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Coordination of optimal guidance law and

adaptive radiated waveform for interception

and rendezvous problems
Alessio Balleri1, Alfonso Farina2 and Alessio Benavoli3

Abstract

We present an algorithm that allows an interceptor aircraft equipped with an airborne radar to meet another

air target (the intercepted) by developing a guidance law and automatically adapting and optimising the transmitted

waveform on a pulse to pulse basis. The algorithm uses a Kalman filter to predict the relative position and speed of

the interceptor with respect to the target. The transmitted waveform is automatically selected based on its ambiguity

function and accuracy properties along the approaching path. For each pulse, the interceptor predicts its position and

velocity with respect to the target, takes a measurement of range and radial velocity and, with the Kalman filter, refines

the relative range and range rate estimates. These are fed into a Linear Quadratic Gaussian (LQG) controller that

ensures the interceptor reaches the target automatically and successfully with minimum error and with the minimum

guidance energy consumption.
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I. LIST OF SYMBOLS

xb, xf , e Nx x 1 State vectors of interceptor, target and error between the two state vectors

wb, wf , we Nw x 1 Noisy perturbation of interceptor, target and error dynamic state equations

u Nu x 1 Control input signal to the interceptor

ye Ny x 1 Measurement of the error between state vectors

νe Ny x 1 Additive noise for the measurement of the error

Pk Nx x Nx Estimation error covariance matrix at time k

Pk|k−1 Nx x Nx Prediction of the estimation error covariance matrix at time k

Q Nx x Nx Covariance matrix of the forcing noise of the error state equation

F Nx x Nx State transition matrix

M Nx x Nx Cost function matrix

Uk Nx x Nx Dynamic Riccati equation matrix at time k

Sk Ny x Ny Residual covariance matrix at time k

H Ny x Nx Measurement matrix

Kk Nx x Ny Kalman gain at time k

G Nx x Nw Process noise matrix

R Nu x Nu Cost function matrix

Lk Nu x Nx Feedback gain matrix at time k

B Nx x Nu Control transition matrix

II. INTRODUCTION

The task of intercepting a target and/or rendezvous is an important technical challenge that occurs in many

defence operations as well as in civilian applications like robotics, Simultaneous Localisation And Map (SLAM)

and similar [1]. One of the first papers on optimal guidance for interception and rendezvous dates back to 1971

[2]. In that paper, a sensor on the ground delivers optimal guidance to the interceptor on the basis of the estimated

trajectories of the interceptor and the target to reach. The radar transmits a suitable waveform which, however, does

not change during the task. Another paper [3] years later develops a procedure to adapt the radiated waveform to

minimise the estimation error in a tracking study case. This procedure has been recently named fore-active control.

It is known [4] that a bat looking for a prey (e.g. a moth or a butterfly) during its search, acquisition, tracking

and interception phases along its trajectory to approach the prey changes adaptively the radiated waveform of the

calls in order to improve the location of the prey. More precisely, the figures from [5] [6] show the time-frequency

spectrogram of the radiated calls in the successive phases of the interception. It can be argued that the bat develops

an optimal rendezvous trajectory together with an adaptive radiated waveform which improves the location capability

of the predator. Another interesting reference on the subject is [7].

In this paper we take inspiration from the bat and develop an algorithm that guides an airborne radar interceptor

towards a target by jointly developing an optimal guidance and automatically adapting and optimising the transmitted

waveform on a pulse to pulse basis. We suitably combine the techniques in [2] and [3], namely the optimal
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linear quadratic Gaussian (LQG) control law and the fore-active control of the radiated waveform. This is an

original contribution of the paper. The result which we achieve is to emulate what the bat does in its predation:

contemporaneously and interactively develop an optimal approaching trajectory and transmit a waveform that

adaptively changes during the approaching trajectory phases so that the measurements of the sensor on board

of the interceptor are better suited to improve guidance law. Some preliminary results of the proposed technique

were presented in [8].

