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SUMMARY

A rheological equation of state of the form,

£
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is proposed for an incompressible material. 0 is a function of 31 and J,, the
invariants of Cauchy-Green deformation tensor Sij which relates the deformation
at the present time t with that at some past time t‘. Q is also a function of t
and t/. Some steady state flow problems are solved for a material obeying this
equation. It is anticipated that this equation will be of some use in investigating
the flow properties of concentrated polymer solutions and polymer melts,
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LIST OF SYMBOLS

stress tensors
isotropic pressures
current time

past time

current position of a general particle in rectangular
cartesian co-ordinates

past pogition of a general particle in rectangular
cartesian co-ordinates

posgition of a particle of an elastic body in the
unresirained state

stored energy per unit volume of a strained elastic body
the deformation tensor for an elastic body
the invariants of Ci’

the deformation tensor relating the deformation between
the past time t' and the current time 1t of a flowing body

the invariants of S.
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a function of J,, J

23

J, and t - t'

coefficients in the expansion of W in terms of I, and I,
coefficients in the expansion of Q in terms of J, and J,
the shear raté

defined by equation (2.4}

defined by equation {2.5)

defined by equation {2.7)

defined by equation (2. 8)

constants in the expansion of @ in the form given by
equation (2. 20}

the Troughton viscosity



List of Symbols {Continued)

convected co-ordinates

the density of the liquid

the normal force per unit area
the tangential force per unit area

the acceleration due to gravity




Partl. A General Rheological Equation of State

In the phenomenoclogical theory of large elastic deformations in isotropic
materials as developed by Rivlin and others the stress-strain relations have the
general form,

2 ; aW aWw oW W
P.. = T ) C..<~—*+I == }- C, C, == +1 == 0. (1.1)
ij If L ij 81i 1 612,) ie “aj 0L 201, i
in which the suffices take the values 1, 2 and 3 with the usual summation convention;
pij are the physical components of the siress tensor and Cij are the components of
the Cauchy-Green deformation tensor defined by,

axi 9x.
Cy = 5%, T 5%,

where x, and X, are the rectangular Cartesian co-ordinates of a typical particle in
L

the deformed state and the undeformed state respectively. I,, I andl are

invariants of the tensor C;; defined by the relations

j

11 = Caa

I= 3(Ci-Cup Cgo (1.2)
I, = det Cij

W is the elastically stored free energy per unit volume expressed as a function of
the invariants L, I, and 1,; ’513 is the unit tensor.

In this paper we shall consider incompressible materials, in which case
I, =1 for all deformations and W is a function of I, and I, only. The siress-
strain relations may then be written,

aw oW )
pij - péij = 2[ o1, Ci} + alz(cij I - Cik ij) J {1.3)
in which p is an arbitrary hydrostatic pressure following from the assumption of
incompressibility.

Rivlin {1956) has considered the possible forms of W(I,, 1)) and shown that, for
incompressible isotropic materials, the stored energy function may always be
written in the form,

TN -l

W o= W(I, 1) cr, @ -3, - ) (1.4)

p:l q:l

with Cdo= 0. C' is a set of constants which defines the elastic properties of the
material. P

In the kinetic theory of rubber-like elasticity Treloar (1958) derived a specific
form for W for an ideal rubber by investigating the properties of a network of
idealised molecular chains. A statistical mechanical analysis of this network,
involving certain simplifying assumptions, including that of incompressibility, leads



to a stored energy function of the form,
W = C! (I -3) (1.5)
10 q

in which C;O = 3 NkT, where N is the number of network chains per unit volume,
k is Boltzmann's constant and T is the absolute temperature.

For a material obeying equation (1.5) the stress-strain relations of equation
{1.3) becomse,

s T .o o= 2 = C,

pl;; 9613 al1 ij
(1.8)

= 2 C' C,,

1o 1j

Lodge (1956) has extended the statistical mechanical model of the ideal rubber
in such a way as to produce a model of a liquid which will exhibit visco-elastic
effects. This extension is achieved by assuming that the network junction points
of the ideal rubber are no longer permanent but have a finite lifetime. The network
can then undergo continuous steady deformation and, with various simplifying
assumptions, a rheological equation of state for the model is deduced. This has
the form,

t
— U - 8 e
pij - paij = f 2bw(“c 1) Peraliiven dt (1.7
. a «

in which x, are the rectangular Cartesian co-ordinates of a particle at current
time t, and x; are the co-ordinates of the particle at some past time t'.

