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ABSTRACT 

Recent introduction of low-cost 3D sensing and affordable immersive virtual reality have lowered the 

barriers for creating and maintaining 3D virtual worlds. In this paper, we propose a way to combine these 

technologies with discrete-event simulation to improve the use of simulation in decision making in 

manufacturing. This work will describe how feedback is possible from real world systems directly into a 

simulation model to guide smart behaviors. Technologies included in the research include feedback from 

RGBD images of shop floor motion and human interaction within full immersive virtual reality that 

includes the latest headset technologies. 

1 INTRODUCTION 

Within the space of a few short years we have seen the introduction of affordable 3D sensing through the 

Kinect sensor and its ilk along with affordable immersive virtual reality (VR) head-mounted displays 

(HMD). These technologies has significantly lowered the cost of creating and maintaining 3D virtual 

worlds. In this paper we will describe our attempt to leverage these technologies to help in the use of 

simulation, particularly discrete-event simulation (DES). We will limit our the scope of our discussion to 

manufacturing shop floor layouts. 

Visualization is important for manufacturing simulation (Rohrer 2000), and the importance of VR 

visualization techniques to DES was recognised early on (Taylor and Robinson 2006). VR-enabled DES 

is viewed as a suitable tool to help address many manufacturing challenges (Dorozhkin et al. 2010) and 

accordingly a recent survey by Choi, Jung, and Noh (2015) found numerous implementations of VR with 

manufacturing simulation. The launch of affordable VR HMDs open up the possibility of immersive 

visualisation and creation of DES simulation on every workstation. Examples of their use in creating 
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virtual worlds for gaming is not long in coming (Figure 1). Although these authoring approaches are still 

at their infancy, already we can see the possibilities that it can bring to DES modelling. 

 

 

Figure 1: The new VR HMD devices are well supported by game authoring platforms, allowing VR world 

building in VR environments (Sweeney and Fricker 2016). Shown are HTC Vive HMD and its hand-held 

controllers. 

The opportunity from recent developments in the use of low cost RGBD 3D sensors is to gain real-

time data about events on the shop floor, which include humans actions and material and equipment 

movements. RGBD sensors such as Microsoft Kinect are integrated visible spectrum (termed RGB for 

Red-Green-Blue) and depth (D) sensors that provides color and depth data streams. In many 

implementations, they are paired with middleware that can, at negligible cost, robustly produce 

anonymous skeletal tracking data from depth data. Prabhu et al. (2015) has shown that these capabilities 

makes it possible to extract re-usable details on manufacturing tasks (Figure 2). 

Concurrently, there is growing realisation of the importance of data analytics and its compatibility 

with DES concepts. Nelson (2016) recognised that simulation’s predictive power complements the 

interpolative power of machine learning, opening up the possibility of using simulation in concert with 

machine learning for extrapolation from big data. There is increasing attention for using wireless sensor 

networks to collect data on manufacturing operations. These sensors are often physically connected to 

machines in order to measure and keep track of material flows in the manufacturing plant (Suto et al. 

2015). This approach is promising but misses out the human component that is highly influential to plant 

performance (Mason et al. 2005), which can be supplied by the RGBD system. 

The Industry 4.0 initiative promises improvements in manufacturing environment through the use of 

cyber-connected sensors that collect ‘big data’ from machines and people at a detailed level. This opens 

up the possibility of new ways for understanding manufacturing processes as well as performing 

predictive analysis. 

In this paper, we discuss progress towards integrating a DES with affordable VR HMD visualisation 

and data obtained from low-cost RGBD sensor. Firstly, we will describe our proposed architecture and 

how the new technological integration can bring benefits. Next, we will describe our progress in DES VR 

interfacing. Next, we will discuss our implementation of DES-RGBD interface. Finally we will close with 

some thoughts about our next steps. 
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Figure 2: Using RGB-D sensors to capture manufacturing task. The worker is performing a composite 

lay-up task on a workbench. One sensor (Kinect v1) is dedicated to capturing the workpiece states while 

another sensor (Kinect v2) captures the worker skeleton movements (Prabhu et al. 2015). 

