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SUMMARY

The effects of heat capacity lag on the flow over slender bodies are
examined via an extension of Ward's (1949) generalised treatment of
the slender body problem. The results are valid for smooth bodies of
arbitrary cross-sectional shape and attitude in the complete Mach
number rangé up to, but not including, hypersonic. Transonic flow can
be treated owing to the presence of a dissipative mechanism in the basic
differential equation, but the results in this Mach number range are

probably of limited practical value.

The results show that cross-wind forc2s are unaffected in a first
approxim’ation, but thé‘c drag forces comparable with laminar skin friction
values can arise as a result of the relaxatica of the internal degrees of
freedom. The magnitude and sign of these effects depend strongly on

body shape and free siream Mach number, -

Results are given for surface pressure coefficient and the variations
of translational and internal mode temperature on and near the body are
also found. The influence of these latter effects on heat transfer to the

body is discussed.
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LIST OF SYMBOLS

a speed of sound

B defined in equation 40

Be defined in equation 40

Bf defined in equation 40

CD drag coefficient

Cp specific heat at constant pressure
Cv specific heat at constant volume
D drag

e internal energy per unit mass

h enthalpy per unit mass

L body length

M Mach number

p pressure

q velocity vector

R gas constant

S entropy per unit mass

S body cross-section area

Sr reference area

T temperature

u, v, w velocity components
U free stream velocity

x, r, 6 cylindrical polar co-ordinates

B defined in equation 34
B defined in equation 37
[:’e defined in equation 34
B ¢ defined in eguation 34
A relaxation length

o density

7! relaxation time

T effective relaxation time (Equation 18)



ist of Symbols (Continued)

velocity potential

& Fourier transform of qs

W transform variable

Suffixes ,

4 translational plus "active' degrees of freedom
2 relaxing internal mode

o free stream conditions

e equilibrium

f A frozen



1. Introduction

In the sections to follow we shall examine the flow of a polyatomic gas
about slender three-dimensional bedies, taking into account the effects
of heat capacity lag. To simplify the problem we shall assume that the
gas is inviscid and non-heat conducting, although we shall attempt, very
briefly, to indicate how these gas properties fit into the simpler flow patterns

obtained here.

From a practical point of view, relaxation effects are likely to assume
greater significance as the general level of gas pressure decreases. The
relaxation times for adjustment of internal molecular states to conditions
of thermal equilibrium vary inversely with pressure and it is conceivable
that we may find "relaxation lengths' comparable with overall body length
in some circumstances. (''Relaxation length" is the product of relaxation
time 7 and free stream speed U). Provided that the number of collisions
required to excite the internal mode is sufficiently large, it is possible to
encounter cuch conditions within the regime of continuum flow. We treat

the problem on the basis of this possibility.

The analysis to follow makes no explicit reference to any particular
gas or mixture of gases, but some examples are given for CO2 , a gas
which exhibits some of the required effects in circumstances which are

practically realizable.

The effects of internal mode relaxations on gas dynamic behaviour
have been iuvestigated previously by Gunn (1952), who gives an account
of sound absorption and dispersion, shock wave effects, one-dimensional
nozzle flows and of the drag experienced by an object as a result of the
dissipative actions of relaxation (the latter confined to two-dimensions).
The drag problems treated by Gunn are generally tackled by finding the

perturbations introduced into a "non-relaxing' gas flcw and he does not



consider questions of transonic or supersonic flow. Here we attempt

to "unify' the treatment in the manner of Ward's (1949) solution of the

reacting gas flows has received a certain amount of attention recently énd
it is pertinent to remark here on the formal similarity which exists between
heat capacity lag effects and those which arise when endothermic chemical
reactions occur in a gas flow. This similarity is made apparent by the
fundamental work of Kirkwood and Wood (1957) and appears also in recent
papers by Moore and Gibson (1960) and Vincenti (1960). An analysis of

the supersonic flow of a chemically reacting gas round a sharp corner which
would apply equally well to a relaxation effect problem has been given by
Clarke {1960a). Moore and Gibson base their considerations on a velocity
potential which satisfies the telegraph equatibn. The latter can be shown

to approximate to the "exact" small perturbation equation for cases where
the differences between frozen and equilibrium sound speeds are small.
Vincenti considers the "wavy wall' problem, thereby considering a type

of fundamental solution of the steady two-dimensional small perturbation
equation for reacting or relaxing gas flows, using, as does Clarke, the
"exact' small disturbance equation. The one-dimensional unsteady
analogue of Vincenti's problem (the harmonically oscillating piston)

has been examined by Clarke (1958) and the step-input piston problem in

a reacting gas has been treated by Chu (1957).

Most of the work to date, therefore, has been concerned with
"fundamental" types of solutions, or "inputs', to the gas. One may
perhaps level some criticism, from a practical pcint of view, at
the "wavy wall'' and harmonically oscilleting piston problem sclutions,
since it is an essential feature of relaxation or reaction effects that
entropy shall be produced continuously during the time taken to reach

a new equilibrium state, The infinite past histories uf these processes



would therefore, strictly, require an infinite difference of entropy between
the postulated "undisturbed" regions and those adjacent to the object.
Such (rather pedantic) objections are removed when the disturbing

influence is of finite physical size {or duration).

As noted by Vincenti, the inclusion of a dissipative mechanism into
the analysis permits one to obtain continuous solutions from a purely
linear equation right through the "transonic' region. Indeed, the presence
of an infinity of sound speeds, ranging from the frozen to full equilibrium
values, smears the transonic region over a finite band of free stream
velocities, so that the singular behaviour of the linear flow equations is
confined to only one frequency of the infinite range which must be superimposed

to summarise the effect of the obstacle as a whole.

2. The Equations

We shall assume in what follows that only one internal energy mode
exhibits significant relaxation effects. Any other modes are treated as
"active'' modes and it is supposed that their energy content is specified

once the translational temperature, T, , is known. Following Kirkwood

1 ¥
and Wood (1957) it is assumed that the state of the relaxing mode is
described by another temperature, T, , which only equals T1 when complete
thermal equilibrium prevails. The specific internal energy of the gas, e,

is made up as follows :

e = e + e, , (1)

where T,
e = / c,,dT, | (2)

y‘,’

T,
e, | car, . (3)



CV and Cv are the specific heats at constant volume for the translational
1 2 R

plus active degrees of freedom of the molecule and the relaxing mode,

. When e ig in soanilibrinm with ¢  the unner limit of
<« Waen €, 18 In equlilorium Wwilh €, 1a€ upper iimiti o

1

integration in equation 3 is replaced by T,. We write Cv for the total

specific heat at constant volume i.e. :

C =C_+C . (4)
v V4 Vo

(where CV and CV are temperature dependent equation 4 only has a
1 2
meaning when T, = T, ). Note that a similar notation is followed with

specific heais at constant pressure, We shall write

cC =C_ + C_ . {5)
p P1 Va2

The pressure p, density p and translational temperature are related

via
p = oRT , | (6)

where R is the appropriate gas constant per unit mass. The gas is

therefore treated as thermally perfect.

The relaxation of the internal mode to an equilibrium state is
assumed to be described by the linear law |
De (T,)

ad Do " % (T,) - e, (T, {7)
r'is therefore the relaxation time, D/Dt the usual convective operator and
e, (T,) signifies that the internal mode has an energy content appropriate
to the actual, iocal, translational temperature. Since we are to deal with
small perturbations from an originally undisturbed (equilibrium) stream
it is reasonable to assume that 7/ is constant throughout. Furthermore,
since ’I; will not differ greatly from T‘ in these circumstances, equation 3

shows that we can approximate to equation 7 by

{8)



This is tantamount to saying that Cv is a constant, evaluated at the
2
free stream temperature T_ and, in the small disturbance problem,

we may say likewise for Cv« .

The energy equation can be written as

o DF DT,
v Dt G B tpdve =0, (©)

and CV and Cv can subsequently be treated as constants. q is the
1 2 ~

gas velocity vector and we do not introduce any further linearisation at

the present stage. DT1 /Dt can be eliminated from equation 9 via

equation 8, giving

oL o (75
s e ! i S i =
CV Ot + T CV1 B o + 5 div q 0. (10)

From the results of Kirkwood and Wood it is found that the mass
conservation requirement can be written in terms of pressure rather
than density derivatives, giving

Dp
Dt

De
+ ~2 i 2 Yo 2 =
. p‘a.1 divg + pa (md1 /Cp1) B 0. (11)

This equation introduces the frozen sound speed a, and we readily
find that

2

a = (Cp1/CV1)(p/ e) . (12)

ﬁ’1 is the volume expansion coefficient for variations of translational

temperature only, i.e.

