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It was suggested in [Appl. Opt. 52, 3662 (2013)] that the result of a measurement via coherence scanning inter-
ferometry could be viewed as the convolution of a point spread function of the instrument and an open surface in
3D space that lies at the air/material interface over a portion of the object’s surface. Further, it was suggested that
by measuring certain objects, such as ones that are very close to spherical, and whose surface is known to a suf-
ficient level of accuracy, that a point spread function for the instrument could be determined from the measure-
ment result. We conclude that the approximations used in this calculation do not give sufficient accuracy to allow
this to be achieved, and that the truncation of the surface function from the closed surface surrounding the object
is not defined sufficiently well in order to give a unique solution to the problem. The physical justification for the
truncation of the surface in this manner is also questioned.
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Instrumentation, measurement, and metrology; (120.3180) Interferometry; (240.6700) Surfaces.
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1. INTRODUCTION

When an object is sufficiently weakly scattering so that the first-
order Born approximation and Fourier optics are applicable [1],
then the imaging process of 3D optical microscopes can be de-
scribed using a transfer function (TF) [1,2]. The TF is a com-
plex valued function that describes how the imaging process
modifies the relative amplitude and phase of each of the spatial
frequency terms when mapping the spatial frequencies in the
scattering potential to those in the image created, and will be
equal to zero for spatial frequencies that are not passed by the
instrument. Thus, if the scattering potential is known, it can be
Fourier transformed (FT) to obtain the set of spatial frequencies
it contains, and multiplied by the TF in order to get the result
that would be obtained in spatial frequency space when imag-
ing that object. An inverse FT of this result provides the mea-
surement result in real space. Alternatively, this process can be
viewed as a convolution of the point spread function (PSF),
which is the inverse Fourier transform (IFT) of the TF, with
the scattering potential to yield the measurement result in real
space. This is a very quick and simple explanation of the proc-
ess, and in reality such things as the coherence of the light
used needs to be considered [1]; however, the essential points

presented here are that there is a useful link between a property
of the object being imaged, i.e., its scattering potential, and a
function relating to the instrument alone, the PSF or TF, that
allows the imaging process to be described. This is, however,
only true in the weak scattering limit. Away from this limit,
the relationship between the scattering potential and the image
becomes far more complex.

Recently, the application of similar ideas to cases where large
strongly scattering objects are being imaged was attempted by
the authors of [3–5], with apparent success, and this work has
subsequently been considered as a possible route by which
coherence scanning interferometers (CSIs) could be calibrated
[4–10], or inform us about the imaging process [11–21].

In [3], the starting point of an incident plane wave being
scattered from a strongly scattering, slowly varying, surface
was considered. The scattered field on a surface far away from
the object was calculated, reduced to those limited sections
where a CSI would record the field, and then back-propagated
in order to see what information is carried in this recorded field.
The statement was made that this was then integrated over all
the illumination angles, which appeared to yield the result that
the measurement appeared to be equivalent to the convolution
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of the PSF of the instrument with a function that only takes a
value at the air/material interface. This is equivalent to saying
that the result of a measurement when viewed in spatial fre-
quency space is given by the product of the TF of the instru-
ment and the FT of the function defining the air/material
interface. This is similar to the ideas for the weak scattering
case described above, only with the surface function taking the
role of the scattering potential. The surface function was, how-
ever, defined very loosely in [3], with a statement that a window
function would be applied in physical space in order to limit it
to a section of interest on the top surface. In [5], the surface
function was broadened into a Gaussian form along the optical
axis of the system in order to allow it to be represented by a
discrete set of points in space to ease numerical calculations;
this was then cropped to a region within a given angle from
the optical axis, and then was multiplied by a Gaussian function
perpendicular to the optical axis in order to remove the hard
cutoff [22]. This loose definition leads to problems in separat-
ing the measurement result into the instrument-dependent and
object-dependent parts.

