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ABSTRACT   

Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by 
broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre 
segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting 
differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip 
displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability 
of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.  

 
Keywords: Range-Resolved Interferometry, Shape Sensing, Curvature Sensing, Fibre Segment Interferometry 

1. INTRODUCTION  
Fibre optic shape sensing [1-4] (FOSS), sometimes referred to as bend or curvature sensing, allows the curvature, and 
therefore the curvature of the structure to which the fibre or fibre arrangement is attached, to be followed through space 
and permits the inference of lateral displacements directly from the curvature measurements. FOSS techniques are 
generally based on evaluating the differential strain that results from the curvature of a fibre/fibre arrangement. Prior in-
fibre grating based approaches have used fibre Bragg gratings (FBG) [1] or long-period gratings [2]. Quasi-distributed 
FBG-based approaches, where a large number of FBG sensors are interrogated using frequency domain reflectometers, 
have also become popular [3], in areas such as structural health monitoring and medical endoscope tracking, mainly due 
to their capability for high density deployment. Interferometric approaches [4] have also been investigated for FOSS, 
but, while potentially offering fast and highly sensitive measurements, practical applications appear to have suffered 
from difficulties in multiplexing sensors. The approach proposed in this paper employs fibre segment interferometry 
(FSI) [5], which is a promising technique because it allows the multiplexing of many interferometric sensor segments 
using range-resolved interferometry (RRI) [6], where the RRI is designed to exploit the potential that robust and cost-
effective laser diodes originating in the telecoms industry offer to sensing applications. 

 Importantly, curvature sensitivity scales proportionally with the lateral fibre core distance [4] in FOSS, therefore a 
fibre arrangement mounted onto a flexible support structure that can follow the shape of the object under test, with lateral 
fibre core spacing of typically several millimetres, offers orders of magnitude increased curvature sensitivity compared 
to previous implementations using multicore fibres [4] with a lateral core spacing of typically 50	μm. In this paper, the 
optical setup is introduced and the details of the sensor arrangement provided, before evaluating the two-dimensional tip 
displacement sensitivities of the device using a cantilever test object. Finally, measurements of the cantilever tip 
vibrations are shown, demonstrating the suitability of this approach for directional vibration measurements. 

2. EXPERIMENT 
In this work, we use a fibre arrangement comprising of four regular single-mode fibres, where each fibre is adhered to 
one of the four opposing sides of a flexible Polytetrafluoroethylene (PTFE, TeflonTM) support structure. The 
experimental configuration and the properties of the PTFE sensing rod are illustrated in Fig. 1. In the optical setup shown 
in Fig. 1(a), the output from the DFB laser diode, at a wavelength of 1549	nm, leaving the RRI interrogation unit [5,6], 
is split by a 4x1 coupler into the four optical fibre strings (A to D) to be interrogated. The strings each include a fibre 
delay line, with sequential fibre length increments of several metres, with the aim of moving undesired signals due to the 
interference of sources from the different strings well out of the detection range. In each string, four 20 cm long fibre 
segments are created between five FBG reflectors. The desired interference signals are then generated by the interference 
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