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SUMMARY

The problem of pressure fluctuations at a rigid wall under a turbulent boundary
layer has attracted much attention in the past decade. At low Mach numbers the theory
is well established from the work of Kraichnan and Lilley, and reasonable agreement
ig obtained with the experiments of Willmarth, Hodgson and others. At high Mach
numbers, measurements exist due to the work of Kistler and Chen but so far no
theory is available, apart from that due to Phillips, which is however related to
the noise radiated from supersonic turbulent shear flows.

The present paper reviews the theory of wall pressure fluctuations in incompress~
ible flow, and shows how the character of the pressure fluctuations changes in passing
from the flow to the wall. Attention is drawn to the more important interactions
giving rise to the pressure fluctuations, as well as to the region of the baundary layer
mamly responsible for the wall pressure fluctuations.

The work is extended to include the effects of compressibility. It is found that
an analysis similar to that of Phillips is appropriate, although, unlike the latter work,
this new treatment is not restricted to the case of very high supersonic Mach numbers.
The analysis makes use of the ratio awlu as a large parameter, where a, is the speed
of sound at the wall and u_ is the shear velocity. This is certainly true for a very
wide range of Mach numbers provided that the wall is not subjected to large rates of
heat transfer. It is shown that the wall pressure fluctuations are now the result of
fluctuations in both the vorticity and sound modes. At high Mach numbers, the latter
contribution is in the form of eddy Mach waves, as suggested by Phillips. On making
certain assumptions regarding the dominant interactions, estimates of the magnitude and
spectrum of the wall pressure fluctuations are made which show similar trends to the
measurements of Kistler and Chen.

Professor of Experimental Fluid Mechanics at the College of Aeronautics, Cranfield,
Bletchley, Bucks., England.
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NOTATION

alay

speed of sound

source function

amplitude of covariance

skin friction coefficient

function {equ. 117)

functions {equ. 80)

Green function for flow without boundaries
Green function for image flow

coefficient in approximation to mean shear
source function {(equ. 48)

function tabulated by Goodwin and Staton

two dimensional wave number

L scales of turbulence

function {equ. 83)

pressure covariance

pressure

{(seeequ. 47)

spatial separation

Reynolds number

pressure - u, velocity covariance
independent variable

time

temperature

sub-layer temperature {equ. 74)
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e

mean flow velocity

Q velocity {furbulent)
U R convection velocity

Xy}, X{o) functions {equ. 80)

N4 independent variable

dz, Fourier coefficient of u,

T delay time; mean shear {dU,/dx,}

T w wall shear stress

w freguency

@ inverse length scale of turbulence

o function of ¥

8 functién of v ; coefficient in approximation to mean shear
o function of y

function of y

y ratio of specific heats
dy Fourier coefficient

& boundary layer thickness
51 displacement thickness

Z = af a, - dw modified Fourier coefficient {pressure)

7 independent variable
£, wave number
A a /fu
W'

K viscosity

o~ “ . . N gv
duw Fourier coefficient of pressure
P density

9 angle

ok, w spectrum function {pressure)

w, = |

T 74 Tw'iﬁw



e . spectrum function {velocity component ua)

¢ (s} source function

Q dependent variable {equ. 65)

Subscripts

w denotes wall value

w denotes value external to the boundary layer
o incompressible value

i, tensor notation

X, streamwise direction

X, normal to the wall

X transverse direction

bar denotes an incompressible value unless otherwise stated




1. Introduction

{1 2} {3 . .
The work of Heisenberg ™, Cbukho {?, and Batchelor' ) has shown that in

isotropic turbulence, the root m@am square fluctuating pressure is given by

[— —

JPT o= o-58 ()

where (L™ ig the mean square value of any fluctuating component of the
turbulent velocity. Ubermé" has shown that a relation of this form exists i
grid turbulence, bu‘t the constant in equation {1} was approximately 0.685 over a
wide range of Reynolds numbers.

The first attempt to calculate the fluctuating pressure field in a turbulent
PR Y N " .
shear flow was made by Kraichnan'9/ who found that at the wall {subscript w}
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where ﬁf&f ig the local wall mean shear stress.
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Experiments in pipe flow by Willmarth

/ Pb o= 0006 FeU, (3)

and that the pressure field was convected past the wall at an average speed of

0.82 U, where U_ ig the speed of the uniform flow external to the boundary layer.
However, in spite of care to reduce the cx?r aneous noise in the air supply leading
to the pipe, Willmarth was tmabie to obtain accurate readings of the power
spectral density in the lov ] ﬂmw investigators have obtained
similar results but only rvceuiw has an atte :en made to check the constant
in Kraichnan's formula, (A more complete review of the experimental work on
wall pressure fluctuations will be given in a paper by Hodgso niﬁ’ which is to be
published shortly}.

An additional problem noted by Willmarth was the correction necessary to allow
for the effects of the finite size of the pressure transducer on both the root mean
square and power spectral density measurements. With this correction applied,

most of the available measurements suggest

y - 5 o . \
/ awy == f" :i‘:; f’;:,) j P (4. )

over a moderate range of Reynolds numbers at low Mach numbers, or
w3 &

JEB e = al(R) (5)

where a{R) is a slowly varying function of Reynolds number at sufficiently high
Reynolds numbers.
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Recent work by Kistler and Chenwj has extended the measurements to high
Mach numbers and their work shows that a{R) increases progressively with
Mach number, reaching a value between 5 and 6 at a freestream Mach number of
5, at least for the case of zero heat transfer. Their resulis suggest that, at a
Mach number of 5, the function a{R) has nearly reached its asymptotic value for
very high Mach numbers.

The work of Kraichnan {loc. cit.) has been reviewed and extended by Lilley(a)
and by Lilley and %{odgsonw . The latter work showed that the lower estimate of
a{R) obtained by Kraichnan was more correct, and this work also went some way
towards confirming that the pressure fluctuations in a turbulent shear flow are
dominated by the mean shear. The calculated spectirum function for the wall

ressure fluctuations showed moderate agreement with the measured spectra at high
g L

frequencies, but at lower frequencies, the calculated fall was not observed in the
measurements made in pipes, wind tunnels etc. The corresponding two-point

pressure covariances showed marked differences between longitudinal and transverse
separations, while the area under the longitudinal pressure covariance and the related
autocorrelation was exactly zero. In fact, the theory showed, in agreement with the
work of Phiﬁips“m, a vanishing surface integral of the two-point pressure covariance

taken over the wall. The differences between theory and the measurements of
Willmarth and others have been investigated by Hodgson 6). He showed that the

ill-defined strong negative loop in both the measured longitudinal pressure covariance

and the autocorrelation, and the non-vanishing transverse pressure covariance at
large spearvations, were the result of extraneous disturbances external to the

boundary layer. {The effects of extraneous disturbances were also known to Wilimarth

and are also discussed at some length in the recent work of Willmarth and
VVQolciridge“l}), The measurements made by Hodgson {loc. cit.}, on the wing of a
glider in flight, which were free from extraneous disturbances, confirmed the
relation

iz oY
‘\i §:iv’f f::f» 'A{‘ A ?;’V

and showed the falling spectrum in the lower frequencies, together with

(&)

g

}ﬂ P(C}}T) dr == O
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where Plo; 7) ig the autocorrelation of the pressure at the wall. On applying the
convected hypothesis, which is supported by all the measurements, Hodgson finds

that equation {7} is equivalent to

,; [ F}{:Eg’si 2(55} dsds, = O
~ o

which is, an experimental confirmation of Phillips' result.

If we return to the problem of wall pressure fluctuations at supersonic Mach
numbers, we find that no theory exists, apart from the work by Phillips 1‘2}, on
the related problem of sound generation by supersonic turbulent shear layers.