III. THEORETICAL FRAMEWORK

We study the case of an interceptor and a target both moving with the same type of linear kinematics described

by a matrix F. The trajectory of both the interceptor and the target are subject to Gaussian random perturbations,

Gwf (k − 1) and Gwb(k − 1), with zero mean value and covariance matrices Qf and Qb, respectively.

xf (k) = Fxf (k − 1) +Gwf (k − 1)

xb(k) = Fxb(k − 1) +Bu(k − 1) +Gwb(k − 1)
(1)

The term Bu(k− 1) is used to model the ability of the interceptor to adapt and control its trajectory at each step.

The interceptor is modelled as a controlled system that accepts an input vector u(k) which is combined linearly

with a matrix B before being applied to the equations describing the target kinematics. We define the difference

between the state equations of the interceptor and of the target as the error to reduce to the minimum value at the

intercept point

e(k) = xb(k)− xf (k) = Fe(k − 1) +Bu(k − 1) +Gwe(k − 1) (2)

with Gwe(k − 1) being a Gaussian random process with mean value zero and covariance matrix Q. At each

time k the interceptor transmits a waveform to measure its relative distance and radial velocity with respect to the

target and uses the measurements to control its trajectory in order to intercept the target with a limited number

of transmissions NT and with the minimum energy consumption. We assume that the measurement ye(k) of the

distance and velocity relative to each transmission is a linear function of the error e(k) as [3]

ye(k) = He(k) + νe(k;θk) (3)

where H is the matrix that maps the error into the measurement and νe(k;θk) is a Gaussian random process

with mean value zero and a covariance matrix N(θk). The covariance matrix of each measurement depends on the

accuracy of the transmitted waveform s(t;θk) whose design is fully described by the vector of parameters θk that

identifies the key waveform properties, such as duration, bandwidth and time-frequency curvature. The mathematical

expression of the elements of θk and the vector length depend on the waveform design. It has been shown in the

literature that N(θk) corresponds to the Cramér-Rao Lower Bound (CRLB), relative to the task of joint estimation

of range and radial velocity between a sensor and a target, when the sensor transmits the signal s(t;θk) [9] [10]

[11] [12]. The Fisher Information Matrix (FIM) for range and radial velocity in the presence of noise with mean

power N0 can be expressed as
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FIM = −SNR

 4
c2

1
2
∂2|χ(τ,ν;θk)|2

∂τ2
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2
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∂τ∂ν

4
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1
2
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∂ν∂τ
4
λ2

1
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∂2|χ(τ,ν;θk)|2

∂ν2

∣∣∣∣∣∣
τ,ν=0

(4)

where c is the speed of propagation, λ is the wavelength , SNR = 2Es/N0 is the Signal to Noise Ratio and χk(τ, ν)

is the normalised narrowband Complex Ambiguity Function (CAF) of the signal
√
Ess(t;θk) of energy Es defined

as

χ(τ, ν;θk) =

∫ ∞
−∞

s(t;θk)s
∗(t+ τ ;θk)e

j2πνtdt (5)

The CRLB is obtained as the inverse of FIM and therefore

N(θk) = [FIM]
−1 (6)

This gives the minimum values of variances and covariances of the measurements of range and range rate. At each

time k, the interceptor makes a prediction of the estimation error covariance matrix

Pk|k−1 = FPk−1F
T +Q (7)

and then selects the waveform parameters θk so to minimise the determinant of the residual matrix

Sk = HPk|k−1H
T +N(θk) (8)

as described in [3]. The interceptor then produces a pulse, takes a measurement with a waveform of the preselected

parameters θk, and uses the covariance matrix N(θk) to calculate the Kalman filter gain Kk as

Kk = Pk|k−1H
TS−1k (9)

The Kalman gain is then used to calculate the estimation error covariance matrix at the kth step as Pk =

(I−KkH)Pk|k−1 and an estimate of the error as

ê(k|k − 1) = Fê(k − 1) +Bu(k − 1)

ê(k) = ê(k|k − 1) +Kk [ye(k)−Hê(k|k − 1)]
(10)

Eq. 10 shows that the estimate of the error at the kth time step only depends on the control input at the k-1th

time and this will allow us to select the most appropriate control input at the kth time based solely on the estimate

of the error.

