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Abstract This study is inspired by the Laplace orbit plane property of requiring minimal station-keeping and

therefore its potential use for long-term geosynchronous synthetic aperture radar (GEOSAR) imaging. A set

of GEOSAR user requirements is presented and analysed to identify significant mission requirements. Imaging

geometry and power demand are assessed as a function of relative satellite speed (which is determined largely by

choice of orbit inclination). Estimates of the cost of station-keeping as a function of orbit inclination and right

ascension are presented to compare the benefits of different orbit choices. The conclusion is that the Laplace

plane (and more generally, orbits with inclinations up to 15◦ ) are attractive choices for GEOSAR.
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1 Introduction

Radar imaging from geosynchronous orbit is of growing interest and great potential. It has been studied

since the 1970s and 80s [1, 2], and in more recent years significant interest is being shown in the US [3],

Europe [4–6] and China [7–9]. The early US concepts used orbits with inclinations around 50◦ to provide

near continental coverage. Similarly, the concepts studied in China have also proposed orbit inclinations

up to 50–60◦ while those studied in Europe have tended to use much lower inclinations. Synthetic

aperture radar (SAR) is used in all concepts to achieve a useful ground resolution.

A classification of geosynchronous SAR (GEO SAR) missions based on orbit inclinations is useful.

Inclination determines the satellite speed relative to Earth, and this in turn influences the key system

parameters such as integration time, antenna area and transmitted power needed. We propose the

following classes:

• Quasi Geo-Stationary (QGS): these missions typically use very low inclination orbits so that the

satellite stays within the standard GEO station-keeping “box” (±0.1◦ in longitude) defined by the Inter-

national Telecommunications Union [10]. These missions have been studied in Europe and include the

current GeoSTARe concept [11].

• Low inclination GEO: inclinations up to 15◦ . (15◦ is the maximum inclination achieved by geosta-

tionary satellites once they start to drift with no orbit control.)
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• Medium inclination: GEO orbits with inclination i: 15◦ < i 6 45◦ .

• High inclination: GEO orbits with inclination greater than 45◦ are considered high inclination orbits.

This article is concerned with low inclination GEO SAR mission concepts. In particular, we evaluated

the design of a Laplace plane [12] mission. In the Laplace plane the gravitational perturbations (mainly)

from the Sun and the Moon practically cancel each other; satellites in this orbit plane therefore use very

little fuel to oppose these perturbations actively and there is minimal long-term drift. Laplace plane

orbits are relatively stable and require less fuel to maintain them [13]. The Laplace plane (i = 7.4◦ , Ω '
0, in the GEO region) is in the middle of the low inclination band.

A second motivation for studying low inclination orbits is that they offer a compromise between the

extremes of QGS and high inclination orbits [6]. QGS orbits have very low speeds relative to Earth (a

few m s−1) and therefore require long integration times (perhaps a few hours) to image at resolutions of

a few times 10 m. On the other hand, high inclination orbits typically require huge antennas (20–50 m

diameter) and several kW of transmitter power to achieve wide area coverage. Low inclination orbits

offer mission designs with modest integration times and moderate antenna areas and transmitter power

demand, and thus potentially offer high performance GEO SAR imaging at a reasonable cost.

The article presents an outline system design, based on representative mission requirements. Technical

aspects of the choice of orbit are considered in the next section. The article closes with a general discussion

and statement of conclusions.

2 Initial System Design

The aim of initial system design is to quantify key system parameters such as antenna size and transmitter

power - this helps to assess the feasibility of a mission concept. However, the starting point for all system

design should be a statement of expected user requirements. In practice, the analysis of user needs and

development of a system design is iterative: the goal is to find the best match between user requirements

and system design so that the system is both useful and practical. This section provides a summary of

user requirements identified for the GeoSTARe project and some design rules for sizing the antenna and

estimated transmitter power (as a function of the speed of the satellite relative to Earth). The orbit

choices are discussed in the next section.

Atmospheric perturbations (ionosphere and / or troposphere) affect image focussing. Their impact on

system design is not considered here but can be accounted for [6]. Some useful recent studies [14–16]

consider the effects of and compensation for ionospheric perturbations in particular. Compensating

atmospheric perturbations affects the data processing more than the hardware design.