S\t - t) is a function of the elapsed time (t - t'), which tends to zero as {t - t')
tends to infinity. IL.odge interpretis this function as a lifetime distribution function
for the network crosslinks and writes it sl;T N{t - ). The notation S' (t - t')

has been adopted here because equation {1.7) will be regarded as a simple ma’ahema‘alca
generalisation of equation {1.86) in which the constant Cw is replaced by the function
Si,(t - t)dt’ and the co-ordinates X; by ¥} ; a summation over all time is taken up
to the present time f.

It is the purpose of this paper to write down a generalisation of equations (1.3},
the stress-strain relations for an isotropic, incompressible elastic solid obtained
by a mathematical generalisation formally analogous to that involved in going from
equation (1.6) to (1.7}, It is expected that this new equation will define the properties
of a class of visco-elastic liquids. The properties of such liquids, when subjected
to a variety of known flow histories, will be investigated.

The generalisation of equations{(1.3) leads to

t
) ) [ a0 a0 ) | gis
pij pé‘)ij 2 23, Sij + 33, (Sij J1 Siasaj) )dt (1.8)
ti= -
where now,
axi axj
Sij = ax—" é_ig (1 9)

and J, and J _are invariants of the deformatlon given in terms of S by equatlons

similar to equations{1.2}. /
/




Also,
= ({J,, J,)
=
= s 3 -3P @ -9% anas’ =0 o {1.10)
= L : 0

a . l .
in which Spq are functions of {t - t'), which must tend to zero as {(t ~ t’) tends to

infinity sufficiently quickly to ensure convergence of the integrals in (1. 8).

{1 is written as a function of J, and J,, the invariants of the deformation tensor
Sij. It is the function which characterises the rheological behaviour of the system
and it is, in equation {1.10), represented as a summation of a series of functions
S/ q(t - t9 by analogy with the corresponding expressions in the elasticity theory.
T%e physical significance of Nis not understood. In the purely elastic case W is
known in the sense that it is the phenomenological variable of stored energy per unit
volume. In simple cases there is a molecular interpretation of W, for example
the kinetic theory of rubber like elasticity predicts W from molecular considerations.
However we do not even understand the phenomenological nature of Q. It is not
proposed, therefore, to attempt a discussion of these quantities here; rather will it
be assumed that such a general relation as {1.8) is physically permissible and its
properties will be investigated.

The rheological equation of state (1.8) can be rewritten in the form,

t
I N
pij péij 2 f {BJ Sij 53 Sij —g dt (1.11)
fo 1 2
where,
1 ax& Bx’a
5., = — o {1.12)
i} 9%, ax.
1 J
and, t
a0 ;
p’ = p + 2 j Jz 53; dt {1.13)

The form {1.11) is more convenient for algebraic manipulation than the form
(1.8). The proof of this result will be found in Appendix 1. This equation of state
will now be investigated for various steady state flow systems.




Part II. Some Problems in Steady Flow

(a) Simple Shearing Flow

Consider the case of steady rectilinear laminar shear flow in which axes are
chosen so that the streamlines are parallel to the x, axis and the shearing planes
are perpendicular to the x, axis. The kinematic equations are then,

X = x: +G(t~t’)x;

X, = x {2.1)

where G is a constant, the shear rate. By evaluating Sij and S;J.l we find,

J1 = Ja = 3+ Gt -t")®

(2.2.)
I, o= 1
and using equation (1.11) we find,
2 ..
p“~p=NO+G Na—MQ
- = - el
P, - P No MO G Mz |
Pyy= P = N -M_ (2.3)
By * (N1 * M1) G
p35 = p31 =0
where, N
i an '
N, = 2 f {t -t) = dt (2.4)
i e ad,
and, ¢
M, = 2 / (t-19" 2 gy (2.5)
1 —eo 632

It is obvious that the equations of motion and continuity are satisfied, It is to
be observed that Q(J,, J,) will be a function of G so that the viscosity,

P

-é! = N, + M, , isnot necessarily a constant. However we notice that R~ Pys s

Pza~ P %* are all functions of G¥ in agreement with the general predictions
of Coleman and Noll (1961).