91 -1
b7 (35 ) = et | (13)
1 8 T1 /p 1 | | |
Using equations 12 and 13 in equation 11, it follows that, in the present
case, '
Dp e K , ~ DTZ -
= + p 8’ divg +/¢R (LV2/CV1) on 0. (14)



Writing the equilibrium speed of sound as a, , where

2 ., ‘ . ‘
a = (Cp/cv)(p/ o), | | (15)
it quickly follows from equations 10 and 14 that
, D (1 Dp . =2 . } 1Dp . =z ..
— { = =B +==E 4 = 0.
(C,71CY) B {p bt © A L) Yrpr R vy

SR (16)
Now we would anticipate, on physical grounds, that the presence of
relaxation effects in a gas flow will serve to make ''detailed' changes
in the flow
but will not change the "'orders of magnitude' of quantities involved.
For example, in the case of the reacting gas flow round a sharp corner,

the pressure coefficient on the surface is found to vary from - 2 e,le

to - 28/ B_ where & is the turaing angle and B, and B_ are the usual

f
Ackeret Mach number factors based on the frozen and equilibrium sound

speeds, respectively. The variation from a B, to a Be type of factor

represents a ''detailed' change of pressure coifficient, but its "order of
magnitude" remains at the value 6. There is no reason to suspect that
this situation will alter when we come to consider the three-dimensional
situation involved in the present slender pointed body problem and,
accordingly, we accept, as a general guide, the orders of magnitude given
in Ward's (1949) paper. It should be remarked at this stage that we are
only going to deal with steady flow problems in what follows. Henceforth,
therefore, the operator D/Dt becomes synonymous with q - grad.

Thus we shall follow the rigorously justifiable procedure in the case of
inert gas flow past slehder bodies (see e.g. Lighthill, 1945) of linearising
the basic differential equation but keeping appropriate non-linear terms in

the relation betweer pressure and velocity.

The pointed nose of the body is assumed to lie at the origin of a
"wind-axes' co-ordinate system. The free stream velocity will be

written as U in the direction of the Ox axis.



In order to linearise equation 16 then, we first replace the convective
operator D/Dt by U8/8x and then replace Udp/éx by - pwUz oufax.”
The resulting equation will be written in a cylindrical polar co-ordinate
system (x, r, 6) in which the disturbance velocity components have the
values u, v, w respectively. In addition of course, éll terms multiplying
the derivatives of disturbance velocities will be given their free stream
(suffix «) values. Writing out the divergence term in full, the result of

these linearisations is

o faapd .y )
| +(1 - M) -3_;3‘. % aérr‘j') + -}; %-‘;’ =0, (17)
where
;o= cp1 r//cp - (18)
Mf = U/am ; Me = U/aEQo . (19)

M ¢ and Me are the frozen and equilibrium Mach numbers respectively.

ES

This result comes from the linearised version of the x-wise momentum
equation. It is acceptable in deriving equation 17 (but not i in demvmg m
the pressure/velocity relation) provided that we can neglect vortlcn:y

Justification for neglecting vorticity is discussed below.



The thermodynamic equation for a relaxing gas of the type considered
here is
T,ds = dh - o~ dp-:—(i?- )T T de, (200
{(Kirkwood and Woo;d, loc.( cit.) where h is the specific enthalpy,
h = e + pfp , | (21)

and s is the specific entropy. When the energy equation is Wriftten'in

the form
Dh 1 Dp _ S
Dt 5 bt " (22)
it is at once apparent that
. Ds _ ., -1 D&, 2 ‘e
T 5t = (4, - T,) T, S ST - AT, T, (23)

(using equations 3 and 8). The rate of entropy rise of a fluid particle

is thus of second order in the difference between T, and T,.
In the steady state, the exact momentum equations can be written as
pgrad {(¢?/2) + gradp - pg x curlgq =0, (24)
whence it follows from equation 20 that
-1 -
-gxcurlg = T,grads + T, (T, - T,) grad e, - grad h_, (25)

2 .
where ho = h + q /2 is the stagnation euthaipy. We can show that, in steady
flow, ho = const. on streamlines, whence, since the flow is assumed to

originate in a region of uniform ha’ grad ho = 0 everywhere.

It is a little difficult to generalise about the behavicur of the terms
involving grads and grade, in equation 25, since their actual magnitude
will depend on the body shape as well as on relaxation time etc, The
majority of the resulits in the present paper will be obtained on the
assumption that curl q can be neglected in a first (linear) approx1mat10n.

To justify this to some extent we observe that T, Ds/Dt and (T, - T, )T De ,IDt

e



are equal (see equation 23). In equation 101 below a general result for
the difference T, - T, is obtained. In supersonic flow the lower limit
in the 1ntegra1 in equation 101 is replaced by zero. Then (T, - T, )T
is of order Mf (C.P. )m Ml -e ) where (C.P. );1 is a mean value
of pressure coefficient gradient between 0 and x. It follows that the

gradieni of s {for example) along a streamline is of order M‘}(C. P. )1:12

A1 - e-xlk) ZCVZ. Now the pressure coefficient is of order body thickness
ratio squared and hence so will be (C. P, )rln’ roughly speaking. The
appearance of the square of (C. P, );n certainly suggests that even grads
will be small for "reasonable'’ slender shapes and the neglect of curl g
would seem to be justified. Due to the singular behaviour of C,P. at i

z = 0 in subsonic or transonic flow {see below) it is not quite so easy to
estimate how the integral in equation 101 behaves. However, on physical
grounds, there seems no reason to doubt that what will apply to supersocnic
flow will also hold in these flow regimes. This being so, in the linear

approximation we may define a disturbance velocity potential ¢ where

= .a_@- - = -@-én M = -1— -@.@-
u 5e ¢V et W il {26)

In these terms, equation 17 becomes

3 V) 259 ] 8, 1 5%¢

A - LI — {

0x [(1 i)a 2 r ( or ;2 29® |

0%¢ 2
v-vt ) 2 .1 L2y L 2% Ly qan

e 5 % r or r r 00

where we have written

U =2\ . | | (28)

M is the characteristic relaxation length,

Accepting the linear theory approximation curl q = 0, it follows from
' equation 29 that a proper expression for the pressure coefficient is

(C.P,) = z(p-t:zx,)/pmtlf2 « - 2008 1 “5\ - %a 1-2 @%) , (29)
r

(see Ward, 1949).
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3. The General Solution

The general solution of equation 27 can most easily be obtained
by using the exponential Fourier transform. Thus we define
| s = —— [ g™ ax. O (30)
/ Vor |

co

Assuming that ¢, 9¢/ox and 0°/0x*® all vanish with increasing distance

irom the body, it is found that ¢ satisfies the following differential

2 2
o . I 8% }-:2 0°%
ar?’ r or I 8@2 :
, . )rl Y «( . ~1 i (31)
- él-—l‘v’ifc}} e - 1iuwh (1-11.& ® =0,
Y ’
f

Expressing & as a Fourier series in 0 we find that each coefficient of
cosnb or sin n® is the solution of a modified Bessel equation, of

order n. In fact we can write the solution formally as
e oo , e,
LN o N MR Z) 4+ B Vi e o :
3 (r, 6:w) Ao(w)KO(rw 1 Mf Z) 1 An( w)Kn(rw 1 Mf Z)cos(nbé -i-en)
« ¢ 2 i' . (32)
where An’ n=0,1,2,... and s 0= 1,2,... are "constants' which

are to be evaluated from the boundzar}r corditions on the body. Also,
1-M 3 -z
z{wnxl(—-—»—-ﬁ)} Lw—!—i}\l} . (33)
1-M, |

The In -type functions are rejectéd in the solution for & bécauserthey

are found not to represent the proper type of 'outgoing' wave system.

In interpreting equation 32 we must distinguish between the three

following cases.
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(i) Mf <1\/[e <1 ; the subsonic case

Here we shall write

V1o, =5

In this case we must write the argument of the Bessel functions as

gt M)/ (1 - M) = B% (< 1). (34)

rBy |ol Z, | (35)
where

. o=l 2.3 . 4-1, -1

Z o= (0 +ihTF) P {w +iN ) 4 (36)

and invert the transform along the real w-axis.

{ii) Mf< 1< Me ; the transonic case

1-M, =8 (o, - 1)1 -mp) = B (37)

f
Note that 0 < %< «, The proper behaviour of the solution is then assured
if inversion takes place on a contour indented to pass above the singularity
at w = 0, and beginning and ending at w = we'" and + o respectively.