2.1 Mission Requirements

Mission requirements were taken from the recent GeoSTARe study for ESA [17] which assumes a dual-

band payload. These are summarised in Table 1. The applications relate to measurements of (a) atmo-

spheric phase delay and ground deformation, (b) surface backscatter, and (c) coherent change detection,

and are envisaged at two frequencies: L-band (23 cm wavelength) and X-band (2.5 cm). Using two bands

allows atmospheric effects to be more easily identified and exploits the complementary features of the

bands to improve system usefulness. The desired resolution ranges from 1–2 km down to 10 m, with

corresponding repeat images needed every 15 min to 12 hr, depending on the application. The rank is

a subjective assessment of priority based on the uniqueness of the measurement and its usefulness and

is helpful for setting priorities in system design. Note that some applications such as atmospheric phase

screen measurement, subsidence monitoring and agriculture (primarily soil moisture estimation) require

practically continuous observations, while others will be called on only in response to emergencies (e.g.

flooding, earthquake). The operations plan must be able to accept both these types of use.

The most challenging cases for system design are determined by the spatial resolution, integration time

and wavelength, since these determine a minimum azimuth speed and transmitted power. The minimum
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(mean) azimuth speed is found by re-arranging the equation for azimuth resolution ∆y:

∆y =
rslantλ

2vaztint
vaz,min =

rslantλ

2∆ytint
(1)

Table 1 lists vaz calculated for each application. The most demanding is the snow mass measurement

with a resolution of 200 m required every 2 hr in L-band (3.1 m s−1), but even this is compatible with

many QGS orbits.

Equations 2 to 6 are used for the radar system design. Equation 6 can be used to define a metric to

assess the most demanding requirement in terms of transmitted power. The symbols are: B - bandwidth

(Hz), θ - incidence angle, Lx, Ly ground resolution across- and along-track, tint - integration time, r -

slant range from radar to target, v - typical relative orbit speed, A - antenna area, Amin - minimum

antenna area to avoid image ambiguities, c - speed of light, nprf,min, nprf , nprf,max - minimum, actual

and maximum pulse repetition frequencies (Hz), dx, dy - antenna dimensions in the across- and along-

track directions, Pt - peak transmitted RF power, ft - duty cycle factor (0–1), FSNR - signal to noise

ratio, Fn - receiver noise figure, k - Boltzmann’s constant, Ts - surface temperature (K), σ0 - surface

normalised backscatter coefficient.

B =
c

2Lx sin θ
(2)

tint =
rλ

2Lyv
(3)

A > Amin =
8vrλ tan θ

c
(4)

nprf,min =
2v

dy
6 nprf 6 nprf,max =

cdx
4rλ tan θ

(5)

Ptft =
4πr4FSNRFnkTsλ

2

σ0 cos θA2tintLxLy
(6)

The combination of application parameters cP = λ2/(tintL
2) is proportional to the mean transmitter

power needed (Ptft, hence the subscript P) and depends on the main application parameters (spatial

and temporal resolution and band / wavelength). cP therefore expresses the power demand as a function

of each application’s key parameters: cP is given in Table 1 for each application. The most demanding

application (assuming all need the same signal-to-noise ratio) is earthquake response in L-band (cP =

245×10−12 s−1), and earthquake and subsidence response and volcanoes in X-band (cP = 145×10−12 s−1).

It is interesting (and convenient) that high priority applications such as the atmospheric phase screen

(APS) measurements are relatively undemanding for both azimuth speed and power.

For system design we initially design for the most demanding applications. The final design choice

though may be a compromise between satisfying requirements and the priority of the application - a low

priority application should not be allowed to drive the design to an expensive solution.

2.2 Outline System Design

Radar system design is generally an iterative process. A useful first estimate can be obtained using

the design process outlined in Figure 1. The inputs relate either to the user requirements (e.g. spatial

resolution in across- or along-track directions) or to constraints common to most GEO SAR systems

(slant range r, scene noise temperature, efficiencies, etc.). From these several intermediate variables can

be calculated. Bandwidth and integration time are useful values, although not used directly in this initial

design process.