Phillips has shown that the radiated sound arises from eddy Mach waves
which are generated by some wave-numbers of the turbulence in those layers of the

&)
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shear zero for which the difference between the mean velocity of the fluid |
outside and the local eddy convection velocity is greater than the speed of
sound outside the zone. Phillips does not include the case of a wall shear
flow, although clearly this must present an analogous problem, and indeed
Phillips argues that his model sho%ﬁd be qualitatively correct in this case.
However measurements by Laufer‘}'S) of radiated sound from supersonic
turbulent boundary layers are not in good numerical agreement with Phillips’
theory, although undoubtedly some aspects of the phenomenon described by
Phillips, such as the production of eddy Mach waves, do exist and have been
observed by many workers. However, as Laufer points out, the experimental
Mach numbers may not be high enough for Phillips' asymptotic theory to be
applicable in the range of freestream Mach numbers up to 6. The more general
problem of the sound radiated from shear flows at supersonic speeds has been
treated by Ffowes Williams'14) and Lighthill{15).

The present paper sets out to extend the theory of pressure fluctuations
in turbulent boundary layers in incompressible flow to that at higher speeds,
and to provide a basis for comgarison with the measured results of Kistler and
Chen (loc. cit.), Williams,D{16) and Willmarth(17).

2. Incompressible flow theory

2.1. The pressure covariance

It has been shown by Lilley and Hodgson (loc. cit.) that the pressure at the
wall is dominated by contributions from the turbulence in the 'inner' region of the
boundary layer, extending up to about 1.6 £; . where &, is the boundary layer
displacement thickness. In this region, the typical length and velocity scales
of the flow are

/ [/
Ao / and Loy == /‘7;«/[3 respectively.
// {)u (/\'T }/ A s

Measurements in this region indicate that all except the larger wave numbers of
the turbulence are being convected at a mean speed of near 0.8 U_, and a theory
of the sub-layer of the 'inner' region, based on this hypothesis, is given by
Sternberg 18} Hence we might expect that the pressure at the wall is also
dominated by eddies having this convection speed of near 0.8 U_. Since the
correlation lengths for the wall pressure are of the order of a boundary layer
thickness, it would seem reasonable to neglect the rate of growth of the
boundary layer in calculations of the wall pressure fluctuations. We will assume,
therefore, that the mean flow field is given by (Ul , O, O] where x, is
measured in the direction of the mainstream and x, is normal to the wall. If
all terms in the equations of motion are made non-dimensional with respect to u
and Mo /Q oy , we find

L]
\

DU, Uoaws o ou, dbig 4 (s = L UL) e — 2P 7 /
v ey “‘i‘ ?)q,, 4 g "i" :
at T Ea T Ty ! KRS 2X; ﬁ)
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where t = tﬁur/j«’a ;R = .@xcu’r//-la 3 ED:—;“: F/[iuzr

W = U—L/u@, ; U‘a U,/U,T

Since the equation of continuity for the turbulence is 'au’l/?x;"-‘ 0, we find, on
taking the divergence of (9), that the equation for the pressure™ is

Vip = — 2dUiaw o (wy — Tm)
dXZ BX} 'BX:_BXJ’

Alxot) (r0)

I

The two terms contributing to A{x, t}, which defines the velocity field, can be
referred to as the mean shear - turbulence interaction (M - T) and the turbulence-
turbulence interaction (T - T) respectively.

The solution of (10) can be put in the form

F(.ﬁ)t) == — A dexijﬁjfdx;dxé A(ﬁ’, t) [Gc,‘f'Gl]

AT
® bl
b ' dx! d %2 G‘O @_E
2T Jf 3 XS G/)
TR

where the surface integral is taken over the wall at x?i = (& . The Green functions
GO and Gi are given respectively by

G, = |»x —x'|

& | . : [!3)
Gip == ix“”ff*w!

*
It is incorrect to argue that the second term on the right hand side of (10} is small

by comparison with the first term. However, integrals involving A{x , t) are usually
dominated by the(M - T) terms unless this contribution is identically zero.
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where g#g X;,‘”K},; Ké) is the 'image' point. However, from the
equation of motion {9), we see that at the wall

since both Uy and u, vanish at the wall, and then {11) becomes

F(}Eyt‘) m—— Mzgﬁ»h[dxifj c%xf oi}c.3 (G&*?* GL> A(Z@,y&)

showing that the pressure fluctuations can be determined once the velocity field
is known. The covariance between the pressure at any pmm (x t} and a random
function ¢ (x t}, such as the pressure or a components of the turbulent velocity
at {x', t), is  therefore given by

D95t = - pe [ %J dx/def (G.+ G:) A (¢) 9 (5" )
H o ! / G 2% uam Cﬁ(x‘f)ﬁ )

a1

DE"W

where the bars indicate time means. Thus in order to determine the pressure
covariance b(’q }3{,{~> anywhere in the shear layer we need values of
- 1ova

Y L fotN B 1oty B e U d T
AG)P(s) = =2 L) g aIPls) — 2o wtitIP ) — g

But P“ U, can be determined from (15} by replacing " by uj so that

clx; Ox/ xR 3)&

. ] pos . ) ‘ ——— A [
Pu; = “;f;:';“”( f‘x’ijfdxf dx; (G;,ﬁ—G;) gé’zls{léz 2o - 2 WY “i.a’}
o ] { e -

g

f’jj dx dx’ ((; ‘) sz Ui,z ({7‘)

Yy = O

while P U3 W;"  is similarly obtained by replacing q* in (15) by u, T
Hence the determmamon of the pressure covariance formally involves the
evaluation of integrals of the form of {15} and (17) over the entire flow field.
However this cannot be performed with any great precision since the second-
order velocity correlations are incompletely known and little is known of the
third-order and fourth-order velocity correlations. The mean square of the
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pressure at the wall, P{'o} and the pressure-velocity covariance, ‘P(O) Us (% ”)
are just two particular resuhs which can be obtained from the general relations
{15) - (17).

On the assumption that the (M ~ T) and {T - T) terms are independent,
Hodgson {loc. cit.) has shown, on using the best available data for the mean and
turbulent velocity flow fields and making extensive numerical calculations, that
the contributions ‘

to j?{c} ( J P / Tw > from the (M - T)

and (T - T) terms are respectively 2.6 and 0.5. This shows that the contribution
of the {T ~ T) terms to the mean square of the wall pressure is only 4%, and in
view of the approximate nature of the calculations can be assumed negligible.
{The difference between these calculations and the measured values is not
considered to be of major importance, in view of the fact that on each occasion
a velocity flow field closer to the experimental one was used, a value ofJ%;(c,)
nearer tc 2.2 was obtained).

If we turn next to the evaluation of P(9) U,a /JP(D) Ju“ * we find that
the contribution from the surface integral is neghglble if Xy >
{Note that in our notation X, = (i U+Xz //»«’o ). The contribution from the {M - T)
term can be obtained on choosing a suitable form for QDo = U, t&;’ .
{The contribution from the (T - T) term cannot be obtained, even approximately,
gince values of uL LL; %g have not been measured except for zero separation).
It is found that the cdntribution from the {M - T} term gives

e it Jt s u 2.
Do) W — Xy Xog )T
POG e B exp(— 4 %)
{ iy
) N , : . (27) .
and a comparison with the measurements of Willmarth and Wooldridge is

shown in Figs. 1 and 2. The agreement is reasonable, qualitatively, except at
large separations. A slightly modified form of {18) is shown to represent closer
the asymmetry in the polar distribution {see Fig. 3) and so we can represent sz
for moderate values of x by

! / [“’_‘Z’ - 5 \ LR 2
{\3‘?2 Ik’g J s Face P .><.J’)<l &KF(”‘ oL, X«L)

with Gz [ =] S = 035 S o/ o= 4

and N/L/O(“l between 0.75 and 1.

