

Accepted Manuscript

Coarray-based Load Balancing on Heterogeneous and Many-Core
Architectures

Valeria Cardellini, Alessandro Fanfarillo, Salvatore Filippone

PII: S0167-8191(17)30084-4
DOI: 10.1016/j.parco.2017.06.001
Reference: PARCO 2382

To appear in: Parallel Computing

Received date: 14 October 2016
Revised date: 23 May 2017
Accepted date: 1 June 2017

Please cite this article as: Valeria Cardellini, Alessandro Fanfarillo, Salvatore Filippone, Coarray-based
Load Balancing on Heterogeneous and Many-Core Architectures, Parallel Computing (2017), doi:
10.1016/j.parco.2017.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.parco.2017.06.001
http://dx.doi.org/10.1016/j.parco.2017.06.001

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Coarray-based Load Balancing on Heterogeneous

and Many-Core Architectures

Valeria Cardellini

University of Rome Tor Vergata, Italy

Alessandro Fanfarillo∗

National Center for Atmospheric Research, USA

Salvatore Filippone

Cranfield University, UK

Abstract

In order to reach challenging performance goals, computer architecture is
expected to change significantly in the near future. Heterogeneous chips,
equipped with different types of cores and memory, will force application
developers to deal with irregular communication patterns, high levels of par-
allelism, and unexpected behavior.

Load balancing among the heterogeneous compute units will be a critical
task in order to achieve an effective usage of the computational power pro-
vided by such new architectures. In this highly dynamic scenario, Partitioned
Global Address Space (PGAS) languages, like Coarray Fortran, appear a
promising alternative to standard MPI programming that uses two-sided
communications, in particular because of PGAS one-sided semantic and ease
of programmability. In this paper, we show how Coarray Fortran can be
used for implementing dynamic load balancing algorithms on an exascale
compute node and how these algorithms can produce performance benefits
for an Asian option pricing problem, running in symmetric mode on Intel
Xeon Phi Knights Corner and Knights Landing architectures.

∗Corresponding author
Email addresses: cardellini@ing.uniroma2.it (Valeria Cardellini),

elfanfa@ucar.edu (Alessandro Fanfarillo), Salvatore.Filippone@cranfield.ac.uk
(Salvatore Filippone)

Preprint submitted to Parallel Computing June 2, 2017

li2106
Text Box
Parallel Computing, Volume 68, October 2017, Pages 45-58DOI:10.1016/j.parco.2017.06.001

li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with:Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0). The final published version (version of record) is available online at DOI:10.1016/j.parco.2017.06.001. Please refer to any applicable publisher terms of use.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: Partitioned Global Address Space, Coarray Fortran, Many-core

1. Introduction

Solving scientific problems using multi- and many-core devices at the
same time, possibly doing different types of computation, will be highly re-
warded in the exascale era, where each compute node will be equipped with
specialized and heterogeneous hardware.

In 1974 Dennard et al. [1] formulated a scaling law (related to MOS-
FETs) saying that as transistors get smaller, their power density stays con-
stant, so that the power use stays in proportion with the area. Since around
2005/2007, Dennard scaling appears to have broken down. The primary rea-
son cited for the breakdown is that at small sizes current leakage poses greater
challenges, and also causes the chip to heat up, creating a threat of thermal
runaway and therefore further increasing energy costs. The failure of Den-
nard’s law and the validity of Moore’s law will make impossible to power-on
all the transistors simultaneously at the nominal voltage, while keeping the
chip temperature in the safe operating range. When many transistors are
easily available (almost for free compared to the cost of energy) but power is
very limited, circuit specialization may be the solution. As explained in [2],
transistors can be “spent” in order to “buy” power efficiency. For example,
a circuit might have many different special-purpose cores that perform one
task very efficiently but are dark the rest of the time. It is therefore almost
certain that in the near future energy constraints will lead to highly hetero-
geneous processors, equipped with several specialized circuits. Furthermore,
energy will not only impact on computation but also (and particularly) on
communication, both within and among nodes. Indeed, the energy required
for off-chip communication will be much higher than that required for mere
computation.

In this scenario, load balancing strategies, at different levels, will be criti-
cal to obtain an effective usage of the heterogeneous hardware and to reduce
the impact of communication on energy and performance. Implementing effi-
cient dynamic load balancing algorithms, capable of managing heterogeneous
hardware, can be a challenging task, especially when a parallel programming
model for distributed memory architecture, like message passing, is employed.
The message passing programming model has been shown to be effective in
several problems in High Performance Computing, in particular with homo-
geneous and regular applications, where the time required by communication

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and computation phases can be accurately estimated and perturbations are
rare and with limited impact. Heterogeneity and task-based parallelism in-
troduce a much more dynamic and unpredictable environment; this requires
an alternative approach to the message passing model.

The ease of programming and asynchronous semantics provided by Parti-
tioned Global Address Space (PGAS) languages, like Coarray Fortran (CAF) [3],
UPC [4] and Chapel [5], can be used very effectively on heterogeneous hard-
ware and/or when complex parallel algorithms must be implemented effi-
ciently.

In this work we present a case study focusing on the load balancing of
a Monte Carlo simulation for computing Asian option pricing. Thanks to
its simple implementation and parallelization, this problem enables a clear
demonstration of the effects of load balancing when applied to heterogeneous
compute units. The basic ideas and part of the underlying code, related to
the Asian options pricing problem and optimized for Intel Xeon and Xeon
Phi architectures, have been taken from [6] with the kind permission of the
authors.

Specifically, we show how a PGAS-based approach can be truly effective
for implementing a dynamic load balancing algorithm, with the ability to
manage heterogeneous compute units and unexpected behaviors. In order to
simulate a hypothetical exascale node equipped with heterogeneous compo-
nents, we run our tests on a single compute node equipped with 2 CPUs and
2 Intel Xeon Phis Knights Corner (KNC) in symmetric mode; this mode of
operation supported by the Intel Xeon Phi allows us to run the same par-
allel application on both components (i.e., CPUs and Intel Xeon Phis) as a
regular MPI application.

