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1. ABSTRACT

A low coherence speckle interferometer implemented using single mode optical fibre and a multimode laser diode as a
pseudo-low coherence source is described. The design of the interferometer is presented and demonstrated on simple test
objects. Signal processing techniques to improve the performance ofthe system are discussed.
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2. INTRODUCTION

Speckle interferometry is a generic term for a range of optical configurations that utilise speckles, generated by the
interference of light scattered from different points on an optically rough surface, to convey information about the object
surface'. Information on the in-and out-of-plane surface strain components, vibrational characteristics and surface profile
is available simultaneously over an extended area of the object surface. Shape information is a requirement in many
engineering applications. For example, on-line quality control, solid modelling (the transfer of contour information from
prototypes to CNC machines), biomedical applications, and the measurement of surface wear. In addition, for objects with
non-planar shapes, surface contour and slopes are required for a complete strain analysis4' .

Various full-field optical methods have been developed for contour and slope measurement, for example, moire holographic
interferometry, fringe projection, electronic speckle pattern interferometry (ESPI) and shearography. The techniques
employed for speckle methods were originally developed from those of holographic interferometry and include refractive
index change of the medium surrounding the object, tilting the object6'7, two-wavelength illumination8'9 and two source

1
produced by shifting or tilting the illumination. All these techniques produce fringes that represent height

contours on the object surface. In speckle interferometry the two wavelength and the two source techniques are most
applicable to engineering applications.

All these techniques use laser sources with relatively long coherence lengths (1 O2I02m). More recently, there has been a
growing interest in using low coherence techniques'2'13 in speckle interferometry'4"5. In low coherence speckle
interferometry (LCSI) sources with short coherence lengths, usually <lOOtm are employed. Interferometric speckles are
only observed when the optical path length (OPL) in the reference arm of the interferometer matches the OPL in the signal
arm, i.e. the one containing the test surface. By changing the OPL in the reference arm, interferometric speckles are
obtained at different locations on the test object. The resolution of the technique can be a few micrometers with a range of
several hundred millimetres, implying a dynamic range of —4O. Reported arrangements have utilised conventional optical
components with continuous wave illumination'4 and with short pulsed illumination15.

In this paper we describe a low coherence speckle interferometer (LCSI) using single mode optical fibre technology and
demonstrate its potential for shape measurement of large object areas. The use of single mode optical fibre increases the
robustness and versatility ofthe technique as well as providing inherent spatial filtering ofthe beams.

Low coherence sources that have been used include gas discharge lamps and light emitting diodes (LEDs). However the
very low brightness of these sources produces inefficient coupling into single mode optical fibre. In a previous paper16 we
investigated solid state sources suitable for LCSI applications and demonstrated that multimode laser diodes (MMLDs) can
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be used as quasi-white light sources with the major advantage compared to superluminescent diodes (SLDs) of higher
power operation, typically several tens of mW.

3. THEORY

In low coherence interferometry, often termed, "white light" interferometry, the fringe visibility isa function of the optical
path difference and can be obtained as the Fourier transform of the spectral intensity distribution'7. The following
expression describes the usual cosine function from a two beam interferometer but with an additional Gaussianenvelope
function modulating the fringe intensity'8. The form ofthe transfer function shown in figure 2, is givenby

(i ( (2x2 (21
'N (4=-j 1 +

ex-—j coj (1)

where 'N represents the normalised signal intensity, Lc is the coherence length of the source, 2 is the central wavelength of
the source and x is the relative optical path difference of the interferometer. Equation 1 states that the shorter thesource
coherence length the more rapidly the cosine fringe intensity is reduced.

For speckle systems, the fringes are the result of the correlation of two speckle patterns. When a low coherence source is
employed, interferometric speckles are only obtained if the optical path length difference between the two arms of the
interferometer, i.e. (test and reference arms) is within the coherence length of the source. For the case of the MMLD, the
interference pattern is the result of the contribution of each individual mode of the spectrum of the laser modulated by
another "envelope function". This function will be Gaussian if the source spectral profile is Gaussian.

