
 

 
 
 

CRANFIELD UNIVERSITY 
 
 
 
 

SHAHANI AMAN SHAH 
 
 
 
 

SYSTEM LEVEL AIRBORNE AVIONICS PROGNOSTICS FOR 
MAINTENANCE, REPAIR AND OVERHAUL 

 
 
 
 

SCHOOL OF ENGINEERING 
DEPARTMENT OF AEROSPACE ENGINEERING 

 
 
 
 

PhD 
Academic Year: 2008 - 2016 

 
 
 
 

Supervisor:  Dr. Huamin Jia 
February 2016 

 
 





 

 
 

CRANFIELD UNIVERSITY 
 
 
 

SCHOOL OF ENGINEERING 
DEPARTMENT OF AEROSPACE ENGINEERING 

 
 

PhD 
 
 

Academic Year 2008 - 2016 
 
 

SHAHANI AMAN SHAH 
 
 

SYSTEM LEVEL AIRBORNE AVIONICS PROGNOSTICS FOR 
MAINTENANCE, REPAIR AND OVERHAUL 

 
 

Supervisor:  Dr. Huamin Jia 
February 2016 

 
 

This thesis is submitted in partial fulfilment of the requirements for 
the degree of PhD  

 
 
 

© Cranfield University 2016. All rights reserved. No part of this 
publication may be reproduced without the written permission of the 

copyright owner. 





i 

ABSTRACT 

The aim of this study is to propose an alternative approach in prognostics for 

airborne avionics system in order to enhance maintenance process and aircraft 

availability. The objectives are to analyse the dependency of avionic systems 

for fault propagation behaviour degradation, research and develop methods to 

predict the remaining useful life of avionics Line Replaceable Units (LRU), 

research and develop methods to evaluate and predict the degradation 

performances of avionic systems, and lastly to develop software simulation 

systems to evaluate methods developed.  

One of the many stakeholders in the aircraft lifecycle includes the Maintenance, 

Repair and Overhaul (MRO) industry. The predictable logistics process to some 

degree as an outcome of IVHM gives benefit to the MRO industry.  

In this thesis, a new integrated numerical methodology called ‘System Level 

Airborne Avionic Prognostics’ or SLAAP is developed; looking at a top level 

solution in prognostics. Overall, this research consists of two main elements. 

One is to thoroughly understand and analyse data that could be utilised. 

Secondly, is to apply the developed methodology using the enhanced 

prognostic methodology. 

Readily available fault tree data is used to analyse the dependencies of each 

component within the LRUs, and performance were simulated using the linear 

Markov Model to estimate the time to failure. A hybrid approach prognostics 

model is then integrated with the prognostics measures that include 

environmental factors that contribute to the failure of a system, such as 

temperature. This research attempts to use data that is closest to the data 

available in the maintenance repair and overhaul industry.  

Based on a case study on Enhanced Ground Proximity Warning System 

(EGPWS), the prognostics methodology developed showed a sufficiently close 

approximation to the Mean Time Before Failure (MTBF) data supplied by the 
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Original Equipment Manufacturer (OEM). This validation gives confidence that 

the proposed methodology will achieve its objectives and it should be further 

developed for use in the systems design process. 

Keywords: Aircraft maintenance, Prognostics in avionics, Enhanced ground 

proximity warning system 
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  CHAPTER 1

 INTRODUCTION 1

This chapter presents an overview of the research, defines the research 

problems in the area of study and justifies the significance of carrying out this 

research. Most importantly, this chapter provides the research aim, and also the 

objectives of this thesis. A brief overview of methodology and thesis outline is 

also presented at the end of this chapter. 

1.1 Diagnostics and prognostics 

Commercial airlines today are facing many challenges in maintaining their aging 

aircraft fleet. Avionics systems are of particular concern due to rising problems 

with reliability and obsolescence as these components age (Czerwonka, 2000). 

Aircraft availability will be affected and the maintenance costs can rise 

dramatically if these problems are not addressed appropriately.  Therefore there 

is a need to provide the aircraft operator with means of identifying critical 

system or components in advance of the onset of deteriorating performance to 

allow corrective measures to be taken early which then can prevent 

unnecessary hardships.  

This thesis was conducted to show the need of prognostics towards the 

avionics equipment of aircraft. By using prognostics techniques for evaluating 

the avionics equipment health condition user can be get an indication of the 

equipment’s remaining useful life cycle. This will help the operator to control and 

plan the maintenance activities, thus improving the efficiency of the aircraft 

operation and also the operation cost. Implementation of prognostics in aviation 

field focusing on the avionics equipment will bring a new standard in terms of 
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maintenance activity and increasing the availability and reliability of the aircraft 

fleet thus also bring a huge savings towards airlines operators. 

On-board diagnostics and prognostics are commonly installed in high-value 

critical assets for the purpose of informing users of the assets’ health 

conditions. The importance of monitoring the health condition is due to an 

increase in size and nature of fleet with a number of evolutions that has taken 

place in the aviation industry. A lot of information can be gathered from the 

‘Prognostics and Health Monitoring (PHM) system. The UK Tornado had a 

maintenance Data Panel in its design as well as structural and engine health 

monitoring to identify faults to LRU and LRM in 1972. The EAP designed in 

1982 had a computing system extracting data from the data bus and feeding a 

maintenance data panel which displayed faults in English Language to identify 

faults to card level. In this way, information was used to identify LRUs to remove 

from the aircraft (1st line) and then used at the supplier line to identify modules 

for repair (4th line). 

In aircraft, faults can be found in flight by using the Built-in Test (BIT), which is 

defined as an airborne hardware-software diagnostics tools, recognised to be 

used as early as 1950s (Pecht et al 2001). BIT however predominantly focuses 

on diagnostic means to identify and find faults whereas prognostic system will 

do both diagnostics as well as prognostics. Similar to BIT, the nature and 

concept of prognostics depends on the parameter of equipment it monitors. 

Prognostics systems can be designed to assess from the lowest level of 

component to the highest level of system. A reliable and proper prognostic 

system must be developed to be able to both provide accuracy and 

generalisability (Justice et al., 1999).    

The main goal of this research is to develop a prognostics methodology known 

as the ‘System Level Airborne Avionic Prognostics’ (SLAAP) which aims to 

predict fault for avionics system that is to be used by the Maintenance, Repair 

and Overhaul (MRO). Airborne prognostics at system level is intended to allow 

for deferred maintenance and aircraft is able to be dispatched with known and 

accepted failure condition. The system is enabled through the use of ACARS 
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and data links where information on identified fault can be passed to the ground 

crew even before landing. In the modern airliner and private business jets, civil 

avionics provides vital aspect of navigation, human-machine interface and 

communication system (Moir et al., 2013). 

SLAAP comprises of both diagnostics and prognostics capabilities that gathers 

fault data from LRUs and help identify problems closer to root-cause. At this 

level of analysis, SLAAP is believed to provide confident prediction results when 

uniquely triggered faults are associated with the operating environment when 

aircraft is in-flight. 

Fault diagnostics refers to the process of detecting, isolating, and identifying an 

impending or incipient failure condition that affect components or systems. 

There are several events that lead from fault to failure. During the fault 

diagnostic stage, the system affected can still be operational although it is 

functioning at a degraded condition. Failure diagnostics on the other hand is 

detecting, isolating and identifying a system that has ceased operation. 

Specifically, the term ‘fault detection’ is used when an abnormal operating 

component or system is detected and reported while ‘fault isolation’ is the stage 

of determining which component or system is failing or has failed. Fault 

identification is the term for estimating the nature and extent of the fault 

(Vachtsevanos, 2006).  

In general, fault diagnostics is defined as a set of activities to assess the health 

state of vehicle and its components. From the set of available indications, the 

diagnostics process determines the root cause in order to explain what has 

gone wrong. Sensors and crew observation are part of diagnostic process. 

When a failure occurs, it may not be just from one source of fault. The role of 

fault diagnostics system is to correctly identify the root cause of the problem. 

Out of the many methods used for fault diagnosis, these three methods have 

been most extensively used for fault diagnosis (Aaseng, 2001) : rule-based 

systems, which usually rely on the ‘if-then’ analysis; condition-based systems 

that uses empirical data from past failure and model-based systems deriving 

failure causes from description of the system components, the relationship 



 

19 

between components and information about symptoms related to the 

components. 

A prognostic system can be defined as a process of predicting the failure 

occurrences of a system by assessing the extent of deviation or degradation 

from expected normal operating conditions (Pecht, 2008). As soon as fault is 

detected, actionable decision is made and status of equipment is hoped to be 

improved immediately. Optimum capability of prognostics approach is in the 

precision at predicting the failure time or the remaining useful life of a subject. In 

order to prevent any critical failure, it is important to understand the behaviour of 

the equipment. (Jie Gu et al., 2007) in a study reported that there were three 

different methodology of prognostics when dealing with electronics. Namely, 

using expendable prognostic cells, such as “canaries” and fuses, that fail earlier 

than the host product to provide advance warning of failure; (2) monitoring and 

reasoning of parameters, such as shifts in performance parameters, 

progression of defects, that are precursors to impending failure; and (3) 

modelling stress and damage in electronics utilizing exposure conditions (e.g., 

usage, temperature, vibration, radiation) coupled with physics–of–failure (PoF) 

models to compute accumulated damage and assess remaining life. The 

simplest form of prognostics is said to be life usage model which is said to be 

applicable to components that are mass produced (Schwabacher, 2005). Life 

usage model uses statistics data to calculate the remaining useful life and 

combine large sample of component to be analysed statistically to analyse 

usage data.  

A study has outlined four fundamental notions for methods in predicting 

remaining useful life, which are: electromechanical systems age as a function of 

use, passage of time and environmental condition; component aging and 

damage accumulation is a monotonic process that involves physical and 

chemical composition of individual component; signs of aging are detectable 

prior to failure over time; correlate signs of aging with a model of component 

aging and thereby estimate remaining useful life of individual components 

(Saxena et al., 2008). 
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Prognostics is often associated with condition-based maintenance where;  

prognostic system decides when maintenance actions are required to be done. 

This condition-based method is preferred over time-based or event-driven 

maintenance methods, ideally because it results in less system downtime and 

only required maintenance actions are taken into consideration.  

Similar to diagnostics methodology, prognostics methodologies are categorised 

into three in the field of complex engineering system; which are physics based 

model of a system, experts system approach (rule-based) and data-driven (data 

mining) approach (Schwabacher, 2005). Schwabacher argues that algorithms 

that use data-driven approach may be the way forward instead of using a hand-

built model based because prognosis learns model directly from data. Luo et. Al 

(2008) on the other hand, describes prognostics methodology in three different 

approaches which are knowledge based, data-driven and model-based. He 

developed an integrated prognostic process for an automotive suspension 

subsystem via model-based simulations. The model-based approach he 

utilised, describes what Schwabacher refers as physics-based model approach. 

The models were constructed based on different random load conditions 

(modes). In the model, an Interacting Multiple Model (IMM) is used to track the 

hidden damage for deterioration monitoring and the remaining-life prediction 

was performed by mixing mode-based life predictions via time-averaged mode 

probabilities. Currently, a vast number of researches have been done in 

prognostics but there is inadequacy for system level consideration of 

prognostics researches. Mostly only addresses the prognostics of individual 

component and subsystems (Amit et al., 2001).  