The argument of the Bessel functions is now written as

rfe u A (38)

where 1

/ =[w _iat Zsﬁ}z{wuflg . (39)

(iii) Me> Mf> 1 ; the supersonic case

[ S0

N

‘When these Mach number conditions are satisfied we write

N - N i} . 2 - 2 - - 2 ‘

Mg -1 =B; + (M_-1D/M; -1) = B {>1). (40)
The argument of the Bessel functions is now written as

eml?" ro B, z ' (41)

where

{w st } . (42)



Proper behaviour of the solution is guaranteed if we use the inversion

contour described in Case (ii).

In dealing with slender bodies we can now approximate to equation 32
near the body by retaining only the first terms in the series expansions

of the Bessel functions., Then it is found that

€

e, 6:u)= -A {cuog[(r |1 - M, f%w 2;)/2]}
© - ' | (43)

2 = N ] :
|? wZ) cos(n6+en),

2 -1t A 2 (r|l - M

n=1
n=i

4

[V R

where C is Euler's constant, = 0.,5772 .... The terms writien formally
as w Z in equation 43 must be interpreted in the forms given above in
each case (i), (ii) and {iii). Following Ward we can now define the
complex variable £ in cross-flow planes, i.e.

z =re
whence equation 43 is equivalent to

o

Q=¢ + iy = x) logz +b (x}+ 2
Q=4 ¥ ao(*;) og wbo(x, e

N
&=
e

-n
{ y {
& X) . .
1 A é }

The quantities a,s bo and a ., n= 1,2,3,... are defined as follows

(using the symbol "= ' to mean "has the Fourier transform'").

-
aoix) :.:> - Ao(w) : bo(x):a - Ao(w) {C + 10g[(§1‘ —_M; }%w z)/z] j: 5)
ax)> fm-10 A (2" (|1 - sz {%w 7yl
The guantity Q - bo’ is ’chevsa‘me' harmonic function in both this case
and in Ward's, implying in the present case that the "incompressible
cross-flow" approximation 1s still valid. In other words, the an(x)
quantities {n > 1) can still be found by rolving a two-dimensional,
incompressible, pctential flow problem with suitable boundary conditions

imposed on the surface of a cylinder whose cross-section is that of the

body at any chosen station x. To the present order of approximation,
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these an(x) terms are therefore unaffected by relaxation effects.

Since Ward's momentum integral results for overall forces on
the body apply equally well here, it is concluded that both the overall
and lecal cross-flow forces are unaffected by relaxation in the linear

approximation.,

Omitting the base drag term where blunt-based bodies are concerned,

the inert gas flow expression for drag (which is equally applicable here) is

. [L a’o b a bo
D/:, U =47 | W.-{;—)—dx -27r<° ) - /¢-—¢—dcr> .
e J‘O U /X. 1 Uz\ x=1,
{46)

In ecuation 46 we have written a’o for the x-derivative of a . L is

the body length along the x-axis and the (pointed) nose of the body lies
at x = 0. In the final integral, 3¢ /3v represents the disturbance
potential derivative taken along the outwards normal to the body cross-
section contour and the integral is taken around the perimeter of this

cross-section.

As before,
L s’ (x) ' | |
ao(x) = Us— (47)

where S(x) is the body's cross-sectional area. The prime on S represents
differentiation with respect to x. Clearly S’(o) = 0 for any streamlined
body which begins at x = 0, since the body radius is iero there by
definition. The additional restriction to pointed nosed bodies, mentioned
above, is necessary for the linearisations of the basic equations to be
valid. Only in this case will the disturbance velocities remaiﬁ small

compared with U over most of the region adjécent to the body.

The presence of upstream influence effects in the sub and transonic

regimes, implies that we should confine our attention to bodies which



are also pointed at the tail (x = L) in these cases, at least in the absence

of a priori knowledge about viscous wake patterns. With this additional

Fu

striction, equation 46 r

b
[
L]
[y
L]

D/t s U = 4 ' a; b,
z P = 2 0 a4x . 48
, i X (48)

Equation 46 will only be used in full in the supersonic regime, where the
absence  of upstream influence permits us to deal with blunt-based

bodies.

4, The Values of bo(x}

The solution of the relaxation problem is completed once b_is found
as a function of x. In other words we must invert the Fourier t;ansforms
given in equation 45, taking care to treat each case, (i), (ii) and (iii)
above separately, The actual evaluations are carried out in Appendix A

and yield the following results.

Case (i) . < L ”
o7 — = S'lx) log (f?f/:Z) -3 f S(y) log {x - y)dy + % / S (y) log(y -x)dy
g S J % -1 x
R BHx-y) AL (x-y) N } dy y
: | Sy)| e e e SR )
¢}

The first two integral terms here are precisely the same as those
which occur in the inert gas, subsonic rflow, case, {Searg and Adams, 1953),
The third integral, together with the logarithm term, summérises the
eifects of relaxation. Since an integral of this type is found to arise

in other cases it is worthwhile giving 1t a special symbol. Thus we

rite
* -1 -1
SRS : -y (xey) M } dy
I, E f S'(y) {e e & (50)

(¢]
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When the integral contains F or B in place of § we will denote this
fact by an appropriate suffix, as in equation 50, In general we shall

write it as I, where a may be g, E or B.

A useful alternative form of I,@ is found by noting the definition
of the exponential integral, Ei(-a). That is,
Fi(-a) = - '/‘weﬁoe 0:1 do . (51)
a
Integrating equation 50 by parts with the upper limit equal to x -¢
and then taking the limit as e » 0 1eads to,

X ~ B
I, = 8'ologs + & [ s”(y){~ i (55 - i I | ay.

|
o . (52)
We shall also find some approximate forms of Iﬁ useful in later
sections. Thus, when both x/A andp®x/n » 0 we find that

. (1 _ﬁz) . . ‘-

When both x/A  and 5® x/A - « , it can be shown thatm
/ A -3 " '
Iy = S(x)logp + 5 (p“ -1)8(x). (54)

Equation 53 is a suitable approximation for near-frozen flow (as N » )
and equation 54 is useful in near-equilibrium flow (as » » 0) m_egg_
that 5% does rot become so small that 82x/2\  is no longer large.

Thus equation 54 cannot be used too near to the beginning of the transonic
regime. In the evenithat x/2 >> 1 whilst B*xfn <1, it can be shown that

15 behaves as follows, '

X 2 y
L= - i f $"(y) loglx-y)dy + % S(x) + 1 8 (x)logn - 3 C §(x) - = §%x).
) L (55)

* Note that equation 54 always fails in some region sufficiently close to

the nose of the body (where x/L << 1) for any finite value of A however

small. In such regions equation 53 is applicable,



This result demonstrates how the solutions begin to break down as one
approaches the "transonic' condition Me » 1 {identical with 8 - 0) in
words, if A = 0 and complete

Fa

the limiting case of & -» 0. In other
equilibrium prevails, the potential contains a logarithmic singularity

in the limit Me = 1. However, when 2\ # 0 the linear soluticn continues
smocthly up to the condition Me = 1. We shall shortly show that it also
passes smoothly and continuously through this condition and into the

transonic regime.,
Cage {ii)

<
-

f2) - ) S'(y) log (x - y)dy

f
O
- 7wt ay i (x-y) ¥ 4
-1 "tv) e y-X Loy 1 ] o Xy ay .
ZL oY G "2 OU(y)e (x-y)
¢ % W @ (56)

This result should be compared with the subsonic value of bo

given in eguation 49. Using the notation defined in equation 50 et seq,

equation 56 can be rearranged somewhat to read

bo /" " ; -P(x~ )7»"'1
2r = = S'(x)log (8,/2) - | S'(y) loglx-y)dy + 3 | S'(y)loglx-ye N4y
o o

| . -
A Byl |
+3 ]LS”(;Y)log(IY—x) e Py -x) dy (57)
x - L : ~_2 } '_1 . .
‘%‘.‘f:‘ if 8'(y)log | x-y| e -yl dy +1_ .
‘ ‘ B
0

In this form it can fairly readily be seen that equations 49 and 57 become
identical in the limits g and @ = 0. Thus b0 passes smoothly into the
transonic regime, provided that 0 < A < «» . It should be noted that
equation 57 only follows from equation 56 if S'{L) = 0. We assume

S'(L) = 0 throughout Cases (i) and (ii).
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When the conditions x/A and x/\ << 1 are both satisfied,
(note that this requires Mf not too near to 1), a suitable approximate

form of b0 is, ,
' X L

b ‘ f
2 TJE o s’<x)1og(ﬁf/z) -2 | 8"y loglx-y)dy + % ,/ s'(y)iog (y-x)dx
Q X
[1+5%\

When the upper limit of the transonic range is approached, so that
B+ w » we may find a suitable approximate represerntation of bo under

the conditions x/A << 1, & x/A >» 1, namely

b ~

2r = = S'x)log (B /2) -} | §'ly) log (x-ylay

U o
‘ (59)
L1 7 v 1 1 i
+ 5 S'{x) [C —logk] -3 - s'(x) - 5% S{x

6
Provided that we are not now too near to the lower end of the

transonic range (I\/r » 1), we may be able to satisfy the conditions x/\

and £ 52 x/\ both s>> 1. In that case, a suitable approximation for bO is

b, F

2r -ﬁ— S'(x) log (B,/2) - / S'ty) log (x-y)dy - %(1 + 575" (x) (60)
O

Finally we write down the ''near-equilibrium' result at the lower
end of the transonic range, i.e. x/\ >> 1, @x/)\ << 1. This is
b +
! 1
2 -ﬁ—'i- =8 (x) log(B,/2) - fx S'ly) loglx-y)dy + 5 [ 8(y) logly-x)dx
J
X

BER c -Jogx] - S(X)f 28 . (61)

2
Further comment on the behvaiou~ of bo in the transonic range will

be postponed until we come to consider questions of drag in a later section.



