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SUMMARY

The surface stresses in band reinforced cylindrical pressure vessels
are examined, and an equivalent stress determined by using the Mises-
Hencky criterion. By comparing the equivalent stress to the band stress,
the efficiency of the structural material can be established, and by
equating these stresses to their respective yield stresses, the theoretical
maximum strength of the structure can be found. Once the material
properties of the shell and the reinforcing bands have been specified,
the optimum structural layout can be determined.
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NOTATION

cross sectional area

flexural rigidity of shell
flexural rigidity of shell-stringer combination
Young's modulus

axial compressive force

kY
/Bt N3

Attt

4D 'R

length of shell, distance between mid+band positions

bending moment per unit width

non-dimensional bending moment

radial shear force per unit width

internal pressure

shell radius

shell thickness

effective shell thickness

resultant longitudinal and circumferential force per unit width

radial displacement

2

Et’

yield stress

F
7Tp R®

2t
k A,
b

defined by equation (8)



Notation (Continued)

€er €g longitudinal and circumferential strains
ke
T 2
v Poisson's ratio (taken as 0.3)
o o shell surface stresses in longitudinal and circumferential
o directions ‘
- equivalent stress defined by equation (13)
¢ 1+3v{a -1) :;—-—
e
Subscripts
S refers to reinforcing stringers

b refers to reinforcing band



1. Introduction

In the design of thin shell structures, internal pressure can be
considered as an effective means of stabilising the body shell against
collapse which might otherwise occur due to axial compressive forces.
These internal pressure forces can be sufficiently large to cause
bursting of the structure and a limiting allowable hoop stress is
generally specified, which in turn limits the stabilising pressure
which can be used.

It is well known that longitudinal stringers can be introduced in
order to assist the shell to carry the axial forces, in much the same
way as is used on a conventional aircraft structure. However, unless
the axial forces are very high, this form of construction is structurally
less efficient than the pressure stabilised shell{l), A combined form
of stabilisation may be considered, by using both pressurisation and
longitudinal stiffeners, but the effect of the stiffeners on the maximum
hoop can be shown to be small, so that a comparatively heavy structure
would result.

One form of construction which could be used, might be in the form
of radial bands, which are spaced sufficiently close together, so that
the hoop stress in the shell is considerably reduced. This could mean
that the internal pressure might be increased to sustain a greater
axial load, and the bands would help to stabilise the shell during
manufacture, and so prevent large shell distortions.

An experimental investigation into the siress distribution in a band
reinforced pressure vessel has been made by Mantle, Marshall and
Palmer!2 » Where in this case very closely spaced bands were used. It
was found that this form of construction enabled an efficient shell structure
to be designed.

The following analysis investigates the stress distribution in a band
reinforced cylindrical shell, which is subjected to combined axial load
and internal pressure.

By comparing the maximum stress in the shell and reinforcing bands,
the optimum geometry can be established.



2. The determination of the stress distribution

If the cylindrical shell of radius R is subjected to a compressive
axial force F, and internal pressure p, then the resultant longitudinal
forcelfin T, becomes

T

1

0

1 - —
Zpﬁ 2R H

F PR (1 - a). (1)

or T1

If the shell has longitudinal stringers, then this force can be expressed
in terms of the strain components as

T = FE t e + Et (e + ve,), (2)
1 8 8 X 1 -,2 X o
where ts is the effective thickness of the stringers. The first term
on the right hand side will of course disappear if only band reinforce-
ment is used.
The hoop force/in becomes
kil
T2 = L (c tve ). (3)
1 -8 o X
Equations (1), (2) and (3) can be combined to give
- W1 | t
T, -E‘tﬁvsz(l-(x)vte, (4)
E
~where o=ttt (1 -1 ___:g
e s E
and pos (-l
1 -7 e

The equilibrium conditions of an element of the shell Fig. 1 are given as

dN _ e _ _aM
= TP E,andN-— = (5)

where M and N are the bending moment and radial force/in.

The relationship between the bending moment and the radial
displacement w is

M = D , {6)



where D’ is an effective bending rigidity of the stringer-shell combination.
Substitution of equations (5) (6) into (4) gives a form of the well known
differential equation

4
dw  4xtw = B | (7)
dx* D .
t s _ EUT
where <7>=14--v(a~1)t , and 4 K = =
e DH

If the origin is taken about a point on the shell which is midway between
the band reinforcements, then the radial displacement becomes

W = W + C, cos kx cosh kx + C, sin kx sinh kx,
. /DR
where W \Et )
The conditions of zero slope at the frames (i.e. (%g =0atx = * g—),

and equilibrium between the forces in the band, and the shell gives

W 4
- » =z -
AbEbR 2NR, atx 12,
. 2
where N=-D'd\z.
dx
There are two conditions which give C1 = - Wo Y, and C2 = - WO Y,
where y _ sinncoshn + cosn su;izn . ’
! % (sin 27 + sinh 27) + —— =- (sin®n + sinh®7n)
k Ab Eb
sinn cosh n - cosy sinhn aesee (8)
Y - s
2 % (sin 27 + sinh 27 )+mb %——(s #n + sinh®n)
and n = ke
2 *
Hence w = W (1 - y,cos kx cosh kx = v, sin kx sinh kx) . (9)

This equation describes the axi~-symmetric radial displacements of the
shell along its length. In this analysis, an effective stringer skin was
used, so that this equation is incapable of recognising the fact that shell
quilting between stringers might occur for large values of R/t.