Antenna area must be chosen larger than Amin (equation 4), and if this is satisfied then the inequalities

for the antenna dimensions will be possible to meet. The product Ptft is the mean transmitted RF power

(equation 6) and so is a useful guide to the required input electrical DC power needed by the radar

transmitter.
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Figure 1 Outline initial system design process.

(a) Minimum antenna diameter to avoid aliasing (b) Mean effective RF power per beam (antenna area is

the larger of 10 m2 and the minimum to avoid aliasing)

Figure 2 Representative dependence of minimum antenna diameter and required RF power on the azimuth component of

the relative orbit velocity (for wavelengths of 1.25, 2.5, 5.0, 10, 20 and 40 cm; incidence angle = 50◦ , range = 38 500 km).

Figure 2 shows the minimum antenna diameter (derived from Amin for a circular antenna) to prevent

imaging ambiguities. In practice the antenna diameter is not reduced below a certain size, because below

this the beam is so wide that the transmitter power needed becomes impractical. Figure 2 also shows

example values for the mean effective RF transmitted power needed (assuming a minimum antenna area

of 10 m2). For high speeds, the power (for a single spot beam) reduces because the larger antenna collects

more power and illuminates a smaller footprint. At low speeds, the area is fixed at a value (A0) larger

than the minimum needed, and the power required reduces in proportion to the speed (using a longer

integration time). Allowing for transmission and power conversion efficiencies, the required electrical

power may be four times Ptft. The power given here is the power per beam: at high orbit speeds many

beams are used simultaneously to give sufficient area coverage and therefore the total power demand does

not decrease.

For low inclination orbits the satellite speed relative to Earth is typically tens of m s−1 to a few hundred

m s−1 (see next section for a more detailed analysis). In these orbits, all the applications of Table 1 can

easily be satisfied in terms of resolution / repeat period. For a moderately large antenna (50–100 m2) the

required RF power per beam is on the order of 100 W (equation 6, Figure 2) which would allow several

beams to be used simultaneously.

3 Choice of Orbit

Orbit choice affects the satellite’s motion relative to Earth and the cost of orbit maintenance. The

motion has two effects: its primary effect is to create a synthetic aperture which is useful for radar

imaging. A secondary effect is to increase its motion relative to other satellites in the GEO region and

so precautions may be needed to minimise collision risks. The cost of orbit maintenance depends on

the mission requirements but a radar mission is likely to require accurate control of the orbits to enable

interferometry (which needs a ground track which repeats within a few 10s of km typically): this can be

quite demanding. There is a final manoeuvre cost to prevent the satellite from entering the protected

GEO region after its end-of-life when orbit control is no longer possible.
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(a) Local incidence angle (b) Azimuth speed

Figure 3 Azimuth speed and local incidence angle during the whole orbit period for points at latitude 50◦ , and longitude

offsets from the satellite of 10, 20 and 30◦ .

3.1 Orbit motion creating the synthetic aperture

A wide variety of synthetic apertures is possible for a given geosynchronous orbit inclination. Geosyn-

chronicity defines the period (equivalently the semi-major axis): other parameters which can be chosen

are the eccentricity, argument of perigee and the right ascension. The eccentricity is the dominant factor

controlling east-west motion; inclination determines the north-south motion. The argument of perigee

controls the relative phase of these two motions and the right ascension determines the orientation of the

orbit plane in inertial space. Feasible ground track shapes include ellipse, circle and straight line. For

simplicity, this section considers an orbit with zero eccentricity. The ground track of these orbits is a

figure-of-eight elongated in the north-south direction, with maximum excursion equal to the inclination

(a type of analemma).

East-west motion is especially useful for imaging areas to the north and south of the satellite; north-

south motion is useful for imaging to east or west. The azimuth speed is the component of the velocity of

the satellite relative to Earth which is perpendicular to the slant range and local surface normal, i.e. the

component which creates the synthetic aperture to give azimuth resolution. Figure 4 shows contours of

the highest azimuth speed observed by points in view of the satellite for a circular orbit with inclination

7.5◦ and which crosses the equator at -10◦ (west). The maximum speed is over 400 m s−1 but along the

analemma axis the azimuth speed drops practically to 0. The figure also shows local incidence angles

at the time of equator crossing. Figure 3 shows how the azimuth speed (and the local incidence angle)

change during an orbit for three example positions (all have latitude 50◦ N, their longitudes are 10, 20

and 30◦ east of the satellite).

