + €
(A1)
Consider a set of planes defined by
Pix; + PoXp + Psxz = Q (a2)

where P; 1s fixed and Q varies. Substituting, we get
Xy (811Py + 221P2 + a31P3 = Qby) + Xz (812P1 + 222P2 + azzP3 - Qbz)
+ X5 (a1sPy + apsPz + assPs - Qbz) = Qe (a3)

Tf the transformed set of planes is to remain a set of parallel

lanes as varies, we must have the coefficients of X, constant. That
P s i
is,

bl=b2=b3=0
The transformation has becone
p— o ———
X, = hyy Xy i3 T e | (a4)

- . <3 . . TR L | H o s
Now we consider a transformation in which a particle at x. at times
to is continuously deformed into the point x, at t. Hence,
S

o)
xp = opyy(tgst)ey A (45)
and if x! is the position at t’,
i

O
N (16)

whence,

by g(Bgr )=y =y (80,00, (A7)
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Now, in the fluids we consider, there is no preferred configuration
SO ulJ(t t ) is not a function of any special t , so that

by (80K, = (8t (a8)

and in the original notation,

A, x, = A, x! Al
1] XJ 13 d ( 9)

- - ] o " >
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The shear stress as a function of time, when a simple shear flow is
started at t = o in a liquid which has been at rest for all t < o, is

given by equation (3.51).

Using © = 8{o(J1-3) + 841(Ja=3), where 84 (t-t’) and S4,(t-t’) are
positive for all (t-t’) > o, we find

o FO
(plg)T =f /G 8{o(t=t’ )at! +J /G 84y (t-t! )at’ (A10)
- 00 - 0

B

and obviously pip is monotonic in t if <P12>T is monotonic in t.
But

(piedy = = 6 [ (r-t)(siolr) + S4a(r)lar vmen s = st/ (A1)
Hpsedy o o [ (sgo(r) + sgatr)ler (12)

and, since Si, and S4; are positive for all t, the right hand side is
positive for all t. Hence (plg) s and therefore p;» are monotonic and
any liquid obeying the equation of state where o is given by (2.6) can
show only negative thixotropy.

APPENDIX IIT

.-_ =L KL w5 o M
B -3l =g I N - K a0

This equation for éo’ the instantaneous deformation when a simple shear
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flow is suddenly epplied, may be solved (at least mumerically) in the
following manner.

Let

L = & & (813)

then
-1 _ A1 FT1i

£ - éo 'ﬁéo (A1)
and hence

P/ = pl + W X' - M X (A15)
but if X is diagonal so is P/. Hence if the principal values of P

are T1, To, T3 and those of X are Xy, X2, X3, Wwe have

—ri:pi—NéXi—;q i=1,2,53 (Al6)
subject to det X = 1
= (a17)
Or Xy Xp Xz = 1
where
L P g = dieg(ri, T2, T3) (m8)
LXL = aisg(xy, x2, %s) (819)
L being the orthogonal transformation which diagonalized P’. Since
P’is known L'and . can be found. From equation (A16) ahd (A¢7),
can be deteTmined. Bguation (Al9) enables X to be found.

APPENDIX IV

P L ]

" . - O - 3P R O .

.5 4 { 1xéc2} .2 j N2G2 1 .

N/ N2 |
Let
2 = x (A 20)
N
\‘i\?(} = (Aﬁl)
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N © p>o (AE'E)
e}
Then if
£(x) = x° + ox% =px - 1 (423)
We now see that
flo) = = 1
f(m) = 4 o

and hence there are either one or three real positive roots.

Now
fi{x) = 3%+ 20x - B (A2k)

The turning points are given by

£(x) = o (A25)
or
3x = - g = Jo° + 3p% (A26)
and hence the turning values are given by one negative and one positive
value of x. The positive value corresponds to a minimum of f(x) and
there is therefore only one real positive root of
f(X) = 0 (AET)
Moreover,
Cf(1) =a-B
1 )
= s <Ns N4 - Wi2G2 (A28)
%o J

o lies between 0 and 1
o is greater than one.

If Wald - Ni3 o then the positive root of f£(x)
If NANL = Wi%X o then the positive root of f(x)

u
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