Our results also show that by running different versions of the same ap-
plication, at the same time, on the appropriate compute units we can achieve
a significant performance improvement. Moreover, our experiments demon-
strate how a CAF-based load balancing algorithm can also effectively deal
with unexpected situations, where one or more computational units go slower
than others because of frequency throttling. Finally, we provide a perfor-
mance comparison on the new Knights Landing (KNL) architecture between
a traditional two-sided approach based on MPI and an asynchronous one-
sided approach based on CAF.

To the best of our knowledge, our work presents the first attempt at
running a parallel application, based on Coarray Fortran, on CPUs and In-
tel Xeon Phis in symmetric mode using dynamic load balancing strategies.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In [7], Lua et al. discuss the intra-node memory access problems and host-to-
XeonPhi connection issues for running UPC [4] applications on a Intel Xeon
Phi system under native and symmetric programming modes. They find
out several significant problems that affect UPC when running on many-core
systems like Intel Xeon Phi, such as the communication bottleneck between
Accelerator and host, unbalanced physical memory, and computation power
issues. They conclude that adopting a load balancing strategy among In-
tel Xeon Phis and CPUs can be a significant optimization for applications
running in symmetric mode. With respect to our own work in [8], we show
that CAF-based load balancing can effectively deal with both unexpected
behaviors and new architectures, such as the KNL one.

Although we focused on the Asian Options pricing problem, the strategy
and algorithms presented in this work are totally general and can be applied
to any embarrassingly parallel problem.

The rest of this paper is organized as following. In Section 2 we pro-
vide some background on PGAS and CAF. In Section 3 we describe the
approaches for dynamic load balancing on heterogeneous nodes based on
MPI and CAF. In Section 4 we present some considerations on CAF-based
dynamic scheduling using Asian option pricing described in Section 4.1 as a
reference problem, with two possible parallel implementations. In Section 5
we discuss the experimental results, using CPUs and Xeon Phis in different
ways in order to exploit as much heterogeneity as possible. Finally, we draw
our conclusions and outline future work in Section 6.

2. PGAS and Coarray Fortran

The PGAS model is a parallel programming model that assumes a global
memory address space logically partitioned, with a portion of the memory
being assigned to a specific processor. The model attempts to combine (and
to get the best from) the Single Program Multiple Data (SPMD) approach,
used in distributed memory systems, with the semantics of shared memory
systems. In the PGAS model, every process has its own memory address
space but mechanisms are available to share a portion of that address space
with other processes.

The most common PGAS languages include Coarray Fortran (CAF) [3, 9],
Unified Parallel C (UPC) [4] and Chapel [5]. PGAS languages rely on one-
sided communication semantics: a process can get/put data from/to a mem-
ory segment exposed by another remote process, without explicitly involving

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the application on the remote node. Several modern networks allow the
implementation of one-sided communications with Remote Direct Memory
Access (RDMA), where the network interface directly takes care of the data
transfer, without involving the remote CPU. There are several cases when a
PGAS approach can easily solve difficult message passing situations because
of the one-sided semantic; in general, whenever the communication is irregu-
lar and/or there is space for overlapping communication with computation,
PGAS languages can show significant performance advantages. In this pa-
per, we show how a PGAS language like Coarray Fortran can be effectively
used for implementing dynamic load balancing algorithms which are suitable
for heterogeneous platforms.

Coarray Fortran (also known as CAF) is a syntactic extension of Fortran
95/2003 which was proposed in the early 1990s by Robert Numrich and
John Reid [3] and is now part of the Fortran 2008 standard (ISO/IEC 1539-
1:2010) [9]. The main goal of coarrays is to allow Fortran users to create
parallel programs without the burden of explicitly invoking communication
functions or directives, as is the case with MPI and OpenMP.

A program that uses coarrays is treated as if it were replicated at the start
of execution, and each replication is called an image. Each image owns its
data, executes asynchronously and explicit synchronization statements are
used to maintain program correctness. A typical synchronization function
is sync all ; it can be intended as a barrier for all images. A piece of code
contained between synchronization points is called segment and a compiler is
free to apply all its optimizations inside a segment. An image has an image
index, that is a number between one and the number of images (inclusive). In
order to identify a specific image at run time or the total number of images,
the this image() and num images() functions are provided.

A coarray is a data item that is visible to all participating images; it
can be a scalar or array, static or dynamic, and of intrinsic or derived type.
The Coarray definition included in Fortran 2008, as standardized by ISO/IEC
1539-1:2010, defines a simple syntax for accessing data on remote images, syn-
chronization statements and collective allocation and deallocation of memory
on all images. Although these features allow one to write a totally func-
tional coarray program, they do not allow the expression of more complex
and useful mechanisms for synchronization, images organization and failure
management. The Technical Specification 18508 (TS 18508) [10], which will
be included in the Fortran 2015 standard, proposes the following extensions
to the coarray facilities defined in Fortran 2008:

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. teams;

2. failed images;

3. events;

4. new intrinsic procedures (collectives and atomics).

Support for teams allows to group images into non-overlapping sets in or-
der to execute different parts of the same application independently. Failed
images provide a mechanism to identify what images have failed during the
execution of a program. Events provide a fine grain ordering of execution
segments based on a limited implementation of the well known semaphore
primitives. Finally, new collectives and atomic intrinsics provide intrinsic
procedures for commonly used collective and atomic memory operations (e.g.
ATOMIC FETCH ADD). These procedures can be highly optimized for the
target computational system, providing significantly improved program per-
formance.

