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ABSTRACT 

This study focuses on an incompressible and laminar flow problem behind a 

backward facing step by employing a recently developed Fractional-Step, Artificial 

Compressibility and Pressure-Projection (FSAC-PP) method. The FSAC-PP 

approach unifies Chorin’s fully-explicit Artificial Compressibility (AC) and semi-

implicit Fractional-Step Pressure-Projection (FS-PP) methods within the framework 

of characteristic-based (CB) Godunov-type schemes for solving the incompressible 

Navier-Stokes equations. The FSAC-PP approach has been originally introduced for 

low and moderate Reynolds number flows in conjunction with microfluidic and 

wide range of multiphysics applications. In this work, we demonstrate the 

applicability of the novel FSAC-PP method to macro-scale separated flows at a 

moderate Reynolds number. The computational results obtained with the FSAC-PP 

approach have been compared to the AC method and experimental data to highlight 

its favorable accuracy and convergence properties for separated flows. 

1. INTRODUCTION

The numerical solution of the Navier-Stokes equations has fallen into the two 

categories of compressible and incompressible solvers within the field of 

Computational Fluid Dynamics (CFD). The absence of density changes at low 

Mach numbers prohibits the direct application of the Navier-Stokes equations to 

incompressible flows and hence researchers proposed algorithms over the past 

decades to circumvent this shortcoming. Chorin [1] introduced the Artificial 

Compressibility (AC) method where a pseudo-time derivative of the pressure is 

added to the continuity equation. In addition to this, Chorin [2] devised the 

Fractional-Step Pressure-Projection (FS-PP) method which is relying on the 

Helmholtz-Hodge decomposition to enforce the divergence-free (incompressibility) 

constraint at each time level. Patankar and Spalding [3] introduced another class of 

incompressible Navier-Stokes solvers which is called pressure correction algorithm. 

In their Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), an initial 

pressure field is imposed and corrected via the continuity equation. Recently, a 

novel numerical procedure has been proposed by Könözsy [4], and Könözsy and 
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Drikakis [5] labeled as the FSAC-PP method to unify the advantageous features of 

Chorin’s fully-explicit AC and semi-implicit FS-PP methods within the framework 

of characteristic-based (CB) Godunov-type schemes. This approach was originally 

developed for low and moderate Reynolds number flows in conjunction with a wide 

range of microfluidic and multiphysics applications. The FSAC-PP method was 

validated for multi-species variable density flows in a Y-junction channel [6]. The 

pseudo-compressibility type schemes can also be successfully applied to predict 

trapping and positioning of cryogenic propellants through acoustic liquid 

manipulation in microgravity space environment [7]. A comparative study was 

published by Tsoutsanis et al. [8] to assess the performance of structured, 

unstructured, incompressible and compressible solvers where the FSAC-PP method 

was capable of predicting and resolving vortical flow structures accurately even 

with lower-order interpolation schemes exhibiting low numerical dissipative 

behaviour. In the present work, we employ the FSAC-PP method to a backward 

facing step problem to further validate and investigate its characteristics and 

numerical features for a moderate Reynolds number flow with separation. 

 

2. COMPUTATIONAL METHOD 

 

The FSAC-PP method employs a modified set of governing equations relying on the 

unification of the AC and FS-PP methods of Chorin [1,2] for solving the 

incompressible Navier-Stokes equations. The perturbed continuity equation with a 

pseudo-pressure derivative term can be written in a semi-discrete form as 
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where  is the artificial compressibility parameter which is responsible for ensuring 

convergence of the numerical solution as a convergence parameter. The pseudo-time 

 derivative of the pseudo-pressure p is inherited from the AC formulation of Chorin 

[1] to predict an initial guess for the real pressure field when the pressure-projection 

step will be carried out by solving a pressure-Poisson equation subsequently. The 

momentum equation can be written based on the FS-PP method of Chorin [2] as 
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where the pressure gradient term is cancelled out in the first fractional-step to 

predict an intermediate velocity field 
u  without taking into account the real 

pressure field, and u~  represents a velocity field through the characteristics-based 

