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SUMMARY

An analysis is presented using small deflection theory for the buckling
of a pressurised, axially reinforced cylinder, which is subjected to axial
compression.

Various approximations to the analysis are discussed and some
results are presented which show the effects of internal pressure and
various structural parameters on both panel buckling and overall buckling.
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cross sectional area of stringer
stringer pitch

flexural rigidity of skin ‘
effective flexural rigidity of skin-stringer combination
Young's modulus of skin

Young's modulus of stringer

moment of inertia of a stringer about median plane of skin

length of cylinder
number of half waves in an axial direction
resultant stress couples in cylinder
number of waves in a circumferential direction
stress resultants in median plane of cylinder
N -pit

y
internal pressure
radius of cylinder
thickness of skin

equivalent thickness of stringer sheet (= %)

displacements in x, ¢ and z directions

. -t
cylinder parameter = h*-iﬁ@ ]

:M“
ratio of cylinder flexural rigidities = %—-'-l

median plane strains
arbitrary constants in expressions for displacements
cylinder co-ordina:e

Rimar

P e

£ -
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axial reinforcement parameter = | 1 + — - (1 -v%)

Bt
Poisson's ratio

stress

pa(1 - %) |
Eh |

axial force parameter = {m =
Et

pressure parameter =

changes in curvature



1. Introduction

In the original investigations into the buckling of circular cylinders
carried out by Timoshenko, Southwell, Fligge and others, a small
deflection theory was used to establish the elastic deflection equations.
Experiments however, show that, particularly for the case of a cylinder
under an axial load, the classical deflection theory considerably over-
estimates the critical stress.

In 1934, Donnell first proposed the use of a non-linear theory to
explain these discrepancies and this theory has been developed and used
extensively in recent years for predicting the elastic buckling of cylindrical
shells, Mugh of the recent work in this field is summari sed by Nash™ and
Thielemann . ‘

In the last report use is made of the non-linear theory to analyse the
effect of both internal pressure and orthotropic properties on the post
buckled behaviour of axially loaded cylindrical shells. The experimental
investigations which are also carried out indicate good agreement with
the theoretical results. However, the golution of the large deflection
equations suggested by Thielemann, involves considerable computational
difficulty, and it would seem reasonable in investigating the influence of
axial stiffening and internal pressure, to initially use small deflection
theory in order to show more readily the effect of the shell parameters
on the critical stress.

An investigation has recently been undertaken by McKenzieS, who used
the small deflection theory in solving the problem of buckling of an axially
reinforced cylinder subjected to axial end load and internal pressure.
McKenzie's solution is, in fact, restricted to the problem of a cylinder
having a large number of axial stiffeners, Furthermore, he is only
concerned with the overall buckling of the stiffened shell after pan=l
buckling has developed.

In this paper both panel buckling and overall buckling of the shell
are considered, and the influence of the axial reinforcement is discussed.



2. The Basic Equations

The equations of equilibrium of an element of a stiffened cylinder

can be obtained by suitably modifying the equations for an unstiffened
shell as presented by Timoshenko™ which ar
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The sign conventicn is the same as that given in Ref. 4, Fig. 23l .

¥or a long shell which is stiffened in an axial direction the stres
resultants and couples can be modified to become

N = E t e + Et -(e +ve ), N = mé—?i--a———-(e+vez)
x S B8 1 1 - 1 2 y 1~ v 2 1
(2.02)
. Yi{E - -
J = }N = LR It = i\‘l - ] ,
I\yx xy 201 +v) N v P
and
M = -DI{px +vx ) M o= -D{x +wvx ),
X : y N X
(2.03)
- M = M = D1l -v)x ,
yX Xy X
where
= -—a}}- o= ma v - Y - —-a L‘l - .QY—.
¢ ox ' €, Ro0 R’ Y T Ree ax’
8% w 1 /av 9%w\ 1 [av 27w\
X, = T3 X0 F TmE USE T ORRE ) Yo s FoABe T 3ond
x Ox vy = leay Xy R\ °x 0x08@,

These equations are derived on the assumption that the axial
reinforcement is symmetrically disposed about the skin centre line.