Since the inclusion of coarrays in the Fortran standard, the number of
compilers implementing them has increased, and now Coarrays are supported
by the Cray Fortran compiler, the Intel ifort, GNU Fortran, the Rice com-
piler, the OpenUH compiler, and the g95 compiler. OpenCoarrays [11] is
an open-source transport layer supporting Coarray Fortran compilers. This
library is currently the transport layer used by the GNU Fortran compiler;
it provides several implementations based on different underlying commu-
nication layers, with the most complete and stable version being the one
based on MPI-3.0. OpenCoarrays already supports several coarray features
listed in TS 18508 [10], including Events and the new atomic intrinsics like
ATOMIC FETCH ADD.

A very natural question arises when dealing with all coarray implemen-
tations based on MPI: what is the point when a user might call the MPI
one-sided functions directly from the application? There are two main issues
with this approach:

1. The syntax and semantics of the MPI one-sided functions are much
more complex and error-prone than the syntax of Coarray Fortran,
and thus require a significant programming effort;

2. Using MPI explicitly, the code is tied to that specific parallel program-
ming system, whereas using coarrays, it is possible to keep the same
syntax (and the same code) while changing the underlying communi-
cation layer.

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

As an example, it is possible to replace the MPI-based implementation of
OpenCoarrays with the GASNet-based implementation without changing a
line in the source code; a similar change for an MPI base program would
require a significant recoding effort.

3. Load Balancing on Heterogeneous Nodes

Load balancing on heterogeneous nodes is a critical task in order to get
high performance. The hardware heterogeneity makes it difficult to ensure
reasonably uniform resource utilization, thus leading to performance losses
due to load imbalance [12].

The effect of the load balancing algorithm can be highlighted by applying
it to an embarrassingly parallel problem, that is, a problem that can be
split in multiple subproblems independent from each other. In this way, the
nonlinear effects due to the interaction among subtasks are reduced to the
barest minimum of contention for resources, and the speedup of the parallel
application depends only on the efficiency and implementation of the load
balancing algorithm. One such application will be described in more detail
in Section 4.1.

Achieving an efficient static load balancing, conducive to very high perfor-
mance, requires collection of performance data with benchmark runs; poten-
tially many such runs may be needed to determine the correct ratio between
CPU and Xeon Phi.

A dynamic load balancing approach relieves the users from performing
preliminary tuning and allows them to manage unexpected performance per-
turbations in a transparent way. This flexibility comes at the price of an
increased implementation and communication cost and raises some ques-
tions about dynamic workload scheduling. In this section we review how
to realize a dynamic load balancing strategy based on the traditional MPI
two-sided routines, after which we move onto the details of a CAF-based
solution. The latter will be proven to be a valid alternative to MPI, thanks
to its lightweight one-sided communication model and low overhead synchro-
nization semantics.

3.1. Dynamic Workload Scheduling based on MPI

The most performing version of dynamic workload scheduling presented
in [6] is based on a multi-threaded (MT) approach. One thread of processor
0 is dedicated to communication purposes, whereas the others are used for

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

computation only. The communication thread keeps invoking a blocking
MPI Recv, in order to get messages from unspecified sources. As soon as a
message arrives, the thread increments by one the workload counter variable,
and sends the old index to the origin process (which is waiting for a reply).
The master sends only one work unit for each request, then each process will
use several threads to parallelize the compute intensive part of the Monte
Carlo simulation.

3.2. Dynamic Workload Scheduling based on CAF

Coarray Fortran allows to directly access the memory exposed by other
processes through get or put operations without explicitly involving the tar-
get process. This asymmetric paradigm can be used very effectively in those
cases where processes cannot predict if and when a message will arrive.

Besides usual synchronization mechanisms (full and partial barriers) and
one-sided transfer subroutines, CAF provides a set of atomic operations.
Among them, the ATOMIC FETCH ADD function allows to perform an
atomic fetch of the data from a remote memory segment and to update the
remote value, by summing a new constant number. This intrinsic completely
replaces the spinning communication thread adopted by the dynamic work-
load scheduling based on MPI that we have described in Section 3.1.

Unfortunately, the CAF implementation provided by the Intel compiler,
which is required to run on Intel Xeon Phi (KNC), does not provide atomic
operations like ATOMIC FETCH ADD. In order to face this issue, we imple-
mented a wrapper module that makes the OpenCoarrays library [11] usable
by any Fortran compiler. Since all communication functions of the Open-
Coarrays library are based on MPI-3.0, we are able to compile it for both
CPU and Intel Xeon Phi with the Intel Compiler and use it through the
wrapper module.

Although MPI-3 offers great portability, several MPI implementations
provide one-sided routines that do not take full advantage of the underly-
ing network interconnect. For a PGAS communication library, the lack of
fully asynchronous passive communication routines represent the most im-
portant limiting factor. In [13], we investigate the issue of asynchronous mes-
sage progress in MPI applications, especially why it is hard to obtain even
on networks equipped with adequate hardware. With currently available
high-performance networks, there are essentially three strategies for making
progress: manual progress, thread-based progress, and communication of-
fload. Hoefler et al. [14] describe all three strategies and analyze the thread-

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

based approach. They conclude that the thread-based progress, using polling
(by-passing the operating system), is beneficial only when separate computa-
tion cores are available for the progression thread. Using an interrupt-based
approach (passing through the operating system) might be helpful in the case
of oversubscribed nodes (the progress and user threads share the same core).

4. Implementing CAF-based Dynamic Scheduling: Case Studies

Given that the ATOMIC FETCH ADD intrinsic provided by Coarray
Fortran allows to sum any constant number to the remote variable, a good
idea for reducing the amount of transfers is to get more than one work unit
per request. This idea carries with it a very simple but important question:
what is the right number of work units to assign to each device? Fortunately,
this is a well known issue addressed since the beginning of the past century,
where scheduling problems were related to manufacturing industry.

To study the effectiveness of the algorithms described in Section 3, we
present now a use case from finance.