(CB) Godunov-type discretization of the convective flux term. In other words, the 

first step of the FSAC-PP formulation based on Eq. (1) is consistent with the AC 

method [1] and the second step according to Eq. (2) is consistent with the 

Helmholtz-Hodge decomposition based FS-PP [2] approach of Chorin. The reason 

for unifying the AC [1] and FS-PP [2] formulations is to make the CB Godunov-



type convective flux discretization scheme compatible with the elliptical-type 

pressure-projection (PP) method along the characteristics. From a theoretical point-

of-view, it is important to highlight that the Godunov-type convective flux term can 

be derived from a hyperbolic system of governing equations consistently with the 

AC method [1], and the PP step is compatible with the elliptical-type FS-PP [2] 

approach. In this way, we can retain the excellent accuracy and convergence 

properties of the CB Godunov-type scheme making compatible the hyperbolic-type 

convective flux term discretization with the elliptical-type FS-PP [2] method. The 

proposed novel FSAC-PP formulation [4,5] is a unified solution method to the 

incompressible Navier-Stokes equations, because the pseudo time derivative of 

pressure does not change the original characteristic of the system of governing 

equations and hence the hyperbolic nature is retained which allows the convective 

fluxes to be treated with a CB Godunov-type scheme. For solving incompressible 

flow problems, the CB Godunov-type scheme was first introduced by Drikakis et al. 

[9] within the formulation of the hyperbolic-type AC method [1] of Chorin. With 

higher-order interpolation schemes with the solution of the local Riemann problem, 

the unified FSAC-PP method can be classified as a Godunov-type method. The 

contribution of the viscous effect is treated numerically on the right hand side of the 

momentum equation (2) where  is the kinematic viscosity of the fluid. After 

predicting an initial pressure field by solving the perturbed continuity equation (1) 

and computing the convective fluxes through a CB Godunov-type scheme, the 

second fractional-step is performed to recover the real pressure field gradient as 
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The Helmholtz-Hodge decomposition requires the incompressibility (divergence-

free) constraint to be exactly satisfied at time level (n+1), therefore by taking the 

divergence of Eq. (3), a pressure-Poisson equation can be constructed by 
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After solving the pressure-Poisson equation (4) by a point S.O.R (Successive Over-

Relaxation) method with relaxation factor  = 1.7 performing an approximate 

solution through a few sub-iterations, the velocity field can be updated as 
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which is consistent with the FS-PP method [2] of Chorin. It is important to note that 

the solution of the Poisson equation requires high computational demand in general, 

however, since an initial pressure field is already predicted through the perturbed 

continuity equation (1), the Poisson equation does not need to be satisfied exactly 

when the unified FSAC-PP approach is employed. Due to the elliptic nature of the 

pressure-Poisson equation, its numerical solution stabilizes the pressure field and 



accelerates the convergence of the perturbed continuity equation (1). The iterations 

from Eq. (1) to (5) have to be repeated until the continuity equation of 

incompressible flows   01  n
u  is satisfied. Therefore, the convergence criterion 

can be prescribed within a small threshold value [4,5] as 
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where  is the convergence tolerance and set to be equal to 10
-6

 in the present study. 

The pseudo-temporal accuracy is advanced by using a fourth-order explicit Runge-

Kutta time-integration scheme and the spatial interpolation/reconstruction has been 

approximated by a first-order scheme and a third-order polynomial [4]. 

 

3. GEOMETRICAL AND SIMULATION SETUP 

 

The geometry employed for the present study is shown in Figure 1. We use non-

dimensional units and have h = S = 1, 𝐿1 = 4 and 𝐿2 = 10 with 41566 grid points. 

