
Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference
doi: 10.1016/j.procir.2017.01.058

 Procedia CIRP 60 (2017) 128 – 132

ScienceDirect

27th CIRP Design 2017

Framework for Engineering Design Systems Architectures Evaluation and
Selection: Case Study

 Mohamed Darwisha*, Essam Shehaba
aSchool of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedford MK43 0AL, UK

* Corresponding author. Tel.: +44 (0)1234750111. E-mail address: m.a.darwish@cranfield.ac.uk

Abstract

Engineering companies face the challenge of developing complex Engineering Design Systems. These systems involve huge financial, people,
and time investments within an environment that is characterised by continuously changing technologies and processes. Systems architecture
provides the strategies and modelling approaches to ensure that adequate resources are spent in developing the possible To Be states for a target
system. Architecture selection and evaluation involves evaluating different architectural alternatives with respect to multiple criteria, hence an
Architecture Evaluation Framework which evaluates and down selects the appropriate architectures solutions is crucial to assess how these
systems will deliver value over their lifetime, and where to channel the financial and human investments to maximize benefit delivered to the
business’ bottom line.
In this paper, an evaluation and selection architecture framework is proposed, which targets to maximise the alignment of Engineering Design
Systems with business goals based on a quality centric architecture evaluation approach. The framework utilised software Quality Attributes as
well as SWOT (Strength, Weakness, Opportunity, Threat) and PEST (Political, Economic, Social, Technological) analyses to capture different
viewpoints related to technical, political and business context. The framework proposed employing AHP (Analytical Hierarchy Process) to
quantitatively elicit relationships between Quality Attributes trade-offs and architectural characteristics. The framework was applied to a real
case study considering five Engineering Design Systems alternative architectures, where workshops with subject matter experts and
stakeholders were held to reach an informative decision, that maximise architectural quality, whilst maintaining business alignment.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference.

 Keywords: Engineering design system architecutre, architecture evaluation, quality attributes, analytic hierarchy process (AHP), SWOT and PEST

1. Introduction

Engineering companies face the challenge of developing
complex engineering design systems. These systems involve
huge financial, people, and time investments within an
environment that is characterised by continuously changing
technologies and processes. Systems architecting provides the
strategies and modelling approaches to ensure that adequate
resources are spent in developing the possible To BE states for
a target system. Architecture evaluation involves evaluating
different architecture alternatives with respect to multiple
criteria, hence a rigorous Architecture Evaluation Framework
to evaluate architectural alternatives is crucial to assess how
these systems will deliver value over their lifetime, and where

to channel the financial and human investments to maximize
the benefit to the businesses bottom line.

This paper gives an overview of the theoretical background
of evaluation processes and Quality Attributes trade-offs and
highlights the importance of appreciating business context of
engineering systems when evaluating alternative solutions.

An evaluation and selection architecture framework is
proposed, based on a quality centric architecture evaluation
approach. Analytical Hierarchy Process (AHP) is utilised to
quantitatively elicit relationship between Quality Attributes
trade-offs and architecture characteristics. The Quality
Attributes utilised are adopted from ISO/IEC 25010:2011
standard. The framework also employs SWOT and PEST

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 27th CIRP Design Conference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cranfield CERES

https://core.ac.uk/display/83926788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

129 Mohamed Darwish and Essam Shehab / Procedia CIRP 60 (2017) 128 – 132

analyses to capture different viewpoints related to political,
societal and business contexts.

The framework was applied to a real case study
considering five alternative architectures. Data collected has
been analysed by a commercial AHP tool. The results,
together with workshops discussion, have assisted
stakeholders to reach an informative decision.

Nomenclature

AHP Analytical Hierarchy Process
API Application Programming Interface
DSL Domain Specific Language
MCDM Multi-Criteria Decision Making
MDE Model Driven Engineering
PEST Political, Economic, Social, Technological
QA Quality Attributes
SQuaRE Software Quality Requirements and Evaluation
SWOT Strength, Weakness, Opportunity, Threat

2. Literature review and theoretical background

Engineering products and systems are becoming
increasingly complex, not only driven by global competition
and price pressure, but also with fast moving customers’
requirements [1]. High level of complexity and customers’
changes cause systems to grow over time in order to increase
capabilities, hence leading to having evolved Engineering
Design Systems and Sub-Systems that are not designed to
support scalability. Instead, they were designed to meet
specific and timely needs [2].