As previously mentioned, the control task is carried out to ensure the interceptor reaches the target as efficiently

as possible. To do this, we define and minimise the cost function

J = E

{
eT (NT )Me(NT ) +

NT∑
k=0

uT (k)Ru(k)

}
(11)

of the kind of a typical LQG control framework [2]. In Eq. 11, NT is the predefined number of transmissions used

to intercept the target and M and R are two suitable matrices that are applied to the dynamic state error and to the

input control signal, respectively. It is worth noting that when M and R are identity matrices the cost function is
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minimised when the error at time NT is minimised and when the energy of the input signal u(k) is also minimised.

The solution of Eq. 11 is well known in the literature (e.g. see [2]) and it is such that the control input signal at

the time k is a function of the estimate of the error at the time k and of a matrix Lk

u(k) = −Lkê(k) (12)

where

Lk =
(
BTUkB+R

)−1
BTUkF (13)

and

Uk = FT
(
Uk+1 −Uk+1B

(
BTUk+1B+R

)−1
BTUk+1

)
F , with UNT = M (14)

We note that the interleave between fore-active control and LQG control is new and represents one of the contri-

butions of this paper.

A. Gaussian Linear Chirp

In this paper, we limit the study to Linear Frequency Modulated chirps (LFM) with a Gaussian amplitude

modulation of the form

s(t;θk) =

(
1

πλ2G

) 1
4

e
− t2

2λ2
G ejbGt

2

ej2πf0t (15)

whose design depends solely on the parameters λG and bG, that is θk = [bG λG]
T . Selecting and diversifying

these parameters results in waveforms with a different time duration T = 2λG and bandwidth B = bGT/π. The

use of a Gaussian linear chirp simplifies the analysis because the FIM relative to this class of waveforms is known

in the literature (e.g see [3] and [13]) and can be expressed as

FIM = SNR

 4
c2

(
1

2λ2
G
+ 2λ2Gb

2
G

)
4
cλ

(
2πλ2GbG

)
4
cλ

(
2πλ2GbG

)
4
λ2

(
2π2λ2G

)
 (16)

which leads to

N(θk) =

 c2λ2
G

2SNR − cλλ
2
GbG

2πSNR

− cλλ
2
GbG

2πSNR
λ2

4π2SNR

(
1

2λ2
G
+ 2λ2Gb

2
G

)  (17)

It can be easily shown that the determinant of the FIM is equal to SNR2 16π2

c2λ2 and does not depend on the parameters

bG and λG [3]. This will significantly simplify the calculations of the optimal θk in the next section.

IV. CASE STUDY

We study the case of an interceptor and a target that move along a mono-dimensional path. The state variables of

both the interceptor and the target consist of the position, the velocity and the acceleration and a noisy perturbation

is applied to the component representing the acceleration. We use the classical equations developed in [14] and

used in [3], thus define the matrices F and G as

F =


1 Ts

T 2
s

2

0 1 Ts

0 0 1

 (18)
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and

G =


0

0

1

 (19)

where Ts is the radar scan period 1

The sensor measures the distance between the predator and the prey and their relative radial velocity. When both

the predator and the prey move over a line the measurements corresponds to the measurement of the error ye when

the matrix H is defined as

H =

 1 0 0

0 1 0

 (20)

For the mono-dimensional case and for the matrix H defined as above, the matrix Sk becomes equal to

Sk =

 p11 + n11 p12 + n12

p12 + n12 p22 + n22

 (21)

where pij and nij are respectively the elements of the matrix Pk|k−1 and N(θk), and its determinant can be

expressed as

det (Sk) =
[
p1,1p2,2 − p21,2

]
+ p1,1n2,2 ++p2,2n1,1 − 2p1,2n1,2 + det (N(θk)) (22)

The minimum of the determinant of Sk is obtained by deriving Eq. 22 with respect to λG and bG after noting

that the elements pi,j and the determinant of N(θk) do not depend on the waveform parameters. It has been

demonstrated in [3] that, as a result of this minimisation, the waveform parameters of the Gaussian linear chirp

θk = [ bG λG ]T at the k-th time step can be simply calculated as

bG = −wcp122p11

λG =
(

p211
w2
c(p11p22−p212)

)1/4 (23)

The derivation of these equations is straightforward and results from the non-dependency of the determinant of the

covariance matrix of the measurements on the parameters which is a key property of the Gaussian chirp [3].