If,

a= 8., -3 + 8§ (J,-3) (2.6)




then Ni and Mi become constants independent of G. These constants will be called
N; and MJ{, where,

t

N - zf s (¢ - )" ar (2.7
£ i

My = 2 [ s (b -t at’ (2.8)
-

In this case p, - P,, and p,,~ P, become proportional to the square of the
shear rate and the viscosity becomes constant, in agreement with results of
Markowitz {1962) for low rates of shear.

(b) Flow through straight pipes of arbitrary cross-section

Following the work of Ericksen, (1956), and Oldroyd, {1958), it is of interest to
examine the flow of liquid down a pipe of arbitrary cross- section. Consider an
infinitely long pipe whose walls are parallel to the x, axis and whose section is
given by F{x2 s xx) = 0. Writing the kinematic equations describing the flow as,

X, = x,’—i—(t»t')‘f(x;,x’ﬁ)

X = X (2.9)

we shall examine whether a flow of this type, in which the streamlines are parallel
to the x, direction, is possible for a liquid obeying the rheological equation of
state (1.11).

Eveluating S, and Si‘;‘ from (1.9) and (1.12) we find,

1+t -t PR+ 1) (t -t (t -t
S.. = (t - t')f 1 0 ‘ (2.10)
ij 2
(t - tE, 0 i
1 -{t - 1, -t - tf,
~1 T 2 ;
- -t - 91, L+ -t0% (0 -0 (2.11)
-{t -t (t -t9F ¢ 1+ %t - t)?
3 23 3
where,
¢ _ af(xa, xs) ¢ = af(xe, xz)
2 ax 3 ox
4 3
and hence,

2

=g, =3 + (t -t
1



Substituting Sij and Si-jl in (1.11) we get,
- — 2 £2 -
P, "P No tN, (fz i) MO
L g
P ~p«1\70—1*/10~~1\/I2 )

- = - ! - ] 2
p,"P = N -M -M f (2.12)
By 7 (Na + M‘E}f.’é‘.
= (N1 + M),

p = MZ fa f.'S
The equation of continuity is obviously satisfied. Since, in this case, there

are to be no body forces and the flow is steady and rectilinear, the equations of
motion which have to be satisfied are,

o 0 (2.13)

If we first consider the special case of (1.11) in which 0 takes the form (2.8),

we find, on inserting (2.12) into (1.11) and noting that N; and M’l are independent

of Xy,
(N: + M: ) ¢+ £ = - g—%
fz(faa + f”) LIRS PO S o5 : ”I;i: %;(Eg {2.14)
VL,
f:s(fza+ £.,0+ L +1 1, = ;‘;»71{7 g{%}
2
These equations are consistent if,
f+ f = constant = -P (say) (2.15)

22 33

This equation and the boundary condition of no slip, or, mathematically,

f, = £, =0 on F(x,, x,) = 0, enable f{x,, x)) to be determined. P(N] + M' J is'in
fact the pressure gradient down the tube, and f{x,, x,) is of course the velocity
distribution for a Newtenian liquid of viscosity (N; + M, ). In other words, we
have shown that a liquid for which Q takes the form given by (2.8) will flow down
a tube of arbitrary cross section with the particles of fluid moving in rectilinear

paths.

In general, however, on inserting (2.12) into (1.11), and remembering that
now Ni and Mi are functions of X, and X, . we get,




L B T epr, |+ 2 Lo+ N8
o% ox 1 1) 2 ax:ﬁ L 1 e R
1 2
ap’ 3 2 3 I
= 2 M + 2
Ox, > [ 22 } 8%,y LM‘Z f2 ff’] (2.16)
ap' 3 2 8 ]
i T M, £ + f J ! = -
ox, 5x, [ A, 1 ] 5, M, £, wherep' =p+ NO Mo

This set of equations cannot normally be satisfied by some function f{x,, x).
That is, the liguid will not necessarily flow down the tube of arbitrary cross section
However, for the special case of tubes of circular

with rectilinear streamlines.
at the liquid will always flow down the tube with

cross section, it can be shown th
streamlines parallel to the axis of the tube.