Systems architecting provides the strategies and modelling
approaches to ensure that adequate resources is spent in
developing the possible ‘could be’ states, and evaluating and
selecting the best alternative given a set of desired properties
and criteria for the future system [3]. As Design Systems
become larger and more complex, their architectures assume
ever greater importance in managing their growing integrity
and coherence. Thus, when architectural integrity is
compromised, the probability for serious operational problems
increases dramatically. Interactions among layers and
subsystems become increasingly more difficult to understand.
The ability to assess unwanted side effects before
implementing changes becomes more laborious.
Modifications will be more intricate and tedious.
Consequently, the verification of functional and structural
quality becomes less thorough when speed delivery is the
priority. Thus, architectural integrity enables safe rapid
development cycles whilst maintain quality and safety [4].

2.1. .System Architecture Quality Attributes

Functional requirements show the ability of the system to
deliver the services which it was designed for. However, how
well the system caters for modifications like scalability,
maintainability or portability is best assessed through
capturing Quality Attributes (non-functional requirements),
which are properties of a system that are used to indicate how

well the system satisfies the needs of its stakeholders for
future change [5].

Several Quality Models that provide hierarchical order of
Quality Attributes have been published in the last decades [6].
One of the earliest models was established by Boehm et al. to
define software quality through a given set of attributes and
metrics [7]. Later models were defined through international
standards such as ISO/IEC 9126-1:2001 [Software
engineering Product quality], which was later revised by
ISO/IEC 25010:2011 [Systems and software engineering,
Systems and software Quality Requirements and Evaluation
(SQuaRE)] [8].

ISO/IEC 25010:2011 standard classifies software quality
within taxonomy of characteristics and sub-characteristics.
The characteristics considered are; functionality, reliability,
usability, efficiency, maintainability, and portability. Each of
these characteristics is subdivided into Quality Attributes
(Fig. 1) that can be measured and verified [4].

Fig. 1. Subset of ISO/IEC 25010:2011 Quality Model [8]

2.2. Systems Architecture Quality Attributes Trade-offs

A quality-based architecture is one designed to satisfy a
single or multiple Quality Attributes. In most cases, it is
impossible to maximize all of them, hence the architect must
consider a trade-off to ensure high priority functions are not
being compromised [9].

Systematic research suggests that there is an immaturity in
the field of software quality trade-off, hence no approach or
set of approaches have emerged as candidates to dominate the
research space, however empirical evidences suggest that
Analytical Hierarchy Process (AHP) is one of the most widely
applied approach as Multi-Criteria Decision Making
(MCDM) tool [10].

AHP is comprised of four main steps [11]:
1) Define the problem
2) Structure the decision hierarchy
3) Construct a set of pairwise comparison matrices
4) Use the priorities obtained from the comparisons to weigh
the priorities in the level immediately below.

AHP provides a consistency ratio (CR) factor, which is
used to determine whether participants have answered
consistently, i.e. in agreement with themselves, hence gives
mathematically rigor for prioritisations [12].

Moreover, identifying critical decisions and performing
sensitivity analysis can expose potential issues and lead to an
architecture better prepared for future change [13].

As it is neither feasible nor desirable to fully automate the
decision making process, semi-formal techniques such as
SWOT (Strengths, Weaknesses, Opportunities, and Threats)

130 Mohamed Darwish and Essam Shehab / Procedia CIRP 60 (2017) 128 – 132

could be utilized to treat trade-offs within specific contexts
and design drivers [14].

3. Framework for architectures evaluation and selection

This section illustrates a framework for evaluating and
selecting different engineering systems architectures through
a real case study implementation.

3.1. Case study outline

Engineering Design Systems are complex and evolve
according to customers’ needs and technological constraints.
A well-known challenge is how to achieve continuity and
interoperability across legacy engineering systems and
modern commercial ones in order to face ever-growing
engineering challenges. As a case study, a Framework for
evaluating and selecting engineering design system
architecture was applied for an engineering company facing
such a challenge. Five engineering systems architecture
approaches were proposed as follows:

1. Re-write legacy system into a commercial tool through
API layer 3-tiers architecture (N-API)

2. Include Adapter layer around the new API layer
through 4-tiers architecture (Adapter)

3. Include Translator layer between the legacy system
API and a commercial tool through 4-tiers architecture
(L-API)

4. Utilise a Domain Specific Language 4-tiers
architecture (DSL)

5. Utilise Model Driven Engineering through 4-tiers
architecture (MDE)

In order to evaluate and select the most appropriate
solution, the framework in Fig. 2 was applied. The process
was initiated by SWOT and PEST workshops analysis,
capturing internal/external factors to aid the decision making
process and enhance stakeholders’ understanding of each
architecture approach. Quality workshops were held in order
to have a deeper understanding of each quality value with
respect to each architectural approach.