In a paper on the impact and potential benefit of standardisation supporting 

interoperability of PHM, Sheppard et. al. (2008) highlighted that the focus of 

prognostics actually lies in area of being able to predict from information about 

some system state when significant future event affecting the performance of 

the system such as failure might occur. This estimation comes about to 

predicting remaining useful life of a component or a system (Sheppard et al., 

2008).  However, they have suggested that the term time to failure (TTF) as 
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being more appropriate for calculating system level prognosis. The term TTF in 

their context is a measurement of a system state to some failure or interest in 

the system as opposed to (Vachtsevanos, 2006) definition of TTF. (Hines and 

Usynin, 2008) also highlighted that prognostics modules are usually developed 

to predict one of the following: 

1. Remaining Useful Life (RUL), which is the amount of time, in terms of 

operating hours, cycles, or other measures the component will continue 

to meets its design specification. 

2. Time to Failure (TTF) which defines the time a component is expected o 

fail 

3. Probability of Failure (POF). Which is the probability distribution of failure 

of the component 

Correspondingly, Amit et. al. (2001) have defined a similar classification to 

prognostics which includes TTF, RUL, POF and the probability that component 

life, will end before the next maintenance or inspection. They have however, 

categorise prognostics differently than previous researchers, whereby methods 

of prognostics is categorised by the type of information the prognosis hold and 

use. The type of methods is defined as Time-to-failure data-based, Stressed-

based and Effects-based. By looking at the kind of information retrieved in 

Time-to-failure data based approach, it is merely statistical methods as it uses 

history data and fit them into any distribution function of choice. The stressed 

based method mentioned is actually the data driven approach as it uses prior 

observations of explanatory variables and correlate them with time to failure to 

predict the time to failure of a component. The suggested model to be used in 

this method is somehow really interesting as this model has not been applied in 

this field. This technique merges failure time and stress data to modify baseline 

hazard rate to form new hazard rate. The last method described as Effects-

based Prognostics seems so close to what have been categorised as 

probability based methods according to other researches which uses 

degradation information to track failure. For this method, Markov Chain-based 

model was used. 
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1.2 Research problem 

The maintenance, repair and overhaul (MRO) business are in great demand, 

thus forcing the airlines to depend on third party parts suppliers and services in 

order to aircraft maintained.  Some other problems that the MRO industry are 

facing relate to the logistics network, owing to the nature of demands for aircraft 

maintenance repair parts, which airline operators perceive difficulties in parts 

demand forecasting (Ghobbar and Friend, 2002). On the same basis, MRO 

network performance is to be agile and lean at the same time (Pipe, 2008). In 

order to be able to provide the right part at the right time, there is a need to 

forecast the individual systems or subsystems to predict maintenance time. This 

is when prognostics approach comes into play. With the implementation of 

avionic prognostics, significant improvements on current maintenance process 

with the reduction of No Fault Found (NFF), Retest OK (RTOK) and Can Not 

Duplicate (CND) incidences will then be provided.  

As a result, there will be fewer opportunities to remove a good unit, and a higher 

probability that any random component removed will be the faulty unit. Thus, 

leading to the research problem that this research study addresses: 

“What kind of prognostics approach is best to be developed to improve 

maintenance process and availability of avionics systems to be specific and 

aircraft in general?” 

1.3 Research aim and objectives 

The aim of this research is to fulfil the objectives of condition-based 

maintenance which is to optimise availability of high-value critical asset whilst 

reducing overall maintenance cost through development of prognostics. This 

methodology is aimed to find the time-to-failure of a system to provide ample 

time for maintenance personnel to take action before any avionic equipment 

fails. System in this context refers to the level where prognoses will be 

analysed. An increase in system complexity and component quality has resulted 

in a shift from component level towards system level prognostics. This research 

work involves the integration of three research subjects that are prognostic 
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methodology, degradation model and time-to-failure prediction. Four research 

objectives were identified to complete the aim of this research. 

The objectives are to: 

1) analyse the dependency of avionic systems including Line Replaceable 

Units (LRU) for fault propagation behaviour degradation  

2) research and develop methods to predict  the remaining useful life of 

avionics LRUs  

3) research and develop methods to evaluate and predict the degradation 

performances of avionic systems 

4) develop software simulation systems to evaluate methods developed above 

considering aircraft environment and flight conditions in which avionics 

experience 

The first objective will focus on the relationship of components in the LRUs and 

LRMs which affect the fault propagation of the system. Valuable information 

provided at this stage will help provide precise fault to failure recognition for 

prognostics for avionics which needed more attention. 

The second objective uses the first objective’s results to develop the prediction 

of remaining useful life of LRUs/LRMs in the avionic system intended to study. 

The third objective is then to offer a higher level of prognostic methodology that 

is to include the degradation behaviour and the performance of the avionic 

system. Currently, the prognostics methodology is only focused on mechanical 

parts of aircraft. 

The last objective is to put everything in a nutshell by deriving a software 

system which is able to evaluate and simulate aircraft environment and flight 

condition. 

This study carries a great impact in the avionics industry whereby, SLAAP 

provides an optimised solution for maintenance, repair and overhaul offering 

new enhanced troubleshooting management. 
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1.4 The proposed model 

Although there is a significant amount of published work on developed 

methodology for diagnostics, only a handful was reported on prognostics. There 

are even less studies dedicated specifically to avionics system prognostics at 

system level. The main contribution of this research work is an improved 

approach for prognostics in the area of airborne avionics system for the use of 

the maintenance personnel. The characteristics that distinguish this knowledge 

structuring schema as an innovative approach are as follows: 

 The approach is intended to model design problems according to 

leading-edge theories and models of design. 

 The approach makes a step forward in prognostics by paying attention to 

the enhancement of condition-based maintenance. 

Using the proposed prognostics methodology, the failures of avionics systems 

are expected to be handled more effectively by delivering real time advisory to 

secure operators next flight and identify corrective maintenance. On the other 

hand, using the degradation signatures, current avionics health condition as 

well as remaining life can be predicted. In addition, a correlation method to 

validate the confidence level for release of aircraft with environment condition 

parameter incorporated in the analysis to provide better prognostics results. 

Model to assess the current health and time to failure is proposed as in Figure 

1-1: 



 

25 

 

Figure 1-1: Mainframe of methodology used in this study 

The proposed research methodology consists of three main branches which are 

the degradation model, usage of relevant failure data and reliability prediction. 

The degradation model makes use of Markov modelling techniques while 

making use of the failure data, and the reliability prediction uses Cox’ 

Regression theory to correlate life degradation (failure) with environmental 

condition such as temperature. These new integrated models will then be 

solved to determine the time to failure of the system 
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1.5 Thesis outline 

This thesis is presented in nine chapters as illustrated in Figure 1-2: 

Chapter  Title Synopsis 
1 Introduction Describes the need and motivation of this 

research and introduces the problem 
statement and research questions. This 
section provides an overview of the need 
for prognostics, current maintenance 
practices and issues in the area of 
maintenance, repair and overhaul.  
 

2 Prognostic Techniques for 
Avionics 

Comprehensively reviews the prognostics 
and its application, also its advantages and 
drawbacks. This section provides the 
techniques currently used for prognostics in 
avionics. 
 

3 Research Methodology Discusses the methodology proposed and 
how they merge in this study.  
 

4 Remaining Useful Life (RUL) 
Prediction Methods in Line 
Replaceable Units (LRU) 

Describes the fundamental theory behind 
research methodology that was chosen to 
be used in this research work. 
 

5 Terrain Awareness and Warning 
System 

Describes the purpose, composition, 
functions, and specification related to 
TAWS/EGPWS. 
 

6 Results Embeds the validation using field data into 
the discussion of the results. 
 

7 Discussion Discusses the findings that could be 
potential solutions for industry problems. 
 

8 Conclusion This chapter concludes the research work 
and gives direction for further research. 
 

Figure 1-2: Thesis layout 
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  CHAPTER 2

 PROGNOSTICS TECHNIQUES FOR 2
AVIONICS 

The aim of this chapter is to analyse evolutionary findings and techniques used 

in handling prognostics problems. Literature studies in pertinent to prognostics, 

prognostics methodology and prognostics effects in relation to aviation 

maintenance are studied and analysed for understanding. This chapter also 

provides a background study on how the problems are tackled by other 

researchers. In this chapter, prognostic studies will be identified by its 

classification and in accordance to the current trends and applications. Finally, 

this chapter will determine the research gap in the area of prognostic 

methodology for airborne avionics. 

2.1 Introduction 

In 2001, Federal Aviation Administration (FAA) amended a ruling on the 

operating rules which requires certain airplanes to be equipped with an FAA-

approved terrain awareness and warning system (TAWS) or the enhanced 

ground proximity warning system (EGPWS). Such equipment was designed to 

prevent Controlled Flight into Terrain (CFIT). According to a paper by Airbus 

(2014) entitled “Commercial Aviation Accidents 1958-2013 – A Statistical 

Analysis”, CFIT, which refers to in-flight collision with terrain, water or obstacle 

without indication of loss of control, CFIT contributes about 23% of total number 

of accidents since 1994 under the fatal accidents category. A fatal accident in 

this case is an event in which at least one passenger or crewmember is fatally 

injured or later dies of his or her injury.  Both the TAWS and the EGPWS, like 

other avionics system are quite a challenge to monitor.  This is reflected by a 
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study done for electronics equipment where the wear-out time has been longer 

than the life cycle of the whole system (Sundström et al., 2008). At times also, 

electronics equipment fails without any definite measurable signs of fault. 

Therefore, it is important to establish a proper prognostic method and precursor 

of failure to be able to detect, isolate, and achieve prognostics outcome. 

Particularly important is the system level prognostics as compared to the single 

component level because, when faults or failure occur in airborne avionic 

system, technicians will simply remove an LRU rather than an electronic 

component such as a resistor or a memory card in the LRU. System level 

prognostics referred in this study is the prognostics levels of between level 4 

and level 5 as summarised in Table 2-1.  

Table 2-1: Failure site and prognostics level in electronics (Jie Gu et al., 2007) 

Prognostic level Site 

Level 0  chip and on-chip sites 

Level 1 parts and components that cannot be disassembled and 
reassembled with the expectation that the item would still 
work 

Level 2  circuit board and interconnects connecting the 
components to the circuit card 

Level 3 enclosure, chassis, drawer and connections for circuit 
cards 

Level 4 entire electronic system (LRU/ notebook) 

Level 5 multi-electronic systems and external connections 
between different systems (LRU and cockpit display) 

As shown in the Table 2-1, each level is grouped according to similar electronic 

interaction where group level 0, being the lowest level that describes chips and 

on-chips sites. Regular electronic components like transistors and resistors 

alike fall under the grouping of ‘level 1’. Level 5 is the highest level considering 

the intergroup interaction among multi-electronic systems. 

As with the electronics system in the aircraft, the LRUs (level 4) are removed to 

enable a component (level 2 or 3) to be removed, hence a quicker turn-around 

time for the aircraft. Many LRUs in Boeing 757/767, Airbus A300/A310 
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McDonnell Douglas DC-10 and Lockheed L-1011 used to have digital codes to 

display types of fault that was detected (Vachtsevanos, 2006). Over time, this 

became less effective as systems became increasingly integrated with each 

other.  

Because of an increase in system complexity and component quality, it is useful 

to be using the results of a level 1, 2 or 3, as it contributes to the failure of a 

larger system. However, different prognostic methods are needed to cater each 

level as complexity accumulates as the levels increase. Intensity of factors 

affecting degradation may also be of different rates. For example, an increase in 

temperature at level 0 does increase the rate of degradation at level 5. This 

though may or may not be affected at the same rate. A hybrid approach to 

handling this issue maybe the way forward as industries are lacking in hybrid 

approaches in electronics (Tuchband, 2007).  