4.1. Asian Option Pricing

An option is a contract between a buyer and a seller which allows one
party to buy or to sell, on a future date, an asset from/to another party at
a “strike price” agreed upon signature of the contract. The Asian options
are a particular class of options in which the option payoff is calculated
based on the mean price of the asset, sampled over a pre-specified period of
time [15]. This strategy reduces the risk associated with market volatility
and short-term market manipulation. To make a profit, the seller of the
option must set a price that offsets the anticipated risks associated with the
asset price fluctuations. Asian options are commonly traded on currencies
and commodity products which have low trading volumes.

Since there are no known closed form analytical solutions for pricing the
Asian options, a variety of techniques have been developed to study this
problem, resulting in a vast amount of related works. Popular techniques
include Monte Carlo simulation, numerical inversion of the Laplace transform
of the Asian option price as in [16], numerical partial differential equation
(PDE) techniques such as in [17], and various approximations such as those
proposed by Turnbull et al. [18].

Using Monte Carlo simulation, multiple stochastic histories of the asset
price are simulated based on the available information of the asset volatil-

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ity [15, 19, 20]. Each Monte Carlo simulation is independent from the others
and does not require intensive data transfers; therefore, this method can be
categorized as embarrassingly parallel.

Suppose the task is to price N options, where for each option we have
different sets of parameters. For each option, we will simulate P random
paths and perform statistical analysis using these simulations. Adopting a
parallel hybrid approach based on MPI+OpenMP, organized according to
the usual master-worker paradigm, there are two different ways to proceed:

1. compute T options in parallel on each process using OpenMP, each of
which will run P simulations;

2. compute one option at a time on each process, running P simulations
in parallel with OpenMP.

From now on, we will refer to the first approach as MO (multi-option) and to
the latter as MT (multi-threaded). In Figures 1 and 2 we provide a graphical
description of the MO and MT approaches, respectively. Note how, for the
MT approach, increasing the number of options on the device does not change
the utilization of the internal compute units.

Figure 1: T options running on T OpenMP threads (MO approach)

We then need to consider what is the right number of options per device;
to answer this question we need to analyze performance and consequences of
the alternatives of multiple options per process (MO) and multi-threading on
single option (MT). In both cases, we want to complete as soon as possible
the pricing for all the options, given a fixed total number of options. This also
means that we want to maximize the throughput expressed as the number
of random simulations per second.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: P simulations of a single option running on P OpenMP threads (MT approach)

We present here a few alternatives, with some preliminary performance
data; a complete performance analysis will be presented in Section 5.

4.2. Multiple Options per Process (MO)

In the first case, T options are run in parallel, on each process, using
OpenMP. Each thread will run P simulations, related to only one option,
using as much as possible the AVX-2 and IMCI vector instructions, installed
on Intel Haswell and Intel Xeon Phi Knights Corner, respectively. From
a scheduling point of view, CPUs and Xeon Phis can be seen as parallel
machines, parametrized by the number of cores.

In this scenario, the throughput of each device will increase as the number
of assigned options increases until the device reaches its capacity. Figures 3
(a) and (b) show the throughput while varying the number of options assigned
to CPU and Intel Xeon Phi, respectively.

Each curve in Figures 3 (a) and (b) is labeled with the corresponding
number of threads used in the computation. In particular, since each compute
node has 2 CPUs with 8 cores each, we report the throughput using only one
CPU (8 threads), as well as using both CPUs (16 threads).

It is clear that the maximum throughput is reached when the number of
options is equal to the number of cores (threads) available on the device, or
a multiple thereof.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

T
hr

ou
gh

pu
t (

op
tio

ns
/s

ec
)

Number of options

8 threads
16 threads

(a) CPU

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

T
hr

ou
gh

pu
t (

op
tio

ns
/s

ec
)

Number of options

240 threads

(b) Intel Xeon Phi

Figure 3: Performance comparison: throughput.

4.3. Multi-threading on Single Option (MT)

In this case, only one option is assigned to each process and P Monte
Carlo simulations are run in parallel using OpenMP; within each simulation,
vectorization is used as much as possible. From a scheduling point of view,
CPUs and Xeon Phis can be seen as single machines with different service
times. In other words, all the cores inside each device are already running at
their maximum. Assigning more options to each device represents a queue
of tasks that does not impact on the throughput.

4.4. Analysis of the Two Approaches

Minimizing the time needed to compute for all the options, using a hetero-
geneous node equipped with four devices (2 multi-core CPUs and 2 many-core
Intel Xeon Phis), can be seen as a makespan minimization problem without
preemption. The makespan represents the length of the schedule or, more
precisely, the time when the last job leaves the system. Minimal makespan
usually represents very good load balance.

From scheduling theory, finding a deterministic schedule that minimizes
the makespan on 2 identical parallel machines, with jobs having different
processing time, is an NP-hard problem. In our case, heterogeneity adds a
further level of complexity and can be seen as a direct generalization of the
homogenous problem.

As a first step towards the creation of an effective heuristic, we notice that
the heterogeneous problem can be easily transformed into a homogeneous
problem. The idea is to find the ratio in the amount of work to be submitted

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to CPU and Xeon Phi such that both devices end the computation at the
same time. This rule transforms the parallel problem from heterogeneous to
homogenous but does not tell us the exact amount of work to assign to each
device.

We mentioned previously that minimizing the makespan also means max-
imizing the throughput; this means that the amount of work to be given to
the heterogeneous devices, while still respecting the optimal ratio, has to
ensure maximum throughput on all devices.

Let us now consider the new homogeneous problem where all the devices
work at maximum throughput and with the correct ratio of options. This
problem can be now addressed by applying the usual heuristics suitable for
Pm|Cmax problems, i.e. find a schedule such that the makespan is mini-
mized while running jobs on m homogeneous parallel machines.