The evaluation of Plo)y” can now be attempted by using f{'p;; defined
by (18). It can be shown that the contribution from the surface integral can be
neglected, while again it would appear not unreasonable to assume that the
{T - T) contribution, involving 2s it does third-order covariances, can be
neglected It is found that./ p(o)* has a value of the order of 2.3 if the values
of &, , X, and X3 are chosen as given above. The integral on which this
value of Jp (o) is based is




. i .
JP(O)Z = 4 [ x "% exp(— i XV;(;*) C{x‘f (j’; [«)+ T /u)) sin’© ex:#'(" bxzsin;lé} de
TK Cosh @

-] o

M@O)
where b = i/2 ("(33/9(;& + 5) - 0('1’“/0(‘2

and j_a and I, are the modified Bessel functions of order zero and unity
respectively. K is the con Karman constant used in defining the mean velocity
shear. The major contribution to | P%, arises from X/%, near i.43, and,

if we take &, = 1610 (corresponding to the value used in one of Wooldridge and
Willmarth's experiments), this occurs at x= 2300. A small variation in the choice
of %2/, could place this major contribution to ,| P?, in the range x = 2300

to 2700, which straddles the value of x, = 2550, at which U / UOO = 0.83. It must
not be assumed, however, that the major coniribution to W occurs over a
small region of the shear layer. In fact the contributions are spread diffusely over
a fairly large range of x,, with the maximum at about x, =1.5 &, as shown also
in the experiments of Willmarth and Wooldridge and in the analysis of Hodgson.

The extension of this work to include the evaluation of P’”(x;,, involves many
difficulties, although formally it can be obtained from (15) - (17). "In view of the
fact that °P/2x, is nearly zero at the wall, together with the result that the major
contribution to Pla)* arises from near x, =1.5 %5, , leads us to suggest that

pP* is nearly constant varying at most by a factor of 2 over most of the 'inner’
region. Since over most of the constant stress layer is of order unity
and -—W‘3 = 'Puz/f; u;;i is of order 4, we find some confirmation in this s;ugges‘fimf?c
An alternative suggestion by Remenyik and Kovasznay 19) is that the fluctuating
pressure falls rapidly outside the 'laminar sub-layer', but this is not in agreement
with our results. However the results in ¢ 3 do show that the major contribution
to the wall pressure comes from layers closer to the wall as the Mach number is
increased, and it is probably this effect which might have some bearing on the
results obtained by Remenyik and Kovasznay.

*
In the case of the constant stress layer if we put

W.z = .{ZU
and ‘ pu)a! = [JF Y

wnw vl JF = 2]



We will now discuss the pressure-velocity product ?“MJ_ . This term,
which vanishes at the wall, is known to play an important role in the energy
transfer au*oss the bcuﬂdary 1aver and has rouvhly a congtant value across
the em:ir

form from b(o)u , since, as we have shawn abov&: f»(o) qj (o Xy )o) lS__Z.E_I"_O,
whereas Ty, is clearly finite. In addition, the surface integral of pu;
taken over a 21ane parallel with the wall, must vanish if there is no disturbance
outside the boundary layer. The results of Wooldridge and Willmarth are in

agreement with this boundary condition for p(w) ] I

The modifications to 7{{? , as the pressure measuring station is moved
awc.y from the wall, can be Shown to depend on eon‘wibwtion% from the surface
negligible contributions to ,JIT,;T - Ipdeed i Qp kx“ ,,) is symmetrical
about =0 , the contribution of the {M - T) term to ”‘{»Jw is zero, as noted
by Corcost20) | and so ‘bu, depends entirely on the surface integral in {17) together
with the contribution from the third-order velocity covariance. QOutside the viscous
layer, the dominant contribution to H&, arises from the (T - T) terms. This
result is made obvicus by noting that if structural similarity exists in the constant
stress region of the boundary layer and outside the viscous layer

— — 32
P ! . Fen ‘}’
(g/‘ i/(ﬁ: 7 ’)’ Szt u}, {.F / (}}s
R Y
0o e foo) a /2
ST = (0T
— “Q",»s{ o /'[3 j/ ; ‘-"\ ’("’( e (;ij
and so | - "2 - & =2 ;; A K /‘ %’\ (,,’;)’

where @ is the mean square of the turbulent velocity, and a,{(R) and a,(R)
are slowly varying functions of Reynolds number.

2.2. The structure of the big eddies

. . {21 (22)
The work of Fuwnser}d( ) and Grant{ has suggested that the structure of

the big eddies in a turbulent boundary layer have the form of imixing jets' which
erupt near the surface and spread into the outer regions of the boundary layer

The available experimental evidence in support of this hypothesis is scanty,
although if is consistent with Grant's own measurements of nine secend-order
velocity correlations, and the more recent work of Wooldridge and Willmarth

{loc. cit.} in which they report extensive measurements of wall pressure-velocity
covariances. Since the big eddies play such a vital role in the determination of
the pressure at the wall, it is of interest to discuss the work of the present author,
in which an attempt has been made to put the 'mixing jet' hypothesis on a more
quantitative basis with results in agreement with the measurements both of Grant
and Wooldridge and Willmarth. Only the essential details of this work will be given here.
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When the rate of turbulent energy production exceeds its equilibrium level,
it is followed by increased dissipation and an increased rate of diffusion of
turbulent energy both towards and away from the wall. The outward flux of
energy can be presented roughly by

. 2/
A\ ,:Eif,_. A Og/ / 2
dx,

i
!

where U is the mixing jet velocity and /,‘ﬁ%ﬁj/}l is the excess of turbulent energy.
This release of energy from regions near the wall is followed by an energy
deficiency, and so the outward 'mixing jet' must be followed by a return flow
towards the surface. Such a return flow is also required from considerations

of continuity. It might be expected that the outward 'mixing jets' should have a
relatively high turbulent intensity and a relatively small scale, while the return
flow should have a somewhat lower turbulen intensity and a larger scale. An
overall scale of the 'mixing jets’, extending to about a boundary layer thickness,
is clearly shown in the measurements of Wooldridge and Willmarth, as well as
those of Grant.

Since the ‘mixing jet' is essentially a turbulent flow away from the surface,
we might extect the major part of the correlation R, (%, 0,0)to be the result
of the relatively simple structure of the big eddy. The results shown in Fig. 4
confirm this. However a fair fit with the remaining correlations measured by
Grant could only be obtained if, in addition to the mixing jels, we superpose
larger eddies rotating in planes parallel with the wall and uncorrelated with the
'mixing jets'!. The presence of these big eddies can be demonstrated in Fig. 4,
where the separate contributions from the 'mixing jets! and the larger scale
eddies are given for R, (r*,/ O, o-),The figure also shows the measure of agreement
between the model and the measurements but with a relatively free choice in the
values of so many length scales defining the three part structure of the big eddies,
the agreement in many of the examples shown is probably fortuitous. Briefly the
length scales of the eddies have been found to be as follows :-

{i} Eddies rotating in planes parallel with the wall have a scale of order é},
where & is the boundary layer thickness, and have a structure similar
to the simple form suggested by Townsend as being representative of the
big eddies produced at random in the boundary layer.

(ii) The outward '‘mixing jet' has a scale of order ?S/’j@ .

. < /.
{(iil} The scale of the return flow is of order </ =

{iv}) Secondary motions in planes parallel to the wall accompanying the 'mixing
jet’ have scales of order & /| |
/10

A diagrammatic representation of the big eddy structure is shown in Fig. 5.
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2.3. The pressure spectrum

If we define the three-dimensional Fourier-Stieltjes transforms of p(x, t)
and Ax, t) respectively as

L(*‘é'x, + ‘g3><3+ bﬁt)

l

P(x,¢)

and A (?S) t) —

where ,% = ({%U%ED is the wave number vector in the CX,,){;Q plane and 3
is the frequency, then the equation for the Fourier coefficient 43 1is

;q)v-é-wt.
jet(%’x”‘ firg s 8 d7 (x5 k)

d(’b” — '1%2 des — d3j /2,3)

where primes denote differentiation with respect to x, . If we assume that the
disturbance outside the boundary layer is zero, @ (oo) = df[m) == (O,
From the equation of motion ‘

dilsy = dxl (9 @4)

where dzz, is the Fourier coefficient for u, .

Hence the solution to {23), satisfying the boundary condition (24), is

IS (’XQ = dis (o) (6 fx. b e %xpj

—(25)

and for the Fourier coefficient of the pressure at the wall

dd(e) = — Bl [h  — (1/g) [Tem Y dly) dy —— o)

- /
If we assume that we can neglect d & (’o) then the pressure spectrum
function at the wall is given by

f e dc‘?‘a(xz k> “3> —_—(r2)

.