In the following, we re-examine the claim that the result of a
measurement of a strongly scattering object can be viewed as
the convolution of the PSF and a function that corresponds to a
region of the upper surface of the scattering object. In
Section 2, we examine the work in [5], showing that the loose
definition of the surface function as an arbitrarily windowed
section of the full air/material interface cannot lead to an ac-
curate answer, as slight variations of the surface retained signifi-
cantly affect the determined phase of the PSF. In Section 3, we
examine in more detail the mathematics in the paper by
Coupland et al. [3] and draw different conclusions from those
of the authors. It will be shown that if the surface function were
to be filtered, that it should be done by angle with respect to the
angle of incidence of the illuminating light, though this is still
only a first approximation of the correct result. The section of
the surface that information is recorded about therefore varies
as the angle of the incident light, a result that corresponds to
that which would be expected from geometrical optics. This
angular dependence leads to the conclusion that the result is
not the convolution of a PSF with part of the surface function,
and in any case, all the results are deemed likely to be too
approximate in order to allow the calibration of an instrument.

2. IMAGING LARGE STRONGLY SCATTERING
OBJECTS

The work carried out in [3] attempts to discover a result for
strongly scattering objects along the lines of that found for
weakly scattering objects, where the measurement result can
in some cases be shown to be the convolution of the scattering
potential with the PSF. The authors claim not only to have
achieved this, but to have subsequently demonstrated it exper-
imentally [5] by measuring the distortion due to the instrument
and applying a correction, allowing the surface of the object to
be recovered more accurately. We believe that the conclusions
of [3] are erroneous, and that the results shown in [5] demon-
strate nothing more than reasonable shift invariance and some
noise in their system; the object that they conclude has been
measured more accurately is the same one as is used to calibrate

the system; thus their calibration of the system just creates a
mapping from the measurement results to those that they ex-
pect to see, and so it is not a surprise that they subsequently
recover this object. As the correction is applied in spatial fre-
quency space, the fact that the object still looks like the one it
was calibrated to look like after a shift just shows shift invari-
ance, the slight differences that they obtain can be attributed to
a combination of noise and that the shift invariance is not
perfect.

One significant problem with the work in [3] is that the
surface is not defined uniquely, either in physical space or spa-
tial frequency space; it is just stated that a window function is
used to limit this to a measurement of a region of the surface
that is of interest. This is problematic for a couple of reasons,
one of which is that the result of a measurement is given as [3]

Õ�k� � 2Δ̃�k�H̃ �k�; (1)

where Õ�k� is the measurement result in spatial frequency
space, Δ̃�k� is the FT of the surface function (corresponding
to a cropped section of the total surface, i.e., only the “region of
interest” of the air/material interface) and H̃ �k� is the TF of the
instrument that corresponds to the FT of the PSF. If H̃ �k� is a
fixed property of the instrument and, as in the absence of
noise, there is only one result for the measurement of an object
Õ�k�, then Eq. (1) requires that the function related to the
surface of the object, Δ̃�k�, has well-defined values for its
FT, at least at points where H̃ �k� is not equal to zero. If
the surface, Δ�r�, were changed, then in general its FT within
the support of the TF would change, and the only way in which
the measurement result could be remain the same is that H̃ �k�
must change, which it cannot if it is a fixed property of the
instrument.

The scattering of light from objects by considering
“shadowed” regions and “illuminated” regions has been consid-
ered elsewhere for a vectorial case where the transition region
from illuminated to shadowed region was found to have a
width of the order �2∕kC�1∕3C m, and where C is a typical
radius of curvature of the surface [23,24]. Thus, for a plane
wave illumination, the method of considering the illuminated
section of the surface as that which contributes most is valid,
but this is an approximation. There does not appear to be a
clear answer to the question of how to define a surface section
that could be FT’d to give a useful result, even for the case of a
single illumination angle, and it will be shown later that this
section of surface will vary with the illumination angle.