One of the most popular heuristics is the Longest Processing Time first
(LPT) [21]. The idea is to place the shorter jobs towards the end of the
schedule, where they can be used for balancing the load. In our case, this
heuristic suggests to keep the amount of work on each device as small as
possible, in order to limit the idle time on all devices, as far as possible. As
a last consideration, we need to reduce the communication costs as much as
possible by sending more than one option at time to each device.

Summarizing:

1. All devices should take the same amount of time between two consec-
utive communications in order to emulate homogeneity;

2. All devices should work as close as possible to their maximum through-
put;

3. The amount of work to be given to each device should to be as small
as possible towards the end of the entire computation;

4. Communications with the master process should be reduced as much
as possible.

For MO, respecting condition #2 means to send 240 options to each Xeon
Phi and 8 options to each CPU, but this conflicts with rule #1. Furthermore,
such a large amount of data on each device also conflicts with rule #3; in
fact, reducing the amount of work close to the end of computation means that
each device does not work at maximum throughput any longer. Viceversa,
keeping the amount of computation at the maximum will likely leave some
devices without enough work to do.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, for the MT approach, even with a single option,
condition #2 is always respected and condition #1 can be easily addressed.
The only two conditions that interfere with each other are #3 and #4.

Reducing the number of communications means increasing the amount of
work to be given to each process; on the other hand, this increases the risk
of having idle devices towards the end of the scheduling.

As already noted, for MO we cannot give to the devices less options than
the number ensuring maximum throughput; in our case, 240 for the Xeon
Phis and 8 for the CPUs. Such restriction will most likely produce a situation
where one or more devices will not be able to get enough options and they
will spend all the remaining time in the idle state.

With the MT approach, we are guaranteed to get the maximum through-
put even with only one option per device. This allows us to simulate homo-
geneity by adjusting the number of options to assign to each device.

Figure 5 shows the maximum performance achievable for each single de-
vice, running the MT and MO implementations. Note how the latter (MO
in the chart) has better performance than the former (MT).

4.5. Hybrid Approach

An appealing idea would be to merge the two versions together and ex-
ploit as much as possible the characteristics of the available heterogeneous
hardware. Because a CPU running the MO version provides higher per-
formance than its MT counterpart, we decided to run the MO code, using
eight options, only on one CPU (i.e., CPU1 which is the “furthest” from the
master) and run the MT version on the other devices, balancing the load ac-
cordingly. An instance of scheduling related to this configuration is depicted
in Figure 4. From now on, we will refer to this hybrid version as MTH.

4.6. Unexpected Slowdown

One of the most important advantage of a dynamic load balancing ap-
proach is the ability to manage unexpected slowdown events on one or more
compute units. As noted in Section 1, unexpected behaviors due to fre-
quency throttling are in general unavoidable, and therefore we have to cope
with their consequences. In this scenario, taking one option at time repre-
sents a good solution in terms of flexibility; however, choosing more than one
option at a time may still be a better performing solution if we can have a
fully collaborative approach.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Instance of scheduling for MTH

The idea is then to provide information about the class of devices installed
on the heterogeneous node (in our case, there are only two classes: CPUs and
Xeon Phis) and perform an intra-group check in order to understand whether
a device is experiencing a slowdown. In such a case, the remaining devices
increase the amount of work units in order to compensate the slowdown.

5. Experimental Results

In this section we present a set of experiments on multiple platforms.
First of all, we analyze the performance of MT and MO on individual de-
vices (without inter-process communication) using all the cores available on
each device. Then, we focus on the trade-off between the amount of work and
the scheduling granularity for the MT version. Afterwards, in Sections 5.4
and 5.5, we discuss the results of a performance comparison between the MPI
and CAF-based MT implementations with the hybrid implementation. We
also show the behavior of manual and thread-based progress using different
network fabrics. In Section 5.6 we then describe a similar comparison in the
presence of unexpected delay on a compute unit. Finally, in Section 5.7 we
present a performance comparison between MPI and CAF-based implemen-
tations on the new architecture Intel Xeon Phi Knights Landing.

5.1. Experimental Platforms

A first set of tests has been run on Galileo, a Tier-1 system operated
by CINECA, the Italian supercomputing consortium. Each compute node
is equipped with two 8-core Intel Haswell processors E5-2630 v3 at 2.40

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

GHz. About half of the available compute nodes also host dual Intel Xeon
Phi 7120p. Each Xeon Phi has 61 cores at 1.1 GHz able to handle up to
4 threads and 8GB of RAM. For the purposes of this work, we consider
only one compute node and use the two CPUs and Xeon Phis together in
symmetric mode.

The application code for the Asian options pricing based on the Monte
Carlo method has been compiled using the Intel Fortran Compiler 15.0.2 and
IntelMPI-5.0.2 and linked with OpenCoarrays-1.0.0, compiled for Intel Xeon
Phi and regular CPU, using a wrapper module for invoking the OpenCoarrays
functions.

In order to show the advantages of a CAF-based solution for the Asian
options pricing problem on the new Intel Xeon Phi Knights Landing (KNL)
processor, a second set of tests have been run on Stampede, a 10 PFLOPS
Dell Linux cluster based on 6400+ Dell PowerEdge operated by the TACC
(Texas Advanced Computing Center). The KNL was configured in Quadrant
cluster mode and the high-bandwidth memory (MCDRAM) was configured
in Cache mode.

5.2. Performance on Single Device

Our first test examines the application performance using only a single
device, without inter-process communication (i.e., without the master-worker
approach). In other words, only one process, running only on CPU or Xeon
Phi, executes the whole amount of options. This provides an estimate of the
maximum performance on each device, for a given implementation. Figure 5
shows the maximum performance achievable on CPU, Intel Xeon Phi, and
the theoretical cumulative throughput running on a node with 2 CPUs and
2 Xeon Phi. Each CPU runs 8 threads, whereas each Xeon Phi runs 240
threads.