2 ENVISIONED SYSTEM INTEGRATION 

In this work the authors have two goals: to create an immersive interface for users of VR-DES, and to use 

RGB-D information from low-cost sensors in DES. By combining DES with VR and RGB-D sensing, the 

authors envision new affordances to emerge as depicted in Table 1. The rationale for each is explained in 

the following paragraphs. 

Table 1: Pairwise affordances envisioned from the proposed integration of DES, VR technologies, and 

low-cost RGBD sensing. 

A/B A to B affordances B to A affordances 

DES/VR New methods to visualize the 

complexity of shop floor behavior 

Novel DES authoring approaches 

DES/RGBD Automated machine vision setup Automated update of events 

RGBD/VR Real-time updates of workspace changes Immersive visualization of workspaces 

 

DES to VR affordance: The link between DES and VR seem well explored (Choi, Jung, and Noh 

2015; Ghani, Monfared, and Harrison 2015) but the active research into big data visualization using 

immersive VR (Olshannikova et al. 2015) suggests the possibility of undiscovered methods for immersive 

visualization of simulation models. Nelson (2016) identified a need to gain insight into the complexity of 

shop floor behavior, for which novel immersive VR may provide imaginative new answers. Immersive 

visualization also provides a new medium for trying out innovative animation methods in ways akin to 

Zhong and Shirinzadeh (2008). 

VR to DES affordance: DES VR models are mostly created on standard 2D screens. Traditional VR 

equipment are so scarce and costly that they are more suitable for occasional design reviews rather than 

for day-to-day high-intensity model creation tasks. With affordable and ubiquitous VR, we can explore 

new user interface approaches for authoring DES models, perhaps in similar vein to that shown in Figure 

1. It is possible that there are undiscovered editing methods that make sense only in immersive VR. 

DES to RGBD affordance: Setting up intelligent machine vision systems generally require a great 

deal of work. Calibration, context definition, and relevant scenarios need to be set up in such a way that 

vision algorithms can recognize and classify any unfolding scene. Accurate VR DES models already 

contain a great deal of information that can be leveraged to automate the setting up of an intelligent 
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RGBD vision system. For instance, the scene geometry information alone should be sufficient to train 

RGBD vision systems to recognize objects (Lai, Bo, and Fox 2014). The real-time point clouds can then 

be used to detect discrepancies, as demonstrated by Nahangi et al. (2015) for assembly operations and 

Wang and Cho (2015) in construction. 

RGBD to DES affordance: The approach proposed by Prabhu et al. (2015) provides detailed 

quantitative knowledge about manufacturing tasks and human actions. This information can be collected 

and then leveraged to update DES models, which may contain inaccurate assumptions. For instance, 

collected data about worker cycle times can be used to calibrate the workers’ probability density functions 

(Mason et al. 2005). 

RGBD to VR affordance: Point clouds obtained by laser scanners have been used to update VR 

manufacturing environments but they can only be done occasionally (Shellshear, Berlin, and Carlson 

2015). Low cost RGBD sensors pointing at areas of interest can provide real-time updates of any changes 

in indoor workspaces (Henry et al. 2012), e.g. for providing alerts in real-time when collision points arise.  

VR to RGBD affordance: Such a network of RGBD sensors creates a real-time VR image that can be 

directly visualized using VR HMDs, providing an additional means for verification of workspace states 

(Yang, Xiang, Deines, Eduard, and Aurich, Jan C. 2011). 

Finally, the full integration of DES, VR, and RGBD sensor open up tantalizing possibilities of 

creating a fully synced, up-to-date ‘virtual factory’ (Jain and Shao 2014; Yang et al. 2015) which will 

lend itself to the simulation analytics approach proposed by Nelson (2016). 

Our work is still ongoing. Still to come is our RGBD/VR interfacing and the DES/VR/RGBD final 

integration. In the next sections we will report on our progress in DES/VR interface development and in 

implementing DES/RGBD integration.  