If this assumption is not fulfilled, additional terms may be necessary
in the expressions given in equations (2.02) and (2.03)



Substitution of equations (2.02) and (2.03) into (2.01) yields
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To solve the above equations the following modes are assumed which
are appropriate for a simply supported shell

- AX

u = & cosnd cos o
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v = 7 sinn@® sin =+
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and w = ¢ cosnd sin el
£y

In these equations &, n and ¢ are arbitrary constants,

A= RYEW and m and 2n refer to the number of axial and circumferential

half waves.

These modes are identical with those assumed by Tlmoshenkoé and

McKenzie3 and include the possibility of axi-symmetric ring shaped buckles
and asymmetric chess board shaped buckles. However, in their present
form equations 2.05 are inadequate to include the diamond-ghaped bugklmg
mode which is indicated in the experiments conducted by Thielemann”.
Substitution of equations 2.05 into the equilibrium equations 2.04 yields

the stability determinantal equation as follows
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The solution of this equation leads to the critical value of the axial
force parameter ¢, for various values of the pressure parameter ¢, ,
and of the terms describing the effects of the axial stiffeners u and f
for any assumed values of n and M. There is of course a minimum value
of ¢, and it is the determination of the values of n and A corresponding
to this minimum value which constitutes one major problem.

3. The axisymmetric buckling solution (n = 0)

For this case the deformation modes become simply

AX

g cog —= ,

Ty

i

i

u
(3.01)

i

and w g sin~—= ’

and these modes correspond to the case of ring shaped buckles.

In the equation 2.04, it is observed fhat the Tj”é terms vanish,

and that v = 0, in which case the equation becomes
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For the case of an unstiffened shell (i.e.u = F = 1) and no internal
pressure (i.e. ¢ = 0), equation 3.03 reduces to
1
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This result corresponds to the classical equation for an unstiffened shell.

If the axial stiffening and the internal pressure terms are included
in the axisymmetric buckling equation 3.03, the condition for minimum
¢ gives the result
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These results could have been obtained directly from equation 2.06
with n = 0.

From equation 3.05, the critical axial stress becomes
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which can be compared with the classical buckling solution for an
unpressurised cylinder under axial load given by Timoshenko as

o, T T . (3.08)

On examination it is found that the ¢, term in equation 3.07 is very
small compared with unity, so that it Cd.n be concluded that the influence
of internal pressure on axisymmetrical ring shaped buckling is small,
but is slightly destabilising. The fact that internal pressure has negligible
effect on ring shaped buckling is observed by Thielemann.



4, A general buckling solution

The buckling determinant equation 2.06 can be expanded and
expressed in the form ,
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It is found that for the case of no axial stiffening these equations
do not reduce exactly to those given by Timoshenko®. The reason for
this is that Timoshenko's solution is based on the equilibrium equations
derived by Fligge which have small differences from the equilibrium
equations 2.01. These differences are of little consequence and should
not affect the solution for the critical axial stress. The evaluation of
the critical axial stress, however, from equation 4.01, is difficult and
further simplifying assumptions would appear desirable to obtain a
closed form sotution.



4.1, Panel buckling in a short cylinder (i.e. £ << R) under
axial load (f = 1)

For a reinforced cylinder with no internal pressure equaticn
4.01 becomes

C, + Ga = C¢ . - (4.02)

The problem is to find the values of A and n which correspond to
a minimum value of the axial loading narameter ¢, If it is assumed
that g =1 while g > 1, it is implied that even Wl‘th heavy axial
stiffening the value of n producing this critical ¢,will correspond to,
or be a multiple of, the number of stringers, where each acts as a
nodal line and does not bend.

It is found that equation 4.02 reduces to the following form
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In equation 4.03 low order terms in A®have been neglected which is
justifiable for the case of the short cylinder, provided that £ << R
and & >> VEkt,

3y differentiating ¢, with respect to both A and n, and equating to
zero, one obtains the two equations,
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When n is given by the particular stringer spacing, equation 4,04
yields the value of A corresponding to the critical value of ¢
Solution of this equation is not attempted here. If however the stringer
spacing is initially unknown, then the satisfaction of equations 4.04 and
4.05 simultaneously, results in a lower critical value of ¢,



From equaticns 4.04 and 4.05 the simvle relationship is obtained
between n and A which is

n = U\ (4.08)

It is interesting to note that this relationship is indeperdent of
the axial reinforcement parameter p . Substitution of equation 4.06
into equation 4.05 gives

T
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Again this result is independent of u and corresponds with Timoshenko's
result for an axially loaded short cylinder which suggests that a minimum
ngz occurs when

(4.08)
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It is perhaps worth noting that by assuming axial stiffening, i.e.
¢ > 1, one obtains explicit values for M and n corresponding to a
minimum value of ¢ even thovgh these values are independent of 1 ,
2.