Considering the spectral envelope of a multimode laser diode as a Gaussian distribution and the spectral shape of asingle
lasing mode as Lorentzian'9 (see fig. 3), the total intensity due to the contribution of all the modes can be expressedas
follows:

I,, +111 A 2
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where m is the order of the lasing modes, Ec is the difference between adjacent mode wave numbers, &r is the full width at
half maximum height of the envelope, cr is the wave number of the source,a is the wave number of the jth lasing mode, 6
is the spectral width ofthe lasing mode, x is the optical path difference in the interferometer, and is the randomly varying
speckle phase. Figure 4 shows a plot of the zero order and two adjacent orders that would be obtained byscanning a
Michelson interferometer illuminated by a MMLD. The brightest (zero order) fringes are obtained at zero path length
imbalance. Lower intensity fringes are formed at non-zero path length imbalance. The separation of thefringe "packets" is
equal to the optical path length of the laser cavity. Typically for solid state laser diodes this is approximately 1mm. Due to
the poor spatial resolution of the CCD camera it is not possible to see the fringes inside each of the intereferenceenvelopes.
Instead, the low coherence interferometric speckle fringes are represented by bands, each one of different intensity, where
the zero order (zero path length imbalance) has the highest intensity.
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4. EXPERIMENTAL ARRANGEMENT

The experimental configuration employed is shown in Fig.!. Light from a 40mW multimode laser diode (Sony SLD2O1U-3)
operating at 792nm, is coupled into a variable split ratio single mode directional coupler, fabricated in our laboratories. The
variable split ratio enables optimization ofthe distribution of light in the interferometer; more than 95% is used to illuminate
the test object.

The light scattered from the test surface is collected by a zoom lens and imaged onto a CCD camera via a 90/10
beamsplitter. The optical path for the reference beam is as follows: the transmitted light from one of the ports of the coupler
is directed to a mirror. A microscope objective is placed in front of the mirror to collimate the beam. The mirror is mounted
on a translation stage with a travel ofup to 75mm and step resolution of lOnm.

In speckle interferometry it is important to optimize the speckle size with respect to the pixel size of the CCD camera. The
expression for the speckle diameter, S, is given by 20:

S = 1 .2(1 + M)2F (3)

where . is the wavelength of the source, M is the magnification of the lens in the imaging optics and F represents the f-
number of the lens. For a wavelength of 792nm, a magnification of 0.25 and a pixel size of 126.5tm2 an optimum aperture
isF 11.

4.1 Image and Signal Processing

The interferograms are captured by the CCD and an image processing board housed in a PC. The speckle pattern can be
displayed live on a TV monitor, which generally shows speckles across the entire object surface. Information on the object
shape can only be obtained from the interferometric speckles, which can be distinguished from the non-interferometric
speckles as they have a higher intensity.

In order to increase the speed of the data processing and improve the interferometric speckle contrast it is convenient to
eliminate the non-interferometric speckles. This is achieved using real time digital image subtraction21'22. This method
involves the subtraction of images of two consecutive speckle patterns with a it phase shift added between them.
Consequently, only interferornetric speckles can be observed and the rest of the image appears black.

A piezo electric transducer (PZT) attached to the mirror is used to provide the c phase shift. The DC motor translation stage
is used to scan the OPL of the reference arm of the interferometer. By continuously translating the mirror, it is possible to
observe the interferometric speckles move across the object surface. As the mirror is translated, the intensity value for each
pixel is compared with its previous value. The highest value is stored along with the corresponding position of the
translation stage. In this way a 3D map ofthe object surface is built up.

4.2 Calibration of the optical path length imbalance

The optical path difference between the reference and the test beams was calibrated using a source-wavelength modulation
technique23. The purpose of this calibration is to keep the optical path length imbalance of the interferometer to less than
40mm as this is the range of the translation stage.

The experimental arrangement is the same as in fig. 1, however the source is now a single mode laser diode (SDL 54 1 1-01)
operating at 806nm and 1 00mW optical power output. A Faraday isolator was used to prevent feedback into the laser cavity.

Modulation of the injection current produces a concomitant change in the laser diode emission wavelength24'23. In an
interferometer with a path length imbalance x this produces a phase change, z4, given by:
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C

where z\v is the change in the optical frequency and c is the free space speed of light. The optical frequency modulation of
the laser was measured using a confocal Fabry-Pérot interferometer to be 1.4 0. 1GHz/mA. This value is then used in the
previous equation to calculate the optical path length (OPL) imbalance, in the following manner. A speckle image of the test
object is acquired and stored. The object is then deformed and subsequent images subtracted from the reference image and
the results displayed. The object was deformed to produce approximately 10 tilted fringes across the field of view. Changing
the laser wavelength causes the fringes to move. To facilitate the measurement the laser diode injection current was
modulated at 0.5Hz and the amplitude varied until a 2rr phase change had been achieved. The OPL imbalance measured was
approximately 15mm for a z\v of 21 .4 GHz.