3 DISCRETE EVENT SIMULATION AND VIRTUAL REALITY 

The aim of our ongoing DES/VR work is to develop a two-way link between DES software and the VR 

visualization software. Our starting point was the VR version of Lanner Group’s WITNESS DES 

software, which already share VR geometry through socket links with Virtalis’ Visionary Render VR 

software. Our focus is on shop floor layout design, where the visualization interface should help decision 

makers visualize activities and material flows so that they can devise the best shop floor arrangement. The 

socket communication backbone was re-used between VR to DES to create two-way communication 

between the two software. In Oyekan et al. (2015) we discussed the challenge of interacting with DES 

through an Oculus Rift DK2 HMD immersive interface and presented an example where operational 

parameters of a simulated factory floor was modified through an immersive interface enabled by a VR 

HMD. 

One of the identified challenge is the lack of knowledge on how to design user interfaces for 

immersive VR environments. Existing methods which was mostly designed for CAVE environments 

usually do not take into account the fact that when wearing immersive HMD users are completely cut off 

from their surroundings. This cutting off does enhance immersiveness but present unique challenges, e.g. 

the risk of motion sickness is greatly magnified. A consensus on the design of immersive virtual reality 

interfaces is emerging, mostly driven by game developers responding to the new VR technologies 

(Borrell 2016) and recently also from the mainstream developers attracted by the untapped potential of 

desktop immersive interfaces (Sundstrom 2015; Alger 2015). In our work, Souto Moure (2015) evaluates 

the applicability of ISO 9241 -210:2010 on human-centred design for interactive systems and used it to 

devise a framework for immersive user interface for virtual reality DES  (Figure 4).  
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Figure 3: DES and VR interfacing implementation, adapted from (Oyekan et al. 2015). 

  

Figure 4: Examples of the resulting interface design from Souto Moure (2015) ‘s immersive VR interface 

framework for DES. 

We also encounter practical challenges. The obvious solution when creating custom VR geometry for 

bespoke shop floors is to re-use or modify pre-existing CAD geometries. We discovered that inadequate 

attention towards geometrical complexity may create VR environments with too much detail, leading to 

unacceptable VR frame rate. Petti et al. (2016) found that when using high fidelity geometries, this frame 

rate reduction induces motion sickness which seriously hampered their immersive VR DES usability 

testing (Figure 5). The standard method to address this is by limiting the number of scene polygons. This 

is a routine task for game designers and their toolset; however, it is not a task that is well supported by 

CAD authoring tools. After substantial trial-and-error, this issue was mitigated by using a set of geometry 

conversion software to sequentially process the CAD geometries with close control on polygon count. 

Our current focus is to develop ways in which users can maximize their productivity while in the 

immersive environment. We are developing representative use cases, devising and testing immersive VR 

DES interface for these cases, which will allow us to augment Souto Moure's work (2015) with new 

guidelines. 

4 DISCRETE EVENT SIMULATION AND RGBD IMAGING 

The aim of our ongoing DES/RGBD work is to achieve (i) data collection of a manufacturing process 

through RGBD sensing and scene understanding of the observed manufacturing environment, (ii) 

utilization of machine learning techniques to use simulation information for self-calibrating the RGBD 
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system, and (iii) develop automated simulation analytics that are triggered by discrepancies in task 

execution or changes in the manufacturing environment. The RGBD system will be used to collect data 

from the shop floor in order to update a DES model of the shop floor processes. The model will be kept 

up to date with data from the shop floor so that it does not suffer from model ageing caused by worker 

non-compliance, part and material flow changes, environment and machine deviations, or model 

omissions.  Furthermore, the inbuilt human motion capture technology in many RGBD sensors ensures 

that the effects of human actions on material flow in the factory can be captured as well. A top level data 

flow diagram of the envisioned system is depicted in Figure 6. 

 

   

Figure 5: Actual shop floor and its immersive 3D models in high fidelity (middle) and low fidelity (right) 

(Petti et al. 2016) implemented in WITNESS 14 and viewed through Visionary Render. 

 

 
 

Figure 6: Data flow diagram for the envisioned RGBD system. 