2.2 Avionics design and development process 

The evolution of avionics with an increase in utilisation in avionics technology to 

be used in engine control and flight control began since 1950s (Moir et al., 

2013). The advancement of avionics has been influenced by not only the 

aerospace industry, military and space but also the modern information 

technology and communication system existing today. 

The improvement of avionics component in terms of trends in integrated circuit 

development as compared to Moore’s Law can be seen in Figure 2-1. The 

number of transistors on a chip for microprocessors used in aerospace 

increased with the advancement in information technology. The effect from this 

evolution brings not only hardware issues but also software issues where most 

avionic components rely upon.  
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Figure 2-1: Microprocessors used in aerospace application (Moir et al., 2013). 

2.3 Importance of prognostics in avionics maintenance process 

Maintenance optimization is a process that attempts to find the best balance of 

the maintenance requirements in terms of contractual, economics, technical, 

and the resources used to carry out the maintenance program such as 

workmanship spares, consumables items, equipment, facilities, and others.  

When the maintenance optimization is effectively implemented it will improve 

system availability, reduce overall maintenance cost, improve equipment 

reliability, and improve system safety.  In the former case, optimization is 

performed to choose the option that generates the largest cost avoidance and 

or maximizes the availability for an individual system. In the latter, optimization 

is performed to choose the optimal subsystems to be maintained and meet 

availability at the enterprise level. 

The maintenance efficiency of systems is an important economic and 

commercial issue. The main difficulties result from the choice of maintenance 

actions. A bad choice can lead to a maintenance with an over cost that is not 

acceptable. Because of the increase of involved technologies and the different 

interactions between components, the decision of a maintenance action is very 
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complex and requires a diagnostic and prognostic analysis. Maintaining such a 

system basically consists in replacing components that are unable to perform 

their function by new ones.  

Maintenance activities are costly for several reasons. The first one is the issue 

of aircraft on ground (AOG) during the maintenance phase. The longer the 

maintenance phase is, the more costly it will become. It follows that the 

maintenance phase must be reduced to the strict minimal operation, which 

requires the correct replacement of components. This requires time-on decision 

relying on an efficient and complete analysis of the health of the system when it 

is operating.  

The second reason causing high maintenance cost is when emergency or 

sudden failure arises. If a component suddenly fails and the system fully breaks 

down, it automatically requires some unscheduled maintenance actions which 

are more costly than scheduled maintenance. To partly avoid this issue, 

prognostic methods are used in order to perform preventive maintenance. It 

refers to replacing components during a scheduled maintenance phase that are 

not faulty yet but that will inevitably become faulty before the date of the next 

scheduled maintenance phase.   

In the maintenance field, the maintenance levels are concerned with grouping 

the tasks for each location where maintenance activities are performed. The 

criteria in which the maintenance tasks selected at each level include; task 

complexity, personnel skill-level requirement, special maintenance equipment 

and economic measures. In the military, the first level of maintenance process 

normally starts from where the system is operated and the highest level or the 

fourth level is usually the OEM. In the commercial aviation industry though, 

maintenance are categorised by only the line maintenance and the heavy 

maintenance.  

In line with the initial purpose of prognostics which is to reduce costs of 

operating safely and maintenance efficiency, there are basically three types of 

maintenance in military or the commercial aviation alike. They are the on-
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condition maintenance, hard time maintenance and condition-based 

maintenance. The elaboration on the three types of maintenance is described in 

the Table 2-2. Unlike the on-condition maintenance and the hard time 

maintenance, condition-based maintenance is a predictive maintenance 

process. Luo (2008) described the on-condition and hard time maintenance 

processes as generally being corrective and preventive. This is because on-

condition maintenance process will offer maintenance when needed by 

monitoring the rate of deterioration of an item, while hard time maintenance is a 

preventive maintenance strategy where maintenance is done on a timely basis. 

In comparison to hard time maintenance, the proactive on-condition 

maintenance measures some condition that is a better predictor of functional 

failure than time thereby increasing interval between reworks of each unit. That 

increased interval decreases logistic costs and decreases opportunities for 

maintenance-induced defects.  

The corrective maintenance is also proactive in nature but utilises intelligent 

sensing and analysing of failure precursors for each item. Corrective 

maintenance will only be done when breakdown can possibly happen. Further 

monitoring is needed to ensure parts are replaced or exchanged before they 

fail. It causes discovery of potential failures rather than allowing functional 

failures to occur. It localizes the requirements for logistic support by discovering 

these failures at convenient times and locations.  

One advantage of corrective maintenance is that part replacements will only be 

changed when necessary. One downside to it is parts replacement planning. 

Preventive maintenance on the other hand, follows a timely scheduled and 

parts are replaced based on trends reported in equipment log to determine the 

optimum time for parts exchange. Studies have revealed that both corrective 

and preventive maintenance are not cost-effective. Last but not least is the 

condition-based maintenance which is carried out in response to a significant 

deterioration in an equipment or unit. The time to perform this maintenance 

action is determined by monitoring the actual state of the system, its 

performance and other condition parameter. This would mean that the system is 
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in its most efficient state and maintenance would be done when it’s cost 

effective.  

For condition-based maintenance in avionics maintenance process, Byington et. 

al. (2004) developed a modular application allowing information to be accessed 

via personal data assistant (PDA) for the maintenance crew on ground, building 

upon open architecture designs and utilising reusable, modular components to 

enhance diagnosis and reduce ambiguity.  The advantage of this system they 

developed is that the study was able to provide less maintenance hierarchy 

incorporating interoperable technology testing. Nevertheless, the study stops at 

diagnosis in which it should have been better if prognostics were included, as 

the condition-based maintenance is best implemented with the employment of 

prognostics. 

Table 2-2: Approved maintenance process recognised by CAA 

Types of 
maintenance 

Definition Characterisation Time 
done 

On-condition A preventive process 
resulting from inspection 
or testing of a 
component to determine 
service continuation. 

Corrective 
maintenance 

Timely 
basis 

Hard time A preventive process in 
which deterioration of a 
component is limited to 
an acceptable level by 
maintenance action. 

Preventive 
maintenance 

Timely 
basis 

Condition-based 
maintenance 

A process in which 
information on 
components are gained 
from continuously 
collecting, analysing and 
interpreting service 
experience for corrective 
actions. 

Predictive 
maintenance 

When 
needed 

The maintenance, repair and overhaul business are in great demand, resulting 

airlines to depend on third party parts suppliers and services. So as to keep the 

costs at the minimum, it is ideal to have a system like the condition-based 
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system that will minimise downtime and have maintenance only when it occurs, 

while knowing when to act before any fault occurs. Other benefits also include 

less time spent on inspection and optimised maintenance planning. In many 

years to come, this kind of maintenance will be practised more frequently as 

compared to the time based and event driven scheduled maintenance. Usual 

methods used are model based which needs precise measurement and data, 

and another method is the data driven. The data driven method can be random 

that makes it fall under the probabilistic prediction method. This method is 

considered easier in the sense that it is easier to detail out data. However, with 

scarce data resources available, this method is useful. 

 Degradation or fault occurrence in electronics/ avionic systems 2.3.1

Electronic components generate generous amount of heat. Components in 

electronic equipment are stored, packed, and tight to each other, and thus the 

possibility of overheating can be overwhelming. Whilst this is true, aircraft 

designers take great pains to provide cooling for avionics equipment by means 

of air wash, forced air, cooling fans or closed cycle refrigeration system to 

ensure temperatures do not exceed 70°C through the ambient range of -40°C 

to +90°C. In fact equipment is usually maintained to function between 20°C to 

40°C. Rigorous qualifications testing using DO-160 or MIL-STD-810 is used to 

gain confidence and evidence to support certification, also includes vibration, 

shock, and humidity. Deviation from declared condition need to be understood 

by ground testers so this would be useful flight information to gather. Humidity 

in tropical climates is often a cause of NFF as a result of tracking on PC boards 

which disappears when the boards are dried. In this case it is often difficult to 

treat components in isolation from boards they are mounted on.  

It has been reported that as operating temperatures increase, components are 

prone to failure (Saxena et al., 2008). In effect, they have outlined the four 

fundamental notions for methods in predicting remaining useful life, which are  

 Electromechanical systems age as a function of use, passage of time 

and environmental condition 
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 Component aging and damage accumulation is a monotonic process that 

involves physical and chemical composition of individual component 

 Signs of aging are detectable prior to overt failure over time 

 It is possible to correlate signs of aging with a model of component aging 

and thereby estimate remaining useful life of individual components 

Unlike mechanical parts such as engines and pumps that are replaced during 

overhaul if needed, an electronic component is not repaired to ‘as new’ 

condition. The failure rate of an electronic component changes during its life 

cycle due to internal and external factors, which create three distinct failure rate 

zones. The failure rate of a component is relatively constant during its normal 

operating life, or zone, and then failures are induced by external stresses. Since 

components are not repaired to ‘as new’, the subcomponents continue to 

accumulate operating time and eventually begin to fail due to internal stresses. 

Since internal stresses are added on, the failure rate of a component will 

increase after its useful life. This period is known as wear out zone.  

Electronics degradations are mostly caused by thermal cycling which involve 

rapid changes in temperature causing thermal expansion and contraction. This 

has been known to contribute to wire lifts and die solder degradation, chronic 

temperature and electrical stress, voltage spikes and also by chronic over 

voltage and over current. In general, electronics wear out are mainly caused by 

the electromigration, transient electrical stresses, excessive heat, 

electromagnetic interference, vibration and also mechanical failures. Denson 

(1998) has stated in his study shown in Figure 2-2 that the majority of causes in 

electronics are found in parts. The pie chart also shows the other factors 

contributing to electronics failure in his analysis. 



 

36 

 

Figure 2-2: Failure causes in electronics (Denson, 1998) 

These factors are possible to be monitored through the use of sensors, should 

there be any prognostic application. To be exact, although it will be quite 

challenging; it is far worthwhile to apply a prognostic approach in a complex and 

intensely sensitive equipment, than at a smaller, lower level component.. 

 No Fault Found (NFF) 2.3.2

Highly integrated avionics design in newer generation of aircraft puts 

maintenance personnel in need to be highly skilled in performing their tasks to 

get aircraft flying again. This scenario is due to the fact that the duration of 

performing maintenance is associated with man-hour expenditure and aircraft 

downtime. With aircraft downtime being a problem, which then contributes to 

the performance evaluation of airline and civil aircraft (Knotts, 1999). 

One of the factors contributing to the underlying problem is unable to correctly 

diagnose problems from reports provided by pilot and data readily available 

from the aircraft will indirectly increase operating costs for airlines. These 

problems encountered by flight crews can be challenging for the crew on 

ground to detect. Sources of fault in equipment are hardly detected (cannot be 

reproduced) because they only occur intermittently. Sometimes, the problems 

encountered were poorly described or not properly addressed in the 
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maintenance log. When the problem reported cannot be proven to be faulty, it is 

called Can Not Duplicate (CND), but when there are no problems found in the 

findings, it is called No Fault Found.  