_— — ([ = [@iwwt)
where (D) R,w) = ——g J Plos .Z’E:t) P(Dj 2+, Ert Ef dr’va
— Dl £ K~ .
— c!bo(c}j{q)wz d337(0; é)@> ~-——-————--——é‘€,8}
dbk dby do
and C 5 and the asterisk denotes the complex conjugate. The
mean square of the pressure at the wall is
P = [ b do T (o £.9) (9)

- oo

Since all wave-numbers, apart from the highest, are convected at a constant
speed, U , the frequency spectrum can be obtained, relative to co-ordinates fixed
in the wall, from the integrated wave number spectrum function. Thus

T(osh) = [T(os8) aby =T (os8)—e
where T (o %) alowﬂ(’ogé_,@ do.,

As a result of the vanishing surface integral of the pressure cové’triaﬁ

TT(e;0) = ©

In these results k and ¢ are dimensionless, and are given by the relations

’1% = ﬁ Si / e u"rg(
Ao

(1)

(32)
and ) S %‘
— 2
@ “4//?9.3_?;} If Alx, t)

U ] =
in (10) is independent of Reynolds number, then {D f f_,a) should be a universal
function of k and «3 (Hence spectra plotted as funcfions of wgg/L , say,
will not be universal functions).

If we now replace da)(xz/f 4%)@) by the {M - T) term only
- ) {
dg/ Xz,),v w) = — 2% dU, c!,&’z(xg; épw>m(339
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and substitute into equation (27)

T (Ds %)®> = Mgﬁ/ﬁj) £m€-2éy7’/3) cly

where @ 42 18 the four-dimensional spectrum function, /f = (%%, %5) ) ’f/-'*’g.c; /61”*753
and T = dUe/dxz -
If we assume that
| | & — (h Ee)
ém(‘:b f,f)w> _ 04 O (wﬂﬂ w/u;‘) e
JE )G (942 2R U (1 + 44 )

— 9
* where f:‘“ﬁ_& = fl‘?‘éﬂ " 1_@&53&
ag shown in appendix 1, and

WG = hiy e ;5 L=y ; b-f={

TT(D; fg,,ul) = [e“’ + e EL(*Z) + e”’aﬁ(o?) - e”gé(i)]
TR (R sy U °

b h (o) €7 (1+ Mw‘/uj) e

m(f“’ﬁ&+ ifiw'://uéz)

(6)

where the term in square brackets is equal to 0.42 approximately. (The contribution
to “{T( 0; # )uD> )} from the sub-layer can be shown to be negligible and since the
majoer contribution is found to come from layers between 3 to 2%, ., we are justified

in putting h(o) as finite). The integration over all frequencies can be performed and
the wave number spectrumis then given by {zg:

T(os8) = e8¢ hlo)e” o
) T (%7 ,8)% 67)
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) = 168 hlo) | A e " db )
d i 0 gv s F 7
an ) ) dgay {ﬁ#,@{’)a
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An analysis of the contributions to 7?1,/ a, ij@) from different values of
v shows that the larger contributions come from layers of order &y from the
wall, at least for the energy containing eddies. If we then choose values for
h{o) and B to give & good fit to hiy) near y = &, , we find

h(f)) = 5"4/51 5 ’f"* gg 5 //5S; = |

. % .
The integral can be evaluated in terms of

y B &

T() = [_e® ok

b TR FX
(23)

which is tabulated by Goodwin and Staton

We find, finally, that

[ C
|2 Pt 7 3 C?)
\J! ’cw ,«% 2
which shows good agreement with the experimental results.

3. Compressible flow theory

3.1. The pressure disturbance equation (zero heat transfer)

Since the experimental results of the wall pressure fluctuations by Kistler and
Chen (loc. cit.} at high Mach numbers show only a relatively small divergence
from the linear relation between ./ by, and 7T, Wwe might expect that the dom-
inant terms contributing to the wall pressure in incompressible flow also
play a dominant role in compressible flow. Thus, if we neglect the diffusive
terms and write our equations in dimensionless form, we find, following Phillips
{loc. cit.}, if the mean values of the density and viscosity at the wall are constant,

that
2

b8 VP 4 dYaR b o s At — o)

2 z\
Me 7 :

-

s e

/ 7 ] o/ ) a ‘ !
where P = P/ Gy Ur 5 & = RUrZ /iy, C = Lurf, sy ;L-fT”VM?
’ w

AT § /‘(& PR 2 N DE /
Al,t) = — (272U 4 U 24 (41)
’ L ax, < Xd’ DX,

fw (;é,i:»-p d . (é;@g} ('1 - 9 Jr Jg> 3 /3‘{?} 2 7/15’5)
AR 5}“‘ |
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D . 2 ' ST Y >
and —[—)-'t == r"a“E ‘f“" UI ;—g;)—{l ) w‘n(,(‘i, U( = LJ‘('X;L -

The speed of sound, a, is also a function of X, only.

Asg Phillips remarks, the left hand side of this equation neglects convection
and scattering of the sound by the turbulence and by fluctuations in the speed of
sound. The diffusive terms can be added to A(x, t) and hence, by using (40)
as the basic equation defining pressure fluctuations in a turbulent compressible
flow, there is little loss of generality. We see that the effect of including
fluctuations in density (sound waves) has given rise to additional terms as
compared with the equation in incompressible flow. Since diffusive effects,
however, have been neglected, we find that the pressure fluctuations are the
result of the fluctuating vorticity and sound modes, where in general the vorticity
mode is the larger. If this were not so, it would imply that the mean properties
of the turbulence in a compressible shear flow could not be derived from 2
transformation of the results in incompressible flow. But both Morkovin(24) and
Coles(25) have shown that this scaling up of the incompressible data gives fair
agreement with the limited measurements made in supersonic flows. If the
sound mode could be ignored, we could write {40) in the form [

T (78 W YO p—

and its solution would then follow on the lines given above for incompressible flow.
However, at this stage, we will continue to retain {(40) in full and investigate more
fully the terms giving rise to the sound mode.

The equation for the Fourier coefficient o> , as defined in (22), is, if * = koky

~ /’/ 2% : ~ [ A7 oy -~ :
(J w ~i’“ d ln /7 G(i Li(.)\)/ —— %'2 e _[_"ﬁz' (L\) o Lj, k,) J (V'j‘(/«.‘) |

[

5/ Py s
since a Q?l = ['?,.,/P for constant mean pressure over the entire shear

layer, and primes denote differentiation with respect to x,.
If, following Phillips {loc. cit.), the first derivative is eliminated by the use of the

w dependent variabl < e S S -
new dependent variable g == (\u /q »v> des
then
) % N s 2
¢ i £ Uy + U ﬁ) o o ( L e /
o L;b —(Tr((\) t e) -4 *ZT ((: e f( / ‘WK;‘,W d y m(‘»%:ﬂ’)

with € ((:); % , m) = dd O; ig ,w)) . This equation should be compared with its
corresponding equation in incompressible flow (23), which is obtained from {43),
when a = aw — OO
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For the case of zero heat transfer, we have

2 4 - 2 % ) !
azawm%,i{,(,ru‘ ; Ay = O

and

i @2 s : e
alfa =it (a3 /o2) (WU + a3 U ) (4+4)

i It can therefore be seen that for small wave numbers, a”/a is a not unimportant
’ term in the left hand side of (43). However, except at the wall, it is small

' compared with the source terms on the right hand side and so in general can be
neglected.

Now in Phillips! analysis, he chose non-dimensional co-ordinates such that
? the width of the shear layer was unity and the Mach number of the external flow
was very high. He found, finally, the radiation of sound from the shear layer by
a solution which neglected terms of order 1/Mu -

In our problem we have chosen boundary layer co-ordinates such that

i U, — Um as X, —» o0 . We cannot strictly estimate the radiation of sound

from the boundary layer since we cannot enter the far field outside the boundary
layer. However we can estimate the disturbance in the outer region of the layer if
we find the solution to (43) satisfying appropriate boundary conditions. By neglecting
diffusive effects, our boundary conditions are

450 = El) =o 4s)
and either ) 5{(,5 (00) = éf (oc) == Q z

—iAX { — @
or, g ~ e ,)})&;} erﬂ?ogj C )

where we differentiate between the cases of zero disturbance outside the boundary
layer and that of outward propagation waves.