Our work is inspired by the advances in intelligent video analysis (IVA). Automated RGB video 

annotation is a well-established topic within computer vision and includes relevant challenges such as 

scene recognition, event detection and action recognition. It was found that RGBD sensors along with the 

skeleton detection allows robust activity recognition of human workers (Aggarwal and Xia 2014). 

Automatic utilisation of depth sensor data on shop floors has been performed by Shellshear, Berlin, 

and Carlson (2015), whereby periodic laser scans generate factory layout dimensions, allowing automatic 

detection of emerging collision risks due to environmental changes or due to changes in part/product size. 

Similarly, Nahangi et al. (2015) analysed point cloud generated by laser scanners to provide autonomous 

3D discrepancy feedback when fitting steel structures during construction. RGBD sensors cannot compete 
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with laser scans in terms of absolute geometrical accuracy. However, the low cost and low computing 

requirements open up the possibility of setting up a network of RGBD sensor throughout the shop floor. 

This network can potentially perform full real-time tracking of human workers, mobile robots, parts, and 

products (Almazan and Jones 2013; Regazzoni, de Vecchi, and Rizzi 2014). In response to concerns 

about the difficulty of setting up and configuring a network of RGBD sensor, Munera et al. (2015) has 

demonstrated a technique whereby a RGBD sensor system can automatically adapt its usage of resources 

to ensure quality of detection. 

In the next section, we will describe our progress towards automatically adapting the RGBD sensor to 

detect changes in material flow path.  

5 DISCRETE EVENT SIMULATION AND RGBD IMAGING CONCEPT DEMOSTRATION 

To demonstrate our approach, we use a Fischertechnik ‘Indexed Line with Two Machining Stations’ kit 

(art. 51664) as a substitute of an actual shop floor process. The Fischertechnik line processes a set of 

pucks which represent manufacturing workpieces. The simple system consisted of input and output 

buffers, conveyor belts, a spacing area, and two machining stations.  

 

 

Figure 7: Simulation of a simple manufacturing line performed in WITNESS 14. 

We start by defining a DES simulation model (Figure 7) of the Fischertechnik line in Figure 8. Both 

the DES model and the physical line are programmed deterministically. However, the rate of movement 

of the puck in the physical line is made highly variable by changing the geometry of the puck with 

adhesives. This creates variability which we hope to detect using the RGBD system and then feedback to 

update the DES model in the future. 

A Kinect sensor was used to analyse a stream of RGBD data for the purposes of extracting material 

flow information. Two approaches of information extraction were investigated in this paper. Firstly we 

will describe our detection of material flow data from the shop floor carried out using ‘flow detection’ 

approach, where detection ‘hot spots’ are pre-defined on the sensors field of vision. Next, we demonstrate 

our ‘change detection’ approach, where the RGBD system can automatically adapt the hot spots to 

account for changes on material flow path. The methods implemented mostly rely on RGB signals, but it 

can be readily adapted to full RGBD data. 

5.1 Flow Detection Approach 

In this flow detection approach, hot spots were defined in the environment by dividing the observed space 

𝑂 ∈ 𝑅2 into a grid of observable cells {𝑜11  , 𝑜12 , … … . . 𝑜𝑁𝑁  } with resolution 10 by 10 pixels. Each cell is 

assigned a ‘virtual photoreceptor’ that is made up of two outputs: P(t), a function of the illumination at 

time t, and H(t), a function of the previous illumination at time t-T.  

 

𝑃(𝑡) = 𝑘𝑙𝑛
𝐸(𝑡)

𝐸0
   (1) 

𝐻(𝑡) = 𝑘𝑙𝑛
𝐸(𝑡−𝑇)

𝐸0
   (2) 
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𝑓(𝑥) = {
𝐸𝑣𝑒𝑛𝑡, 𝑃(𝑡) − 𝐻(𝑡) > 𝜃

𝑁𝑜 𝐸𝑣𝑒𝑛𝑡, 𝑃(𝑡) − 𝐻(𝑡) < 𝜃
     (3) 

 

Where E(t) is the illumination at time t, E(t – T) is the illumination at the time (t – T) and is therefore a 

measure of illumination history while K and E0 are constants that define the photoreceptor sensitivity. In 

this work, K = 1, E0 = 1. A threshold scheme was used according to Equation 3 to define the occurrence 

of an event. 