The local azimuth speed changes during an orbit, with a sinusoidal motion. The times when speed is

close to zero will not be useful for synthetic aperture imaging, but the minimum useful orbit speeds in

Table 1 are all low and therefore these imaging gaps are short for low inclination orbits (but not QGS

orbits). The fact that the azimuth speeds change so much during an orbit (and depend on target position)

means that image focussing must adapt to the changing velocity and is therefore more complicated than

for conventional low Earth orbit radar.

Incidence angles of 20–65◦ are satisfactory for radar imaging. Much of Europe falls inside these limits

for the example geometry, although high latitudes and the equatorial region “below” the satellite cannot

usefully be imaged. The change in local incidence during an orbit is modest for the example positions

and so should not generally be significant.
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Figure 4 Contours of maximum azimuth speed (m s−1) and local incidence angle for a GEO SAR satellite with a circular

orbit, inclination 7.5◦ , positioned at longitude -10◦ .

3.2 Cost of orbit maintenance

For satellites, the cost for station-keeping is measured in terms of the cumulative velocity change the

thrusters must achieve, often expressed as m s−1 per year. For typical communication satellites in the

GEO region, this cost is about 50 m s−1 yr−1. For satellites with non-zero inclination, this cost varies

with inclination and right ascension. There is a minimum cost for the Laplace orbit plane [13], but away

from that the cost increases.

Alcalda Barahona [18] estimated the cost of north-south station-keeping in GEO as a function of orbit

inclination and right ascension. The method was to simulate the orbit (including the most significant

gravitational perturbations), and then to calculate the manoeuvre needed after a given period of time

to return a satellite to its original orbit. The manoeuvre cost was then normalised by the period to

give the annual cost: the results are shown in Figure 5 (and were largely insensitive to the reference

period chosen). This method does not give exact values, but should be useful for feasibility studies. As

expected, there is a clear minimum cost for the Laplace orbit plane, and the value around the equatorial

ring is close to 50 m s−1 yr−1. Away from these orbits, the cost varies significantly and can be above

200 m s−1 yr−1 for some high inclination orbits.

Figure 5 suggests that care should be taken in choosing the orbit for GEO SAR. Orbits with high

inclinations may be expensive to maintain to the accuracy needed to allow interferometry. To take
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(a) Annual station-keeping cost as a function of orbit inclination and right ascension

(b) Annual station-[keeping cost, detail around the Laplace orbit

Figure 5 Annual station-keeping cost to cancel the North-South drift due to luni-solar gravitational perturbations in

GEO (Alcalda Barahona, 2015).

advantage of the Laplace orbit properties, the inclination and right ascension must be within a few

degrees of the ideal values which limits the choice of orbit. Although the calculations have been done for
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(a) Atmospheric phase screen (b) Snow mass

Figure 6 RF power requirement timeline based on three beams steered sequentially for two representative user applications

(L-band, azimuth speed = 200 m s−1, 12 m diameter antenna).

circular orbits, we do not anticipate any significant change in these values if the eccentricity is non-zero

but modest (up to 0.1, say).

3.3 Cost of end-of-life disposal

Space debris mitigation standards define graveyard orbits to which GEO satellites should be moved at end

of life [19]. The GEO graveyard region is 200 km above (and below) the geostationary ring: therefore an

end-of-life manoeuvre is required to transfer the satellite to outside the geosynchronous protected region

(and the final orbit should be close to circular to minimise orbit perturbations which might cause it to re-

enter the protected region). For a circular geosynchronous orbit this is a modest demand of 10–15 m s−1.