In our problem it is too restrictive to find only a solution for large values of
Moo and it is desirable to choose some other parameter which defines the flow.
In (43) we noted the existence of the term U} / @ and we find that for zero heat
transfer

aifai = (%/a) M2 = |

for all Moo*‘ It follows that a solution to {43) is required for large values of the

b3

If following Coles, we put . —|
Vo = [1 S (1= k%)
“f, = |1+ (- K
for the case of zero heat transfer,where K o 153, we see that

4ifag= 5% [2(1=KG) as Ma= oo,
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parameter A = Cw /u + . {This is true also for most cases with heat
transfer).

Let us now define the new independent variable

Yy = * "‘*‘i/ﬁi

Then with
s 22 P / A - .
CH%’} = & QW/U%‘ “‘“’" ("C""g%ﬂ-;%f) —+ %wuﬁ/avj (4;/)
where Q = d/awiwe find (43) becomes
3 a
£ — Nyt = H) be)
where

His) = (ro/p a,) (/u) 47

4
and the term in A in H{y) is absorbed finally in the velocity derivatives and
wave number terms.

If we now follow the arguments used in the incompressible flow theory, we see
that H(y) will be negligible over the outer three quarters of the boundary layer.
Also, in this same region, EE:Y will be small, owing to the small gradients
in the mean velocity. Thus a gbod approximation to (43) in the outer region of the
boundary layer will be to replace U by U, & by 2w/ a, and then

P 9 95/ a4
7 S V& aufus — <¢e> N [y + F Mo ow/uj_) }gz O —49)

J

But if the convection speed of the turbulence is U, the frequency O is given by

!

KB mm M{%, UC (SO)

and {49) becomes

g3 [/ — (- o) #H ]t -0 —)

dga

having solutions of the form
- — e Ya .
(g : f?)(#) (.,._ >\ Cf,-‘ (j) for C},‘>O
and ——(52)

§ ~ exp(Zng]*) . g<o0
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mere g = q(=) = [ =08 (1= )] —

The interpretation of the second type of solution was given by Phillips,
who showed that it is equivalent to inward and outward propagating eddy Mach
waves respectively having wave numbers such that, with ‘é - 7é’ 5O,

cos? © — [ Meo (i - u‘/Uw)}~& ‘ v @43

Hence eddy Mach waves are generated over wave numbers in the plane for which

MmO, < © < T+, and M<9m<9<:@m

where

o = ws [ lg) ———

‘v\flrxen‘UQIUm = 0.8, outward radiating Mach waves occur when M exceeds 1.25.

The region near }/é{ = (O is excluded since eddies beyond a certain size do not
exist.

Although these considerations give us some idea of the solution to (48), they
really only help us define conditions which have to be satisfied near the outer edge
of the boundary layer. It is shown, therefore, that the first boundary condition of
(46) is applicable for wave numbers defined by ’

MT-Om < 8 < O, and T+ro, < 6 << ar-6,,

while the second boundary condition applies for all other values of &.

In regions closer to the wall, g{y) changes sign when"

a’ // U?’ (Uc - Ux)a - i -+ (\%9( U} Uay + U;&Q‘” a) / %&(U'; U’)& méS'é)

and this occurs at the wall when

() (o) (11— 5/en) = &)

M

.
The terms involving Q/Q are included for convenience only.

As already stated, it is preferable to put them on the right hand side of {48) and to
regard them as source terms.
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Hence for 2 =1.4 and U./U, = 0.8 to 0.7, this limiting value of Moo

ranges from 1.5 t0 1.8 appr0x1mate1y, provided that the bracket term is 0(1).

At low supersonic Mach numbers there still exists an extensive region of the
boundary layer where the flow is subsonic relative to the speed of sound at

the wall, even though the local flow is partly supersonic, and eddy Mach waves

do not exigt, At higher Mach numbers, as shown by Kistler and Chen, the convection
velocity is supersonic relative to the speed of sound at the wall and at each region
distance y from the wall, there is a range of wave numbers from which eddy
Mach waves are generated. The remaining wave numbers in the turbulence produce
disturbances near the wall of the exponential type, just as in incompressible flow.
The condition for the generation of eddy Mach waves is

|eos o] = (F'/a“,\( ( [+ aw/, ,mi)\“?\ ‘ (5‘8)
M ‘(UC“UJ/UK‘*E

Gven so except at very high Mach numbers, there is a large range of wave numbers
for which the effective speed of the disturbances is subsonic with respect to the wall.

3.2. The solution of the pressure equation

We have shown above that the pressure disturbance equation can be wmtten
in the form

2. 9 . ' .
dy2
where g{y} and its derivatives are continuous functions of ¥v. This equation has a
transition point at y = y,, where alyy) = 0. If y = Y when ew+ U= O where

& = — B, then q{y) will be positive in the range 4 < J (..\,( , provided that

aw/a X‘L can be neglected. If a second transition point occurs at 4 = 2}',,
where q{y,) = Oand ¢ > Y, then q(y) will be DOSltlve in the range Y < Y < Y, ,
but gly) will be nega‘cwe for o< Yy< Yy, a Y>> g . ’

Case I aly) > 0 bsy=sy,

Since >\ is a large parameter, we can find an asymptotic solution to (48).
On neglecting terms of O (‘/)A and inserting the boundary condition d‘S/dg .

at y = 0 we find
w Y A YN B '3{{»%3’) R ( % 5
8(4) = 35 a1y ) - X’%m[ ‘@L[;)‘/ﬁ‘ " ’\f Vidg) Yy —67)

is a constant given by

{

where A

\ N AN~
‘g(o) = CJ&»(O) = mZA/ ﬁ«(o‘). (60)

but can only be determined when some other boundary condition is inserted, for
instance at y =y, . If we argue, however, that the region surrounding y = Y ,

the d t a at the wall and fo ' /
provides the dominant contribution to the disturbance e w n roy> y;, 3(5)(( Zp}
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we find that
| N[ rd,
o ~ — (/x CL(O)’”’)JC %%)A exF(”‘}\J; %“dy"> dy' —¢&)

which reduces to {26) in incompressible flow when A %73:—, 9_5&_;_@ and Zﬂ = o0 .

o

Case 1I q<_0 ¥, <Y < o0

If a second transition point occurs at y =y, , then g(y,) = 0 and q is negative
in the region y,< y < e

Let us put q'(y) = -q{y)
3 U2 o g2, 2 ) 4 — 2
z= (__"_‘:‘_ia_.__ﬁi) — R Oy U, — 2#3 u,?_/ ag W(é Q)

then a solution is required of

£s L Nqys = H) 63)
:j&

where ““[&é)}@ in y<y<oo and 97y)=0.

Near g,—:gf we have

T~ ‘f[/%)(%’*?) (64)

where qﬂ‘f l[%z > 0.

if we introduce the new dependent variable fz (fe“;) where

IOV ©3)
and <d§/d?)&: qﬂ%/g (éé)

then from (63)

4*J1 + >\l<§ﬂ = H/}'(E‘.#)S/lﬁf— Smal( terms

Js°

ér)

) (/3 /o ) j’? % 73
with g = {7/ Y, ?\ ) @g)
The range of g is 0s$§ < ¢o and we take

4 v/ \ A
45 = (7/e) &)
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If we assume that only outgoing Mach waves exist for 4>> Y . then

;(3) ~ exp (—-—L}‘jj\/fﬁdj) ~———-—————-—»—-~—(7o)

The solution of the homogeneous part of {(67) can be written down in terms of
the functions

E aT ¥ L ( M*)

where /w*" = _%_ by gﬁ/@" and O < M* < O

and the solution for ﬁ{‘é};which can be continued analytically into the region %< "a",)
follows apart from one undetermined constant.