Case (iii)

In the supersonic regime it is found that

©n

2r == = S({x)log(B,/2) - [ S'(y) loglx-y)y + I , (62)
U f J : B :
o
(see equation 50 et ceq for the definition of IB). ~ Since IB
is identical with Iﬁ , except that B is now written for 2, it follows that
we can write
B -1
IB = R S{x} , . {83)
when x/% and B’x/) both - 0 and
! K - ",
1Bustx>1eg8~e2-(1-—az)s<x), ‘ (64)

when both x/A and BX%/MA ~ o

The approximation in equation 63 is no! suitable if B® becomes too

large (i.e. we are too near to M, = 1), In the event that x/\ << 1 whilst

£
B’x/\ >>* we find that
b
0

27 5 = s'(x) log (B./2) - 3 f( s"(y) loglx-y)dy + % §'(x) Ec - log x]

| o ‘ |
b s'(x) - ?2% S(x). ' (65)
2 B? ~ : o

Comparing this result with equation 59 it can be seen that they
become identical in the limit £ ° o , B * . It can be shown that
the values of bo in the transonic and supersonic cases coincide for all A
when M £ = 1, so that a smooth transition from transonic to supersonic
states occurs. (See also equations 60 and 62 with 64 when B2 -+ o

and B * o).
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5. Drag

Having obtained values for bo it is now possible to evaluate the
drag of bodies in a relaxing gas flow, making use of Ward's formula
(written out in full, except for base drag, in equation 46). It has
been remarked earlier that the sub- and transonic problems must concern
themselves only with bodies pointed at both ends. This condition can be
relaxed in the fully superscnic regime. We shall deal with the two classes

of body shape separately.

(a) Doubly-Pointed Bodies

Here we can use the simpler formula in equation 48. Wiriting

. 1 .2 ‘
D=3, U 8 Cp, (68)

<O

where Sr is some suitable reference area and C_ is the drag coefficient,

D

we proceed to find values of C_ in each of the cases (i}, (ii) and (iii)

D
treated above.

Case (i)

Using equation 47 for as it can readily be shown that the first two
integrals in equation 49 combine to give a zero contribution to CD in all
circumstances, as indeed does the first term in equation 49. Turning
to the last integral in equation 49, namely I,@ , We can obtain a compact
gerieral result via the form of Iﬁ given in equation 52. The first term
in equation 52 contributes nothing to the final value of CD and we are
left with L,

B 1 / n f(u\r .y - x '/2y-xj
SrCD =l S (x) S(y;tlih( T E‘-l{\ﬁ.-—*—x—* dedx.
0 o (67)

or, alternatively,
Ao - v\ -
1 I s 8'ly) {Fl NS, ) - Bi <~ g2l Y.ﬂ Ly dx.
] A r /)
0O O s e (67a)

ISt - ]
5. Cp 47 |




- 920 -

It is interesting to compare this result with the wave drag result
for the supersonic flow past doubly-pointed bodies (with no relaxation

oo -

PR T b 3 g pd S LT 3 LIS S A5 ¥ P S & S N R
ifectis) obtained by Ward and others. {(We shali obtair

(‘E'

-esult in
examining case (iii) below; see equation 77). Here the kernel function
of the drag integral is made up of the exponential integral terms in place
of the simple logarithm. Equation 67 contrasts with the non-relaxing
subsonic flow prcoblem, which would yield zero drag since it includes

no dissipative mechanism to give rise to a drag, Clearly the C

show that pL
{1 - ,_;,2)
o M T
Sr CD T 2w -/ 8'qx) dx ! (58)

whilst in '""near-equilibrium" ﬂow (p not too near zero) equation 54

Eid
shows that L

-2

Mp o -1) &
Sr CD s v j S (x)dx . (69)
The fact that # is < 1 in subsonic flow then guarantees that CD is

positive.

Since CD » 0 in either limiting case A » 0or A » » , and is
positive between these limits, it follows that there must be a maximum
valne of C_ somewhere between A= 0 and « . The value of A which

relaxation' drag a maximuwn will depend on both the body

In using equation 34 to evaluate drag in the 'near-equilibrium' case

it is implied that the errors introduced into Sr CD by ignoring the failure
of equation 54 near x = 0 are negligible. This is a fairly restrictive
condition, as can be appreciated from an examination of the exact value
of Iﬁ in the case of a parabolic arc body, treated in this section below,
Equation 69 and corresponding expfessions derived in Cases (ii) and (iii)
are sufficient for a discussion of generalities but must be used with care

when deriving approximate numerical results.
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shape and the value of g%, It does not seem possible to find this value
analytically, either in general terms or for a particular body shape,
but one would suspect that it should be such as to make (L/2) roughly

*
of order one.

In the event that f* » 0 whilst N is small, the approximation in

equation 55 becomes valid, giving
L X L

5.Ch ® - o= [ S [ log-ydy ax - = [ 5"l
r “D 27| *op Ry foglxmyidy X C o xjax
o} o o
A fL 2

- S (x)dx, (70)

2 j
o

The appearance of the double integral term in this expression is interesting,
gince it is precisely one half of the supersonic wave drag for this class
of body shape. In the equilibrium flow limit at Me =1 (5% = 0), the
present theory therefore puts the "transonic" drag at just this value.
Practically of course, the result is incorrect since the original partial
differential equation (equation 27) fails to describe the flow field properly
for Me =1land )\ =0. When A is not zero we may expect that equation 70
has some validity however, because in this condition there is a mechanism
present for preventing the "piling-up' of acoustic disturbances which
leads to the breakdown of linear solutions when Me =land A =0. A

similar situation is encountered in the case M_ =1, )\ = .

f

Case {ii)

In the transonic case it is best to use the result in equation 56 to
find the drag. After some rearrangement, it can be shown that

T VN L i g
Sr Cp=- = / s”(x) f S'(y) loglx-y) dy dx + = / S (x) / S(y).
) ) o )

o yx)
Ei <ﬁ (y—x)> dy dx + "5? | 8 ./ s'ty) {hl (Z%> ) Ei(Ez (Y;X))}ly N
Q o] * s 080 (71)

e . . . .
But see numerical example later in this section.
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Comparing this with the result for the subsonic case (equation 87) it
can be seen that a term exactly equivalent to Sr CD (subsonic) occurs,
the only difference being the appearance of ,"j for f. Now, however,
the drag is reinforced by the presence of a full supersonic wave drag
contribution (first integral in equation 71), combined with a further
relaxation term. To distinguish between the various contributions to
C., in the present case, we shall refer to the first two integral terms

D
in equation 71 as the "transonic wave drag' and to the last integral as the
drag . This division is simply for convenience later: note
that the "transonic wave drag' in fact includes relaxation terms. We

recall that 0 € & < .

When A+ » and we are not too near to E = » it is found that the

transonic wave drag contributes a term

g 12
i S (x) dx (72a)

(o]

to 8 Cp, whilst the relaxation drag part behaves like
L

- -]
—1—5—;—7—7\5— _/ $”%(x)dx. (72b)
0 )

The net effect is to give rise to a positive value of CD of course, but
it is interesting to note that the relaxation drag contribution falls to
zerc and then becomes negative as § passes through the value unity.

ol

That expression 72b is part of a general result valid for all values of A

can readily be seen from equation 71. The changeover point occurs when

U=(a_a | | (73)

co 2¢o

roughly speaking, if 2 and a do not differ greatly. Meanwhile,

2o

the transonic wave drag continues to increase as f increases, as indeed

does the net drag.
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Still retaining the assumption A * », but now imagining that 52

has become so large that E'ZLN\ * , we find that the two parts of Sr CD
L L
1 /{x [
ol S (‘:) J S'(y) log(x-y}dy dx - —— J 5" (x)ax

behave like

o T [P

ceses (74a)

and

7\ /L 1 "L lo
A ——— s’ (x)dx g S (x)f g (y) log{ix-y}y dx + 5 [ S Hx)dx ,
2 - E“g J 1)\"!
‘ o

ceoen (74b)

respectively. The transonic wave drag in equation 74a continues to
increase as ,73- increases to its final value in the present conditions and,

in line with the comments made above about the relazation drag, this

part {74b} is found to be negative. The double integral term in equation 74a
is the full supersonic wave drag for a doubly-pointed body in a non-
relaxing gas flow {essentially a positive contribution to Sr CD)' It seems
clear from the results 72a and 74a that the transonic wave drag increases
steadily from zero at the subsonic (Me = 1) end of the transonic range up

to the full supersonic value at its upper end (Mf = 1), a result which we

will confirm below in the other extreme of \» - O.