Direct maintenance costs are contributed by 18% of avionics and electrical 

unscheduled maintenance with 40% of related equipment removals are 

classified as No Fault Found (NFF), which means that an LRU will show that 

condition is faulty while aircraft is off the ground but seems fine when on ground 

(Wu et al., 2004). Knotts (1999) has cited that an average of 8000 component 

removals fleet per month in an audit that has taken place at British Airways, 

whereby a total of 14% of components, across all workshops, were found to 

have NFF. Certain avionic equipment experienced 30% NFF. Various terms 

such as Retest OK (RTOK), no fault indicated (NFI), and no trouble found 

(NTF), are also referring to the inability to replicate field failures during ground 

run. It has also been found that more than 85% of CND failure in the avionic 

field will account for more than 90% of total maintenance costs (Williams, et. al, 

1998).  

The number of documented CND, NFF, and RTOK indicates a large amount of 

money and manpower spent in the pursuit of high availability and reliability of 

electronic systems of aircraft (Byington et al., 2004). Some NFF conditions are 

caused by intermittent faults. Intermittent faults seldom appear unless a unit is 

in a stressful operating environment. The lack of fault traceable data, such as 

operating time to failure and environmental conditions when a fault occurred, 

obstructs the potential ability for effective avionic prognostics and failure 

predictions on an aircraft. Although Built-In Test (BIT) that was a simple push 

button that illuminates different colour lights to test for functionality (Bird et al., 

2005) has been around for quite a while, it can misidentify faults. Even with the 

sophistication of Built-In Test equipment (BITE) and Centralised Maintenance 

Systems, fault detection is still considerably high (Johnson, 1996). With this 

said, it is possible that the faults were actually generated from the BITE. One 

incident reported by Johnson (1996) on Lufthansa’s A320 fleet of operation 

where out of an average 17 LRUs were removed each day, only two were 
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confirmed faulty. Airline operators are constantly faced with irregular operational 

problems that are developed from unexpected aircraft system failures, which 

may be followed by a reschedule of flight service or aircraft reroute. Events 

such as flight cancellations, delay and reshuffling of aircraft maintenance 

scheduling may also take place (Ghobbar and Friend, 2002). In Malaysia, 

according to a data taken from Harun, aircraft maintenance costs for Malaysia 

Airlines in the year 1996/1997 was estimated at USD140 million and aircraft 

technical delay costs USD5.5 million a year (Harun, 1998). 

Therefore, by providing an early warning of failure, enough time before it 

eventually happens will help plan and organise replacement parts. Prognostics 

in airborne avionic system is all about providing accurate enough fault data that 

contingency plan can be scheduled rather than leaving it until breakdown takes 

place and handle problem as it happens. So, by providing consistent health 

assessment on aircraft system, NFF can be reduced as fault prediction is done 

much earlier. 

 Flight delays 2.3.3

One of the problems faced these days are delays. Figure 2-3 illustrates on 

departure delays causes in the year 2009. Presented in the Table 2-3, are the 

factors contributing to the delay under the ‘airline’ category. In brief, airlines 

must foresee defects problem seriously to cater for the public demand which is 

escalating in the near future. Hence, the relevancy of the prognostic 

methodology for airborne avionic systems is considered imperative. This is 

because flight planning and airport planning relate closely to time. As shown in 

Figure 2-3, delays are mostly caused by airlines, and problems are mainly 

caused by aircraft defect. Therefore, once prognostics systems are in place, 

defective components are hoped to be solved just enough time before any 

planned take-off, thus reducing fault rectification time. It is when unscheduled 

maintenance is urgently needed that aircraft needs to be on-ground thus 

causing delays.  
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Figure 2-3: Breakdown of departure delay cause by hour (Eurocontrol, 2009) 

Table 2-3: Breakdown of technical and aircraft equipment IATA (Eurocontrol, 

2009) 

Category of Technical & Aircraft Equipment IATA category Apr-09 

41-Aircraft Defects 277,959 

42-Scheduled Maintenance 24,815 

43-Non-Scheduled Maintenance 49,514 

44-Spares and Maintenance Equipment 12,631 

45-AOG Spares 3,839 

46-Aircraft Change 161,248 

47-Stand-By Aircraft 15,862 

48-Scheduled Cabin Configuration 2,526 

Every change in schedule that is caused by delays will affect costs. Therefore it 

is the aim of this research to provide a solution to reduce the time taken to 

isolate the fault or it may lead to deferred maintenance. The total overall time 

will consequently affect logistics through a well-planned maintenance system. 
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2.4 Prognostics’ advantages and drawbacks 

Prognostics advantages outweigh its drawbacks in certain areas of applications 

and vice versa in others. The application may be worthwhile when the return of 

investment is positive. Otherwise, it will only be a waste of time. Some of the 

benefits of prognostics method are failure avoidance, positive logistics support, 

maximum life usage, opportunistic maintenance support, fast turnaround time, 

low aircraft on ground records, better mission planning and most importantly no 

unexpected breakdowns. Thus, RTOK and CND numbers could effectively be 

reduced. Historically, machines have relying upon experience of handler or 

operator. Trouble arises when the operator is off site. Machines are only looked 

at when they are no longer function. No warning or signs provided. With 

prognostics, complex machines can provide early warning and ability to exploit 

useful data effectively. Predictive prognostics is indeed a need and theoretically 

promising.  

Studies have reasoned that when it is possible to use available data to perform 

diagnostics, it is not possible to stretch on further to detect and monitor 

degradation. Of course the benefits will show in a cycle as everything will boil 

down to costs. With application of prognostics, machines’ failure can be 

predicted, thus logistics and maintenance support will be well planned. This 

then reduces impromptu downtime and unwanted surprises. Because actions 

can be taken through known information (data), better scheduling could be 

realised. Organised actions and precise decisions help in controlling costs 

within budget, which is the ultimatum of any companies.  

Some challenges of prognostics on the other hand involve the preparation and 

prognostic installation costs. A well-planned study must be thoroughly laid out 

prior to the implementation. Not all areas need prognostics works. Something 

simple and cheap does not need anything complicated. For example, when a 

light bulb fails, it just fails. A sensor would help monitor current flow but 

monitoring a light bulb is not critical. The application of prognostic is worthless 

as light bulbs are cheap and are easily fixed. However, it is not something very 

impossible as the capability of diagnostics and prognostics are desirable.   
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As a conclusion, prognostics has been shown to be beneficial for health 

management of systems, and provides a number of potential benefits including, 

methods to assess the reliability of a product in its actual life cycle conditions to 

determine the advent of failure and mitigate system risks, ability of a service or 

a system to be functional when it is requested for use or operation and cost 

avoidance systems and can be summarized as: 

a) Avoiding of unexpected failures with consequences reduction of 

unscheduled maintenance actions: 

 Minimizing the cost of unscheduled maintenance 

 Increasing availability 

 Reducing risk of loss of system  

 Increased human safety 

b) Reduction in no-fault-founds: 

 The data collected and continuous monitoring used in prognostics 

can be helpful to flight line and shop maintenance personnel in 

locating a faulty item. The RTOK problem is well known and has 

resisted many attempts at reducing it. The accumulated damage 

information provided by prognostics assists in localizing a problem 

and informs the test more likely to reveal it. 

c) Minimizing loss of remaining life: 

 Minimizing the amount of remaining life thrown away by scheduled 

maintenance actions 

d) Reduction in the required number of repair stations and stores locations: 

 The ability to control the occurrence of maintenance actions leads 

to the ability to control the location at which they occur, thus 

reducing the required number. 

 In addition, foreknowledge of spares requirements allows them to 

be delivered ‘just-in-time’, thus reducing the spares stockholding 

levels. This leads to a substantial simplification of the spares 

supply chain. 

e) Improved repair: 

 Better diagnosis and fault isolation 
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 Reduction in collateral damage during repair 

 The avoidance of costs associated with unscheduled repairs, such 

as assets and crew down time, special spares shipments, and 

replacement crews can be a major cost saving as well as reducing 

the number of non-mission capable assets. 

f) Ability to adjust assets usage according to its actual readiness: 

 Presently mission planners have no knowing which of their 

available assets is most like able to complete the planned mission.  

2.5 Cost benefit of prognostics 

In order to show the best value direction in implementing prognostic 

methodology, a cost benefit analysis has been illustrated as described by 

Janasak and Beshears (2007). The Table 2-4 illustrates the benefits, 

significantly on the costs, with the implementation of condition-based 

maintenance. The example shows that the change in the maintenance interval 

affects the life cycle cost, availability and the percentage of failures avoided. 

While it is obvious that condition-based maintenance provides greater cost 

benefits in terms of cost, additional elements may need to be considered and 

weighed in for optimum results. Some factors that could be taken into 

consideration include economic cost, mission and safety implications towards 

implementing each maintenance approach. 
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Table 2-4: Example of cost benefit study to determine what prognostic feature is 
available (Janasak and Beshears, 2007) 

Sustainment 
Approach 

Unscheduled Scheduled Condition-Based 

Maintenance 
Interval/Prognostic 
Distance 

0 hour 1920 hours 396 hours 

Mean LOC $83,319 $181,094 $109,358 

Standard deviation 
LOC 

$16,066 $12,505 $21,067 

Mean availability 97.47% 95.26% 97.26% 

Standard deviation 
availability 

0.61% 0.49% 0.66% 

Failures avoided 0.00% 75.52% 64.53% 

 

2.6 Prognostic applications 

 Prognostic applications in aerospace platforms 2.6.1

The Table 2-5 is a survey done by Ofsthun on subsystems in order to elaborate 

its usages and features normally used in aerospace contexts. In the table, for 

application of IVHM in avionics, only diagnostics was declared. This was 

probably because prognostics was quite new then. He has also pointed out that 

the traditional built-in-tests generally have not provided the accuracy needed to 

impact the operational efficiency in maintenance. Thus, the overall goal 

achievement of IVHM should be to have an improved and extension to BIT 

approaches in subsystems such as avionics. In his article also, Ofsthun 

highlighted lesson learnt relating specific IVHM users goal to diagnostics and 

prognostics. This study sees similar needs which include: 

 To ensure effective IVHM outcome, prognostics must cover an integrated 

degradation analysis that can measure equipment performance 

 Benefit analysis as well as cost efficiency for maintenance repair and 

overhaul should be taken into consideration 
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 A top-level system framework is needed to integrate across subsystems  

Wide-spread adoption of integrated health management has been slow due to 

competing factors that have to be satisfied within the prognostics community. 

Some issues include the life expectancy of an aircraft and cost versus benefit 

factor. From an engineering perspective, the development of prognostics to 

mitigate the greatest risks is dependent upon accurate data collection. The data 

needed for maturation analysis is usually difficult both to obtain as well as to 

collect. On the cost-benefit challenges of prognostics, it is best to apply 

prognostics in areas that are historically the least reliable, have failure modes 

that greatly impact operation success and comprises of subsystems that are 

difficult to diagnose. 
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Table 2-5: IVHM features and techniques used in aerospace platforms (Ofsthun, 

2002) 

Subsystem type IVHM features IVHM techniques 

Avionics Diagnostics Multilevel false alarm filters 
Field loadable software/ data modules 
Vehicle level BIT context correlation 

Electrical Diagnostics Vehicle electrical supply and distribution status 
correlated with subsystem failure indications 

Actuators Diagnostics, 
prognostics 

Motor current, temperature, vibration and 
position sensors compared to a performance 
model to identify failures and  performance 
degradation 

Environmental 
control 

Diagnostics, 
prognostics 

Temperature, pressure, flow rate, vibration and 
valve position sensors compared to a 
performance model to identify failures and 
degradations 

Propulsion Diagnostics, 
prognostics 

Engine monitored for foreign object intrusion 
and dynamic engine performance parameters 
compared to a performance model to identify 
failures and degradations, debris density, 
particle size measurement in oil, low cycle 
fatigue, rain-flow analysis and blade 
temperature 

Hydraulics Diagnostics, 
prognostics, 
inspections 

Fluid levels, pressures, valve positions 
monitored to detect leaks identify performance 
degradations and eliminate manual inspections, 
debris density, particle size measurement in oil 
and fluid 

Structures Prognostics, 
Inspections 

Real time intelligent load monitoring using flight 
control data to minimize scheduled inspections 
and maximize useful vehicle life, loads, 
corrosion, implications on composites, load 
test, strain and pressure. 