{c} Troughton or elongational flow

Consider a state of flow in which a liquid filament is elongated at a constant rate

of strain; that is,
%‘E} = k% X, ?'i% = kz X, (2.17)
dt dt

Lol B
1
e
W
e
i

where k, are constants describing the flow. If now we takek, = a andk,= ky= -3a
ES

we have simple elongational flow. We have taken 1{1 +k +k_ =0 since this is
required by the constant volume condition. The kinematic equations become,

£t ,  -zalt-t’ 1 e b
x%=x:ea( ') x, = x. ¢ saft-t) x, =%, e zalt-t') (2.18)
giving,
at s 'é"i'“‘} . P _s!
3, = eza(t £ + % alt ’ 3 -e 2a{t-t") . 2ea(t t')
J.o= 1

The equation of state gives,

p22 : p33= p!iz = p23 = p:"ﬁ - O
t . N -
AQ ! - - A rQ - 41 Y
b -p = gl o8 eZa(t t)_ed(t )y 98 eZa(t t)uea(tt) at’
11 22 aJi : an
‘- (2.19)

0

We observe that since 0 is a function of (t - t‘} the transformation
T =1 -t proves that B, " P, is not 2 function of t. Let us consider the special

case where  takes the form,
-K {t-t") K {t-t)
Q=Ce [s;wﬂ rC e e [32-3] (2.20)

where C, and C, are constants independent of {t - £Y}. The reason for this is
that Lodge {1956) expands S@; in the form,



}_J ameﬂ}“m(t -9 {2.21)
m=1

and is able to give a physical meaning to X __ . A natural extension of {2.21) to the
m
form of Q given in (1.10) is to take

A (t-th
s = b e P4T (2.22)

where bpqr and hpq are independent of {t - t'). Equation (2.20) represents a form

of 0 in whichb o1 = C b C2 },m —K and x = Ka All the other b's and M's

are zero. Ifa < mm(2 , K,) we find, by evaluatmg (2.19),
- 3a. 2 C, 3a. 2G
P, B, (K1 + a)(K‘ - 2a) * (K2 + 2&)(K2 - a) (2.23)
If we call T = Eﬂ-é:—&& , the Troughton viscosity, then
2C 2C
1 2
3 x* 3 %

- 1 s 2 {2.24)

n

T a \/ 2a 2a a N
1+-1—-—~ 1+ = -
(el x) G e

and we note that, as a tends to zero,

- 2C 2C_ -
Ben = 32 — + -= J = 3. (shear viscosity)
T L K1 K2

The form of the two functions involved in is shown in Figs. I and II.

T
We shall now discuss the physical significance of these results. It is well

known that elastic liquids readily form filaments of liquid: thus, if a rod is

dipped into a polymer solution and then withdrawn, a filament of liquid will be

withdrawn with it. Most Newtonian liquids do not have this property, and it

seems reasonable therefore that the elastic nature of these liquids may sometimes

explain this effect.

Lodge (1960), has investigated the stability of such elongational flow: for a
filament which varies in thickness along its length, he has shown that if the
elongational viscosity increases sufficiently quickly with rate of strain then a thin
section of the filament will decrease in area less rapidly than a thick section.
The flow will then obviously be stable.

The above mathematical analysis investigates a simple model for the elongation
of a liquid filament: we find that the elongational viscosity rises rapidly with rate of
strain, {Figs. 1 and II). It can be shown that certainly somewhere in the range of
strain rates 0 < a < min (% K,, K,) there is a strain rate a_ above which the
elongational flow is stable, in the Lodge sense, and below which it is unstable.
Thus the equation of state describes qualitatively the phenomenon of filament formation.




(d) Flow between a rotating cone and a stationary plane

Let the liquid be contained between a horizontal plane and a cone, of semi-
vertical angle 37 - & , whose apex touches the plane, whose axis is vertical,
and which is rotating with an angular velocity @ . Let the boundary of the liguid
be the sphere of radius a, with its centre at the apex of the cone. The shearing
laminae are assumed to be cones co-axial with, and with the same vertex as,
the rotating cone. The fluid particles are assumed to remain at fixed distances
from the apex during the motion. We use the equation of state in the form A9
{see Appendix II).