We observe also (at least when A » « ) that the net value of Sr CD

on passing out of the transonic regime (f = ) is a little greater than
one half of the full supersonic wave drag without relaxation effects.
However the linear solution breaks down at Mf =1 when \ » =« on
account of the logarithmic singularity é;rising in bo {see equation 59},
When A ° 0 suitable approximate forms of the transonic wave and
relaxation drags are, in the former case exactly equation 74a and in
the latter case
7\. =2 / "2
=— (" -1) ] 8"%x)dx, (75)

2 J
o



- 24 -

provided g is not too near to zero., In the event that [?L/?x - 0

despite /A being >> 1, we find that the two parts of CD are given by

mrrintian '7?(\ [ Y 4"‘"'2..5.‘.""‘:‘?.“! ey
ThuaLaUn UL AT Ll QLA URIAl W

[

i [% " ﬁz ‘/”L e A /L uz
T ‘/o 5'(x) jo S (y) log{x-y) dy dx - S I S “(x)dx - = . S (x)dx

(76)

for the relaxation drag. Note that the sum of expressions 72a and 76

A
A L

T
LA

<]

gives a value of Sr CD exactly equal to that in equation 70 when both p%and

greater than the subsonic value, as we should expect. That a similar
state of affairs arises when A is large follows from comparison of

equation 68 with the sum of expressions 72a and 72b.

An explanation of the negative contribution to the overall drag
which is provided by the relaxation term for EZ > 1 will be deferred
until the Section on pressure distributions which is to follow, but we
remark here that it appears to be a characteristic of the pointed tail body

shape required in the sub- and transonic regimes by the present theory.
Case (iii)

Entering the fully supersoﬁic regime the relevant value of bo is

found in equation 62 and it follows the*

L
5. Cp = - 3; f S (x) /)( s'(y)log (x-y) dy dx
L ° x ° \ N (77)
1 7 2(y-x) il Y
- 5;;_/ S(x)] S(’y) El( ) —E(T/}dydx.
) o

Bz, in the ""relaxation'' drag integral in equation 77, is > 1. The

contribution made by this integral to the net C_ value is negative, as we

D
shall confirm below. The first integral in equation 77 is the full supersonic
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wave drag for a non-relaxing gas flow.

When A » » and we are not too near to M, = 1, the relaxation

f
drag is approximately

- 5= fLSJZ(xmx, o (78)

o)
whilst, when AN » 0, it contributes a term

(-39 /L o

5 (x) dx ' (79)

o]

for all values of B2,

If A - «, but B?becomes so large despite this that BL/L >> 1,

we find that the relaxation drag behaves like ‘
L X I L

1 7 " s e ) 1 12
P i~ 5 ] e P S - wr P \ .
e f S {x) f S {y) loglx~y) dy dx + szzf S x)dx + = f S {x)dx
0 o) ‘ 0 o
LRI A (80)

When B® = o, equa’cion 80 plus the full supersonic wave drag gives a

result for Sr C., which agrees with the sum of expressions 74a and 74b

D
for p* = « . The same agreement occurs in the near-equilibrium
state, for putting f* = » in the sum of equations 74a and 75 gives exactly
the result found by adding equation 79 with B® = » to the full supersonic

wave drag.

In the supersonic regime, the effect of relaxation is such as to give
CD values which are always less than the non-relaxing wave drag on

doubly-pointed bodies.

To conclude this section on doubly-pointed bodies we consider a
specific example, ramely the body whose meridian profile is a parabolic
arc. We only examine the sub- and supersonic regimes since, for most

practical cases, the transonic regime is very narrcw and the solutions that
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we have obtained in this region are of rather more academic than practical

interest. We shall write

~ 1 [L i ‘fX 1y (..... {v-x) ./2}"“}{\‘ 7\ . a
S, CDr =5 | S(x) J D(Y)LL‘AT -E:LQI T )dedx (81)

where of may be either g or B?, as the case may be. Cp, Will be
referred to as the relaxation drag coefficient. The method of evaluation
of the integral in equation 81 is outlined in Appendix B. Equation B13
gives thekequation for the meridian profile and équation B15 gives the
value of C;Dr for this body shape, assuming that the reference area Sr
is equal to the maximum body cross-sectional area. Note thatin
deriving equation B15 the body length L has been set equal to one (no

loss of generality is incurred by this), so that A there is 7U measured

in units of b'ody length.

Fig. 1 shows 2(326)_2 }CD;:- plotted against a for two values of «f,

namely 0.574 and 1.327. These values correspond to ,Mf‘s of 0.9 and 1.2
respectively, with the square of the sound speeds ratioc equal to 1.1. This

latter quantity is roughly that which occurs in CO_ at temperatures

2
somewhat greater than 288°K. For this linear triatomic molecule the

relaxing internal mode is that involving transverse vibrations and &t
N.T.P. the relaxation time is about iOusec. We note that the maxima
C

Dr
4
values of U of about 3 x 10 cm. fsec. we find that the body lengths to

for occur for As between 0.1 and 0.3 body lengths, so that with

give this maximum are roughly of order (0.3/pa) cm. (pa is free stream
pressure measured in atmospheres). In this particular case then, even

pressures as high as 10”1 atm. can lead to maxima in |C | for body

Dr
sizes comparable to those found in a number of experimental facilities.

It is not possible to state in general terms just how significant CDr is in

relation to skin friction and form drag, since thesc are viscous effects and
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hence outside the scope of the present theory, However, under conditions

, the
max
Reynolds number based on body length should be of order 10 . Thus

like those just described for the occurrence of l CDr

the laminar friction drag coefficient based on body surface area will

3 -1

be of order 10”5 which, for a slender body, is roughly a C_ of 10°° 5

D
when the reference area is #8° (as in the definition of CDr)' Allowing

for the crudeness of the estimated friction drag coefficient it is seen

that | C

Dr may be comparable with it in some circumstances.

max
For a well streamlined body, on which friction drag predominates, it

seems safe to conjecture that relaxation drag may cause significant
increases in overall drag in subsonic flow. Clearly each special case
must be examined in detail, but the foregoing estimates do tend to suggest

t

that such examination is worthwhile.

In supersonic flow, of course, the drag picture is dominated by the
appearance of wave drag. For the case of the parabolic arc body the

wave drag coefficient (CDW) is found to be given by

-2 1
2 R
2{329) CDW 5
and clearly this is much larger than the values of CDr shown in

Fig. 1. We note that I;CDI’ ‘ may still be comparable with friction drag

coefficients.

In conclusion we note that the amplitude of the effects of relaxation
will increase as o2 increases. Broadly speaking this implies that the
largest effects will arise in the transonic regime, but, for obvious
reasons, the present linear theory cannot be used to obtain numerical

2

results of convincing accuracy in that Mach number range. «° is

increased at any Mf value by increasing the speeds of sound ratio (a,/a,).
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A maximum value of (a1/a2)2(namely 25/21) occurs for rotational .
~ relaxation in a diatomic gas, but we note that much larger values can -

arise when chemical reactions are involved (e.g. Clarke, 1958).

{b) Blunt Based Bodies

Confining ourselves to the fully supersonic regime in order to be
able to deal with this particular class of body shapes, equations 46, 47

and 62 combine to show that

ELF -
4 n n SIT\ ’f’ i
5.Ch=- = | S | Styloglx-y)dydx + 2;‘“’ | 513 loglL - yiay
O O O
= [ 8w Xs"( S Y= ) (B XX layd 12)
5 | (x [ L i\ = -/)— i\ B ==~ j ydx (82
J o
O O .
) L
SL)[u "y -L\ .. 2y~L} 1 f_a_g
ppe— S(y)[E1< Y )-E:L(B. Y > dy - U2< ¢ aud"")’
O
: C x=L

(CD is defined as in equation 66 above). The final integral here can

only be evaluated once the particular body shape and attitude is given.