A. Differences as the Surface Section Changes
Before continuing on to the next section, where we will exam-
ine the mathematics that was used in [3], we will illustrate that
even if the surface function were able to be defined in the man-
ner proposed in [3], then even a slight variation in the section of
the surface that we choose to retain leads to significant variation
in its FT, Δ̃�k�. Hence, if a calibration were to be carried out,
which consists of calculating H̃ �k� from a measurement result,
Õ�k�, and the FT of the surface function corresponding to the
known object being measured, Δ̃�k�, such as was proposed in
[5], then slight differences in the surfaces used will lead to sig-
nificantly different results. We stress at this point that we are
not saying that Eq. (1) is correct; indeed, we will show later
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that the surface function of this form is not the correct object
function to use; however, as it has been used in prior work, an
illustration of its deficiencies seems apt.

There is one final point to make, at the risk of confusing the
reader, and this is that while Eq. (1) is not correct, and is at best
an approximation of the correct answer, an equation of this type
will exist. The only issue is determining the meaning of the
function that is multiplied by H̃ �k�. To see this, the reader just
needs to consider the fact that the measurement result can al-
ways be FT’d to give a value of Õ�k�, and that as H̃ �k�
describes the spatial frequencies that the instrument is capable
of passing and how they are affected by the instrument itself,
then it will have a value independent of the measurement. A
relation between the two Õ�k� � F �k�H̃ �k� can be found.
The meaning of the function, F �k�, and its relation to the scat-
tering object is not clear, though, and is likely to be highly com-
plex, especially when multiple scattering is present. In the case
where the first-order Born approximation is sufficient, then a
relation with the scattering potential, and hence the object’s
refractive index profile, can be found, but this relation is lost
when the higher-order terms are needed to describe the scatter-
ing. Thus, the fact that there is a function that can be convolved
with the PSF in order to produce the measurement result in real
space should not be a surprise, as the convolution theorem
shows that O�r� � IFTfF �k�g � PSF.

In Fig. 1, a slice of the absolute value of the 3D FT of two
different caps of the same infinitesimally thin spherical shell is
shown, passing through the symmetry axis kz . These are calcu-
lated in the manner described in [6]. Ignoring a multiplicative
factor, these objects would take the role of the surface function
in Eq. (1). The red outline in the figure marks the limit to the
nonzero region of the ideal TF for an instrument with NA 0.5
when the illuminating light is from 500 to 650 nm [25]. Both
surfaces correspond to a section of a spherical shell of radius
50 μm, with the section in Fig. 1(a) corresponding to the
cap of the spherical shell within a half angle of 30 deg about
the symmetry axis, and Fig. 1(b) a half angle of 35 deg. That
there are significant differences can be seen by looking at the
line of points along the kz axis. It was shown analytically [6]

that for these objects, zeros occur in the FT at points along the
kz axis separated by 2π∕�r0�1 − cos�θ���, where r0 is the radius
of the sphere and θ is the half angle within which the cap of the
sphere lies. This shows that the location of the zeros depends
upon the size of cap that is chosen and, in fact, the phase and
amplitude of the FT varies across the region within the TF as
the cap size changes.

While the difference in size between the two caps in Fig. 1
was significant, in order to demonstrate the changing FT
clearly, even a small change can lead to a significant change
in the phase of the elements in the FT. In Fig. 2, the difference
in the phase between the spatial frequency elements in the FT
of the cap of a sphere of radius 50 μm, within the support of the
TF for an instrument of NA 0.5 when the angle subtended by
the cap is changed slightly is shown. The sphere has a radius of
50 μm, and is initially reduced to the section that would return
light according to geometrical optics, i.e., the cap of a
sphere subtended by an angle of 30 deg. This is then compared
to the cap of a sphere that subtends an angle of 30.66 deg (cor-
responding to that imaged according to geometrical optics
when the NA is 0.51). The difference in the angle is shown
in Fig. 2. This plot shows the magnitude of the difference
across a slice through spatial frequency space that passes
through the kz axis, about which the results are rotationally
symmetric. The phase angle plotted is the magnitude of the
minimum possible change in angle, and so is limited to the
range 0 to 180 deg. Changes greater than this are mapped into
this range, and no difference between a phase lag or advance-
ment is recorded. It can be seen in Fig. 2(a) that the greatest
differences in phase occur along the kz axis or very close to it;
however, looking at part (b), which just shows the region in part
(a) that is away from the kz axis, shows that phase changes of
around 12 deg are common. Such errors in a calibration
measurement would be associated with the TF, and may lead
to significant errors subsequently determined topographies,
e.g., by the frequency domain analysis method [11].