We take the spherical polar co-ordinates {r, 6, ¢) as our curvilinear
orthogonal set (6,, 6,, 6} at time 1t, and we investigate whether the kinematic
equation {2. 25) satisfies the equations of motion and continuity.

x, = rcos¢sind x; =r cos {¢-76) sin
x, = rsingsin® x! =rsin{¢ -76) sine {2.25)
X, = rcoseé x, =rcos®
 where, Fo= S -t)
cc
- b, = h,, = rsine
11(1) 1 L(E) r ﬂ{s) r sin

where h(i) is defined by equation AbH, Appendix II,

Inserting equations {2. 25} into A10 we find,

1 0 0

Sij = | 0 1 Tsing {2.26)
6 T sin® 1 +72sin® 6
/
1 G 0

*i‘jl = |o 1 472506 - 78in0 (2.27)
0 -7 8in 6 1

where,
Ja = Jg = 3 +7% sin®6 (2. 28)
J, =1

and we get from A9, (2.286) and (2. 27), with the usual notation for the physical
components of the stress tensor in polar co-ordinates,



-10 -

A
{rr) - p = NO~MO
2
(69) - p = N -M_ - Lsinfe. M,
2

(¢ - p = NO+§’§~smz 0N, - M_

N

(6¢) = (N,+M1)§sin9

aS ~

(r®) = {r¢}) = O (2.29)

The equation of continuity for incompressible materials is
divv = 0

where v is the velocity of a particle. Using (2.25) we see that this is obviously
satisfied.

The equations of motion are,

2 v+l 2R L 2 (& }.[’\-"-"" ]
o (Ir)-!-r 86<r6)+rsin6 a¢(r¢)+r 2(rr) - {60) -~ {¢¢) + (rd cot 6)
2

= -pg cosb- pr sirfe %z o?

IEA 1 3 1 TS 1 AT ~

5z (ro) + = 5—5(9%) o 3¢ (6¢) + 3 [((ee) <¢¢)) coty + 3 (re)]
= pgsin® - pr sind cosd ';-Lz 62

3 A 1 a8 v 1 3 , N 1 "

L el éne Ao Bt s radpcore |

=0 (2.30)

where p is the density of the liquid.

It canbe shown that equations {(2.29), when inserted into {(2.30), are compatible
when 8 = 4% , and when inertial forces and body forces are ignored. That is, an
approximate solution to equation (2.30), when o is small, may be obtained by putting
6 = 37 and ignoring inertial and body forces. We then find that (2. 30) becomes,

[«3Q £ o5
*s!'c
+

w? _
[Mz - Nz -Eé- = 0
0

{(2.31)

R R T
© oo

S
i
[o=]

and hence,

2
p = -logr(M -N) “~ + constant (2.32)
24
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Using the boundary condition that (r/~\r) = 0 when r = a, we find,

3y = o2 r w?
(66) = (N, - M) = log = - M, pry {2.33)

. , S . ~
Noting that the normal force Z per unit area on the plane is -(6©) when

8 = 2o, we obtain

s 2

Z7 = (N~ M) ~£d--il 2 r ML {2.34)
- 2 2" .2 °g r 2 42 - o - '

also, A "
(6g) = (N +M)

If the shear force per unit area on the plane is T, then

T (é\;a) at 6= /2

i

and
T

#

(N, +M1)—‘§ at 6 = /2 {(2.35)

{e) Plow between parallel planes

Let the liquid be sheared between two horizontal parallel planes, with one plane
fixed and the other rotating about its normal with a constant angular velocity w .
Let the boundary of the liquid be a cylinder, of radius a, centred on the axis of
rotation. If the shearing laminae are assumed to be planes parallel to the fixed
plane, and the distance of any particle from the axis of rotation is constant, we
may investigate whether the kinematic equations,

x, = rcos?® x: = r cos (6 - KZ)