All Anomaly 
detection 

Aggregate air vehicle parameters correlated to 
identify anomalous behaviour requiring further 
investigation or maturation 

Health inspection and monitoring spacecraft and aircraft systems are 

often difficult and costly, often because relevant sensors cannot be installed at 

the right places. Therefore prognostics methods have been developed and 

incorporated in the health management systems of the latest military aircraft 
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and civilian aircraft, in order to reduce the overall life-cycle cost and improve 

flight readiness. Figure 2-4 below shows a schematic of the PHM process 

inputs, computations and outputs. For clarity, the figure shows only three sensor 

inputs and three models. The actual number of these will be much larger in 

practice. 

 

Figure 2-4: Remaining Life Prediction (Wilkinson et al. 2004) 

Sensor data provided by a variety of on-engine and on-aircraft sensors is first 

compressed and reduced. This process greatly reduces an otherwise 

unmanageable quantity of data, without sacrificing a significant amount of 

information. A life consumption algorithm, utilizing a variety of life models, 

knowledge of the design ant the constituent material properties, then computes 

the amount of life used with an associated confidence interval for each of the 

possible failures sites.  

Since there are sources of uncertainty, such as material properties and the 

physical dimensions of the various structures making up the electronics 

assembly, there will be corresponding uncertainty associated with the life 

consumption computation. The reasoning process combines these uncertainties 
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using a decision support system to give a remaining life prediction for the 

complete system, again with an associated confidence interval.  

 Prognostics work in electronic components  2.6.2

To do prognostics work, there is a need to identify a measureable precursor to 

degradation. Using the pattern or trend of degradation and statistics of failure 

for that component, a benchmark can be created to guide the analyses. For 

better approximation, probability theory is added on to calculate the remaining 

useful life for the component under study. A relation between prognostic level 

and failure rate indicates the relevancy of applying prognostics work, which 

means prognostics are encouraged to be done for higher level of electronics 

with high failure rate. After identifying the probability theory to be used for this 

prognostic methodology, the next step is to identify measurable precursor to 

failure without knowing the physics of failure of the component chosen. As such, 

looking at the component as a black box, which means analysing the 

component overall is a solution. True enough, without knowing every detail of 

parts and components in a system, predicting its life time is not an easy task. 

Previous researchers have used particle filter algorithm, and many have used 

artificial intelligence (AI) algorithm but not many have succeeded in showing 

they have successfully applied to avionic systems as a whole in order to predict 

its remaining useful life.  

 Prognostics in avionics 2.6.3

Avionics systems combine physical processes, computational hardware, and 

software systems, and present unique challenges to performing root cause 

analysis when faults occur, and also for establishing the effects of faults on 

overall system behaviour and performance. However, systematic analysis of 

these conditions is very important for analysis of safety and also to avoid 

catastrophic failures in navigation systems. 

This drives the need for integrated prognostics and health management 

technologies for flight-critical avionics equipment. Flight and ground crews 

require accurate health state estimates of these critical avionics components, 
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including accurate detection of faults and prediction of time to the functional 

failure of the avionics system. An understanding of how components degrade is 

needed as well as the capability to anticipate failures and predict the remaining 

useful life of electronic components.  

Studying and analysing the degradation of these systems in example 

degradation in performance to improve aircraft reliability, assure in-flight 

performance, and reduce maintenance costs, therefore it is absolutely 

necessary to provide system health awareness for electronics systems. In 

addition to this, an understanding of the behaviour of deteriorated components 

is needed as well as the capability to anticipate failures and predict the 

remaining life of electronics systems. 

Some of earlier efforts in diagnostic health monitoring of electronic 

systems and subsystems involved the use of a built-in test (BIT), defined as an 

on-board hardware software diagnostic tests to identify and locate faults. 

Studies conducted by on the use of BITs for fault identification and diagnostics 

showed that they can be prone to false alarms and may result in unnecessary 

costly replacement, re-qualification, delayed shipping, and loss of system 

availability.  

The persistence of such issues over the years is perhaps because the 

use of BIT has been restricted to low-volume systems. In general, BITs 

generally have not been designed to provide prognostics or remaining useful life 

due to accumulated damage or progression of faults. Rather, it has served 

primarily as a diagnostic tool. 

According to Lou et al. (LOU et al., 2009) airborne equipment failures are 

divided into two kinds, which are mechanical fatigue and chemical failure. 

These two kinds are closely affected by the environment where equipment is 

installed. However, for most aircraft platforms the precise and individual 

parameters such as temperature or humidity issues are normally intermittent. 

NFF could happen as a result of tracking boards which disappears when the 

boards are dried up.  
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Last but not least, the miniaturization and complexity of electronic integrated 

circuits (IC) nowadays has remarkably challenged the reliability of technicians to 

assess the degradation of electronics from the initial beginning of the design 

process. Even though the integration of circuits has led to the development of 

precise and accurate techniques for reliability estimation, limited information is 

available for predicting the entire health over a wide range of environmental and 

operational life cycle conditions. 

2.7 Forecasting methodology 

The fundamentals in forecasting methodology are models and methods. Models 

can be described as mathematical representations of reality and are usually 

approximate rather than exact. Models are designed to describe the overall 

framework used to portray reality using mathematical functions. Methods on the 

other hand are rules or formulas for computing predictions from observed data. 

So, methodology is not a model, but can be based on a model. This study is 

based on the approach of developing a method based on a model that 

represents the failure trend of an avionic airborne equipment system. In 

forecasting, the types of execution are divided in three classifications, which 

are: the ‘subjective, univariate or multivariate,’ the ‘automatic or non-automatic’ 

and the ‘qualitative or the quantitative’. In the first technique of classification 

(subjective, univariate or multivariate), subjective technique uses judgement, 

intuition, commercial knowledge or any other relevant information in order to 

forecast. It is largely based on educated guesses. These can sometimes 

depend upon past data if available. Normally, these techniques are relatively 

hard to reproduce. It is because; it is very unlikely that the data is shown 

explicitly how it is embedded in the system. Univariate on the other hand 

forecasts by fitting a given variable based on a model of past observations of 

the given time series. Time series are data that is represented in an orderly 

pattern or sequence. For example, extrapolation of trend curves, exponential 

smoothing, the Holt-Winters forecasting procedure, the Box-Jenkins procedure 

and stepwise auto regression. In this technique, the function form and 

coefficient are not known and thus needed to be determined. Ordinarily, it can 
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be obtained from historical data. Lastly, multivariate technique is a technique of 

forecasting a given variable on values of one or more series called explanatory 

variables. This method is sometimes called causal models. Some examples of 

this technique are multiple regressions and econometric models. 

Forecasting methods can also be classified according to automatic versus non-

automatic approach. This is similar to open and closed loop in control systems. 

Non-automatic refers to an open system and automatic depends on feedback, 

similar to a closed loop system. Automatic type of forecasting method does not 

use any human intervention while the other (non-automatic) applies to 

subjective intervention.  Surely, the automatic system gives an added 

advantage as output can be updated in real-time. But it all depends upon, many 

factors such as how forecast is to be used, type of time series involved, number 

of samples observed, duration of forecasting period, skills and experience of 

observer, and others.  

Lastly, forecasting can be divided into qualitative (subjective) and quantitative 

(Abraham and Ledolter, 2009). Normally, quantitative methods are often given 

priority and placed in greater reliance than qualitative method although they 

cannot be domineering or allowed to be the dominating technique. Qualitative 

data is also perceived as lagged behind in some application in the past years. 

However, with the development of state of the art tools and software, qualitative 

methods include simplified indicators so that they are accepted more widely. 

Qualitative is subjective in nature and is based on intuition. It may or may not 

depend on past data. Although it is a non-rigorous approach, it is appropriate 

and reasonable method for some application. Unlike qualitative, quantitative is 

based on mathematical model or statistical model. It can be reproduced by any 

forecaster and is suitable for word problems needing numerical representation. 

The advantage of qualitative method is that it can track mutual influences by 

putting numbers to a particular statement or forecast. Besides, it can represent 

real time monitoring when it is applied in dynamic models. One other advantage 

is that, using quantitative method, it is possible to manipulate information 

consistently, and in a reproducible manner. This can be done through figures, 
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combining figures, and also by examining and comparing data. With numbers, it 

allows for greater precision as compared to merely analysis of increasing and 

decreasing relationship. However, its application is limited in some areas 

whereby, not all factors can be represented numerically but can be done in 

matrices or rubric. Quantitative techniques can be classified by deterministic or 

probabilistic. Deterministic models the relationship between the variable of 

interest, Y and explanatory or predictor variable, X1, X2, X3. This way, the 

outcome is exactly determined. These models only assume a constant failure 

rate but breakdown quickly when the systems go into actual service. It happens 

on the account of multimode environmental forces that brings about part 

failures. Part failure can also occur due to the fact that stress management 

during handling and assembly is not always practiced in a consistent manner.  

Deterministic forecast can be made perfect with the skills of interpreting to the 

degree of forecast models and how good these models are at estimating. This 

will also depend on the precision and accuracy of the observation done at the 

initial stage to produce the model. In deterministic forecasts, through 

observations, diagnosis is presented. Next, appropriate model is applied and 

lastly, prognosis is formed. It is based on the logic concept of ‘if and only if’. 

Probabilistic (stochastic) method measures movement from the present state to 

the future state. It is a technique which relies on different methods to achieve an 

event with a given weightage of probability. Instead of giving definitive 

information on the magnitude of event occurrence, probabilistic technique uses 

uncertainty of prediction based on frequency or pattern of event occurrence. 

In application to this study, a useful and acceptable way forward is to 

understand how the parts fail and then determine how one can prevent that 

from happening prematurely or in a dangerous manner, and establish what can 

be considered to be a useful working lifespan. It is normal to consider 

uncertainty in forecasting since no one estimation is definite, for sure. Because 

forecasting, estimation, prediction and prognosis relate to events happening in 

the future, it must be presented such that the results establish an ‘educated 

guess’ and not simply a wild guess. Thus, in bringing the methodology together, 
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accumulation of ensemble of forecasts with clear and precise model needs to 

be compiled before value of the subjective probability estimates can be 

adhered. Basically, when forecasting methodology topics are discussed the 

main goal is to develop method subjectively in producing an objective outcome 

with a precise and accurate model in the background.  

With few avionic systems that last ten to 20 years in service without difficulty, it 

is important to know that most aircraft operate for a period far longer than that. 

The period of useful life for different components and subsystems can vary 

significantly and the period when the hazard rate is increasing can be difficult to 

pinpoint. Hardware in this phase of life may have intermittent and differing 

causes of failure that are hard to isolate and wear out mechanisms can be 

complex and may exhibit different failure modes. This condition may account for 

some avionic units sometimes called "a rogue unit." 