If Y is the band stress, then

&
o, = E Whenx=ié— .

w
b b R’
Hence from equation (9),

= o 7. - i inhn |
o = Eb = Ll Y, cos ncosh n -y, sinn smh‘?J (10)

Having established the radial displacement of the shell, it is a simple
matter to establish the distribution of the shear force and bending
moment from equations (5) and (6).

These stresses together with the membrane stresses arising from
equations (1) and (4) constitute the stress distribution in the shell.

If no longitudinal stringers exist, then the surface stresses in the
shell become

2
o = §% d“; +’§’P~E(1 -a) (11)
! t dx t
and Ew
0‘2 = ?}(T1 + —-I-{" . (12)

The other stress components are all zero.

The design condition for the shell, is that the equivalent stress3
is given by the equation

o + -g o = | (13)

1 2

3. The derivation of o, and o,

The bending moment in the shell M, can be found from equations
{6) and (8) as ‘

2
2K _ o
$p

= v sin kx sinh kx - y cos kx cosh kx ,
1 2

where y and y are given in equation (8).
1 2



Since ¢ =1+%v (a-1), when no stringers are present,
then 2
';;(gé -1) =a -1,

and equation (11) can be written as

!
. 3M ¢p . PR, _
61 - kz tz an v‘t ( 95 1)a
RS
For an unreinforced shell, k* = é%ﬁt—-u , and ch becomes
- e .
ot = !-——3——- #$(y sin kx sinh kx -~y coskxcoshkx)-(l ?) .
px N1 -2 t 2 4
t veann (14)
Similarly from equation (12) ¢ becomes
2
Te =y ,(E— M'¢ - ¢(y cos kx cosh kx +y sinkxsiﬁhk}é)+l
E_}__‘{ A\l -2 1 2 !
t
or
% 3 :{y sin kx sinh I kx cosh kx)
—_— = (y sin kx sinh kx ~ y cos kx X
PR \)1 NERALE 72
t
- ¢ {y cos kx cosh kx + y sin kx sinh kx) + 1 . (15)
1 2 '
4. An examination of the parameter ¢
For a shell having no longitudinal stiffeners,
: v
¢ = 1+ §(@ -1),
where a = E -
TPR
If no axial compressive force F exists, and the shell is subjected
to the internal pressure only, then
¢ = 0.85 if v = 0.3 (16)

However, for the case of a pressurised shell having an axial compressive
force, then o and hence ¢, is a function of that force, in accordance with
the above equations.



For the ballistic missile application, if one introduces the stabilising
pressure in order to produce zero longitudinal stress in the shell,‘i"‘th'en‘

a =1 and ¢ =1 ' R S %)

Hence the limiting conditions for ¢, are that it must be between the
values given in equations (16) and (17)

i.e. 85< ¢ < 1.0.

In the following work, and the figures which are presented, only
the lower value of ¢ is considered.

5. Discussion of Resulis

The band stress given by equation (10) is presented in Fig. 2 for
various shell geometries. The analysis assumes that the band depth
is amall compared with the radius, and if this is not the case, it would
be better to replace the shell radius with the centroidal radius of the
band. The only stress which is considered in the band is the hoop
stress, as this will be the only significant stress, unless the band width
is large compared with its thickness.

The Fig. 2 suggests that a maximum value of the band stress is
developed for a shell parameter n = 1.5, but for most missile
applications the value of n will generally exceed this value.

For the commercial application referred to earlierz, where
comparatively large shell thicknesses are used, the value of
will be small, and hence the stress developed in the bands will be
small compared with the nominal hoop stress in the shell.

Examination of equations (14) and (15) together with equation (13)
suggests that the stress conditions at only two points in the shell need
be examined. These are at the ends of the shell (when x = % %) and at

the mid-shell position (x = 0). The equivalent shell stress T, is

shown as a ratio of the nominal hoop stress at these two positions in
Figs. 3 and 4, for various shell geometries, and the equivalent shell
stress to frame stress ratio g  is presented in Figs. 5 and 6.

b



The theoretical maximum strength of the band reinforced shell
will be obtained when simultaneous yielding occurs in both the band
and the cylinder. KHence for any shell having a known geometry, and
hence 7 and f, simultaneous yielding will occur when & = Y and
T = Yb, and the ratio Y  will be given by Figs. 5 and 6. Clearly

Y,

Yb < ¥ so that a lower grade of material can be efficiently used for

the bands.

Once the properties Y and Yb are known, and the values of R, t

and ¢ given, then the value of n is known. Hence the value of 5, can

be found, and the optimum value of Ab determined.

6. References

1. Sandorff, P.E. Structures considerations in design
for space boosters,
A.R.S. Journal, vol.30, No.11,
November 1960, pp 989.

2. Mantle, K.G., Experimental investigation into the
Marshall, N., stress distribution in a band-reinforced
Palmer, P.J. pressure vessel,

Proc. Inst. Mech.Engs., vol.173,
1959, pp 123.

3. Hill, R. The mathematical theory of plasticity.
' Clarendon Press, Oxford. 1950.
4. Houghton, D.S., An analysis of an unstiffened cylindrical
Johns, D.J. shell subjected to internal pressure and

axial loading.
College of Aeronautics Note No. 114,



FIG. 1. Forces and moments on an element of
the ghell and geometry of reinforced

cylinder
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FIG., 2. The stress in reinforcing bands for FIG. 3. The equivalent surface stress in the
various shell geometries and band shell at its end (x = g.)
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FIG. 4. The equivalent surface stress in the
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