X, = r sin 6 x; = p gsin (6 - KZ) {2.36)
-~ L f ome

x, = Z x, = Z

satisfy the equations of motion and continuity. We use as curvilinear co-ordinates
(61,62 , 6,) the cylindrical polar co-ordinates (r, &, Z). K = %(t - t') where L

is the distance between the two planes. We note that,

h(‘) = 1 h(z) = 11(3) = 1

where h(i) is defined in equation A5 (Appendix II}, and, from equations {2.36) and
Al0,

i 0 0
Sij = 0 1 + r*K*® rK (2.37)
0 riK 1
1 0 0
-1
o=l 1 -Kr (2.38)
it )
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and,

J =J =3+ r*K*, J =1

4 2 3

Equations (2.37), (2.38) and A9 give, using the usual notation for the physical
components of the stress tensor in cylindrical polar co-ordinates,

"
{(rr) - p = NO."MO
(%2) O Vi
pos Ny -M -— M
~n
{ro6) = {rZ) = 0
_rw {2.39)
{8Z) = —I:" (Nt +M1)
Wi
66) - p = N -M + ~— N,
We note that Ni and Mi are functions of r.
The equation of continuity is obviously satisfied.
The equations of motion are,
jﬁ-(rr) + Lﬁ*{rﬁ) + 2 {rz)y + X ({rf'\r) _ (86)) - rwz ?® )
or T 86 87 L
2 (6 + L2 5y 4 2 (dyy + A L g (2.40) |
ar rdeé az 7 r ’ i
9—(?2) +-1»~§-(é\z} + 2 (ZAZ)+ (£2) = -gp
ar r 8o 37z r
Inserting {2.39) into {2.40) we obtain,
2 . A 2 2
§_E’+_1_.<-_D.-_‘_2__ I“Nz\}: _Q_..é%“... o
or r 1 J i
ap’  _ |
56 - O {2.41)
op!  _ .
bz -~ P8
L -
where p’ = p + NO MO

We observe that these equations are inconsistent unless we ignore the inertia
2 2 .
rw & . . . . . .
term - ——5—— p . Ignoring the inertia term and integrating these equations,
Lz = &
we get, .
2

p' = - 0gZ + v f T der + constant : (2.42)

2
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Using the boundary condition that there is zero surface traction at the
surface r = a for all Z, &, we find that this condition can only be satisfied
if we ignore the term -pgZ in (2.42). Physically, this is equivalent to
considering only very small gaps between the planes. Hence, ignoring the
-pgZ in {2.42) and using (fv) =0atr=a,

r

n
{

2

o w

p = -N_ +M_ + j i r Nydr {2.43)
a

Using (2.43) and (2.39) we find,

~ r 2 2.2

(z2) = / “-’E— r Ndr - ‘“;; M, (2.44)
a

N e

(Ze) = T2 (M +N) (2.45)

w

Again the normal force A per unit area on the plane is,

a
« 2p2 i 2
z¥ = L5 M+ j Yo rNydr (2. 46)
2 L
r

The tangential force T per unit area on the plane is,

T
T = T (M1+N1} (2.47)

(f) TFlow between rotating coaxial cylinders

Let the liquid be contained between vertical coaxial cylinders of radii r, and r,
rotating with angular velocities w, and w, . Letusassume that the shearing
laminae are cylinders coaxial with the moving cylinders, and that any particle
remains at the same height between the cylinders. Taking cylindrical polar
co-ordinates (r, 8, Z) for (61, 6., 63), with the Z axis along the axis of the
cylinders, we may invest igate whether the kinematic equations,

x, = rcos © x! = recos [6-(t-1t) alr)]
x, = rsin 0 x; = rsin [6-(t -t alr) ] (2.48)
X, = Z x; = Z

satisfy the equations of motion and continuity.
From {2.48) and A10 we obtain,
1 r{t - t)q’ 0

S.. = r{t-t")q’ 1+ r¥t-t'¢’® O (2.49)

Q 0 1
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1+ rdt - t')%q"® -r{t - t')q’ 0
s;; = | - rtt -t 1 0 (2.50)
0 0 1
where q’ = dg

Jo=J, =3 + rz2(t -t) qzand J, = 1.

also, . R

. Using the equation of state A9 we get, where again the usual notation for the
physical components of the stress in cylindrical polar co-ordinates is used,

A - = - B PR
{rr) P NO MO r? g'*M,

(& - p = N, +r2q’aN2—Mo

(Z2) - p = N - M, (2.51)
(r8) = rq'(N, +M,)
(rZ) = (29 = 0

where Mi and Ni are functions of r.