For the unstiffened shell however, the only result which is
obtainable is in the form of equation 4.08,

Substitution of equations 4.07 into 4.03 gives the relationship
b o= 2 1 -v%.
¢ A\/A af v

This result agrees exactly with the classical solution for an unstiffened
cylinder which shows that panel buckling in a reinforced shell occurs

at the same value of resultant force as in an unreinforced shell, provided
that equations 4.07 are satisfied. ‘



4.2. Buckling in a long cylinder under axial load

For a 1ong cylinder it is reasonable to assume that A becomes
small in the general buckling solution, equation 4.01, so that high
order terms in A may be neglected. Hence if 7 is small < 1
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This corresponds to Euler's formula for a stiffened shell buckling as
a strut.

If n> 1, the value of A which makes ¢ a minimum in equation 4.09
is found from the relationship 2 '
3.4 = . a. nA (na"‘ 1)2 (4.10)
(1 -v*) +a(f-1)n" |

When f and p are both unity, this equation reduces to the form given
by Timoshenko from a much simplified version of equation 4.09.

Substitution of 4.10 into 4.09 gives
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Timoshenko has justified the omission of the terms

an* - (7 + v)a® + (3 + v) and by making a similar agssumption, equation
4.11 reduces to that of Timoshenko for the unstiffened shell.

It is seen by inspection that ¢ is a minimum whenn = 2 and is
: L
6 | 2
o} = -5- [C((p “2)2)“1" Gﬂz(ﬁ“‘ 1)16] N (4.12)
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4.3. Buckling in a long cylinder under axial load and internal pressure

The agsumptions and analysis will be similar to Section 4, 2, and
equation 4.01 reduces to become identical to equation 4.09, except that
in this case an additional pressure dependent quantity appears on the
right hand side. This quantity can be shown to be

¢1 (£ -1m* .

If n = 1, this term disappears and the obvious result is obtained, that the
internal pressure has no effect on Euler buckling.

Forn > 1 the value of A which makes ¢ a minimum is found from
equatinns 4.10 with the following additional tefm in the numerator

é n' (n - 1)
1
Hence it can be concluded that the effect of internal pressure is to
reduce the axial wavelength of the buckle. A similar result has been

shown by Thielemann.

5. The overall buckling of a heavily stiffened cylinder (S>>1)

Recently McKenzie3 has obtained a solution for the problem of the
heavily reinforced cylinder subjected to an axial load and internal pressure.
This solution was for the case of a cylinder having premature buckling
of the panels so that some of the skin terms could be neglected in the
equilibrium equations.

An order of magnitude analygis, using McKenzie's shell parameters,
suggests that the full determinantal equation 2. 06 can be reduced to
the following
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Equation 5.02 was solved graphically using the previously assumed
shell parameters, from Ref. 3.

The minimum value of ¢ is 1.37 x 10~2, and corresponds to
valuesof M=4andn=7. 2
The solution of the full determmantal equation 2.06 gave

¢ =1.33x 10 -2 which compares favourably with the approximate
solution above. The value for ¢ obtained by McKenzie was

607 x 1072 (Exact solution based on full determinant)

.702 x 10“2 (Solution based on a simplified equation).

¢

2

i

or ¢
Z
It would seem that the principal difference between this solution and
that offered by McKenzie - is in the definition of the axial force/in. N .
The value used in this analysis, i.e. equation 2.02, was
t {e +ve ), (5.03)

1 2

N =E t e +

X 8 8 i 1 -2

and the corresponding value used by McKenzie was
d?w

N_=E t (e + H =) (5.04)
X s B 1 dx
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where H is the distance between the centroid of the stringer cross
section and the median plane of the skin. It is seen that equation 5.04
neglects the skin terms in 5.03 but includes an additional curvature
correction term. However, this term vanishes when the stringer
material is symmetrically disposed as assumed in Section 2. This
curvature term in McKenzie's analysis gives a large nega*ive number
replacing the square-bracketed terms in equation 5.01 and it can be
shown that it is these terms which mainly cause the difference in results
between equation 5.02 and the corresponding result of Ref. 3.
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