The Reynolds number is Re = 100 relying on the experiment of Armaly et al. [10], 

thus we consider the fluid flow as laminar and steady-state. The small and large 

channels are shorter with respect to the reference data [10] to reduce computational 

time. A fully-developed analytical laminar velocity profile has been imposed at the 

inlet of the smaller channel to match the profile at the transition from the smaller to 

the larger channel. After a length 𝐿2, the velocity profile does not change which was 

observed based on the experiments, and thus we can use a smaller channel length. 

 

 
 

Figure 1: Geometrical setup for the backward facing step problem. 

 

4. RESULTS AND DISCUSSION 

 

The velocity profiles for the AC and FSAC-PP method are plotted in Figures 2 and 

3 compared to the reference data [10]. First of all, the velocity profile at the outlet 

of the smaller channel (x/S = 0) exhibits a difference between both simulation 

methods and reference data [10]. We note that the experimental data is slightly off 

center while both FSAC-PP and AC methods provide a more centered velocity 

profile. The reason for the difference is due to the shape of the recirculation area 

downstream which, by means of pressure propagation, is influencing the upstream 

velocity profile. This imbalance is further seen by the difference in the velocity 

profile downstream of the larger channel. The downward momentum is kept by the 

experimental data which shows a momentum deficit in the upper half of the channel 

and a momentum excess at the bottom half, compared to the FSAC-PP and AC 



methods. Near the outlet boundary, the velocity profiles of all three sources 

approach similar shape. However, the differences overall are minute and both of the 

FSAC-PP and AC methods are closely matched. Due to the forced separation over 

the convex corner at x = y = 0, the reattachment length is a parameter allowing us to 

further judge the applicability of the FSAC-PP method which has not been 

investigated before to separated flows. The dimensionless reattachment length for 

this case was stated by Armaly et al. [10] to be x/S = 3.05 and we have given the 

reattachment lengths obtained with the FSAC-PP and AC methods in Table 1. It has 

been emphasized by Könözsy and Drikakis [5] that the FSAC-PP approach shows 

high accuracy for internal flows even with lower-order spatial interpolation 

schemes. Therefore, we have also performed a simulation with a first-order scheme 

to further validate this type behaviour of the FSAC-PP method for separated flows. 

These values have been included in Table1. We can see that this behaviour is also 

valid for the investigated separated flow in this study. Compared to the AC method, 

the FSAC-PP approach predicts the reattachment length four and seven times more 

accurately by employing first- and third-order schemes, respectively.  

 
Figure 2: Velocity profiles at different stream-wise locations with a first-order 

interpolation scheme [4] compared to the experimental data of Armaly et al. [10]. 

 
Figure 3: Velocity profiles at different stream-wise locations with a third-order 

interpolation scheme [4] compared to the experimental data of Armaly et al. [10]. 



Table 1: Reattachment length L and its deviation D to the experimental data of 

Armaly et al. [10] for first- and third-order spatial interpolation schemes. 
 

 AC FSAC-PP 

 1
st
-order 3

rd
-order 1

st
-order 3

rd
-order 

L [-] 2.63 3.27 2.94 3.08 

  D [%] -13.9 7.3 -3.6 1.0 

 

Table 2: Computational time and convergence. 

 

 
 

Figure 4: Convergence history by using a first-order interpolation scheme. 

 

 
Figure 5: Convergence history by using a third-order interpolation scheme. 

 

The absolute values of 3.6% and 1.0% show that the inclusion of the Godunov-type 

procedure in conjunction with a CB scheme to treat the convective flux terms with 

highly accurate results in close agreement with the reference data [10]. Furthermore, 

 AC FSAC-PP 

 1
st
-order 3

rd
-order 1

st
-order 3

rd
-order 

Iterations 30 37 24 26 

CPU-time 2 min, 42 sec 3 min, 16 sec 3 min, 06 sec 3 min, 19 sec 



the interval in which the reattachment is calculated, i.e. 0.14 and 0.64 for FSAC-PP 

and AC in non-dimensional units, respectively, shows that the reattachment length 

prediction varies only marginally for the FSAC-PP method while the AC method 

shows a considerable dependence on the numerical scheme. The AC method 

performs less floating point operations per pseudo-time step, i.e. the pressure 

gradient is retained in the corresponding momentum equation which closes the 

system of equations, and no pressure-projection step needs to be carried out. 