The equations of motion, assuming there are no body forces other than gravity,
are,

Do s L2y s 2+ M - @)= -
22+ 2 r((rr) (ee)) re(r) o
8 (A 1 8 N~ 8 0 2(£0) :
2 = 9 9 arv. o 2.52
e (ér) + = ae(ee) + az(ez) + = 0 (2.52)
2 (Zy + L 2 (Z 2 Sy 2
ar( r)+raa(ze)+aZ{ZZ)+ - gp
where p is the density of the liquid.
Inserting (2.51) into {2.52), we get,
ap’ a 1 2 8 i 1 2 lé 1 = 2 (2 53)
Sr T ag | TRATM, - i rfq Nz-i—sz——q or .
o . 2 |, qrn +M) v og N +M| = 0 (2.54)
3 or L 1 1 1 1
op’ :
£ o= . 2.55
37 g ( )
where p/=p+N -M




- 15 -

: ap’ . .
Since 5%?- = 0, equation {2.54) determines qg{r) as a function of r when

Q is known. This value of gq{r) enables p’ to be determined. A knowledge of the
boundary conditions will then enable the stress at any point to be determined.

Let us consider the special case when Q is given by (2.6). Integrating

(2.54) and using the boundary conditions that g(r) =«, and qlr,) = w, , we find,
B
qlr) = A - = hence g¢'(r) = 21_3 {2.56)
S r
where r2y -T2 o r? v {w, -w)
A = 4+t 2 2 4pg B = A2 (2.57)
r? - r* r? - r®
1 2 2 4

Using this value of g{r) we can integrate (2.53) to give,

B® ‘ i [ Ar® B? °
= = 3 M -N |-p{=— -2ABlo r~—--J—pZ+constant
P et L 2 2.3 i. 2 € 27 &
{2.58)
where M: and N: are given by (2.7) and (2. 8).
This gives,
A 2 b P2 z
Zry = 2 {31\&‘ - +p{— Ar®  oABlogr+ 2= (- pgZ + constant
o4 2 2} 2 92
{2.59)
y ~
Z* = - (£7) represents the normal forces on a boundary Z = constant which would

be required to maintain the assumed state of flow. We see that Z* is composed of
three parts: the first part is due to the non-Newtonian nature of the fluid, the
second due to its centripetal acceleration and the third part gives the usual
variation of pressure with height in a liquid. For non ~Newtonian fluids the first
part may be considerably greater than the second part. In this case, if 3M, > N,
then Z* is smaller near the centre than it is at the circumference of the gap; hence,
if this force were removed, the liquid would tend to fall in the centre and rise at
the circumference. However, if 3M, < N, the reverse would happen: on removing
the force the liquid would tend to rise at the centre and fall at the circumference.
The second effect is known as the positive Weissenberg effect and the first as the
negative Weissenberg effect.
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Discussion

In general, equations of state may be divided into two classes: those which
have microrheology as their basis, such as those of Lodge {1856) and Oldroyd (1950),
and those which are derived from phenc-menological considerations, {Cocleman and
Noll, 1861 ; Rivlin and Ericson, 1955). The rheological equation of state put forward
in this paper belongs mainly to the second class and is an attempt to extend the
phenomenological theory of large elastic deformations to a fluid.

The basis of this equation of state is the use of a time dependent function
which is a generalisation of W, the stored energy for a purely elastic deformation.
The physical significance of 0 is not well understood. Because of the nature of the
generalisation process, Qdt will still have the dimensions of W, energy per unit
volume, but must be connected both with the recoverable energy at time t and with
the rate of energy dissipation at this time. Thus, even the phenomenological
significance of 0 is not clear. The liquid characterised by {1.8) is in a sense a
composite relaxing solid composed of many relaxation processes, the elastic
modulus for each process being characteristic of a general nonlinear elastic
deformation. The energy associated with these processes is gradually dissipated,
in some unspecified way, in a fashion determined by the distribution of the
relaxation processes and the stress and strain history of the sample. In this way
2 is a time dependent distribution of energies among the relaxation processes.
Since this equation has been derived from considerations of a thermodynamic stored
energy function, it is to be hoped that further investigation will produce a thermo-
dynamic justification for it.