Now that it has been shown that the loose definition of the
surface used in previous work cannot be sufficient to achieve
the stated aims, the next section will examine the assumptions

Fig. 1. Slices through the FT of the cap of an infinitesimally thin spherical shell centered on the origin, where the cap corresponds to the section
that lies within a half angle of (a) 30 deg; (b) 35 deg with respect to the z-axis. The red line marks the limit of the support of the TF of an instrument
with NA 0.5.
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that have been made in [3] when deriving the apparent result
and come to a different conclusion to that stating the measure-
ment result is the convolution of the PSF with the surface
function.

3. APPROACH FOR STRONGLY SCATTERING
OBJECTS

In [3], the scattering from an object that is strongly scattering,
smooth, and slowly varying with respect to the wavelength of
the illuminating light is considered. The incident field is a plane
wave with unit amplitude, and the scattered field is calculated
on a portion of a spherical boundary a long distance away from
the object, and corresponds to the portion of the scattered field
that would be collected by a given microscope, as is illustrated
in Fig. 3.

The scattered field in the region outside of the surface S2 is
given by

Es�r� � 1

4π

Z Z
S2

�
G�r − r 0� ∂E�r

0�
∂n̂

− E�r 0� ∂G�r − r 0�
∂n̂

�
dS;

(2)

where the integral is over the surface S2 which in the following
corresponds to the surface of the scattering object, n̂ is a surface
normal pointing out from surface S2, G�r − r 0� is the free space
Greens function, G�r − r 0� � exp�ikjr − r 0j�∕jr − r 0j, and
E�r 0� is the total field at the surface S2, which is equal to the
sum of the incident field Ei�r� and the scattered field Es�r�. A
derivation of this result is included in the appendix to allow the
reader to clearly see the range of applicability, and the assump-
tions that are needed.

It is at this point in [3] where approximate solutions [26] are
introduced for the electric field and its gradient at the object’s
boundary when the incident field is a plane wave of unit
amplitude, Ei�r� � expiki·r. These are

E�r 0� � �1� R�expiki·r 0 (3)

and

∂E�r 0�
∂n

� iki · n̂s2�1 − R�expiki·r
0 ; (4)

which are substituted into Eq. (2). Here R is the Fresnel reflec-
tion coefficient of a smooth plane, ki is the wave vector of the
incident wave, and r 0 is a position vector corresponding to the
values of r at the surface of the object. Equation (3) is just
the superposition of the incident and reflected fields from a
plane interface, while Eq. (4) is given by differentiating both
these fields [26]. Looking at Fig. 3, it can be seen that these
expressions will not be valid for the entire boundary, only
for the sections of the surface where the wave is incident on
the object from the air into the material, and only when the
reflection from a plane is a good local representation of the re-
flection from the surface.

In addition, when the incident wave is blocked from falling
on a region of the surface by another region of the scattering
object, then the field and its gradient will not be given correctly,
nor will it be correct if multiple scattering occurs. In [26],

Fig. 3. Plane wave Ei�r� is incident upon a strongly scattering,
smooth, slowly varying object leading to a scattered field Es�r�. S2
is a surface bounding the scattering object, and the arc of a circle rep-
resents the portion of a spherical boundary a long distance from the
scattering object on which the scattered field is calculated. The dis-
tance to the distant boundary must be sufficiently great that the
far-field approximation for the Greens function is sufficiently accurate.