Case III q >0 Yo < ¥< ¥,

As stated above, the solution obtained in the region Y, < ¥y <O can be
continued analytically into the region y, <y < ¥, and therefore involves terms
of the form

P p
/(/t/‘3 ifg (/ﬂ) and o K:%L //,,,,)

, B/
where /bt = %« >\ 9 /2

and P [@/&) f;' S dgi] 2/3

The solution for 3(5) is therefore given in this region also, apart from one
undetermined constant, the same constant as in Case II above. This solution
cannot, however, be extended to values of y near y, where q(y,) = 0. A
solution can, however, be found around y = Yo involving the functions

Vi N (’7) and W 4 "({5 /7)

2

where 7 = % A ”53/&

and s = [(3/02) fj vf”i};“ C{%.]a/s

The solution contains two undetermined constant.

Case IV g< o0 0<y <y,

The solution obtained in III can be continued analytically into the region
0<y<yo . and hence it is given apart from the two constants. Boundary conditions
at the wall provide one relation and two more relations are obtained by patching
the solutions obtained in III at some convenient value of y in Yo< ¥y<Y; - The three
unknown constants can now be evaluated and the solution for E(g) throughout the
entire boundary layer has been obtained, and in particular the value at the wall.
(Full details of this solution are given in a separate paper which will be published
shortly).
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First of all let us find the changes that result in & (o) as a result of
compressibility effects at low supersonic and high subsonic Mach numbers and
thesge can be demonstrated on evaluation of {81}.

If we assume, as in incompressible flow, that the dominant contribution to
H{y) arises from the (M - T) term then

Hig) = (eafhyan)(ab/uz) 4 — — (eakan) @oit,) ek 7ldg) — )

where: T o= du!//d‘;(i ; (;;u)% %ﬂﬂﬁ/u.;? - ("®+Uifé‘>&/a,£

. dis(o) = _di% ra dU w'(df) dy \
(5 2 va/é?m?)’{’” £y ;‘{w:; Uy c}‘% a —'%7;2/
Aw

for 7@ > W aT/Cw )
We now require values of ‘ff'U:/o‘fxx and uf as functions of the freesiream
i

Mach number, and these can be obtained from their so-called equivalent
incompressible counterparts using Coles transformation formulae.

If quantities with a bar represent incompressible values

Ky
o fw i Ms d

where Alg is the sub~layer viscosity which, for zero heat transfer and V= /-4
is evaluated at the temperature T  given by

/Ty = @*O“WQ/%+0&M® wwwwww (+)

Also O = U [ A (75)
s )

where U, is the non~dimensional mean velocity in incompressible flow and ‘Ul
is its corresponding value in compressible flow. If further we assume that the
relation between T and Uy is given by the Crocco energy integral, we can perform
the integration in (73) and so find the relation between x, and “;Z& in the form

- ] i gt Mo s Oy ]
=Rl |1 = =M 20 9/k) w3kl | )
w L+ ¥m? ()7
I3 7 N - ;
where K is the von Karman constant. In addition it is found that

pa  dU dU’/d:’Za (7
pa dbU _ _ e (77
FNGW d){& ii o U;a ) Y Mm Ur /.‘,?4‘

IR
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for the case of zero heat transfer.

If we assume that uﬁ,f changes with compressibility in the same way as the
mean flow™

U (%) pe =TI (%) (7%)
Ms ,
and a similar relation is assumed to exist between the Fourier coefficients such that
A%, (%) = d7 (=) f’&i ;, )
After some reduction we find, on substituting (76), (77) and (79) into {72), that
- )
i5(034,9) = 2k Ay [0 g = &9
A v % T %
where /ﬁ X(O) . ﬁdxa (X3> : < (X‘q)/ﬁ;v :

%&X@a = - sw O M& (0 '5 U UJ
Ujj §+ %?Mi

#[) - f Nl [ (1 — Brar =imd \ g
The spectrum function is thcreforefgwen NS Uﬁ <I+ &:—iwﬁ)
T(os £u) = 4409 [Toty) =249
XS L X A
- Jm ¢, (éf;f; 7%,/%}@) diy ———(81)

20 N ; — ;ﬁ(/;f "*JL/‘
(48 e RE e £Le2) J)) dz

Iy ;
¢ X4+ ™ (T(ZHZ“‘)/TW)”@
where the upper limit in (80) has been replaced by infinity. We see that (81) is

identical with (34), apart from the term in g T 'T”/r ) fé 4
in place of k, and £ :ﬁ'[;g) in place of ,;ég/ A W / Tw X{J)

and

" This relation between d; and“zi;? differs from that used by Morkovin {loc. cit.)
but neither relation is in good agreement with the available experimental data.

All that can be said of (79) is that it qualitatively has the right trend with increase

in Mach number.




A rough approximation to (81) is found by replacing f{y) with + % and Xy}
with ¥ , where T and X are independent of y. We then find that the integrals
have the same form as in incompressible flow and have the values obtained
previously. Hence, on reference to {35) and {38}, we find %3

e

t

&=2)

T(o; %) = 168 44" hilo) (“5/u,)” e
T {“fe +8)*

where the integration over all frequencies has been performed on the assumption

that, except at very small wave numbers,

X/ff}) # X ~ X(x;:, at UE“:UC) = 1} “'T\/u‘/wm’ 0)6 84

The integration over all wave numbers 'ﬁl and g’g can next be obtained and leads to

O - 168 (m) b @L( )

(83)
&+)

p
where L /5 1) f 4 cfﬁf
//é’ + /€ £)?
which can be evaluated in terms of the funcnen tabuia«,ed by Goodwin and Staton
{loc. cit. ).

All that remains is to choose suitable values for h{o), Af and F . If we
follow the argumenis used in the incompressible flow analysis, we must choose
h{o) such that hiy} is a good approximation to its corresponding value in
compressible flow near X,=§,

It follows that some adjustment to /a“?ﬁ, with Mach number is necessary
and we put g4/ =]

3 —
5\ /jg;
= VA
5 (TN s
with !
. - & N —-.Zi» !‘ )
58S = || — oo/ FM:\al (%_ >/.;2
\}«{»h'~~!,yi¢z .'2731 ‘ w/ oo
and I Ml Mo K=

approximately.

If we use the asymptotic expansion for the function J{x) given by Goodwin
and Staton we find

TP — 65w Mo—r =,
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Fig. 6.shows results for J P*(o) evaluated from (83), together with (84)
to {87), and the experimental results of Kist%gg)and Chen {loc. cit.) and
Willmarth, Hodgson and, Mull and Algranti at low speeds. As already stated,
these theoretical results should only be applicable for low supersonic Mach
numbers but it is here that we have the greatest divergence with the experimental
results. There does not appear to be any justiﬁéa’tion for reducing the experimental
results of Kistler and Chen, by a constant factor, but if this is done, they fit
both the low speed data of other workers and the theoretical curve throughout the
entire range of Mach number.

However on the assumption that the difference between the present theory and
experiment is real, clearly we must find what is wrong with regard to the theory.
It is difficult to see how it is wrong at low supersonic Mach numbers and high
subsonic Mach numbers, where no eddy Mach waves can exist and where the
compressibility effects on the mean flow field and the turbulence are known to be
small.

If we ignore the experimental point of Kistler and Chen at M_, = 0.6, and
assume that at some value of M,, above 1.25 a large increase in pressure level
occurs as a result of the generation of eddy Mach waves, then it is surprising
that an ever increasing divergence between our theory and experiment does not
exist as M,, is increased. The fact that both sets of results appear to have the
same asymptotic behaviour at high Mach numbers seems to suggest that eddy
Mach waves do not contribute greatly to the wall pressure fluctuations. The
significance of this will be explored in the next section.

Refore closing this section we note that the changes in the frequency spectrum
with increase in M, will not be large and the peak ghould occur at near wSi /U, =03,
its value in incompressible flow. In fact the results of Kistler and Chen are in good
agreement with the low speed results of Willmarth. Also, the main effects of
Mach number on };?— appear to be a reduction due to the decrease in
with increase in My , and an increase due to the shift of the dominant source region
nearer to the wall with increase in Mo

3.3. The pressure equation at high Mach numbers

We have shown above that the solution given in {61) is restricted to the case
aly) > 0. If, therefore, a transition point exists between the wall and the station
where Uy = U,, we must turn to the solution outlined in Case III above. The
solution follows the approach used by Phillips, although we find it necessary to
modify that treatment when applied to our problem. We will, however, still not
consider the full solution which must include radiation cutwards from the
boundary layer.