Although the form of O is not specified, the advantage of using this generalised
form is that it can be altered to fit any experimental results for a large class of
liquids. It can be seen, from analysis of simple shear flow, that the normal
components of the siress can be varied independently by a suitable choice of @,
and in this sense all possible experimental results can be analysed in terms of
this equation of state. Such a procedure might throw some light on the nature
of 0 ; its general form may be specialised to give mathematically simple relations
which, if they agree with experiment, may help to place it on a sound physical basis.

Experimental measurements in this field do not, in general, cover a sufficiently
wide range of shear rates to enable an unequivocal form of O to be chosen. However,
an examination of the work of Brodnyan et al {1957) on polyisobutylene solutions
shows that a form of 0 which is a function of J, only is sufficient to explain the
experimental results. Many more experimental measurements on other liquids
over a similar range of shear rates are highly desirable.

A comparison of this equation of state with other equations of state can, at
this early stage, only be discussed briefly. Since it includes Lodge's equation of
state as a special case, all phenomena which can be explained by his equation can,
of course, be equally well explained by this; in addition, this equation will cover
the cases in which the normal stresses in simple shear are all different. It
would be of interest to enquire whether this equation of state describes a simple
fluid in the sense of Coleman and Noll and whether it is included in their general
formalism.

Certain types of liquids are obviously not described by this equation of state:
liquids which change volume on applying a stress are not included because we
have assumed incompressibility; the equation is isotropic and therefore anisotropic




-17 -

liquids are not included; and since the most general form of Q (2.20) predicts
a viscosity which is independent of time, the equation will not describe
thixotropic liquids. However, it should be possible, in this last case, to make
the S’jLj of equation (1.10) functions of t and t rather than of {t - t’), and

thus to produce a formalism which will describe thixotropy.
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APPENDIX 1

Proof that equation {1.8) can be expressed in the form (1.11)

We first note that,

& 4
1 axa axa axk axi
Sik Sk' - ox 3wl gl ‘31- {A.1)
) i k *5 5 J
Let S be the

This provides a justification for the use of the notation S;‘:j
matrix whose element belonging to the ith row and jt column is Sjj and similarly
o

let the matrix of Si—j1 be §'1. The Cayley-Hamilton theorem states that

s -3 8 +9J,8-3, L =0 (A.2)
where Im is the matrix of 613.
From A2 we obtain,
sJ -sf=01 -3 8" (A.3)

For incompressible materials J, = 1.

Now by inserting equation A.3 into the equation of state {1.8) we obtain the
form (1.11), where p’ is given by (1.13).
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APPENDIX II

The equation of state in terms of convected co-ordinates

At the current time t the position of the particle can be represented by
rectangular Cartesian co-ordinates x, or by a system of orthogonal curvilinear
co-ordinates ei where,

x. = x. (6;) (A.4)
i i
and ds is a small element of length given at time t by,

ds® = dxf + dx‘: + dx: = h? de + h? de + h {A.5)

(1) (=) th
We now "name' the particle by the co-ordinates ei , and, for all times t/,
Si becomes a convected set of co-ordinates, which are of course only orthogonal

at time t. Therefore we must have,

x! = x'(6) (A.6)
1 1 1

At the time t the physical components of the stress are given by pij with
respect to the rectangular Cartesian axes X, The physical components of the
stress at the point ei, with respect to rectangular Cartesian axes which are locally

coincident with the mutually orthogonal lines Gi = constant, are given by,

o.. = &, 4. {A.7)
7 ij ip “ia pq
where, . . aei . axp
ip — = = P A,
P LU h,. 20, (A.8)
p (i)

where i is not summed.

From (A.7), {A.8) and the equations of state (1.11),
t 96, 88, 9x ox

aq ~
| P (et a5 o a)
2B (e @ o w)|
2 (1)) i i P q
hence,
[ () (@) ox! ax;) aJ, ( By 09 aejﬂ

(A.9)
which is the required result.
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Sij’ referred to the orthogonal set of curvilinear co-ordinates, is given by,

S U
S5 7 o Mg W Ew
(A.10)
S__l i 1 axé: 3X(’x :
ii h 8
4 by Bp 9% 29
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