The test shows that a single Intel Xeon Phi is about twice as fast than
a CPU; therefore, to simulate homogeneity the options provided to the Intel
Xeon Phi should be twice as many as the options provided to the CPU.

Furthermore, the MO implementation (when working with as many op-
tions as cores available on the device) gives higher performance than MT.
On a single CPU, the MT version achieves 1.56 billions random values per
second whereas the MO achieves 2.0 billions random values per second while
working on eight options in parallel.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

1.2e+10

CPU_8 MIC_240 Cumulative

T
hr

ou
gh

pu
t (

R
an

do
m

 v
al

ue
s/

se
c)

MT
MO

Figure 5: Homogenous performance on CPU, Xeon Phi and theoretical heterogeneous
throughput

5.3. Communication/Job Size Trade-off

We now analyze how the number of options assigned to each device af-
fects the performance of the CAF-based version of MT. As explained in Sec-
tion 4.4, when a dynamic load balancing approach is used, the application
performance is influenced by two factors: 1) communication costs needed for
transferring data; 2) idle time spent by devices without enough work to do.
These two factors are related in inverse proportion, and both are directly
influenced by the job size. Indeed, if we increase the number of options sent
to a device, the communication costs will be lower, because a single large
transfer costs less than several small transfers, which have less opportunity
to achieve maximal bandwidth and pay multiple times the latency cost. On
the other hand, assigning multiple options in one shot to a single device (job)
negatively influences the scheduling granularity; towards the end of the exe-
cution, some devices will be unable to get enough options because they have
been already taken in a previous job by other devices.

In Figure 6 we compare the effect of idle time with the communication
time (after normalizing both quantities in the range between 0 and 1). From
the graph we can deduce that we should assign no more than 3 options per
CPU (and consequently no more than 6 options per Xeon Phi).

We observe that the costs in terms of idle time and communication is
roughly the same for 2 and 3 options on the CPU. Therefore, it is better to
assign 2 options (4 to Xeon Phis), because a smaller granularity makes the
application more flexible against possible performance changes on heteroge-
neous devices.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 8 16 32

N
or

m
al

iz
ed

 ti
m

e

Number of options on CPU

communication
idle

Figure 6: Trade-off between communication and idle time

5.4. MT CAF-based Performance

In the MT CAF-based code, every process starts the computation by
getting just one option from the master process and saving the processing
time in a coarray variable, accessibile by any process. By doing so, each
device can deduce how much time is needed for computing a single option;
after a fixed number of computations, each accelerator checks the value of
the processing time on the correspondent host device (e.g., XeonPhi0 will
check CPU0), and sets accordingly the number of options needed to simulate
homogeneity (on Galileo, Xeon Phis are twice as fast as CPUs). This is called
the “learning phase” of the load balancing algorithm; in the current version
it only happens once, but more complex versions might repeat this phase,
sampling the compute and/or remote communication time, several times
using the same strategy. However, the learning phase of the load balancing
has a cost, so we should not execute it too often otherwise its benefits will
be outweighed.

In Figure 7 we compare the performance of the CAF-based versions
against the MT MPI-based version; here we also take into account differ-
ent Intel MPI transport fabrics, and specifically the TMI (Tag Matching
Interface) and the TCP fabrics. TMI is an API used by Intel MPI to get
performance benefits from transport layers that provide their own message
matching logic.

Each label such as “shm:TCP” indicates that the fabric on the left of the
colon is used for intra-node communication (in this case, shared memory),
while the fabric on the right of the colon is used for inter-node communication

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
hr

ou
gh

pu
t (

ra
nd

om
 v

al
ue

s/
se

c)

Intel MPI Fabrics

MPI
CAF

CAF_t

Figure 7: Comparison of MPI vs. CAF using different MPI fabrics

(in this case, TCP). We observe how the network fabric has a huge impact
on performance, in particular for the CAF-based version; in our case, since
we are running on a single node, inter-node communication means commu-
nication between CPU and Xeon Phi using MPI.

Figure 7 also shows the effect of changing the message progress strategy.
The bars with a “ t” name suffix represent the performance using the thread-
based progress strategy provided by Intel MPI.

We explicitly note that the throughput of the CAF versions is better than
that of the MPI version when the thread-based progress is used on the TMI
fabric. Switching the fabric from TMI to TCP changes performance as well;
in this case, the thread-based throughput is lower than with manual progress.
In both cases, using the TCP fabrics provides better performance than TMI.

5.5. Hybrid CAF-based Performance

According to foreseeable trends, using different devices for different types
of computation will become commonplace in the exascale era, where the
compute nodes will be equipped with heterogeneous hardware. In the next
experiment we run two different implementations (MO and MT) of the same
application on different hardware, in order to exploit as much as possible the
available heterogeneity.

Only CPU1 runs the MO version, taking eight options per communica-
tion. Each process, except the one running on CPU1, checks the compute
time of CPU1 and adjusts the number of options to use accordingly (to

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

achieve homogeneity). A typical run on Galileo has eight options (fixed) on
CPU1, two on CPU0 and four on the two Intel Xeon Phis.

We have chosen to declare CPU1 as “special” because it suffers from
higher communication costs than CPU0 (the master process always runs on
CPU0). This is related to the costs introduced by the NUMA architecture:
the two Intel Haswell processors installed on a Galileo’s node are organized
as two non-uniform memory access (NUMA) CPUs. Each portion of local
memory on the CPU is called a memory domain; one CPU can access the
memory domain of the other CPU but at a higher cost than accessing the
local domain.

The master process on CPU0, when the latter behaves as worker, can
get the data from the same memory domain, which is very cheap; on the
other hand, the process on CPU1 pays a higher cost than CPU0, because
it has to get the data from a different memory domain. Having a bigger
amount of data on CPU1 benefits the communication costs, but penalizes
the scheduling granularity; on the other hand, because CPU0 has the lowest
communication cost, it mitigates the bad effects of the scheduling granularity
due to the eight options given to CPU1.