A. Simulation results

Results are presented for the notional case of a radar interceptor required to meet a target within N = 60 scans

with a scan period Ts = 0.5 ms. For simplicity, we have assumed that the radar transmits one pulse per scan at

a central frequency f0 = 10 GHz. At reception phase, a matched filter is applied followed by the conventional

measurement parameters extraction. We have performed a Monte Carlo simulation of which we show the results

for just one run. The initial values of the error state vector e(0) have been set so that the initial distance between

the interceptor and the target is 10 km and the initial relative velocity and acceleration are -200 m/s and 0 m/s2,

1In this paper we only consider the case of one pulse per scan and hence the scan period corresponds to the Pulse Repetition Interval (PRI)

of the radar.
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Fig. 1. a) Distance between the interceptor and the target at each transmission and b) Plot of the estimated range and velocity with respect to

the ground truth at each transmission. The plots are relative to one Monte Carlo realisation.

respectively. The relative position, velocity and acceleration are then varied throughout the mission by means of the

LQG controller. The SNR at the beginning of the task is 15 dB. The covariance matrix Q of the error state vector

is defined as Q = Gσ2GT where σ2 is the variance of the zero-mean Gaussian process that describes the relative

acceleration between the interceptor and the target. The variance of the relative acceleration is set to σ2 = 0.1

m2/s4 and

B =


1 0

0 1

0 0

 (24)

Results have been produced with a correct estimate of the error at time k = 0 (i.e. ê(0) = e(0)), with an estimation

error covariance matrix P0 equal to identity and with u(0) = [0 0]T . The LQG controller has been set with both

the matrices M and R being equal to identity. The minimum possible pulse duration the algorithm can select at

each time is constrained so to avoid eclipsing and is calculated as Tmin(k) = 2d(k)/c, where d(k) is the amplitude

of the first element of ê(k). Similarly, the bandwidth is constrained at each step to meet the minimum range

resolution requirements. In the simulations, the minimum bandwidth Bmin is fixed to 5 MHz, corresponding to a

range resolution of 30 m. The energy of the transmitted waveform is constant from pulse to pulse and the SNR

increases at each step only for effect of the decrease in relative range between the interceptor and the target.

Figure 1 shows the plots of the relative distance between the interceptor and the target as a function of time

and the range-velocity diagram for each pulse. Results clearly show that the LQG guidance law is such that the

interceptor reaches the target successfully within the pre-established number of scans. The velocity profile shows

that interceptor velocity is higher at the beginning of the attack and then diminishes as the interceptor approaches

the target. Figure 2 shows the optimal duration and bandwidth of the Gaussian LFM that are automatically selected

by the algorithm at each scan. Results show that the pulse duration decreases as the interceptor closes in and that
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Fig. 2. a) Duration and b) bandwidth of the chirp with Gaussian envelope as a function of the transmitted pulse number. The plots are relative

to one Monte Carlo realisation.

the bandwidth remains constant and equal to Bmin. As a result, the compression factor of the matched filter to

the received chirp also decreases. The optimal pulse duration is smaller than Tmin at each scan, indicating that

the constraint on the minimum allowable pulse duration, set to avoid eclipsing, does not have an impact on the

automatic selection. Decreasing the pulse duration along the trajectory has the effect of improving the time-delay

measurement accuracy when the interceptor becomes closer to the target (see element (1,1) of the matrix N(θk) in

Eq. 17). Figure 3 shows the AF of the 1st, 15th, 45th and 60th transmitted waveforms. Results show that the wedge

of the AF rotates anti-clockwise along the trajectory. When the interceptor approaches the target, the bandwidth

does not change significantly and the range resolution remains constant. However, as the pulse duration becomes

shorter the Doppler resolution decreases. The waveform is Doppler tolerant throughout the mission2, that is the

output of the matched-filter remains high in the presence of a Doppler mismatch. Figure 4 shows the plots of the

rotating AF superimposed to the range-velocity diagram.