2.8 Emerging prognostics approaches 

Proper methodology must be chosen for suitable application for it will affect the 

effectiveness of analysis and study projected. Prognostic methodology remains 

a critical yet unknown area to major areas of research. Proper methodology 

must be chosen for suitable application for it will affect the effectiveness of 

analysis and study projected. Another aspect to optimisation of prognostics is 

analysing how the system functions and how it fails. A way to model this is by 

understanding functional behaviour and operation of the system.  All in all, when 

discussing about prognostics, either material degradation or functional 

deterioration which affect system operation is important. For avionics, 

prognostics focuses on the functional deterioration of system and should be 

able to predict one of the following: 

 Remaining Useful Life (RUL): the amount of time, in terms of operating 

hours, cycles, or other measures, the component will continue to meets 

its design specification.  

 Time of Failure (TOF): the time a component is expected to fail (no 

longer meet its design specifications).  



 

53 

 Probability of Failure (POF): the failure probability distribution of the 

component. 

This is largely due to the fact that there are limitations to predicting the future. 

Predicting, or sometimes referred as forecasting study is an important activity in 

our daily life. Forecasting methods can be divided into many categories, but 

generally it can be either point forecast or interval forecast. In this study of 

electronic airborne equipment system, it is the aim of the study to develop a 

method to estimate the remaining useful life of the system. Coble used 

parameter features such as trendability, monotonicity, and prognosability 

(2010). These features are used to determine the most useful method for 

individual prognostics case. He classified three categories of methodology 

which are reliability-based, stressor-based and degradation-based. Reliability-

based considers merely historical time to failure data, stressor-based takes the 

environment condition into consideration, and degradation-based monitors how 

specific a component reacts for its specific usage. 

Because prognostic methodology is related to reliability, it is therefore 

significant to identify the reliability prediction for application of specified field. 

Specific application uses different procedural method for their prediction method 

in the reliability analysis. This is because the society or association in the field 

has produced a standard, common ground in order to set the benchmark for 

reliability for each field of study. For example, the military uses Military 

Handbook 217 (MIL-HDBK 217), as a mechanism for estimating probability of 

failure for electronics, whereas the automotive industries use the Society of 

Automotive Engineers (SAE) reliability prediction method for their reliability 

studies. Table 2-6 lists several reliability prediction methods for different 

application. 
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Table 2-6: Reliability prediction method in variety of application 

Procedural Method Application 

MIL-HDBK-217 Military 

Telcordia SR-322 Telecom 

RDF-93 and 2000 Civil equipment 

SAE reliability prediction method Automotive  

Siemens SN29500 Siemens products 

BT-HRD-5 Telecom 

PRISM Aeronautical & military 

FIDES Aeronautical & military 

Typically, failure prediction methods are examined through a mathematical 

model, so that the state of equipment can be predicted using some series of 

historical information. Prognostic methodology is generally divided into four 

main sections, which are model-based, statistical, data driven and probability 

based. Figure 2-5, shows the generic prognostic method that is currently used 

in many different practices. 

 

Figure 2-5: Prognostic methods at a glance 
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 Model-based methodology 2.8.1

Referring to ‘Mathematical Formulation of model based methods for diagnostics 

and prognostics’ by (Jaw and Wang, 2006) the model based approach is more 

favourable since it provides a more accurate estimation and that it can link 

naturally to the physics of failure. Particle filter (PF) has been widely applied by 

many researchers as a method for failure prognostics (Orchard and 

Vachtsevanos, 2007). They have implemented PF for finding time-to-failure 

estimation for crack growth analysis. Some of the advantages listed for these 

particular methods are that compared to classical Monte-Carlo method, 

sequential importance sampling enables PF to reduce number of samples 

required to approximate the distribution and at the same time, makes the 

process faster and more computational efficient. Besides, PF allows information 

from different sources of measurement to be combined together, systematically. 

For example, Abbas et al. (2007) have used the same approach in identifying 

the underlying conditional state probability and use the Particle Filter estimation 

methods for prediction and filtering. As described in his paper, the underlying 

methodology is the approximation of the conditional state probability distribution 

by a swarm of points referred as particles containing a set of weights 

representing discrete probability masses. Particles can be easily generated and 

recursively updated given a nonlinear process model and a set of available 

measurements and an initial estimation for the state pdf, as below: 

)|(),( 11   kkkkkk xxpxfx   (Equation 2-1) 

)|(),( kkkkkk xzpvxhz   (Equation 2-2) 

 where xk is the state of the fault dimension, the parameters involved that are 

represented by ωk and vk are the noise, and fk and gk are non-linear functions. 

The method was applied to the problem of battery grid corrosion where 

algorithm developed was used to determine the probability of time-to-failure. 

Particle filter model was used to predict time evolution of fault condition-based 

on typical automobile pattern.  
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2.8.1.1 Advantages and drawbacks 

The main advantages of using model-based method are that it can detect 

unanticipated faults and it is highly accurate provided that enough useful 

features are extracted. Because this method models the true system even with 

few data, it can produce high reliability results. However, it tends to be 

computationally prohibitive when applied at system level. This is because one 

needs to fully understand interaction and dependencies of system in order to 

build the model correctly. As white noise is propagated at each level, this 

method tends to also produce large sum of error. Some product usage profile is 

often predictable but is not always reliable. This method also relies on 

continuous physical model of a component.  

 Statistical methodology 2.8.2

Statistical-based method is the simplest and useful method, provided that a 

large history data is available. It is useful where component prognostic models 

are not warranted due to low level of criticality or low failure occurrence rates 

(Roemer et al., 2006). Although simple, it can be valuable for maintenance 

scheduling for electrical or airframe components that have very few sensed 

parameters. In this case, it is not critical enough to go through the process of 

developing a physics- based model. Harun (Harun, 1998) have used statistical 

analysis in determining failure rates for confirmed and unconfirmed removals of 

parts for Malaysia Airlines System (MAS). The work done was to identify the 

most efficient time for maintaining a component. Another example where this 

method is most effective is when failure rate data is easily accessible and can 

be correlated with specific profile usage, which is predicted to have effects on 

the failure. 

2.8.2.1 Advantages and drawbacks 

Using this method, its advantage is that it is workable with small sample size, 

thus allowing a cost effective component testing. It can also provide useful and 

simple graphs. Even in the latest technologies, failure mechanism is 

represented more using Weibull (extensively used in many aeronautical 
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applications). Weibull distribution is widely used in life data analysis due to its 

versatility and relative simplicity. The most general expression of the Weibull pdf 

is given by the three-parameter Weibull distribution expression: 

 
(Equation 2-3) 

Where: 

 

and: 

 β is the shape parameter, also known as the Weibull slope 

 η is the scale parameter 

 γ is the location parameter 

Depending on the values of the parameters, the Weibull distribution can be 

used to model a variety of life behaviours. An important aspect of the Weibull 

distribution is how the values of the shape parameter, β, and the scale 

parameter, η, affect such distribution characteristics as the shape of the pdf 

curve, the reliability and the failure rate. 

This also proves to be more representative for future LRU. The inadequacy in 

using this method is that most data are provided with the restrictive assumption 

of a constant hazard rate function. 

 Data-driven methodology 2.8.3

Primarily used in the clinical trials and medical field, the Cox's regression, also 

known as the proportional hazards model, can be explicitly modelled by means 

of a probabilistic survival function. Cox regression analysis can be analysed 

through time to event occurring. For example, set = p(T > t), the probability that 

the patient survives more than t years. If mortality is the outcome variable, then 

one speaks of survival analysis. If F(t) =1- S(t), and J(t) = F'(t) is the first 

derivative of the distribution function F, then the concept of hazard, defined as 
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h(t) = J(t) / S(t), gives the instantaneous risk of demise after time t. Logistic 

regression and Cox's regression are multivariate statistical regression methods 

(Uckun et al. 2008). Because this research is about monitoring failure 

occurrences, survival time using Cox’s regression can be used to reflect failure 

events. Another example of data driven method is the state estimation 

techniques such as Kalman filters or other various tracking filters that perform 

the same function. Using this approach, the filter is considered to be a virtual 

sensor, whereby it provides optimal estimation of quantities of interest that may 

not be obvious. It uses knowledge of noise to minimise estimation error 

covariance by Kalman gain. Typically, Kalman filter is implemented using the 

linear system model but can be extended to non-linear model if desired. 

2.8.3.1 Advantages and drawbacks 

Although data driven method of prognostics is able to learn models based on 

empirical values, it requires an extensive fault history data. It is possible that 

this method provides the best solution if large enough data is available for 

analysis. This method uses historical data to automatically learn system 

behaviour and their degradation patterns. It suffers when insufficient or no data 

exist for analysis. 

 Probability-based methodology 2.8.4

Markov Model is used to illustrate a probability based method of prognostics 

that is used to allocate spares in the circumstance of any event when failures 

occur. The Figure 2-6 below shows the Markov model of the failure and repair 

process of a component in the presence and absence of spares. Here, it is 

assumed that the time-to-failure is exponentially distributed. When a component 

fails, it is immediately replaced with a spare if a spare is available, otherwise, 

additional spares will need to be procured. One disadvantage of using the 

Markov model is that as the states gets more complex, it get really tedious in 

solving the Markov model vector since the number of states in the Markov 

model usually grows exponentially with the number of system components. 

However, it is quite good for application where only the behavioural events are 
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needed to be analysed and not the real physical system. Nevertheless, with the 

use of software simulation, the Markov model should not be that complicated to 

implement. 

 

Figure 2-6: Component level availability model (Fang Tu et al., 2007) 

2.8.4.1 Advantages and drawbacks 

In probability-based methodology, which uses historical or sequential data to 

predict future failing, the main disadvantage is that it tends to have ‘diffusion of 

context’ phenomenon which brings context to generalisation. In contrast, the 

main advantage of probability-based analysis is that analysis can be made or 

tested based on probable outcomes. The common probability method will be 

elaborated in the next section. 

 Bathtub curve and constant failure rate 2.8.5

The bathtub curve is common when discussing reliability issues. A typical 

bathtub curve can be represented as shown in Figure 2-7.  
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Figure 2-7: Typical bathtub curve used in reliability 

Early method in reliability prediction uses constant failure rate (CFR) and 

reliability distribution using exponential. MIL-HDBK 217, which is the “Reliability 

Prediction of Electronic Equipment”, is a military handbook. It has been so-

called the industry standard for many years and uses CFR as its basis in 

reliability prediction. CFR has been used for many years and until now it has 

presented the basis of any true model as the physics of failure data is much 

harder to get hold of. Thus, it is still valid to consider using failure rate in the 

research as data that is obtained from the maintenance industry are still 

assuming constant failure rate to a certain extent (White, 2008). Airborne 

avionics systems apply the bathtub curve (LOU et al., 2009) which relates 

failure probability and time as shown in Figure 2-7. However, with electrical and 

electronic components that are ever-present to deal with, most semiconductors 

are said to have no short term wear out phase. This means, that the curve 

remain relatively flat as shown in the middle phase. It refers to useful life stage 

failure rate that is constant.  
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Constant failure rate usage in research is disputable. However, that has been 

the foundation stage for any process as true model based, physics of failure 

data is really hard to get. Failure data is commercially sensitive in the sense that 

if the rate is high, consumers will lose their trust in the product. That is why most 

manufacturers prefer to keep it confidential. Moreover, very few failure 

mechanisms have an established failure signature (Hecht, 2006).Thus, this 

‘forces’ academicians to use whatever resources available such as online data 

and product specifications with failure rate numbers attached. This is because 

in normal consequences, reliability data will be published. 