For example, it is this integral which determines the effects of body
incidence on CD. Since the cross-flow problem is unaffected by relaxation
to the present order of approximation we will have no need to consider
questions of body attitude, for the results will be identical with those |
alréady obtained by Ward. Thus we can confine our attention to the o
“sero-incidence' behaviour of the integral in quesﬂcn, incidence being

measured from the body position giving zero cross wind force.

In particular, we examine the body of revolution, for which the
normal derivative 9¢ [ov becomes simply 09¢/0r and the boundary

condition gives

o0¢ /
3 UR(X), | {83)
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on the contour C. We write R(x) for body radius, the prime denoting
differentiation with respect to x, as usual. In these circumstances, the
disturbance potential is

¢lx, r) = U-S-é}—{)log r + b (X) ) (84)

as there is no dependence on the angle 6 and it then follows that

b (L)
L </ ¢ 22 do—> _ s log R(L) - S'(L) <
x=L

2 (85)
Taking the value of bo from equation 62 and using the form of I

B
given in eqguation 52, the sum of wave plus relaxation drag for a blunt-

based body of revolution at zero incidence is found to be

L
Slz(L) - 1 [ 7 { "
Sr CD = - e log (B R{L)/2) - = J S(x) J S(ylog {x-y)dy dx

Qar e wr
L (o] O

5 (71;) / S”(y) log(L - y) dy

0 (86)
L X N
L fI 7 Jy - X\ . < y -Xx (
+ 27/ S (x) / S (y) {El( ) - Ei B2.~—---7\ > | dy dx

O 0

! L -
- §'(L) u /vy -L e 2 y - L>

o

-

Notice the appearance of the factor Be in the first term of equation 886.

Because this term arises naturally in the expression for CD we shall

take the equilibrium state as the basis for comparison in what follows.
The first three terms in equation 86 will be referred to as the drag
occurring in & non-relaxing gas; the last two integrals therefore

summarise the relaxation effecis.

In the near equilibrium state, these relaxation terms behave like

-2 L
{1L-B") f /lz o/ Uye - }
R w— [ / {x)dx - 3°(L) S(L, IE (87)

o
o
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to a first order in A . When A » » {(and B? 1is not too large) they

are approximately

s "*(x)dx. (88)
This last result confirms that, in the limit A = «» , the value of S? CD
becomes the one appropriate to a gas flow at the frozen Mach number

M £ since the logarithm here combines with that in the non-relaxing

gas flow to give a term - S (L) (27?)“1 log (Bf R(L)/2). This result

also indicates that S C, is always somewhat less than the "frozen Mach

D
number' value.

it i's not so easy to deduce what is happening to Sr CD in the near-
equilibrium state, since its behaviour will depend on the relative
magnitude of the terms S'(L) 8"(L) and the integral in equation 87. We
may .expect that the behaviour depends on body shape and it seems
reasonable to use the parabolic arc body of the previous numerical
example to indicate roughly what this may be. If this body shape is
assumed to terminate at x = 3L./4 we find that the curley bracket term
in equation 87 has the value +(3275%)°L (81/640); when the body ends at
x = L/2 it has the value + (32 75%°1L(1/10) and when the body ends at L/4
it has the value -(32 759?L(3/32). In the last case, where S (x) is
definitely positive at the base, the drag is greater than the non-relaxing
gas value, butv somewhere between this condition and the one which gives
S,(x) = 0 at the base the relaxation drag increment passes through zero and
becomes negative. It would seem reasonable to suppose that it is always |

ne‘gative for bodies with boat~tailing.

To summarise briefly then, we always expect to find drag less than
the frozen Mach number value. Depending on the body shape and the values

of A and B® we may even find drag somewhat les¢ than the equilibrium
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flow value, As A increases in such a case it seems reasonable to
suppose that the net drag will eventually begin to increase, become equal
to the equilibrium value once more (this time at a finite, non-zero

value of A) and thence lie between the equilibrium and frozen flow values
of CD for all higher values of \. It is worth noting the difference between
the (quite complicated) drag behaviour deduced here and that found by
Vincenti (1860) fcr the wavy wall., In the latter case CD always lies
between the equilibrium and frozen Mach number values in the supersonic
regime, probably on account of the multiplicity of reflected disturbances

emanating from upstream regions of tne flow.

The simplest example of a blunt-based body is the right-circular

cone and we proceed to give some numerical results for this shape.
With a body length of unity, we take
R(x) = &x (89)

for the cone. Whence it follows that S'(x) = 2782 . Some of the results
in Appendix B can be used to evaluate the integrals occurring in

equation 86 and it is found that the relaxation drag coefficient CD"'
X

is given by

- - -Yh -, R
& 2CDr = 21 -B7Y - 2¥e T TR B Y (90)
Y - B
-ne B e B N B B (BTN
(The notation is explained in Appendix B). The wave drag contribution
to the total CD is given by
-2 .
& (‘Dw = 2 1og(2/Be6) -1, (91)
where we write CmV for the wave drag ooefficient. All drag coefficients

have used a value of Sr = 782 ,



Fig. 2 shows 5" ‘CDf plotted against A in units of body length
for the value B? = 1.223. With the squafe of the speeds éf sound ratio

equal to 1.1 this corresponds to an M_ of V2,

The presence of the factor log(2/ Beé) in CDW makes the ratio of CZDr

to wave drag dependent on the thickness ratio of the body. For example,
-2

when &= tan 50, o) CDW = 5.24. We see that, as in the case of the

parabolic arc body at supersonic speeds, the contribution made by

relaxation effects is very small in comparison with the wave drag.
The cone is a further example of the type of body for which CDr

is always of one sign for any value of A {(compare the "'one-quarter”

parabolic arc body mentioned above).

To conclude this section on drag, we may summarise the results
briefly by saying that the effects of relaxation dependk quite strongly
on actual body shape. It seems likely that such effects are cOmparablé
with skin friction drag but do not seem to approach the magnitude of

wave drag coefficients.

The Pressurz Coefficient

The pressure coefficient is defined in equation 29, which also shows
the approximate relation between C.P. and the disturbance potential
in the present, linear, theory. We are rzther more interested in the
differences which arise as a result of relaxation effects and it is clear
from equations 29 and 44 that ‘ihis only involves the difference between
the relevant bo(x) functions. In fact, writing (C.P. ,)r and (C.P. )e for
the pressure coefficients with and without relaxation effects, respectively,
with a similar Suffix notation for the bo funéticns , it is found that

7

oe)' (92)

S (C.P) - (€ - -2 -
MCP)=(C.P) - (C.P) = - = (b, -D
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(The prime on bo indicates differentiation with respect to x). To the
present apprpximation, equation 92 is true for all shapes and attitudes
which come within the classification "slender body". (C.P. )e is
chosen to be the pressure coefficient under full equilibrium conditions

(i.e. the singular case, A = 0).

We shall not consider the transonic regime here and, this being so,

it follows that
A(C.P,) = - ;17_ (1; - 8"(x) log o), (93)

where « can be either f or B, as the case may be. (Equation 93

follows from the results for bo given in equation 49 and 62, together

with the definition of I, in equations 50 and 52). Some of the approximate
forms of I derived in Section 4 can now be used to indicate roughly how
A{C.P.) behaves in different situations. (One can verify that the ,
derivative of the approximate form of I, is the same as the approximate
form of the derivative). Thus, when x/\ - 0 equations 53 and 63

show that

1 -a?

7.0 (C.P.)= 5

. 8'(x) + 8"x) log a (94)
and when x /A -~ «, equations 54 and 64 show that
7 D(C.P.) =~ %f- (1 - o« s"(x) . | (95)

Since equation 94 will be a valid approximation for sufficieﬁtly small
x for any value of A, other than the singuiar value A = 0, we infer
that C.P. at the nose of the body always equals the frozen flow value.
The only exception occurs in the singular case A = 0, when of course
MC.P.) =0 everywhere, as can be seen from equation 95. In general
then, a relaxation zone, starting from the frozen C.P. value begins
to form at the nose of the body and this is true whether the flow be

subsonic or supersonic, Equation 95 indicates that the cone, for which



-34 -

o . s - . - . ”
S (x) = 0, is rather a special case insofar as no relaxation effects

will occur in the near equilibrium state (A. * 0) in regions where

Al

I s> 1.
A >> 1.