Fig. 2. Absolute value of the difference in phase of the FT of the caps of an infinitesimally thin spherical shell of radius 50 μm that lies within a
half angle of 30 deg and 30.66 deg, respectively. The results shown are at the points within the ideal nonzero region of the TF
and lie on a slice through the 3D data that pass through the axis of symmetry, the kz axis.
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where these are introduced, they are only used over sections of
the surface where this condition would be met, and it is noted
that this is an approximate method; indeed, comments are
made regarding the truncation of regions of the surface and
the use of a “shadowing function” [26].

The authors of [3] substituted Eqs. (3) and (4) into Eq. (2)
and used the far-field approximation of the Greens function,
G�rb − r� � �exp�ikirb�∕rb� exp�iki r̂b · r�, which implies that
the locations of the points rb lie at a distance from the origin
that is much greater than both the size of the object and the
distance of the object from the origin. This results in

Es�rb� �
ieikirb

rb

Z Z
S2
e−i�ki r̂b−ki�·r�R�ki r̂b − ki�

� �ki r̂b � ki�� · n̂sds; (5)

being obtained, where ki � jkij and where rb is a position vec-
tor of magnitude rb, from the origin to a distant point where
the field is being evaluated. The surface that the scattered field
is calculated on should not be confused with the bounding sur-
face, S1, mentioned in the Appendix A, within which Eq. (2) is
valid. As ki r̂b is a wave vector of magnitude ki in the direction
given by r̂b, it will be denoted ks from now on. A limit on the
integral is then introduced in [3], reducing it from the full
surface to a region on the upper surface made through the
use of the function A�r� where

A�r� � W �rx ; ry�δ�rz − s�rx ; ry��: (6)

Here W �rx ; ry� is a window function, and δ�rz − s�rx ; ry�� is a
Dirac delta function

Es�rb� � i
eiki jrb j

rb

ZZZ
e−i�ks−ki�·r�R�ks − ki�

� �ks � ki�� · n̂s2
A�r�
n̂s2 · z

d3r: (7)

For Es�rb� to be the same in Eqs. (5) and (7), the integral over
the portion of the surface that is removed must be equal to zero,
though that this would be the case is not apparent. If it is not
the case, then the Es�rb� given by Eq. (7) is at best an approxi-
mation of the value given by Eq. (5). That said, our experience
of light scattering from objects in everyday life implies that this
may not be a terrible approximation; after all, if the nonillumi-
nated side of a large strongly scattering object, such as the back
surface of a mirror, is changed slightly, we would not expect to
see any real change in the light scattered from the front, and
indeed, for large objects, ideas from geometrical optics should
apply. In fact, as mentioned earlier, the division of the surface of
a large scatterer into illuminated and shadow regions has been
pursued before [24]. However, it is noted that the transition
region is not simple, and only approximate results will be
obtained.

If the window function is ignored in Eq. (6), this follows the
route laid down in [26] and [27]. However, there is it noted
that the terms n̂s · z in the denominator of the term included
corresponds to a projection of the surface area onto a plane
when a surface integral is carried out. This surface integral is
then converted into a 3D integral to avoid nonlinearities in
the simple surface integral form, as was shown in [28]. This
implies that these terms are related to the object that is being

imaged, and not the TF of the instrument in which they end
up [3].

Once an expression for the field on a portion of a distant
spherical boundary has been found, the authors of [3] backpro-
pagate a section that corresponds to the region over which a
microscope would collect the light in order to see what infor-
mation remains in the recorded section of the field, and sub-
sequently make a couple of simplifications to the expression
obtained. In our view, it is more illuminating to make these
simplifications before backpropagating the field.