2.9 Overview of methodology 

The methodologies used in this prognostics studies are threefold; the model-

based method, the data-driven based method, and the hybrid method that 

combines both model-based and data-driven methods. Since a prognostic 

research involves estimation and prediction, statistical and probabilistic studies 

cannot be totally excluded. Thus, it is equally important to also consider 

statistical method and probabilistic elements in this research. Take a weather 

forecast as an example, to forecast tomorrow’s weather, information must be 

known beforehand. In doing so, initial data has to be collected or certain pattern 

of weather forecast needs to be established. Otherwise, there must be a certain 

model that can be used to predict the weather. It could be by looking at the wind 

direction, or the moisture level and even the location of the clouds. Similarly, in 

forecasting the failure of aircraft equipment, several procedures are established. 

Firstly, historical data are collected. This will be the starting point that acts as 

the benchmark. Data is then analysed through models. Prognostic methodology 

model is developed to assist in estimating time-to-failure.  

In this research, the mathematical model of this methodology employs the 

Markov Model and Cox’s regression analysis incorporating well-known reliability 

standards which are common for space and military use. Various numerical 

methods for efficient and accurate solving of the model equations are 

presented, which enables reliable predictive simulation of the underlying 

physical phenomena. The simulation results are compared with the 
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corresponding field data results and checked on their physical soundness. 

Details on the performance of the algorithm developed will be shown in later 

chapters. 

2.10 Summary 

This chapter has identified the research gap from the past researches that can 

be filled by this study. Through this chapter, trends of methods and application 

in the current practise can be seen. Besides the emerging methodologies, the 

advantages of applying prognostics methodology in the avionics context has 

been presented. An in-depth discussion on the methodology used for this 

research will be covered in the next chapter. 
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  CHAPTER 3

 RESEARCH METHODOLOGY 3

This chapter illustrates the steps that put this research in entirety. It brings 

together the process of achieving the objectives in fulfilling the aim of this study. 

This chapter will tell the reader the framework and structure of the avionic 

prognostics methodology. Each functional module reflecting the objectives of 

the avionics prognostics system will be thoroughly explained in this chapter.  A 

pictorial representation of the whole process in given in the Figure 3-1: 

Phase 1 Phase 2 Phase 3

Problem Identification

Literature study

Development of prognostics 
methodology

Development of prognostics 
algorithm

Validation using case studies

Discussion and conclusion

 

Figure 3-1: General steps of the research methodology 

3.1 Problem identification 

The early stage of this research was to identify issues relating to prognostics 

approach and how can it contribute to the current situation. The research has 

been narrowed down to prognostics application on avionics at system level due 

to the reason that most discussions have neglected this area of study. This 
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particular research is aimed at exploring and developing prognostics 

methodology for airborne avionics system. 

3.2 Literature study 

Along with the aim, the literature study provides evidence on the importance of 

conducting the research. An extensive literature review has been carried out to 

enable a decision on the right methodology and approach to be chosen for LRU 

level prognostics application. Literature study was done continuously throughout 

this duration of study and is considered the most fundamental step in achieving 

the aim and objectives of this study. 

 Steps in literature study 3.2.1

a. Searching for literature 

b. Sorting and prioritising the retrieved literature 

c. Analytical reading of papers 

d. Evaluative reading of papers 

e. Comparison across studies 

f. Organising the content 

g. Writing the review 

3.3 Development of prognostics methodology 

In this research, the discussion on prognostics methodology is divided into two 

main sections: 

 The general view 

 The integrated methodology view 

In general, the prognostics methodology will discuss the fundamental need for 

prognostics work. The process flow of this methodology is shown in the Figure 

3-2:  
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Start

System selection

Collecting data & 
information

Condition 
monitoring 

technique selection

Condition 
assessment and 
fault diagnostic

Accepted

Condition based 
maintenance task

accepted

 

Figure 3-2: General process flow for prognostics based on condition-based 
maintenance 

Identification and selection of condition parameters are necessary to ensure 

prognostics success. Only measureable parameters and parameters that could 

be monitored to define their condition or performance are to be chosen. These 

condition parameters can be defined as a measureable variable that enables to 

be displayed directly or reflect indirect information about the condition of an item 

at any particular instance. In practise, there are two distinguishable types of 

condition parameters which are the relevant condition indicator (RCI) and the 

relevant condition predictor (RCP). The RCI is a parameter that describes the 
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condition of an item during its operating time and indicates the condition at the 

instant of inspection. The RCP on the other hand, describes the condition of an 

item at every instant of operating time. The difference between these two 

conditions is that the RCI is usually related to the performance at the point of 

inspection and not able to predict the future development of the considered 

system. RCP on the other hand, represents the condition of the system which is 

most likely to be affected by a gradual deterioration failure such as wear and 

crack growth (Kumar et. al, 2012). 

The methodology includes several approaches such as Markov model theory, 

statistical analysis, mathematical model known as MTBF (Mean Time between 

Failures) and MTBUR (Mean Time between Unscheduled Repair) equations, 

and Cox’s regression analysis that will be integrated in the final stage. Given the 

input such as in Figure 3-3, the specific results of prognostics methodology can 

be achieved. For example, if fault tree and failure rate are given or known, 

Markov Modelling can be used to determine the probability of failure at any level 

of analysis. As such, time to failure can be compared with the established 

failure rate by the OEM. Because prognostics study focuses on the importance 

of time in maintenance, all these approaches will involve the time factor. At the 

end of these processes, these outputs will then be synchronised using the 

temperature-failure rate model to calculate the probability of failure at different 

operating temperatures. 
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Figure 3-3: Prognostics methodology design process 
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Figure 3-4: The integrated view of prognostics methodology  
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Figure 3-4 shows the overall prognostics methodology developed to find the 

time to failure in an LRU. It will be elaborated further in the sections that follow. 

 Degradation  3.3.1

In this part of the study, degradation trend analysis at system level was done by 

gathering data from airlines. Data includes component removal information with 

dates, types of aircraft, airlines, flight hours and ATA chapter description. In 

doing the analysis for dependency trends at LRU level in airborne avionic 

system, fault tree diagram with failure rate relationship was used.  

 Failure rate data 3.3.2

Failure rate data is used and produced at different stages of this research 

depending on the availability of information. In particular, failure rate data will be 

used in the three stages of prognostics methodology developed. First, it will be 

used in the Markov model process where failure rate is essential for simulating 

using the procedures developed. The failure rate dependencies within different 

equipment pooled for single failure rate for overall LRU will be calculated. 

Secondly, MTBF and MTBUR calculation are analysed, and failure rate is 

established. Thirdly, it will be used in the regression analysis of failure rate and 

temperature dependency analysis. 

 Time to failure prediction 3.3.3

Finally, all the information gathered and calculated will be integrated with the 

environmental (temperature) versus failure rate model to produce the time to 

failure prediction. 

 Reliability prediction 3.3.4

In this research, reliability prediction used is closely related to application of 

reliability theories such as probability of failure, MTBF, MTBUR, MTTF and 

failure rate. Reliability prediction was conducted to identify the relationship of 
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the field data and the common known variables, and is a common methodology 

where prediction of failure is concerned. The intended results of this process 

are to fill in the gap of knowledge and to verify that the developed methodology 

works well. 

3.4 Development of prognostics algorithm 

An elaboration on the prognostics algorithm development is based on each 

method. The algorithm shall follow the Figure 3-5: 

 

Figure 3-5: Overall prognostics algorithm development process 

The algorithm starts off by analysing all available data and identifying what 

methods work best. If information on failure rate data is accompanied by the 

fault tree diagram, then Markov modelling can be used. Otherwise, the process 

flow continues to check if the MTBF data is available so statistical inferences 

can be done. If not, the system continues to check if flight hours and number of 

flight records are available. If they are, the MTBF and MTBUR data to compare 

against the OEM benchmark value can be calculated.  
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 Markov-Failure rate module 3.4.1

This algorithm is used to solve probability of failure given the fault tree 

(degradation) and failure rate at each state. With the known data, the probability 

of failure at the top level can be calculated and compared with the OEM’s value. 

Besides, dependencies of components in LRUs can also be figured out using 

the fault tree diagram. The detail of this process is given in the Figure 3-6: 



 

72 

 

Figure 3-6: Algorithm for Markov Modelling 
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 Statistical inferences module 3.4.2

Statistical inferences were used to explore and understand the pattern and 

trend of the removal of components. The result of the study provided insights to 

identify suitable components to explore and determine why the chosen 

component was selected. 

 MTBF and MTBUR module 3.4.3

The input parameters needed for this module represented in Figure 3-7 are: 

 UR – unscheduled removal 

 URY – unscheduled removal for the period of study 

 IU – installed unit 

 FH – flight hours 

 CF – confirmed defect 

i=i+1;
X=UR;
If x=’1'

STOP
MTBUR=(FH*UI)/URY;

MTBF=(FH*UI)/CF

i<imax

No

No

Yes

START

Input parameter:
UR, URY, IU, FH,

Initialize variable :
i=0; CF=0; imax= max(number); 

URY=0

URY=URY+1
If CF=’1'

Yes

CF=CF+1

Yes

No

 

Figure 3-7: MTBF and MTBUR algorithm 
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This module is used to calculate MTBUR and MTBF values for removal data 

provided information of flight hours, confirmed defect, unscheduled removal 

data, and formulas are provided. For this module, the equations to be used to 

calculate MTBUR and MTBF values are: 

 
periodthatduringfailureconfirmedofnumber

aircraftperinstalledunitshoursflightMTBF
______

____ 
  

 
periodthatforremovaldunscheduleofnumber

aircraftperinstalledunitshoursflightMTBUR
______

____ 
  

 Cox Proportional Hazard analysis module 3.4.4

For Cox proportional hazards model incorporate the effects of covariates which 

will be temperature and stress on failure rate values. Proportional hazards 

assumption will be: 

h(t;x,β) = h0(g(x,β) 

where  

h(t) and h0(t) represents the failure rate;  

x represents the covariates; and  

β is the coefficient estimates. 

Generally, four steps will be needed for this feature to be included in analysis. 

 Step 1: Load sample data 

 Step 2: Find the coefficient estimates 

 Step 3: Add temperature and stress as covariates to the model 

 Step 4: Analyse model for outcome 

3.5 Validation using case studies of real field data 

For validation, a case study is used. The selection of avionics system to be 

used as a case study is determined to fulfil the effectiveness and the need for 

prognostics application on such system. Thus, it must affect the safety, 
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reliability and maintainability of the aircraft that the system employed. For that, 

the Terrain Avoidance Warning System was chosen as a case study. This 

decision was also based on the trend of removal, which has been identified to 

be amongst the most crucial, where improvement is needed.  

 Approach to identify suitable avionics equipment  3.5.1

In order to identify and evaluate the suitable avionics equipment to be applied 

with prognostic techniques, a large and diverse research of the component data 

was required. First, this thesis will focus on avionics systems installed in general 

transport aircraft. The application of avionics systems and components to be 

analysed are randomly selected from the maintenance manual. Next, the 

selected avionics systems are extracted into two main categories that are 

communication and navigation. The categorized avionics systems will be 

evaluated into several criteria to identify whether or not the systems or 

components are worthy of prognostics studies or vice versa. The factors for 

considering if systems are prognostics worthy are cost, operation, logistics or 

replacement issues and lastly the maintainability of the system or equipment as 

summarised in Figure 3-8. 