If the orbit is eccentric then the propulsion demand can be higher: in this case the manoeuvre assumed

is a single thrust to circularise the orbit at its apogee height (similar to the second half of a Hohmann

transfer [20]), and the cost is proportional to eccentricity (up to at least e = 0.1) and is 15 m s−1 per

0.01 of eccentricity. Enough propellant should be reserved for this final manoeuvre.

4 Discussion

Two aspects of mission design relating to low inclination orbits are discussed here. The first is the

usefulness of beam steering and the second is the usefulness of Laplace plane orbits for GEO SAR.

4.1 Using multiple beams

For the QGS GEO SAR concepts there may only be a single beam which stares continuously at the

target area. The footprint may be large enough for these missions to cover a wide area on the order of

1 000 km in size using L-band. However, for higher inclination orbits than QGS the antenna is likely to

be larger resulting in a smaller beam footprint. In these cases it will be necessary to use multiple beams

to cover a large region. The beams may be simultaneous by using multiple feeds for the antenna or an

electronically-steered antenna, or may be imaged sequentially. Figure 6 shows the RF power demand

timeline for two representative applications from Table 1: in both cases the power demand for three

sequential beams is shown. It can be seen that the RF power demand is modest (about 500 W RF for

the snow mass case and less than 50 W for the APS measurements). With the orbit speed assumed

(200 m s−1) the images are acquired quickly leaving time to increase the total area covered by steering

the beam to new areas before repeat images are needed.

A simple metric for imaging “efficiency” is the energy needed per unit area (E0) to form an image

of a given quality. This is obtained by dividing the product of mean power Ptft and integration time
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tint by the footprint area of a beam (Af = r2Ω/ cos θ, where Ω = λ2/A is the solid angle subtended by

the antenna). Based on equation 7 a large antenna leads to more efficient imaging, but to use a large

antenna well the beam should be steered. Imaging modes will typically be either spotlight or squint: the

conventional strip-map mode is unlikely to work well for orbits where the ground track velocity keeps

changing.

E0 = Ptfttint

Af
= PtfttintA cos θ

r2λ2 = 4πr2FSNRFnkTs

σ0ALxLy
(7)

Both these aspects point to a need for agile steering of the beam footprint, and possibly being able to

use multiple beams simultaneously, to maximise the usefulness of GEO SAR missions with medium to

large antennas. This corresponds to missions using inclinations above a degree or so.

4.2 Laplace plane orbits for GEO SAR

The Laplace plane is an intriguing option for GEO SAR missions. Much reduced station-keeping demands

compared to other orbits is attractive and offers the possibility of long lifetime missions since propellant

demand should be lower. However, to preserve any benefits of the Laplace plane, the orbit inclination

and right ascension should not differ much from those of the Laplace plane (perhaps within 30◦ in right

ascension and just a few degrees in inclination). This constrains mission design.

An initial assessment of the constraints on mission lifetime (assuming that propellant consumption

no longer dominates this) suggests that critical components such as batteries may become life-limiting.

This probably means that the extended lifetime (beyond the standard 15 yr life of GEO communication

satellites) may be 20–25 yr. This improves the mission cost-effectiveness, and Earth observation (EO)

is a service for which the requirements are not expected to change radically over a few decades (unlike

commercial communications) - in fact continuity of observations is a significant advantage in EO. On-orbit

servicing could change this perspective and may become a reality within a few decades.

4.3 A baseline Laplace plane GEO SAR mission design

A specific GEO SAR mission design was developed to evaluate the benefits of Laplace plane orbits [12].

The study includes all the main aspects of mission design. The mission requirements were to use the

Laplace plane orbit for GEO SAR imaging for the applications listed in Table 1. The study team’s

proposed design is dual-band with two 13 m antennas. A relatively high eccentricity of 0.089 was chosen so

that the East-West and North-South motions were similar, giving a circular ground track. The estimated

dry mass of the satellite was 2153 kg. Assuming chemical propulsion, the fuel mass was 3087 kg (most

of which is needed for the initial orbit insertion). The total electrical power demand of 6.2 kW is mainly

for the payload (4.5 kW).