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
hr

ou
gh

pu
t (

ra
nd

om
 v

al
ue

s/
se

c)

Intel MPI Fabrics

MPI
CAF
MTH

Cumul.

Figure 8: Hybrid CAF-based performance using different MPI fabrics

Figure 8 shows the remarkable results obtained by the MTH strategy
when the TCP fabric is used. In fact, assuming the cumulative bar of MT in
Figure 5 as the maximum performance reachable with the available hardware

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(represented by the dashed line), we can see that the MTH solution provides
performance closest to the maximum possible.

5.6. Unexpected Slowdown

A dynamic load balancing algorithm allows the users to automatically
manage unexpected performance perturbations and performance differences.

As explained in Section 5.3, there is a clear trade-off between communica-
tion cost and scheduling cost. A dynamic load balancing algorithm becomes
more “flexible” to changes when the amount of work taken from the master
is small (high communication cost).

When a compute unit is affected by an unexpected slowdown, the ap-
proaches described in Sections 3.1 and 3.2 already constitute viable choices.
However, the one-sided semantics provided by CAF allows to design smarter
and more complex algorithms, capable of reducing the communication cost
and improving the performance.

The algorithm we propose in this section (from now on called UNX),
derives from the dynamic load balancing approach described in Section 5.4.
Every device is supposed to know a-priori how many classes of heterogeneous
devices compose the node and the class to which it belongs to (in our partic-
ular case, there are two classes of devices: CPUs and Xeon Phis). In order to
simulate a delay on a Xeon Phi, we introduce a call to the usleep function
in the portion of code executed during the evaluation of each option. After
completing the “learning phase” described in Section 5.4, each device reads
(using a CAF get operation) the processing time on the other device belong-
ing to the same class. If the different between the processing time taken from
the remote device and the local processing time is greater than a predefined
threshold (set to 0.01 seconds), the fastest device increases the amount of
options taken each time. The increment ∆ depends on the processing time
difference between the two devices, and is calculated as:

∆ = max(dTr/Tle, 1) (1)

where Tr and Tl represent the remote and local processing time, respectively.

Despite its simplicity, this formula produces a noticeable performance
improvement compared to the original algorithm described in Section 3.1, as
shown in Figure 9.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 4

 4.5

 5

 5.5

 6

 6.5

 7

10 10
0

50
0

10
00

20
00

30
00

50
00

10
00

0

15
00

0

20
00

0
30

00
0

50
00

0
10

00
00

20
00

00
50

00
00

T
hr

ou
gh

pu
t (

op
tio

ns
/s

ec
)

Delay on Xeon Phi (us)

MPI
UNX

Figure 9: Performance comparison in case of unexpected delay

During the peer checking, the slowest device becomes aware of being
slower than the other device and it will perform again the “learning phase”
explained in Section 5.4, resulting in a reduction of the amount of options
taken from the master image.

Because the number of options on the faster node is represented by an
integer, a change in the number of options may represent a performance im-
provement or penalty. In Figure 9, the fastest Xeon Phi does not increment
the number of options until the delay reaches 10000 us, whereas the slowest
Xeon Phi reduces the number of options (from 4 to 2) since the very be-
ginning. This difference in terms of “sensitivity” between the two heuristics
leads to the performance improvement with respect to the original algorithm.

5.7. Early Experience on Knights Landing

The new Xeon Phi architecture, known as Knights Landing (KNL), brings
several substantial changes compared to the old Knights Corner (KNC). The
most relevant change consists in the fact that KNL is no longer a coprocessor
and thus it does not require a host CPU. Since the presence of the PCIe bus
between host and accelerator has always been one of the most restrictive
performance constraints, eliminating the host processor has potentially huge
advantages.

Furthermore, KNL adopts a 2D network topology in order to connect all
the cores (actually the tiles, each of which contains two cores), instead of
the bidirectional high-bandwidth ring used on KNC. This new configuration

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

improves latency and bandwidth when multiple MPI processes are executed
on the device.

As discussed previously in section 2, the use of one-sided communication
semantics potentially increases performance, and PGAS languages such as
CAF are a convenient way to embed this semantics into the application code.

The fact that every MPI process is allocated on a shared memory device
and that communication is high performing, should make PGAS languages
very convenient for the exploitation of the KNL architecture.

 0

 2

 4

 6

 8

 10

 12

2 4 8 16

T
hr

ou
gh

pu
t (

op
tio

ns
/s

ec
)

Num. Processes on KNL

MPI
CAF_SO

CAF_BAL

Figure 10: Performance comparison between MPI and CAF on KNL

In order to evaluate the above statement, we compare the original algo-
rithm, based on MPI two-sided semantics and described in Section 3.1, with
the equivalent CAF-based version with only a single option at time (rep-
resented by CAF SO); the results are presented in Figure 10 for a varying
number of processes on KNL. We also show the performance achieved by the
CAF-based load balancing algorithm described in Section 5.4 (represented by
CAF BAL). Observing the results, we can confirm that the MPI two-sided
approach is the slowest one, while the one-sided semantics of CAF provides
a performance gain. Furthermore, load balancing achieves the best perfor-
mance when the number of processes on the device is equal to 16, because,
with a growing number of processes, the effect of contention on the 2D mesh
becomes higher, and therefore the benefit of reducing the communication
cost becomes more noticeable.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6. Conclusions

In this paper we presented dynamic load balancing algorithms based on
Coarray Fortran and evaluated their performance with respect to an MPI
two-sided approach. The one-sided semantic of coarrays allowed us to design
more advanced load balancing algorithms able to adapt to the heterogeneous
hardware. Using the TCP fabric provided by Intel MPI, all coarray-based
versions show better results than the original MPI two-sided version. With
the TMI fabric, choosing the right progression strategy is critical; in fact,
using the thread-based progress, provided by Intel MPI, leads to higher per-
formance than the manual progress.