The solution to (48) in the region around y =y where aly,) = 0 is found to be

] PN LT / . 3
g(v) = (5/9) g’f’”ii%(?’) 1) + 73@/'7//3(5)}

where 2 ‘/!3

/ r‘J?f S—
< . /. a4 ,
s !\/ /”)“ > j ﬂ '“( i" i ?} ‘g‘cr % 2/ O

&)

7]
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and %(39) =0 ” - (;/3> 2 g Y2

«(y) = A + %{7} J B5) 9% Ky () ds

& (3) - B ;@@lé J)S (f[s)yé Ié,,/?) ds

(89)

3 /3 @ O>

MO AR (e (g - 3(2)

and since 95[5) contains ‘g/%) (88) is an integral equation for ‘5(‘3)
Near y =y, since Gs/d&aﬁ> = C?//S ;

= ot (-9

! % ] 73
s = 9(y) (4-1) 5 94 (4-1)e

corresponding to the + or - signs respectively. However, because we have put

g 2/3 -
s-(E [ w) s sy = i

we take the plus sign, and so in the region 0 < y < Yo

T

# 3/ J ¥
S = ((r/;i) J(:ju - ﬁ dé{)

where both s* and q* are real and positive.

.,E'Tri/?:

g = s¥e'l v

with 2 /,3

We also have /
. 3T /D

where
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Hence in the region 0 Ky Yo
o = /g

7% Ioly) = — 3 T, (7%)
and 7%" Ké {7> = 7%;4/ s e‘ﬁr/zs [H(ﬁ(?*) m/z H;o (3*)]

2

- 74&- 5 i E;?T/a < ’{_@O i
EI d+ (7 ds *

where _LeiTT/B jl (.7 -k) — —— (Ig i/7*> - :’Cé /’7’*))

3 Py ; ™ ”TT'/B

Thus the analytical continuation of the function "’g(‘;}), in the region 0 g y<< Yo

&ly) = - 3#/‘@%[7*’7’ ) *(4)+wrev *%j/)/ z]w(q

where

«ly)= A - (2) - f ¢/sa««)7 (:r@ )+ Ty (7> ))ds’*“—@@

ef?.sm/ by

B s) = B (ﬁ/@/?’ f bf) 7% T, (=3) ds

(93)

with

s B ) v [ - s

If we apply the boundary condition d‘ﬁ/w at y = 0 and write subscript w

to denote conditions at the wall, we find, for large values of)\ , that

o* (o) = \%‘. ﬁ*[O) (3 — E[’)i)/l%[ﬁ))m@*) }

€)= Sy = di(o) = (36)°  #%(0) -
A/{Z C}'WA‘ /‘,7§ 72 J*%{ﬂi) (75)

and

on using the identity
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U‘% ()\) 7% {x) ~ I§ {x) .\T__% (x) = ol SN W%ﬁ
: ; 2 T X

where .
¥

#
@) = B — 7 [T et T, fpe) ds*
| eE ), T
and
- - @)
. {&2 {3 Pty \ A i
«* (0) = A — vﬂﬁ\/"z (' ¢f59‘97¢ 3(3:3_[';7*) + I§[7y¢)> ds*
\/'3 A V3 JM :
It is convenient to approximate to these integrals by assuming qﬁ(s*) = constant = ¢/C) ‘
then

xX¥(0) ~ A — ém@/a)j/z* H_j@_ﬁ_). @z)
B[94

- » a A ,
B*(0) ~ B — @A) /3 o H{Y) (4s)
N ey |
noting that q(yﬁ) = 0, and that for the value of ’75 givenby [ = 3%/‘?,:;{,)/3’_'% [773:)
we must put 0{*{9)” O in order to satisfy {94), and thenﬁ*{@) is not determined.

and

But clearly this only arises because the approximation given by (94) is inadequate
i.e. higher order terms must be retained, and therefore in what follows ?71%/
must be less than unity.

Now the value of qj; is found from {47) to be

. 2y 2 oy
o= wt— £TN 4 T

and since W =—U. fe, with 4‘% = ?é)éf;:.(g

a¥

Wv'>o “Fc%r-' O<’9<@m

where ‘ a /L{
jcos ©,,| = (W)\/ | — Gf’")/ﬁﬁ%\ﬁ

[
which shows that at &= .. the speed along the normal to the wave fronts is
roughly equal to the speed of sound of the gas at the wall. Thus the position of
the transition layer at which y = y,, afy,} = 0, changes with frequency and
coincides with the wall when qf‘l‘l = 0. In the range 0<0< @, , q_< 0, while
in the range 8. <0< Rz A ﬁ;—y O. For the laitter region we car‘f’make use of the
solution cbtained in (60) v ‘ |
Az fo) = éﬁf 8, <0</

w

The value of gw when q:; = 0 is found from {91) and is

€o)

or
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di o) = T2 B' ©=06,
J3 T(¥3) (CL’WYE:

H

—(9)

' - Similarly, from {95}

N7 %
s = _Cay) A p<o<0,
foVa Za.
%t P oy (72)

So far we have applied only the boundary condition that the normal pressure
gradient vanishes at the wall when diffusive effects can be neglected. However
one further condition is required in order to determine the constants in the
formulae for £{o). This further boundary condition results from the disturbance
level near or beyond the outer edge of the boundary layer. If we assume that the
bulk of the pressure disturbance near the wall arises from the region around
v =Y, it would seem not unreasonable to assume that the level of the pressure
fluctuations near y = y,, where y, > ¥ and gly,) = 0, must be very much smaller
than at the wall, in spite of the fact that radiation outwards is taking place. As
already stated, the proper boundary conditions at the edge of the boundary layer
can only be applied to the region y, < y < oo , where, for sufficiently high Mach
numbers, there will exist a range of wave numbers for which ¢ will be negative.
However, for our purpose, it will be sufficient to assume that Yo and y, are
well separated so that we can put

€ = O tor 4 >V,

(Of course the radiation outwards can only be determined by proper matching of
the solutions around y = y_and y = y, as previously discussed). We therefore
find that M(’@ >¢ 0 for v 37 Y or from {89) '

- - ({.,}/;; & iﬂw . 73 . ) d .
A = .;_?2)_* t %/s) Wi Ké [7 S M,_.WQO()
PNAEA
Now, for Yo = 0, we find H{o) = 0 and so, according to the approximations
used above, plo)=0 at y, = 0. Hence according to {98}

(00)

/3% g’/ o) = B at Yy, = O

and from ¢94) and {37) on putting Dy =

°or )  {apNB 3, V
S W‘“ 3/ 49 73 Wy () ds—(02)

which determines rw in {(98) when & = O,,.

For Y, # 0, H{y ) is finite and then making an approximation to A in (97)
we find from (94) that
e

#* == — zf’;’o\ *
£F(o) = é;‘%. Fﬁ"‘i /[1 - I {”?w)/Df%/qu,ﬂ ._._._ﬁ{,?,)

NER)




since j;m K% [ ’}}) 5\’/? = lﬁ(ﬂ F{%) - Tr/ﬁ ‘ P~

RO, S

P TOF 4
o, jif{z ™ (qé:. \,‘
S gy, 2
{5 LBRpy 2!
and therefore we can find T,, from (joo) inthe range O < O < G, %&,} 3‘45%' &4
We note, further, as stated previously that /4*/0) is undetermined for that R&% ﬂ«:‘r’}:
value of '2!"’ which makes the denominator of {103) vanish and hence we must M’%ﬁ&x

only use (103) for 7% < | approximately.

For other values of 7 it will be sufficient to put /)*/O) = B, where B
is given by (102).