If we return to Eq. (5),

Es�rb� �
ieikirb

rb

Z Z
S2
e−i�ks−ki�·r�R�ks − ki� � �ks � ki�� · n̂sds;

(8)

the principle of stationary phase is then applied, as in [3],
whereby it is noted that the phase of the exponential term
changes in the direction given by ks − ki, and is constant
perpendicular to this direction, and so sections of the surface
whose normal is in the direction ks − ki should contribute most
to the integral. Finally, it is also noted in [3] that in those
regions, the term �ks � ki� · n̂s is negligible. This leaves

Es�rb� �
ieiki rb

rb

Z Z
S2
e−i�ks−ki�·r�R�ks − ki�� · n̂sds: (9)

At this point, the consequence of the statement that only re-
gions of the surface whose normal are in the direction �ks − ki�
contribute to the integral should be explored further. It can be
seen that this condition corresponds to specular reflection. This
should not be a surprising result: we have specified that the
surfaces are smooth, strongly scattering, and slowly varying,
and that we can use the Fresnel equations to describe the scat-
tering from the surface. Taking this to the limit, this would
imply that it is only sections of the surface whose normal is
in the range where specular reflection would scatter light into
the angles over which light is collected that would contribute to
the measured field, and therefore it is only these areas where
there is any information recorded. An important point to note
is that the section of the surface that contributes to the mea-
sured field is dependent upon the wave vector of the incident
light, specifically the angle at which it is propagating.

Within the approximations applied above, we can alter the
surface outside of this range of angles in any way that we choose
without affecting the measurement result, as long as a) we re-
tain a smooth slowly varying surface, and b) we do not bring
any of the surface normals into the range of angles that
contribute to the measured field. The section of the surfaces
marked in red in Fig. 4 is that which contributes to the mea-
sured field on the green portion of the spherical boundaries,
while the blue sections can be modified without changing
the measurement result. As the blue section of the surface does
not contribute to the measured field, and is arbitrary apart from
the condition that its surface normal must not fall within the
range that would lead to the scattered light contributing to the
measured field, then no information about it is recorded by the
measurement. Thus, the process of measurement has acted as a
filter on the surface, retaining only those sections of the surface
that contribute to the measured field. This would be the

2964 Vol. 56, No. 10 / April 1 2017 / Applied Optics Research Article



justification for Eqs. (5) and (7) being equal, but only if A�r�
filters the surface by angle in the way described. Introducing
A�r�, calculating the scattered field, and then propagating
the field back as was done in [3] misses the point that the mea-
surement of only part of the field has acted as a filtering oper-
ation on A�r�. It is for this reason that the surface in [3] appears
arbitrary.

This introduces a further problem, which is illustrated in
Fig. 4(b), which is that the section of the surface that contrib-
utes to the measured scattered field is dependent upon the di-
rection from which the light is incident on the scatterer. Instead
of A being a function of r, it should be a function of θi ;ϕi, the
angles that the incident wave vector propagates in, and θn;ϕn
the angles that the surface normal is in. Integrating the result
obtained for an incident plane wave over the full range of in-
cidence angles then becomes more complex, as instead of the
A�r� term being constant, it varies over the integration. This
invalidates the result gained later in [3] that the scattered field is
the convolution of the PSF with a function dependent
upon A�r�.

If we examine the implications of this, it is easy to see that
the expected results from geometric optics are recovered. Using
the example of a microscope where the illumination is through
the collection optics, as is typical in coherence scanning inter-
ferometry, and hence for which the angles that the green cap
subtends not only limits the collection angles, but the illumi-
nation angles as well, then the range of illumination angles for
which a point on the surface contributes to the measured field
can be considered. Figure 5 shows the range of illumination
angles for which the point marked with an “x” contributes
to the measured scattered field. The range of angles that the
light is scattered in will cover the same angular range, only
propagating out rather than in. For the point at the top of
the object, Fig. 5(a), light from all of the illumination angles
contribute to the measured field; however, in part (b) the point
on the side of the ball contributes only for a limited set of
illumination angles, those between the two lines marked with
arrows, and A�θi ;ϕi ; θn;ϕn� � 0 for all the rest. As the range of

angles that the light will be collected in is the same as the range
of illumination angles, it can be seen that the greater the angle
of the surface normal with respect to the optical axis of the
system, the smaller a contribution it makes to the measurement
result, and this now resembles the expected geometrical optics
result. This is of course only an approximation of the true
result, as numerous approximations have been used to get to
this point.