Therefore, it may be argued that the AC method is faster than the FSAC-PP method. 

We have compared the convergence properties of both methods and summarized 

our findings in Table 2, and further show the convergence history of the first- and 

third-order spatial interpolation schemes in Figures 4 and 5. We can see that for 

both first- and third-order schemes, the FSAC-PP method is performing 20% and 

30% iterations less, respectively. Since more computational demand is required for 

each pseudo-time step by using the FSAC-PP method, we have also measured the 

computational CPU-time. We can see that the AC method is faster for the first-order 

scheme and comparable for the third-order scheme as well. The inclusion of the 

pressure-Poisson equation in the FSAC-PP method requires more computational 

time during each pseudo-time step but has favorable stabilizing effects which in 

turn accelerate the pressure update in the perturbed continuity equation (1) at each 

pseudo-time level. In the present study, we perform ten Poisson sub-iterations 

which are based on computational experience. Fine tuning this parameter could 

speed up the convergence even further. The convergence history of first- and third-

order schemes in Figures 4 and 5 shows that both AC and FSAC-PP method have a 

similar convergence behaviour for the u and v velocity component and reach the 

convergence criteria after approximately the same amount of iterations. However, 

the pressure takes longer to converge and we see that the speed up in convergence is 

due to the pressure stabilization of the pressure-Poisson solver. It was also reported 

by Könözsy and Drikakis [5] that the convergence properties of the FSAC-PP 

approach for microfluidic applications and internal flows at low Reynolds numbers 

exhibited a similar behaviour of numerical convergence. In addition to this, they 

also highlighted when the PP method was employed by itself, the PP method 

required higher number of iterations to converge due to the small time-step size. 

The Poisson equation itself may have advantageous properties, but due to its 

elliptical behaviour, Godunov-type methods with CB schemes cannot be employed 

straight away [4,5]. Overall, we can conclude that the inclusion of the PP step 

accelerates the numerical convergence of the FSAC-PP approach through the faster 

satisfaction of the perturbed continuity equation (1). The CB Godunov-type 

treatment of the convective flux terms is responsible for the high accuracy of the 

unified FSAC-PP approach even with lower-order spatial interpolation schemes, 

and these properties are also valid for separated flows as investigated in this work. 

 

5. CONCLUSIONS 

 

In this paper, we investigated the backward facing step problem by employing a 

recently developed unified Fractional-Step, Artificial Compressibility and Pressure-

Projection (FSAC-PP) formulation for solving the incompressible Navier-Stokes 



equations. For modelling the aforementioned physical flow problem, a laminar, 

steady-state flow has been considered at a moderate Reynolds number (Re = 100). 

The numerical results have been compared to the reference data of Armaly et al. 

[10] and showed that the reattachment length is closely predicted by the FSAC-PP 

method even with a first-order spatial interpolation/reconstruction scheme. The 

spatial accuracy stems from the CB Godunov-type treatment of the convective term 

in conjunction with the solution of a local Riemann problem. An additional PP step 

has been carried out in addition to the solution of the perturbed continuity equation 

of the original AC method [1] of Chorin to stabilize and accelerate the numerical 

convergence of the unified FSAC-PP approach. For the backward facing step 

problem, the FSAC-PP method performed less iteration while computational CPU-

times were comparable to the AC method. The reattachment lengths obtained with 

the AC method exhibited bigger differences compared to the FSAC-PP approach, 

and showed a considerable dependence on the order of the numerical scheme.  
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