The CAF-based algorithm also allows us to manage highly heterogeneous
situations, where two different versions of the same code run, at the same
time, on the hardware more suitable for the performance needs. Even though
the CAF implementation used in the tests is based on MPI-3.0, it provides
better performance than the explicit MPI two-sided implementation, because
the communication pattern required by the application is more suitable for
the one-sided semantic. The pure MPI two-sided implementation works well
when a single thread on the master process is used as communication thread,
dispatching only one option for each request. A direct translation of this
algorithm from MPI two-sided to CAF leads to poor performance, mainly
because of the poor one-sided implementation provided by the MPI layer.
On the other hand, a more complex algorithm which sends more than one
option at time, is more suitable for a one-sided semantic than a two-sided
one and allows to implement the hybrid solution proposed in Section 5.5,
which leads to the best performance.

In a scenario where unexpected performance slowdown are possible, the
one-sided semantic of CAF allows us to implement a collaborative approach
which performs better than the algorithm based on the MPI two-sided ap-
proach.

Furthermore, on the new Intel Xeon Phi Knights Landing architecture,
because of technological reasons the one-sided communication operations per-
form better that the usual MPI two-sided. Nonetheless, dynamic load bal-
ancing algorithms based on PGAS languages can still be effective on many-
core devices when the number of processes allocated, and the relative traffic
generated, is high.

Finally, although efficient algorithms using explicitly MPI one-sided rou-
tines can be realized, we observe that CAF provides a cleaner and more un-

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

derstandable syntax, allowing to easily describe complex parallel algorithms.
As future work, we plan to explore heterogeneous solutions based on

dynamic load balancing strategies for different and more complex scientific
problems.

Acknowledgments

We gratefully acknowledge the support received from CINECA for the
OpenCoarrays2.0 project under the ISCRA 2016 grant program. A. Fan-
farillo also acknowledges the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation
grant number ACI-1053575.

Referrences

[1] R. Dennard, V. Rideout, E. Bassous, A. LeBlanc, Design of ion-
implanted MOSFET’s with very small physical dimensions, IEEE J.
of Solid-State Circuits 9 (5) (1974) 256–268.

[2] M. Taylor, A landscape of the new dark silicon design regime, IEEE
Micro 33 (5) (2013) 8–19.

[3] R. Numrich, J. Reid, Co-array Fortran for parallel programming, SIG-
PLAN Fortran Forum 17 (2) (1998) 1–31.

[4] UPC Consortium, UPC Language Specifications, v1.2, Tech Report
LBNL-59208, Lawrence Berkeley National Lab (2005).

[5] Chamberlain, B.L. and Cray Inc., Chapel, http://chapel.cray.com

(2013).

[6] A. Vladimirov, R. Asai, V. Karpusenko, Parallel Programming and Op-
timization with Intel Xeon Phi Coprocessors, 2nd Ed., Colfax Int’l, 2015.

[7] M. Luo, M. Li, M. Venkatesh, X. Lu, D. K. Panda, UPC on MIC: Early
experiences with native and symmetric modes, in: Proc. of Int’l Conf.
on Partitioned Global Address Space Programming Models, PGAS ’13,
2013, pp. 198–210.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] V. Cardellini, A. Fanfarillo, S. Filippone, Heterogeneous CAF-based
load balancing on Intel Xeon Phi, in: Proc of 30th IEEE Int’l Paral-
lel and Distributed Processing Symp. Workshops, IPDPSW ’16, 2016,
pp. 702–711.

[9] R. W. Numrich, J. Reid, Co-arrays in the next Fortran standard, SIG-
PLAN Fortran Forum 24 (2) (2005) 4–17.

[10] ISO/IEC/JTC1/SC22/WG5, TS 18508 additional parallel features in
Fortran (Aug. 2015).

[11] A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone, D. Nagle, D. Rou-
son, OpenCoarrays: Open-source transport layers supporting coarray
Fortran compilers, in: Proc. of 8th Int’l Conf. on Partitioned Global
Address Space Programming Models, PGAS ’14, ACM, 2014.

[12] R. Glenn Brook, A. Heinecke, A. Costa, P. Peltz, V. Betro, T. Baer,
M. Bader, P. Dubey, Beacon: Exploring the deployment and application
of Intel Xeon Phi coprocessors for scientific computing, Computing in
Science & Engineering 17 (2).

[13] V. Cardellini, A. Fanfarillo, S. Filippone, Overlapping communi-
cation with computation in MPI applications, Tech. Rep. DICII
RR-16.09, Univ. Rome Tor Vergata, http://hdl.handle.net/2108/

140530 (2016).

[14] T. Hoefler, A. Lumsdaine, Message progression in parallel computing
- to thread or not to thread?, in: Proc. of 2008 IEEE Int’l Conf. on
Cluster Computing, 2008, pp. 213–222.

[15] P. Boyle, D. Emanuel, Options on the general mean, Working paper,
University of British Columbia, Canada (1980).

[16] H. Geman, M. Yor, Bessel processes, Asian options, and perpetuities,
Mathematical Finance 3 (1993) 349–375.

[17] J. Vecer, A new PDE approach for pricing arithmetic average Asian
options, J. of Computational Finance 4 (4) (2001) 105–113.

[18] S. Turnbull, L. Wakeman, A quick algorithm for pricing European av-
erage options, J. of Financial and Quantitative Analysis 26 (3) (1991)
377–389.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[19] A. Kemna, A. Vorst, A pricing method for options based on average
values, J. of Banking Finance 14 (1990) 113–129.

[20] P. Boyle, M. Broadie, P. Glasserman, Monte Carlo methods for security
pricing, J. of Economic Dynamics and Control 21 (1997) 1267–1321.

[21] R. Graham, Bounds on multiprocessing timing anomalies, SIAM J.
Appl. Math. 17 (1969) 416–429.

27