A priori virtual digital map of the region of interest was used in the data collecting software to 

associate detected event/state changes with the correct position of the puck through the assembly line. 

However, this naïve implementation will not always work. Illumination changes caused by lighting or 

object state changes e.g. assembly line tracks and lightning noise will cause detection failures, whereby 

objects appear to move between stations in random order.  

In order to solve this challenge, a Markov chain (Figure 9) representative of the sequence of assembly 

line state changes was constructed and filled up with appropriate weight values. These values were 

determined empirically using knowledge of state changes in the DES model and the actual physical line.  

This approach resulted in the filtering out ambiguous event state signals and the ability to keep track 

of a puck through a scaled down assembly line (Figure 8).  

 

  

Figure 8: A view from the Kinect sensor on the Fischertechnik model of a machining line used as a 

development test bench: RGB image showing the pre-determined 'hot-spots' for material flow tracking 

(left) and the depth image obtained by the sensor (right). 

 

Figure 9: Empirically determined Markovian chain for reduction of false state changes. 
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5.2 Change Detection Approach 

The limitation of the flow detection approach is that the hot spots or interest points (green dots in Figure 

8) need to be manually defined and different assembly layouts will need their virtual digital maps 

manually constructed. Furthermore, changes in the camera position and/or line position will lead to, at 

best, inaccurate mapping of puck state changes and will result in wrong data being created.  

To mitigate these challenges, a pattern detection through k-means clustering was used following these 

steps: 

 

1. Object detection: Through the use of a color thresholding and morphology scheme, the puck was 

separated from the rest of the scene. This enables the puck to be tracked as it progresses through 

the assembly line.  

2. Data ingestion: time-stamped puck location data was stored in an expanding array. 

3. Through the use of time threshold K-means clustering, the ingested data was divided into static 

and dynamic clusters. The time stamps from these clusters were then extracted in order to derive 

the time spent at each cluster (Figure 10, left).  

 

  

Figure 10: Detecting salient points of interest through the use of a time threshold k-means pattern 

detection  algorithm: original orientation (left) and modified orientation (right). 

Using the assumption that static clusters are either work stations or buffers, the above scheme made it 

possible to detect salient points of interest in the environment corresponding to the aforementioned 

locations. Furthermore, due to object recognition and tracking, it was possible to use one cycle of material 

flow through the system to detect these points of interest. As shown in Figure 10b, the result is an RGBD 

detection system that is less immune to environmental disturbances.  

5.3 Integration of Flow Detection and Change Detection Approaches 

Currently, the initial Markov chain filter is determined empirically for the flow detection approach. In 

future, this can be automatically extracted from the DES simulation model thereby putting into practice 

the automatic sensor setup afforded by the DES to RGBD link as discussed in Section 2. The change 

detection approach will be run regularly to maintain a robust virtual digital map of the assembly line. This 

map includes the detection hot spots essential to the flow detection scheme. Once the RGBD system is 

confident about the map and the Markov chain values, the flow detection approach will be used to collect 

real time data from the shop floor to update the DES model. After every data update, the DES model can 

be run to discover possible performance shortfalls, which can then be used to alert the user. This will put 

into practice the automatic updating of events afforded by the RGBD to DES link as stated in Section 2. 
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6 CONCLUSION AND FUTURE WORKS 

Our work so far has given us no reason to doubt the potential in the use of new 3D virtual world 

technologies to improve the use of DES. Immersive VR technology open up the possibility of new ways 

to interact with DES simulation, possibly allowing non-traditional DES to interact with DES models, 

manipulate the model using VR representations, and take advantage of insights created by DES from new 

visualisation approaches. Furthermore, we have demonstrated that DES to RGBD link affords automatic 

setup of RGBD sensing and automated update of events to the underlying DES simulation model. The 

advantage of our proposed scheme is that during setup, only the DES model of the facility needs to be 

constructed. The envisioned algorithms will be well-positioned to use for smart usage of data collected 

from the shop floor, putting us one step closer to a smart manufacturing system. 
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