4. DISCUSSION AND CONCLUSIONS

Previous work suggested that the result of a measurement of a
strongly scattering object was given by the convolution of the
instrument’s PSF with a function that took a value only at a
portion of the air/material interface at the surface of the object
[3]. In addition, it has been claimed that the calibration of an
instrument has been carried out to improve the accuracy of the
topography calculated [5]. The results are gained in this prior
work only after several approximations have been made, and
where the function that describes the surface of the object being
measured corresponds to a poorly defined region of the total
surface.

In the work presented here, we have carefully examined the
route by which the authors obtained this result, and concluded
that they did not take into account the filtering effect that the
measurement had on the surface function. When this is taken
into account, the section of the surface obtained is dependent
upon the direction the incident light is propagating in. By
considering the effect of this, a result far closer to that
corresponding to geometrical optics is obtained. However, it
should be noted that this is still only an approximation of
the true result, including such things as approximate values
for the field and its gradient at the object’s surface and the trun-
cation of the full surface integral, and will not have sufficient
accuracy in order to allow a microscope to be calibrated.

In addition, it was necessary to address the claims by the
previous work that an instrument had been calibrated [5].
We conclude that the paper demonstrates only reasonable shift
invariance of their system, as the object that they applied

(a) (b)

Fig. 5. Illustration of the illumination angles that contribute to the
scattered field for the points marked by an “x” in part (a) and (b). The
point whose surface normal is aligned with the optical axis of the sys-
tem, shown by the “x” in part (a), contributes to the measured field for
all the illumination angles within the half angle of the lens in a coaxial
illumination. In part (b), the point marked with an “x” only contrib-
utes for a limited set of illumination angles, those between the two
lines marked with arrows.

(a) (b)

Fig. 4. Illustration of how the section of the surface that contributes
to the measured field varies with illumination angle. Under the ap-
proximations mentioned in the text and for the plane wave with wave
vector k1;2, in part (a) and (b), respectively, it is only the sections of the
surface marked in red that contribute to the measured field on
the green portion of the distant boundary. The blue section of the
surface could be modified without affecting the measured result, as
long as the surface normal is not brought into the range corresponding
to the red section.
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corrections to was the same as the object used to calibrate the
instrument. The calibration therefore just creates a mapping
from the measurement data to that which they expect to
see. We have demonstrated that even if the previous work were
correct, the FT of the object function is very sensitive to
changes in the size of the region of the surface retained, and
this fact, combined with the fact that there are numerous ap-
proximations in the prior work, implies that the result obtained
by this method would not be sufficiently accurate to calibrate
an instrument. In any case, our examination of the mathematics
in [3] implies that the surface should not be defined in the
manner that was used.

As a final note, we hope that the detailed considerations
about the method should allow any researchers who wish to
build on the work in [3] to quickly understand its strengths,
weaknesses, and limitations. We would, however, highly rec-
ommend that they look at the more complete work in this area
that is in the literature, including work on such things as the
Stratton–Chu integral [29].

APPENDIX A

To give clarity to the limits of applicability of the expressions
used in the work presented here, a derivation of the expression
for the scattered field solely in terms of surface integrals is in-
cluded here. This is a scalar approximation and very much fol-
lows the routes laid down in Chap. 13 of [30] and in [3]. It is
worth noting that the result obtained has much in common
with the Stratton–Chu integral [29], albeit for a scalar wave
instead of the full vectorial solution of Maxwell’s equations.
This vectorial solution to the problem has been used many
times to propagate fields [31–34] that are due to scattering
by objects, such as is being examined in this work.