This mission design illustrates some of the points discussed above:

• The Laplace plane orbit does reduce station-keeping costs (to below 15 m s−1 yr−1) although the

orbit insertion and disposal manoeuvres are more expensive for eccentric orbits. For mission lifetimes

beyond about 7 yr the Laplace plane orbit required less fuel than a geostationary orbit, and the fuel load

for a typical 15 yr comsat lifetime would be sufficient for about 30 yr of the Laplace plane mission.

• For good area coverage it is useful to have a large antenna which can form many beams simultane-

ously. This baseline study assumed 19 spot beams creating a hexagonal footprint. Antennas are thus a

key technology for this type of GEO SAR mission.

5 Conclusions

The analysis and discussion presented above support the suggestion that low inclination orbits are useful

for GEO SAR imaging. The Laplace plane does have attractive features, but it is also a relatively

constrained opportunity if the benefits of low orbit maintenance are to be realised. Low inclination orbits

do seem to offer good imaging performance which can be achieved without needing especially challenging

antenna sizes or transmitter power.
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User requirements such as those presented in Table 1 are the core of mission design. Requirements

should be reviewed as a design develops to ensure the best match between user needs and the design

solution. A prioritisation of the requirements is useful to guide designers when compromises in the design

have to be accepted. One of the challenges for GEO SAR will be to plan the operations to serve both

those requirements needing continuous, regular imaging and those needing rapid response to specific

emergencies. Another challenge is the wide range of imaging geometries across the satellite’s field of view

and during a day. This certainly complicates the data processing: however, it seems difficult rather than

impossible.

Although the antenna size needed is not demanding, the ability to use multiple spot beams simulta-

neously (perhaps with full polarisation capability and more than one band) may be. The analysis above

and the baseline mission design suggest that multiple beams will be needed to achieve useful area cov-

erage and to exploit the radar effectively: antenna design to enable this requires further study. Unlike

low Earth orbit radars, a permanent communication link to ground should be easy to achieve since the

satellite will be continuously in view of ground stations and a duty cycle well above 50% seems realistic.

In summary, low inclination orbits offer several advantages over the quasi-geostationary orbits for GEO

SAR while also being simpler to implement than the high inclination orbit missions. Orbits close to the

Laplace plane may be useful if the limited choices of orbit inclination and right ascension are acceptable.
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Table 1 User requirements based on the GeoSTARe study (TN01v7, pers. comm., Table 2) (APS = Atmospheric Phase

Screen, EQ = EarthQuake; λ = 23 cm for L-band or 2.5 cm for X-band; trepeat is shown as 24(12) if data are needed every

24 hr since 12 hr is the maximum period before the satellite motion starts to repeat; vaz,min and cP relate to mission

performance requirements and are defined in section 2.1)

(a) Phase

Application Band L trepeat δl Rank vaz,min cP

(m) (hr) (mm) (m s−1) (10−12 s−1)

APS L 2000 0.25 10 1–3 2.5 15

EQ interseismic L 100 24(12) 10 6 1.0 122

EQ response L 100 6 10 7 2.0 245

Snow mass L 200 2 10 4 3.1 184

Glacier X 20 24(12) 1 16 0.6 36

Landslide (motion) X 20 6 2 14 1.1 72

Subsidence X 10 12 2 15 1.1 145

Volcano (intra) X 20 3 10 5 2.2 145

(b) Backscatter

Application Band L trepeat NEσ0 Rank vaz,min cP

(m) (hr) (dB) (m s−1) (10−12 s−1)

Agriculture L 100 24(12) -18 12 1.2 15

Hydrology L 1000 1 -18 13 1.0 122

Snow cover L 200 24(12) -23 11 0.5 31

Agriculture X 50 3 -14 12 0.9 23

Flooding X 30 2 -14 8 2.2 96

Snow cover X 50 2 -14 11 1.3 35

(c) Coherent change detection

Application Band L trepeat Rank vaz,min cP

(m) (hr) (m s−1) (10−12 s−1)

EQ response L 100 6 7 2.0 245

Volcano (intra) L 100 12 5 2.0 122

EQ (response) X 10 12 7 1.1 145

Flooding X 30 2 8 2.2 96

Landslide (response) X 30 6 10 0.7 32

Volcano (response) X 20 3 9 2.2 145
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