5. RESULTS AND DISCUSSION

Two different test objects were investigated. The first was a circular plate, sprayed mall white, of 50mm diameter tilted at
angle of 1 1 0± 1

° relative to the axis of the receiving optics. The second object was a gas turbine compressor blade which
measured approximately 170mm in height, 110mm in width and had an overall depth of approximately 40mm. The blade
was covered with retroreflective tape.

As discussed in section 4. 1 , the measurement of individual pixel intensity is associated with a particular mirror position. The
resolution of this technique is dictated by the separation of the mirror position between measurements, as this determines the
uncertainty in the depth value for each pixel. In this experiment the measurement process was not completely automated. As
this approach is time consuming fewer points were taken reducing the resolution of the system to approximately 0.2mm for
the disc and 0. 1 mm for the blade. However for an automated measurement process the mirror steps can be reduced to a
couple of microns and the whole process should take approximately 1 hour to map out an object with a depth of 1 00mm to a
resolution of'—! rim.

Figure 5 shows the 3D representation of the disk. The 50mm diameter disk was orientated at an angle of 1 lO with respect to
the center axis of the receiving lens implying an overall depth (z axis) of 9.5±0.9mm. The depth recovered from the LCSI
was 9.7±0.2mm demonstrating good agreement between the two measurements.

The three figures (see fig. 6) represent low coherence speckle fringes at different positions on the surface of the blade. The
value of x shows the distance in millimeters that the reference mirror has moved between each image. Several fringes can be
observed in each image due to the discrete modal characteristics of the MMLD. The fringe spacing measured from the
images was approximately 1 mm in good agreement with the theoretical value of 1 .05mm obtained for a 3OOtm cavity
length and a group index of 3.5.

Figure 7 shows a 3D plot of the surface of the blade (see fig. 7). The x and y axes represent the illuminated area andthe z
axis the depth value. A slope change across the object surface can be distinguished consistent with the blade geometry.

As speckle is an inherently noisy process, improvement in the images can be obtained using phase shifting26 and speckle
averaging techniques27. This will be investigated further in conjunction with automation ofthe data collection.

6. CONCLUSIONS

A low coherence speckle interferometer employing a MMLD and single mode optical fibre has been demonstrated. The
application of this technique has been examined to study relatively large surface areas. The resolution is in the range of
0.1mm. Techniques to improve the accuracy and the measurement speed have been discussed.
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Object

Fig. 1: Experimental arrangement for a fibre optic low coherence speckle interferometer. BS: beam-splitter, DC: variable
split ratio directional coupler, L: zoom lens, M: mirror, MO: microscope objective, SMF: single mode optical fibre.

81

MO

M

L

CCD
camera 0

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/22/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

li2106
Text Box



>
(I)
C
a)
C

c3
C
0)
(I)
0
a)
N

0z

>
ci)
C
U)I.
C

1.0

0.5

0.0

-0.5

-1.0

1

-5 0 5

Optical Path difference (gm)

10

Fig. 2: White light interferogram

Wavelength (nm)
Fig. 3: Theoretical spectrum ofa multimode laser diode.

82

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/22/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

li2106
Text Box



Intensity

Fig. 4: Schematic interferogram obtained using a multimode laser diode operating above threshold.

,, .. .- ..4 . . . . -. -l8- ••' .. : •• . • . . -.-.-
-fr: ...1j . .- - -- ..L. - - -..-

. :.9e1 .;••-. - :
14- - : •; . •'-•--..:-.--. : -FH- ••:-

E1
10-i .- . . -

9— 1
N

e +
*

4-. * /
,/40

40
50

60

x n-rn

Fig. 5: 3D plot of the disc.
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Fig. 6; Low coherence speckle fringes at different positions on the object surface. x represents the distance that the reference
mirror has moved between images.
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Fig. 7: 3D representation of the gas turbine blade.
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