The values of the constants are completed by putting in the range . < @< T
Y
N y ﬁ.{i ezx;a( Jc;a dg) dy
°

from {59). On collecting our results together we have

(o4)

[7Hy) =g dy! |
~ -] [ H V% ) -
dis o) = zi\‘f?;i. J ““E{i:% - 50 Cilj P O 8< T —— éo&)

A5 - = 2™ fw H(9) 55K [)ds . e-6, ——(ot)

FrEye | s 7Tl :
Yo o Vi
: TET —F Ll 1L ;0505 & (o)
an y afy ol 4 ¥ A a2 : - ' i
X5 ) (T ) - Ty )

for values of %f < ; and by (105) with q, replaced by q;; for higher values of f;']W*,

We can approximate to {106) by putting

Iy . - 13’ D
‘?7&;{{?;((7?) ~ Jfgt € 7 , where 7 = %L»\f}iﬂ dff’:

and hence

0~ = LY |, v

having a similar form to that given in the range o, < O« TT/;; .

{
The values of OM;/ and ( fi,,) can be obtained from (47) and if we ignore
derivatives of the speed of sound, noting that this is a poor approximation* near y = 0,

The full expression for Iqw} is given by ‘
VI N T Sy

. “
but note our previous remarks about the term a
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we find, 4, = ax|wt] (o8)
since JU;/AXQ = | at i=0
and C{:(«gﬁ} = (& Xa §&> “é,(m+U.ﬁ,>J (07)

where U, and @, are evaluated at Y=Y,

In (109) we find, on approximating to q(yO) = 0, that

V(1) = (@%°4/a) 4] fio)

and from (108)

Py = Nk “%‘l | (i)

Hence, with
Hly) = = Cha) () 2087 dz5

as given by (71), we can find expressions for cfu) and the corresponding values
of the spectrum functions are

T (o &;w) MEAY) §(5,z;ﬁ)m) aU zaedy au pae iz
9.5 ), T dy 2

9. 74 dz qﬁ‘/‘f

8, <0< ——{)

‘nﬂ(‘o; ) 442 ) )\/s %J‘é}'(g) sQdd Pa e” 7¢yfcfb, 774 e a’z’

fz;,r d:} 9%
@ T — (j/ 3)
ot Moo = ot bl k) pa)®
¥ 72
Wi % T (Ta00%) - (7)) e
o< B« Qrw él‘f.)




where throaghou’c (112) - {114) F = :/f;, ; 4= /&i , and (114) only applies
when 7} <| and for larger values of 7, T we replace it by {112) with
q:; in place of q_.

Now, according to our approximation,

gF = ruk)Ya — £

and so at a fixed wave number 1\%} ,  dd= — 0‘; bjﬁg aty =y, corresponding
to q(yo} = 0. Thus for 0< O < O,, we find that the integration over frequencies
is given in terms of an integration over Yo provided q* > 0. However we find that

for small values of ifw the contribution fram wavenumbers in the range 0< O < o
is negligible, while at larger values of Y%, the contribution is of the same order as
that for the range O < ©< 74 - Since the contribution from around &= 6, is
finite, we can represent T}‘(u f w) forall & by

. . aNg e

H{O/‘, fg)w) = '4%‘: X” 5/‘3; ) x&w} igL .ﬁ_@__@“’7 C‘{g’
L ’ i =4 ™~ d aq, /.

|%, | * A

- [T fae? ds 03)
y

d¥ cfw%‘fr

On replacing the compressible flow quantities by the Coles! equivalent incompressible
values, we then find, as previously,

;:/,ta Rl o—
Tlos o) = RGN (8 0F &7 m
. %gi ;’“3/%)55 — (¥~ é)/dii}q}&jié cd%ﬁ as ‘1/’2*

o . . -/
- o A LA, X
a g %(’%7%3;@;@;@)@ * d/hz
bt
@ — = ,,’/j?/
! Ik > o £
., f dU VU E R, )
- Ofxg 5{/%& 1,;\/4_
=%

We find, on making similar approximations to those used above in evaluating (81),
that the integration over frequency gives

2 4 (it - A A 5
Tlor8) ~ (sair)  £H0 € Gl o CC F ()

where

Va
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On approximating to this integral, we find that

T~ res (M) B {7 L (M) ——— 8)
P (o) M5/,

just as in the previous case. (83). Thus, although we have taken account of
the contribution due to the eddy Mach waves, we see that, according to the
approximations made, they do not contribute more than those eddies which
travel at subsonic speeds relative to the wall.

4. Conclusions

It has been shown that theory and experiment are in fairly good agreement
in the prediction of wall pressure fluctuations in a turbulent incompressible
boundary layer. On the other hand, theory and experiment, in the case of
supersonic flows, show some divergence, although both appear to tend to a
similar asymptotic value and both demonstrate the presence of eddy Mach
waves above a certain Mach number. However the theory does not show any
marked increase in pressure level at the wall due to eddy Mach waves, In fact,
a simple extension to the incompressible flow theory is shown to give similar
results to the more elaborate theory in which eddy Mach waves are approximately
taken into account. This result is perhaps not surprising when we note that the
dominant region associated with the pressure at the wall, even in the incompressible
case, is displaced away from the wall and the level of pressure is roughly constant
over an appreciable distance normal to the wall.

It is clear that further experimental results are required to explain the
differences between theory and experiment, as well as to obtain further information
in the case of flows with pressure gradient and with heat transfer.
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APPENDIX 1

The velocity spectrum function for u

In order to obtain numerical values for the wall pressure, the following
form has been chosen for the velocity spectrum function in fixed co-ordinates

— / 2
3, (xz/, ey £, 4, w) - Juj; (x&)ﬂi;(x&.mg) ‘ffsf{z 4 % .
' 27 Ue (14 b 45%)

wpa ., £Ey2 04
. ('i’*f“ o?ﬁﬁ(,,;;yu(lfz) 6"’(5’5-?‘!‘;‘0%&)

4 & g ]
where Uc is the convection speed and 4"%‘2 = ‘ﬁﬁ?g,“* f;ﬂ'ég
It is assumed that {7, and 3 are constant, while /[2 = X4 , thus an
allowance is made for a change in scale of the turbulence, with increase in distance
from the wall.

The integration over all values of ¢ leads to

; 2
$ua (xﬂ‘)’@“"xa/; £.1) = {4 ’{327\}; X2 £
— pu—— T a -
\[u;(x;}) U{uﬁa(x‘;‘,%){g,) K (é + X /i’j) _
and its Fourier transform, with respect to "Cz gives the ’cwo—dimensional wave
number spectrum function

- P

no ) ] ‘/
C};&’ﬁ (x""’ X2 +X3 ) (§> = / Pya { 2, X2+ Xy ;5 é)/ﬁa € % iy
e
— —— __{A’ga _ X’/f
= \/yuf(xa)ﬂru;(x‘_,+x&’) /{&,é K‘%g e ¢ /’/X::/
-

which clearly displays qualitatively the correct physical properties across the
boundary layers, even though it fails to demonstrate the frue anisotropic wave
number distribution.

The integration over all %3 leads to ,
3
| "5 '& = Jz"'j(xﬂ)\/ﬂusal/’ij’*xs’)’gl(H“é{iiﬁf) € t
é;m (Xm"a‘*’xa iR = =
T2

:which is ualso equal to éz?:z (“a: xg*;%f} — w/Uc.) in agreement with Taylor's
hypothesis. :

LN

Finally the integration over all *f{%i gives

6”/)('"‘7)(3/

feag (O, X2,0 ; o)x;‘..;x&f} o) — Uy {xs) u‘,(x_z,%f) _

\/Z’E(Xﬁ)m{;"ﬂ*x@,)
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a form for the velocity correlation which is in fair agreement with experiment
over most of the boundary layer. It is therefore reasonable to expect that our
calculated value for the mean pressure which is based on this assumed form

for Q&,S, will be in fair agreement with its exact value. Finally it is worth noting
that we have a complete freedom of choice with respect to the longitudinal

and transverse scales, /4 and 4 respectively, as well as the convection
speed UC, except that in the latter case we have assumed that it is independent both

of the distance from the wall and of the wave number in the turbulence.
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