I+ is interesting to note that the present theory indicates no "upstream
influence' of relaxation effects on C.P. in subsonic flow. Indeed the
integral term Iﬁ {and hence its derivative with respect to x), vanishes
for allx < 0. Since S (x) is also zero for x <0 it follows from equatién
93 above that C.P. has its equilibrium value upstream of x = 0. That
upsiream infiuence on C.P. does exist in subsonic flow follows from the
behaviour of the second integral in equation 49. When x < 0 this integral

can be written as

3 fL Syrlog(y+ |x])dy # o©.

o ,
It will shortly be shown that similar conclusions do not follow about the
relaxation effects on the translational and internal mode temperatures
in subsonic flow. It would seem reasonable to conclude that the lack
of upstream relaxation eifect upon C.P. in subsonic flow is a character-
istic of the linear theory and that it wouid therefore be safer to 'say,
such effect as might exist for C.P. is at most of second order. In

supersonic flow there is no such difficulty since upstream influence

(quite properly) does not exist at all.

Returning to the approximate A(C.P.) values in equations 54 and
95, we observe first the change in sign of the terms involving « in the
two Mach number regimes. These changes of sign are consistent with the
relaxation drag behaviour in subsonic and supersonic flow and indicate in
fact how this comes about. For subsonic flow with L/A » 0 {remembering
that a = B <1) equation 84 shows that it is the term in S'{x) whick produces

the relaxation drag, since that in S (x) has zero net effect on the drag of
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the doubly pointed bodies required in the subsonic flow case, In supersonic
flow under the condition L/A -+ 0 the influence of this S"(x) term begins

to be felt on the blunt based bodies permitted in this regime.

The influence of body shape on the pressure shifts arising from
relaxation effects is clear from equations 94 and 95. It is also clear
that each particular case must be treated on its merits. What is not
quite so clear ié how these effects are brought about. The most plausible
explanation seems to be just the one advanced by the author (Clarke 1960a)
to explain thé much simpler behaviour in the relaxation zone behind a
sharp corner in supersonic flow, namely that the outgoing pressure waves
generated by the body are reflected back towards the surface by the
relaxation-generated vorticity distribution {see Section 2). It is not
surprising to find that the sigrs and magnitudes of these reflected waves
depend on body shape and Mach number regime. To conclude this section,
we remark that past experience has indicated that a linear theory is
capable of yielding quite accurate estimates of the superimposed effecfs
of relaxation, even though the basic quantities (like (C. P. )e for example)
are not so well predicted. Also, it must be emphasised that the solutions
discussed here and indeed in the Section to follow, are only valid on

and near the body surface.

The Temperature Variations

In ordier to find the variations of the irternal mode and translational
temperatures, we first note that the energy equation can be written in
terms of the specific enthalp’y, h, and pressure as fcllows (see equation 22),
Dh Dp

bt "ot - 9

p

The enthalpy h can be written as sz T, + CVz T, for present purposes

k and, consistent with the previous linearisations, s in equation 22 can be

replaced by its undisturbed stream value s_. Then equation 22 can be
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integrated to give the approximate result

: ‘ - s
o - . 96)
Cpq AT, + C_ AT, o fp-p) 4 | | (96)

‘We have written

AT, = T, - T AT, = T, =Ty, » (97)
since sz = Tm . It follows from equations 8 and 96 that
DA T 2
, 2 5 (C.P.) v :
T * AT =5 : (%8)

Putting D/Dt = Ud/ 3 x as before we readily find that

X ) .
[ c.pn e I 4y o (99)
J

-0

U
AT? T 2¢C
P

in subsonic flow. In supersonic flow the lower limit can be replaced by

zero. Using equation 8, and after some rearrangement, we find that

_Ue.pr) .CVz\ LI (R S e
2 C l ‘\ C / * 2 C ‘-\—yv- y-
P e P ‘!—w ceve. . {100)

AT =

Integrating equation 99 by parts and combining the result with equation 100

skows that

U Fo3(C.P.)  x-yMn
) » 5 C j - e dy .
v ~ P

-0

{101}

This last result shows at once that an upstream influence of the
relaxation effects exists for the temperatures in subsonic flow, since

3(C.P.} oy # 0O fory < 0in that case.

It is important to observe that the temperatures on and near the body
are functions of the whole pressure coefficient. In particular this fact

is significant when we examine the difference between '1; and T,. In the
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singular case A = 0 the difference vanishes of course, but we may use the
other limiting case of A -+ « to illustrate the practical situation. For
the near-frozen state we may write T =~ Tm » Whence T1 =T, = AT1

and we find that this difference in the limit is just

2

U
W (COPI) P

p1
(using either equation 100 or equation 101). Thus the difference between
T, and T, depends on the body shape and attitude in the same way as
(C.P.). Clearly this behaviour occurs for all non-zero \ but we expect
to find the amplitude of the difference decreasing in a general way with
decreasing M. It may be of some significance however that relatively
large differences between T, and T, could arise locally due to some
pecularity in body shape. The results presented above enable calculations
of T1 and T, to be made (within the confines of the slender body
approximation) and these values could be used to estimate temperatures
at the edge of the thermal boundary layer. The latter statement is made
with reservations, since it may happen that the concept of the boundary
layer and the "body-plus-displacement-thickness'' treatment which is
impliedby it, begin to lose validity at pressures {and hence broadly
speaking, Reynolds numbers) low enough to make \/L sufficiently
large. (The question of relaxation effects on such a flow is an interesting
one, but outside our present scope. From the foregoing results we might
expect that viscous and relaxation effects will be comparable over large
regions of the flow field). Clearly any particular case must be examined
on its merits, but we may quote the case of carbon dioxide, for which
appreciable relaxation effects are present at pressures high enough for
the low density aspects of viscous flow (suéh as slip phenomena) to be
insignificant. In other words, the mean free molecular path will be

small compared with the boundary layer thickness in this case. The
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non-dimensional group which roughly determines the state of the internal
1

energy mode in a boundary 1ayer is (8% 7% )? , where 8, is boundary

+a Lo AT oA ﬂ(\g'p‘?1 n‘tr}v\+ -an +h o mmm*’-mhn]gr
i LAt

Ak i e VT AAFEL WA AL LA Vil SRl

O]
-
m

{pure) gas in question. Assummg a laminar boundary 1ayer, which
seems reasonable in the circumstances, 631 ~ x‘(v/U)z , Where v

is the kinematic viscosity, Thus
1

62 2 i 1 1
LY (Y (L <£_>2
7! L 'y , N\

The ratio v jg~ 1 fcr a number of gases and it follows that if the

external {inviscid) flow is near-frozen it will also be near-frozen in
the boundary layer. The appearance of the ratio x/L above guarantees
that it will he frozen at tne nose of the tac;ciy but it is significant to
notice that it is (L/ T’U) {or roughly, X\ %) which determines boundary

layer behaviour whilst that in the external flow is governed by the

value N .

In ceses where near frozen flow occurs in the layer, the effectiveness
of the actual material of the body's surface in accommodating the internal
mode becomes important in the determination of energy flux rates,

(see for example, Clarke, 1960b). Thus the interpretation of heat
transfer measurements on bodies in polyatomic gas flows must be
approached with caution. Similar arguments apply with even greater
force to the case of chemically reacting gas flows, on account of the
greater energies involved and the pbssibility of finding wide ranges of
catalytic efficiencies amongst practical materials. Remarks such as
these might apply to heat transfer measurements on, let us say, a
slender cone in a typical shock tube. Results like those presented above
may be used to estimate the conditions at the edge of the boundary layer

in such a case.

The author would like to acknowledge the helpful advice and criticism
received from Professor G, N, Ward and Mr. G. M. Lilley during the

preparation of this paper.
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APPENDIX A

Inversion Integrals for the Function bo(x)

Case (i)

In the subsonic case bo(x) is written as

- D)
b = -4 (a) { c 10845, ol z/2) |, (A.1)
(see equations 35, 36 and 45). To accomplish the inversion integration
we write
o - Ciw(-a ) [ Crlogle )
bO(X) = Ao(w) log (ﬁ’f/.?,) iw( .AO) L —p J
1o ) C+log (w+ipN) ~
HEAREE AR Ao){ SRV (4.2)
YR _ C+log (w+i/n)
s(-1iw+1/M( Ao)\_ o N |
The first term in equation A.2 is simply ao(x) lcg(ﬁflz). To invert
the remainder we make use of the fact that -iw is equivalent to the
operation 9/9x and treat the remaining parts by means of the Falting
theorem for complex Fourier transforms, which states that
fl,: / f(y) glx - )y = Flw) Glo) . (A.3)
2w

F and G are the transforms of f{x) and g(x). Thus we can deal with the
'log' terms in curly brackets separately, taking care to use the contour

described in Section 3, Case (i).