Quality attributes were used to evaluate the architecture
candidates from a pool of architecture approaches using the
Analytical Hierarchical Process (AHP) technique.

Fig. 2. Architecture evaluation and selection framework

3.2. SWOT and PEST analysis

It is essential at the beginning of the architecture selection
process to have a good understanding of proposed architecture
approaches within the business’s political and market context.
An effective way of achieving that is to use SWOT analysis to
identify internal and external factors, as well as PEST analysis

to identify constraints which should be taken into
consideration during the evaluation process. Tables 1 and 2
illustrate PEST and SWOT analyses for the DSL architecture
approach.

Table 1. PEST analysis for DSL approach

Political Economic
Use of a DSL has support within IT
department

External consultants would likely
be required (increased cost)

Social Technological
Developers would spend time
learning an approach and toolset that
may not be useful outside the
company

Additional tools would be required
to effectively develop models and
the DSL

Table 2. SWOT analysis for DSL approach

Strengths Weaknesses
Change of programming language
only requires change to the DSL-to-
native translator. No API source
code modification is required

System’s developers will have low
productivity while coming up to
speed learning the DSL syntax

Opportunities Threats
The DSL could provide a simplified
language syntax vs. the object-
oriented APIs

Increased difficulty of integrating
the DSL with other components of
the IT system

3.3. Identifying architecture quality attributes

The Quality Attributes structure proposed is based on the
international standard (ISO/IEC 25010:2011) Systems and
software Quality Requirements and Evaluation (SQuaRE).

The first phase is to identify a list of Quality Attributes that
are desirable in the system. It was noted through
stakeholders’ discussions that having a business attribute is
desirable for evaluating implementation feasibility (Table 3).

Table 3. Example of utilized quality attributes
Maintainability Portability Feasibility

Modularity
Reusability

Analysability
Modifiability

testability

Adaptability
Installability

Replaceability

Cost
Schedule

For each attribute, scenarios are populated to put the ISO

definition within context as shown in the example in Table 4.

Table 4. Populated quality attribute

Quality
Attribute

Modularity

Quality
Definition

Degree to which a system or computer program is
composed of discrete components such that a change to one
component has minimal impact on other components

Quality
Scenario

Design engineer will insert new feature into the system
without the need to modify existing features

3.4. Analytical Hierarchy Process

The agreed Quality Attributes were used as inputs for the
AHP workshops. Pairwise rankings were executed over three
levels, with results being recorded in Excel sheets before
being translated into the AHP tool.

131 Mohamed Darwish and Essam Shehab / Procedia CIRP 60 (2017) 128 – 132

First level; applying pairwise across the high level quality
attributes to define their weights (Fig 3).

Second level; applying pairwise ranking across sub-
attribute for each high level quality (Fig. 4).

Third level; applying pairwise comparison across
architecture approaches and each quality sub-attribute (Fig.
5).

Fig. 3. Pairwise ranking across main quality attributes

Fig. 4. Pairwise ranking across sub-quality attributes

Fig. 5. Pairwise ranking of Architectures with each sub-quality attribute

Data recorded was processed using AHP tool (Expert

Choice) to check for inconsistencies and build the hierarchy
model as shown in Fig. 6.

Fig. 6. AHP hierarchy model

As shown in Fig. 7, the highest four attributes came up as;
Maintainability (34.2%), Portability (27.0%), Functional and
Usability (each 11.6%). The business attribute (Feasibility)
was given a marginal weight so that it could be included in
the analysis model without disturbing the overall architectures
scorings.

Fig. 7. AHP Dynamic Graph – Attributes scorings

As shown in Fig. 8, DSL approach achieved the top score,
which was not surprising as it obtained the highest pairwise
ranking against Maintainability and Portability attributes.

Fig. 8. AHP Dynamic Graph – Architectures scorings

Although the DSL approach came out on the top of the list
(25.4%), followed by Adapter layer approach (23.5%),
looking into the Feasibility analysis, the Adapter layer
approach scored higher than DSL one (26.5% vs 6.4%).

Combining the AHP scores with outcome from SWOT and
PEST analyses has given the stakeholders a wider perspective
to conclude an informative decision. It was thus agreed that
the Adapter layer would strike the right balance between
modernising Engineering Design Systems, whilst assuring
business continuity in terms of time to market and resources
required.