An expression for the scattered field for points that lie
between a surface S2, which encloses a scattering object, and
a spherical surface with radius R, S1, as shown in Fig. 6, is
obtained from the scalar wave equation as follows. Starting with
the inhomogeneous Helmholtz equation [30]

�∇2 � k2�E�r� � −4πF�r�E�r�; (A1)

where E is a single Cartesian component of the electric field, r
is a position vector, k � 2π∕λ is the wavenumber, and λ is the
free space wavelength. The source terms on the right-hand side
include the scattering potential F�r� � k2�n2�r� − 1�∕�4π�,
where n�r� is the refractive index at the point r, and E�r�
is the total electric field, which is the sum of the incident field
and the scattered field, E�r� � Ei�r� � Es�r�. The incident
field is taken to be a plane wave, which is a solution of the
homogeneous Helmholtz equation

�∇2 � k2�Ei�r� � 0; (A2)

and a Greens function of the Helmholtz operator will now be
introduced,

�∇2 � k2�G�r − r 0� � −4πδ�3��r − r 0�; (A3)

where δ�3��r − r 0� is a 3D Dirac delta function. The Greens
function is assumed symmetric with respect to r and r 0.
Subtracting Eq. (A2) from Eq. (A1) gives

�∇2 � k2�Es�r� � −4πF�r�E�r�: (A4)

Multiplying Eq. (A4) by G�r − r 0�, and Eq. (A3) by Es�r� and
subtracting gives [30]

Es�r�∇2G�r − r 0� − G�r − r 0�∇2Es�r�
� 4πF �r�E�r� − 4πδ�3��r − r 0�: (A5)

Interchanging r and r 0, integrating over a volume V R bound by
a sphere of radius R and using Greens theorem to convert the
volume integral on the left-hand side into a surface integral and
rearranging givesZ Z Z

V R

Es�r�δ�3��r − r 0�dr 0

�
Z Z Z

V R

F �r 0�E�r 0�G�r − r 0�dr 0

−
1

4π

Z Z
S1

�
G�r − r 0� ∂E

s�r 0�
∂n

− Es�r 0� ∂G�r − r 0�
∂n

�
dS:

(A6)

The surface S1 encloses all the scattering objects, as is shown in
Fig. 6. The left-hand side of Eq. (A6) is equal to zero if r lies
outside of S1, but is equal to Es�r� if r is within it. As F �r 0� is
zero outside of the scattering object, the region the volume is
integrated over can be reduced to that of the scattering object,
V S . If there are multiple scattering objects, the integral can be
converted into a set of volume integrals, one over each of the
scatterers.

If the process above is repeated using Eq. (A1) instead of
Eq. (A4) and with the bounding surface this time being S2,
then the following result is obtained:ZZZ

V S

E�r�δ�3��r − r 0�dr 0

�
ZZZ

V S

F �r 0�E�r 0�G�r − r 0�dr 0

−
1

4π

ZZ
S2

�
G�r − r 0�∂E�r

0�
∂n

− E�r 0�∂G�r − r 0�
∂n

�
dS: (A7)

Fig. 6. Region in which the solution is valid is between the two
surfaces S1, a distant spherical boundary of radius R, and the boundary
S2, which surrounds the scattering object. n̂1 and n̂2 are surface
normals on boundary surfaces S1 and S2, respectively.
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Once again, if r lies outside of V S the left-hand side of Eq. (A7)
is zero. Thus, outside of the surface S2,Z Z Z

V S

F �r 0�E�r 0�G�r − r 0�dr 0

� 1

4π

Z Z
S2

�
G�r − r 0� ∂E�r

0�
∂n

− E�r 0� ∂G�r − r 0�
∂n

�
dS:

(A8)

Substituting this into Eq. (A6) gives

Es�r� � 1

4π

Z Z
S2

�
G�r − r 0� ∂E�r

0�
∂n

− E�r 0� ∂G�r − r 0�
∂n

�
dS

−
1

4π

Z Z
S1

�
G�r − r 0� ∂E

s�r 0�
∂n

− Es�r 0� ∂G�r − r 0�
∂n

�
dS;

(A9)

which is valid between surfaces S1 and S2. If the radius of
S1 → ∞ with its contribution to Es vanishing, which we will
assume to be true, then the result,

Es�r� � 1

4π

Z Z
S2

�
G�r − r 0� ∂E�r

0�
∂n

− E�r 0� ∂G�r − r 0�
∂n

�
dS;

(A10)

is obtained.
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