Figure 5 shows the Short Time Fourier Transform (STFT) of the same pulses of Figure 3. Results show that,

as expected, because the bandwidth is the same throughout the mission and the pulse duration shortens, the time-

frequency slope becomes steeper in the proximity of the target. This results is in agreement with the case of a bat

intercepting its prey. The bat, in fact, also shortens the duration of the echolocation calls, whilst spanning a large

bandwidth, in the terminal phase of a typical feeding buzz [4] [6].

The results presented above are relative to the case when a constraint on the bandwidth of the transmitted waveform

was applied to meet a range resolution requirement. For completeness, Figure 6 and Figure 7 show the results for

the case when the algorithm was left free to select any values of the parameter bG at each step. Figure 6 shows

that the interceptor successfully reaches the target within the pre-defined number of transmissions as expected. The

2Doppler tolerance is a characteristic of linear chirps when the narrowband approximation is satisfied [13].
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Fig. 3. Ambiguity Function (AF) for the case of Bmin = 5 MHz. The plots are relative to one Monte Carlo realisation.

range-velocity diagram does not show significant difference with respect to the previous case of Figure 1. The

results in Figure 7 show that the pulse duration is kept largely constant during the mission until it is reduced to

avoid eclipsing. Interestingly, results show that the optimisation criterion that minimises the determinant of the

matrix S converges to a solution consisting of frequency unmodulated pulses.

Figure 8 shows the range and radial velocity accuracy achieved at each pulse. As expected, because the pulse

duration decreases and the SNR increases when the interceptor approaches the target the range accuracy also

increases. The pulse duration for the case with Bmin = 5 MHz reaches lower values than that relative to the case

with no constrains in range resolution and this results in a better range accuracy (see element (1,1) of the matrix

in Eq. 17). The radial velocity accuracy also decreases as the interceptor approaches the target but, overall, is very

large. This is due to the short time observation interval, related to the exploitation of just one radiated pulse. This
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Fig. 4. Plots of the rotating AF superimposed to the range-velocity diagram. The figure shows the AF rotates anti-clockwise when the interceptor

approaches the target. The plots are relative to one Monte Carlo realisation.

is in agreement with previous results (e.g. [12] and [13]). Results show that the Doppler accuracy reaches better

values for the case with no constraints in range resolution and this is because, in this case, the algorithm converge

to a frequency unmodulated waveform design (that is bG = 0).

V. CONCLUSION

In this paper, we have presented an algorithm that allows an interceptor aircraft with an on-board radar to adapt

its trajectory in order to intercept a target and automatically optimise the transmitted waveform on a pulse to pulse

basis. To achieve this, we have suitably combined two techniques, namely the optimal Linear Quadratic Gaussian

(LQG) control law and the fore-active control of the radiated waveform. The case study takes inspiration from

existing predator-prey relationships in nature, such as that of a bat which captures a moth or a butterfly. The bat

during its search, acquisition, tracking and interception of the insect adjusts both its trajectory to approach the

prey and adaptively changes the radiated waveform of the echolocation calls in order to improve the localisation

of the prey. Simulation results show that the interceptor can successfully reach the target within the predefined

number of transmissions and automatically adapt the waveform during the mission. Future work will look at using

different types of waveform designs and different optimisation criteria. The work will be extended to the the case

of a train of pulses to take into account of a more realistic coherent integration time and a more realistic Doppler

resolution. When a train of pulses is used, the FIM of the estimates of range and radial velocity presented in Eq.

17 is no longer valid. Using a train of pulses therefore requires the calculation of the FIM of the pulsed waveform

and new calculations to obtain the expressions of the waveform parameters that minimise the determinant of the

residual matrix. The case of the bat will be further studied by expanding the algorithm presented in this paper to

the wideband case.
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Fig. 5. Spectrograms for the case of Bmin = 5 MHz. The plots are relative to one Monte Carlo realisation.
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