4. Discussion and Conclusion

In this paper, we have illustrated a framework for
evaluating alternative Engineering Design System
architectures and selecting appropriate one that delivers
required quality level, whilst assuring feasibility of
implementation. It combines SWOT and PEST analysis with
AHP and Quality Attributes trade-offs to provide a wider set
of analysis viewpoints. The framework has been validated
through application to a real case study.

Quality Attributes were adopted from the ISO standard
(ISO/IEC 25010:2011), which enabled more intensive
analysis and elicitation of critical characteristics. Some
attributes were not utilized as they were not relevant to the
system of concern, while new business attributes were
adopted to give a more rounded quantitative evaluation
viewpoint.

AHP has proven challenging for stakeholders as it forces
them to weigh alternatives using pair wise technique.
However, putting quantitative scores against attributes and
architectures with respect to each other has proven useful in
having objectively calculated weights, which increases the
confidence of the evaluation process results.

Inconsistency ratio has been beneficial in signaling
discrepancies in stakeholders’ evaluations. Quite often
participants had to revisit their score for revaluation if ratio is
inconsistent.

SWOT and PEST analyses allowed the discussion of
proposed architectures from different viewpoints, that
otherwise may have been missed if stakeholders were to rely

132 Mohamed Darwish and Essam Shehab / Procedia CIRP 60 (2017) 128 – 132

only on Quality Attributes. The selected architecture approach
has been approved by subject of matter experts.

General limitation noticed by the researchers was the
challenge faced during the Quality Attributes scenarios
generation, which was due to the lack of stakeholders who
have the experience of system and software architectures
qualities attributes, and their implementations’ scenarios. This
was overcome by involving external consultants during the
workshops to enrich the discussions.

Future work identified by the researchers is to study the
possibility of applying the framework further to the selected
architecture’s components’ design in order to identify the
proper implementation approach.

Acknowledgements

The authors would like to thank the Engineering and
Physical Sciences Research Council (EPSRC), the
Engineering Doctorate (EngD) Centre at Cranfield University
and the engineering company for funding and supporting this
research project. The continued support given by all those
who give their time for workshops and interviews is also
appreciated.

References

[1] Rauch E, Dallasega P, Matt DT. The way from Lean Product
Development (LPD) to Smart Product Development (SPD). Procedia
CIRP 50, 2016; 26 – 3.

[2] Sheard SA, Mostashari A. Principles of complex systems for systems
engineering, Systems Engineering, 2009; vol. 12, no. 4, pp. 295-311.

[3] Nightingale DJ, Rhodes DH, Enterprise systems architecting: Emerging
art and science within engineering systems, Proceedings of the ESD
External Symposium, Citeseer, 2004.

[4] Mistrik, I, Bahsoon, R, Eeles P, Roshandel R, Stal M. Relating System
Quality and Software Architecture. Elsevier, 2015.

[5] Bass L, Clements P, Kazman R. Software Architectures in Practice, 2nd
ed. Addison Wesley, Reading, 2003.

[6] Garces L, Ampatzoglou A, Avgeriou P, Nakagawa EY. Quality attributes
and quality models for ambient assisted living software systems:A
systematic mapping. Journal of Information and Software Technology.
2017; 82:121-138.

[7] Boehm BW, Brown JR, Lipow M. Quantitative evaluation of software
quality. ICSE’76: 2nd International Conference on Software Engineering,
1976; 592–605.

[8] ISO/IEC 25010, Systems and software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Software product
quality and system quality in use models. 2011

[9] Oquendo F, Leite J, Batista T. Software Architecture in Action. Springer,
Switzerlan, 2016.

[10] Barney S, Petersen K, Svahnberg M, Aurum A, Barney H. Software
quality trade-offs: A systematic map. Journal of Information and Software
Technology. 2012; 54: 651-662.

[11] Saaty TL. Decision making with the analytic hierarchy process.
International journal of services sciences, 2008; 1(1): 83-98.

[12] Svahnberg M. An industrial study on building consensus around
software architectures and quality attributes. Journal of Software Quality.
2005; 13: 357-375.

[13] Zhu L, Aurum A, Gorton I, Jeffery R. Tradeoff and sensitivity analysis
in software architecture evaluation using analysis hierarchy process.
Journal of Information and Software Technology. 2004; 46: 805-818.

 [14] Zimmermann O, Gschwind T, Kuster J, Leymann F, Schuster N..
Reusable Architectural Decision Models for Enterprise Application
Development. International Conference on Quality of Software
Architectures, 2007; 15-32.