The first curly bracket term in equation A.2 inverts to a function

g,(x) where

. . p® . o 3
Var g fx) = éjft { / (C + log u) =1 ?{% - f (C + log u)e xu %1- }
€ 20 ‘e e

iu J

€20

g F ilxju du _ 7 -ilx|u du
== {b: {J[(C%-logu)e ™ /(C+logu)e L
€

€
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After some manipulation it follows that -

g, (x) = - J;—Z !}Xi' log |x| (A.4)

In dealing with the second and third curly bracket terms in eqation
A.2, which we call g (x) and g (x) in the physical plane, respectively, the
complex w-plane can be cut from - - i\ to - iffN and - » - i/A
to -i/A in each case and the real w-axis contour shifted down to positions
just above each branch cut, indented above the singularity, and'running on

10+ w-i8Y% and + - i/A respectively. Taking gz(x)_. we find that

A _— i _
Vo eﬁ?xl g (x) = f (C + log z)e xz -igf' (A.5)
where z is a new variable related to w by
z = w +igdn ‘ | / (A.6)
It follows from equation A.5 fhat gz(x) =0 for x <0, Whenx> 0,
. . - a io
N 3 .e o3
Vor eﬁth\gz(x) = [ (C +1log £+ ime 5 % + [ e +logee )e ¢ de
JE . JO ’ :
(A.7)

-/ (C+1ogg)e-ix°§ éié— s
[ lg

in the limit as e » 0. (z is put equal to £ on the real z axis and equal
to ee18 on the indentation around the branch point). The integrals in

equation A.7 can be rearranged and it is then possible to show that

; o -3x N
g‘z(x) = -Vor e Fx/n log x + {72 e ; x>0
27 (A.8)
= 0 ; x <0

The value for gz(x) follows at once on vetting p%in equation A.8 equal to 1.

The function f(y) in equation A.3 we can identify as ao(y) in the
notation of the text, whence using the theorem expressed there together

with the results derived above it follows that
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X

o
bO(X) = aO(X) 10g (ﬂf/Z) - %é‘)‘; /- ao(y) ].Og (X - y)di
* %% ,;[ ao(y) log (y - x)dy - %( 5?; + %‘i) / ao(y)e‘ﬁz(x"y)/ﬁog(x-y)dy
X oo
: X
t3 <é'a§£ * "71'5> [ ao(y)e—(x-y)ﬁx log(x-y)dy. (A.9)

The imaginery terms in g (x) and g (x) are found to cancel out in the
expreésion for bO(X), as indeed they must. If the indicated operations are
performed on the integrals in equation A.9 and the value U S'(x)/2 7
substituted for ao(x) the result quoted in equation 49 is obtained. We

note that ao(x) = 0 for x <0 and x> L ; whence the limits in equation 49

follow.

Case {ii)

In the transonic case (see Section 3, Case (ii)) we write the transform
of bo(x) in the same way as in equation A.2 with the following differences.
|o|  is replaced by «, g* is replaced by -5° and Z is replaced by Z .
Inversior: now tak=s place just above the real w-axis, indented to pass
above the point w = 0. These differences have the following effects.

Using a notation consistent with that of the previous case,

g(x) = - WZ“;;: logx + -J?f: ; x50
! Vo (A.10)
= 0; x<0

Because having - 5 for /% in the term puts the relevant singularit
g, g y

above the real w-axis, it follows that

H

0; x>0

g (x)
. Y /7\
(o7 & P1%] log 'x

(A.11)

i

; X <0

The function g (x) is unchanged (see equation A.8 with £° = 1). Using the

theorem in equation A.3 etc., it follows that
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X
byx) = a (x) log (,/2) - 2 f ~ a_(y) loglx - y)dy
+ 3 ;/i - B fwﬁ {y) ye P (y—X)/?\m“i‘F};}dv
AN NV Y R (A.12)
X
X

+
(SIS

3 1\ s -
<é"£ ) .f_ a(yle &I 1ogtx - pdy

the imaginery parts of the g(x) functions cancelling out as before. With a
little rearrangement and the substitution of the value for ag(x) we easily
obtain equation 56, provided that we let y approach x in the lasi two

integrals there like x +¢ and x -¢ respectively (i.e. take a "principal

value').
Case (iii)

Once again we use a form of bo(X) like that in equation A. 2 only
here we write Bf for ﬁf , B® for 8% iw for |w| and Z"for Z in the

first curly bracket expression.

It follows that the gz(x) and g3(x') terms are identical with those of
Case (i) when B® is written for p?and using the contour described in

Section 3, Case (iii) for the "'log(iw)" term we find that

i

- Venr logx; x>0
0; x<0

g (x) (A.13)

i

The result in equation 82 now follows in the usual way. We remark here

that the Laplace transform could easily be used in the fully supersonic

case, with its absence of upstream influence effects. The Fourier transform
treatment has been retained since the problem can then be dealt with in a

unified fashion.
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APPENDIX B

Evaluation of the Relaxation Drag Integral

The relaxation drag integral can be written‘generallly in the form

o

p:e
Vi ’ . - X . "X\\
27 SrCD = /L‘S(X) / S’(y){-Eliz—X—-/}-El@zyx /}dydx,
r ° ° . (B.1)

where of may be /?, ,572 or B depending on the Mach number regime. The

inner integral in equation B.1, is equal to 2 I, - 28'(x) loga in the
notation of equation 50 et seq.
Writing
X -y = A (B.2)
this inner integralvcan be rewritten in the form

21 - 2 s'(x) log o = ‘)\.J ‘I?S\”(X -AC) {Ei(—cr) ~ Ei{- d®0) }do‘ . (B.3)
o
The cross-section area S{x) of a wide variety of body shzpes can be
expressed as a polynomial in x, whence it follows from equation B. 3,

that we shall have to deal with a number of integrals of the type

I 0
I = f( o) {:E1(a2cr) ~E1(o*) } do (B.4)

n
(o]

In writing equation B.4, use has been made of the rather more convenient

notation for the exponential integral which puts
E(0) = - Ei(-0) (B.5)

etc. (See Erdelyi, et al, 1953). Then, using the results given in this
reference, it is found that

(n+1)I = 1(1l +n) [a—2<n+1) -1 - a*2(n+1) n+1
" n+1

+ I{1+n, x/A) - (x/2\)

[I’ (14n,0® x/N)~(aPx/[M) E1(d°'x/?\.)]
E, (x/)) (B.6)

The functions I'(1+n, x/2) etc. in equation B.6 are one form of the

incomplete gamma function,
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r{l +n, x/0\) = ;" e_t 7 at - (B.7)

J
x/r

s

t foliows that I, can now be expressed in terms of a sum involving
the appropriate In’s with suitable coefficients. The restriction to pointed
nosed bodies ensures that the body radius R{x) will behave like x, at
worst, in the nose region. Hence n in equation B.4 will never be less

than zero.

In evaluating the drag integral in

like /'1 |
- ~ nf y L -2a s o
na - j x LI‘(a, x/\) a ra, a2 x/) jdx , , (B.8)
o
K _ “rwzm E (x/\) | d - (B.9)
0 ‘,/ X i‘ E {a®x - E (x X . .
o

The body length L has been set equal to 1 here. There is no loss
of generality in so doing but all lengths are hereafter measured in
terms of L as the basic dimension. In other words X\ in equations B.§
and B.9 (and subsequently) stands for the ratio of relaxation length to
body length. We find that

1 -
(n+1)J_ =) - yla, 1/0) + M e s+, 10 - o2

?

(a)

(B.10)
+ a e y(a,d® [0) - oc"?'(aﬂﬁl) L y{a + n +1, o® /7)),

where y({a, 1/7) etc, stands for the other incomplete gamma function,

1A
yla, 1/ = [ et la. (B.11)
Also o
(n +1)Kn = and(m—l) ?\n+1 y{n+ 1,0® [A) + E («® /)

. (B.12)
- A @, 1N -EAN) .
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Some results have been computed for the parabolic arc meridian
profile body, for which
R(x) = 48(x -x7) . (B.13)

1]

This has
S/I(X)

it

327 6% (1 - 6x + 6x°) ‘ (B.14)

whence it follows from the general results given above that

- - -0 - '
232077 e, = g | - et

-4 [ (%)2 (1 e e1(a2/7\)>~7\2<1 -t e1(1/?\)>]
| +3[<£—2->4 <1-e“{x2 (?f) >. <1~e e(l/h))]
- 24 [%)6 <1 L esme/;\))-v( el eumﬂ (B.15)

provided that we take Sr = 7d%

The functions e, , e, and e, appearing in equation B. 15 are the
truncated exponential series

n I
by

en(z) =

- (B. 16)

m=0

They arise from the fact that when n is an integer the incomplete gamma

function y(1 + n, z) can be expressed in the form

y(l+n,2z) = nt (1 -e® en(zq . | (B.17)
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