 

Figure 3-8: Avionics metrics parameter 

•identify the 
availability of 
the components

•study the 
troubleshooting 
methods 
available

•prioritize 
operation and 
technical 
background

•identify cost 
efficiency

Cost 
effectiveness

Operation 
wise

Logistics
Maintenance 

& 
maintainability
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3.5.1.1 Cost-effectiveness 

Cost effectiveness is an economic metric that measures the average cost to 

repair a component during a year.  Theoretically, cost effectiveness decreases 

initially as repair sources advance up the learning curve and develop more 

efficient processes based on previous repairs.  But as components age, repair 

costs will increase in real dollars. Factors affecting these increases include 

lower repair volume, diminishing repair sources, more expensive replacement 

parts, and more expensive test equipment maintenance costs.  Measurement of 

this metric is the easiest with outsourced vendors who charge a service fee for 

each repair, whereas organic repair costs can be difficult to track if cost pools 

are not sufficiently separated. 

This metric can be used to estimate the future component life-cycle costs for 

use in return on investment calculations in order to determine when component 

repair will become cost prohibitive.  The time that component repair becomes 

cost prohibitive represents the end of a component’s life cycle due to economic 

considerations.  In addition, this metric is also useful for determining the short-

term estimate of repair budget. 

3.5.1.2 Operation 

This metric describes the operation of the avionics system and how critical it is 

in ensure the reliability and availability of the aircraft is achieved. This metrics 

portray the knowledge of the system and demonstrates how the equipment 

operates in real life. The priority of the avionics system to be prognosed is 

greatly dependent on the criticality of the equipment in order for the aircraft to 

be airworthy. Besides that, as the knowledge operation of the equipment is 

achieved, it is easy to differentiate the criticality each of the systems towards 

flight safety. 

3.5.1.3 Logistics for availability 

This is a sustainability metric that measures the percentage of components in 

stock that are required to be in stock due to an allowance list.  This metric is 
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also referred to as stock age rate or supply rate, and can have several methods 

of measurement, any of which can be used in the model. 

System availability actually measures a state, such as an end of the month 

snapshot, as opposed to a rate or flow.  For example, if there were ten 

operating sites that each has an allowance of four components, a supply of 40 

units at the end of the month would equal 100% availability.  This measurement 

would be difficult to measure continuously in real time over the course of the 

month.  However, the average of the 12 monthly measurements would be a 

suitable yearly entry into the model. 

This metric measures the ability of the repair system to provide an adequate 

supply of operable components, but there are some inherent shortcomings to 

this measure.  For one, since a goal of 100% is neither obtainable nor desired, it 

is difficult to determine a suitable goal.  Also, if 50% is measured during one 

month, it could be due to ten users having two out of four components available, 

or it could be due to five users having no components available at all.  

Therefore, this metric does not track the distribution of the availability very well. 

Recent efforts have sought to reduce the capital tied up in large stockpiles of 

repairable parts, at operating units, by reducing repair pipeline cycle times and 

transportation delivery times.  Both of these efforts have decreased required on-

site supply needs.  But if a component is experiencing sustainment difficulties, 

such as diminishing repair sources and stocks of piece-parts, obsolete test 

equipment, and high scrap rates, availability will decline.  The increase in repair 

pipeline and supply cycle time will prompt an increase in allowance limits that 

will reduce availability even further. This can however be improved if the 

procedure of AOG was properly used and could supersede issues discussed.  

3.5.1.4 Maintenance and maintainability  

Maintenance optimization is a process that attempts to find the best balance of 

the maintenance requirements (contractual, economics, technical, etc.) and the 

resources used to carry out the maintenance program (people, spares, 

consumables, equipment, facilities, etc.). When the maintenance optimization is 
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effectively implemented, it will improve system availability, reduce overall 

maintenance cost, improve equipment reliability, and improve system safety.  In 

the former case, optimization is performed to choose the option that generates 

the largest cost avoidance and maximizes the availability for an individual 

system. In the latter, optimization is performed to choose the optimal 

subsystems to be maintained and meet availability at the enterprise level. 

The maintenance efficiency of systems is an important economic and 

commercial issue. Main difficulties are resulted from the choice of maintenance 

actions. A bad choice can lead to maintenance with a cost overrun that is not 

acceptable. Because of the increase of involved technologies (pieces of 

hardware, software) and the different interactions between components 

(communications by message passing or physical interactions), the decision of 

a maintenance action is very complex and requires a diagnostic and prognostic 

analysis. Maintaining such a system basically consists in replacing components 

that are unable to perform their function by new ones.  

Maintenance activities are costly for several reasons. The first one is that they 

usually require stopping the system that cannot be used anymore during the 

maintenance phase. The longer the maintenance phase is, the more costly it is. 

It follows that the maintenance phase must be reduced to the strict minimal 

operation that is the replacement of the correct components. This requires that 

the maintenance actions must be decided relying on an efficient and complete 

analysis of the health of the system when it is operating. The second reason of 

a high cost in maintenance is in cases of emergency. If a component suddenly 

fails and the system fully breaks down, it automatically requires some 

unscheduled maintenance actions, which are more costly than scheduled 

maintenance. To partly avoid this issue, prognostic methods are used in order 

to perform preventive maintenance. Preventive maintenance basically involves 

replacing components during a scheduled maintenance phase that are not yet 

faulty but that will inevitably become faulty before the date of the next scheduled 

maintenance phase. 
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3.6 Summary 

This chapter details out the methodology chosen for this study and provides 

understanding to the reader on why the steps of methodology were identified 

and used in the study. In the next chapter, theoretical work on the study will be 

presented. 
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  CHAPTER 4

 RUL PREDICTION METHODS IN 4
LRUs 

This chapter aims to provide a systematically developed fundamental theory of 

the research models based on the study done in the earlier chapters. The 

Remaining Useful Life Prediction methods involved in carrying out this research 

will also be provided in this chapter.  It will include both the RUL prediction 

methods for LRUs and LRMs as well as the RUL prediction methods for 

airborne avionics system. The proposed prognostics algorithm of the 

prognostics system will be further evaluated through the development of 

software simulation system.  

4.1 Fault tree analysis 

Fault tree analysis is a failure based study that includes logic and probabilistic 

techniques. This application, which was popular in the sixties, is particularly 

preferred in manuals and instruction booklet as it is straightforward and clear. It 

is a qualitative approach but can be quantified when probabilistic risk 

assessment is added. Thus it becomes a mixed approach. It has become a 

useful methodology in system safety assessment, where all failure rates are 

presented in logic diagrams. Top events can be easily seen when illustrated in a 

fault tree diagram. With fault tree, a deductive approach is used to conclude 

what events trigger failure to happen. Basically it is a top down approach. The 

process determines the root causes using organised backward steps design, to 

find the underlying solution of the overall failure. The advantage of using this 

method is that it will not only show the low-probability and high consequence 

failure events but it can also show high-probability and near miss events. It is 
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the benign events that are important to detect as high-consequence failures can 

blow up when are not detected early. Fault tree uses logic diagrams such as the 

AND gate and OR gate as in Figure 4-1 in order to describe the input and 

output events. This relation of fault tree is commonly associated with flight hour 

and thus possible to find the mean time to failure when the failure rate is known. 

 

Figure 4-1: AND and OR gate used Fault Tree Diagrams 

 

4.2 Markov model 

Markov model is a stochastic process that involves a probabilistic mathematical 

model, which involves time, and its outcome only depends on the present state. 

This means, the next state outcome is only influenced by the preceding state. 

Since Markov model can be used as discrete or continuous processes with 

regards to time, it has been used in many areas of reliability. A Markov model 

consists of two variables, which are state and time. Normally, Markov is 

represented in the form of state transition diagram as shown in the Figure 4-2. 

 

Figure 4-2: State transition diagram 

State 0 State 1 
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As shown, a component with two states, normal state and fail state would have 

this as its state diagram or transition diagram. The transition rate is described 

by the failure rates in this study. The one-step transition probabilities can be 

condensed into a transition probability matrix P, where 

P ij= ൤P଴଴ Pଵ଴
P଴ଵ Pଵଵ

൨  (Equation 4-1) 

The following are some important properties about Markov model: 

 Since for all i j ∈ S  0 ≤ x ≤1 and each row in P adds up to 1, matrix P is a 

stochastic matrix. 

 The probability mass function of the random value  P(0) is called the 

initial probability row-vector 

 X(0)= [X0(0),X1(0),…Xn(0)] and presents the initial condition of Markov 

Chain. 

 If P is the state transition matrix, and X is the state probability in 

exponential Markov chain then X’(t)=X(t).P 

For Markov distribution model, for a given the initial distribution X(0), the 

following can be determined. 

 X(1)=X(0).P 

 X(2)=X(1).P = X(0).P.P = X(0).P2 

Thus, for any k, 

 X(k)= X(0). Pk and elements of P must satisfy the following conditions: 

 ∑ P୧୨ =୨ି୬
୨ିଵ   1 for all I (row sum) and Xij≥0 for all i and j. 

The dynamic nature of system is modelled as the Markov state model. The 

Markov model provided prognostic measures, such as the time to reach a faulty 

state, along with the probability of reaching this state. The Markov model allows 

the system to go back to their previous state and there is then no need to 

consider unidirectional system progress because electronic products do not 

experience failure due to wear out mechanisms. 
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In Figure 4-3 below, is the GUI for a simple two state markov chain simulation 

which shows the probability of system going into states S1 and S2. X 

represents the initial state distribution and P is the state transition matrix. Figure 

4-4 shows a simulation for a 3-state markov chain where X3 steady shows the 

output when the system stables off (Source code provided in Appendix 2). 

 

Figure 4-3: Two-state Markov Chain Simulation 
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Figure 4-4: Three-state Markov Chaim Simulation 

4.3 Cox regression analysis 

Statistical procedure of Proportional Hazard model is used in identifying 

objective assessments in determining the true health state of a system. Cox 

proportional hazard model on the other hand is a multivariate technique for 

analysing the effect of two or more metric and or non-metric variables on 

survival. Failure condition at repair time is noted and failure time when the 

system cannot perform its function is recorded. Data that will be needed to 

perform this analysis will be system/ LRU fail time, removal due to failure or 

preventive maintenance due to signal of deterioration. Determining the 
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probability of a system will fail given its initial characteristics and evolution over 

time relative to other systems. It also explores the timing of LRU going to failure. 

Therefore, a robust control using actionable information can be used for failure 

prognosis. It is useful when dealing with many covariates, X. The main 

advantage of using proportional hazards model is that analysis can be carried 

out without any assumptions about the distribution and about the form of the 

base line hazard function, h0 (Dale, 1985). Given sample data, that contains two 

or more variables, model of the relationship can be derived between the 

variables.  Next, it is then decided which model best describes the relationship 

between the variable and estimates its accuracy. In order to avoid overly 

optimistic prediction error is by doing cross-validation. That means two sets of 

data are needed, one to build the model and the other to test the model. 

Proportional hazard function is widely used in medical field to perform survival 

time prognostic. It is basically a model free and is a semi parametric model that 

needs no assumption to be made about shapes of time to event distribution. It 

can be used for events that deal with failure time data. Estimation techniques of 

hazard function will be used to predict failure times. Usually failure times are 

modelled by fitting an exponential, Weibull, or lognormal distribution to the data. 

As failure data arise with certain degradation parameter, data of occurrences 

can be used to correlate these two or more variables by gauging the weight 

attributed to each variable respectively. Because this technique allows for both 

metric and non-metric analysis, this method would then be generic enough to 

be applied to a “black-box” system of any kind. 

 Advantages of hazard model 4.3.1

‘Acceleration model’ rather than a specific life distribution model lies in its ability 

to model and test inferences about survival without any prejudgement or 

specific assumption about the form of life distribution model. The real strength 

of this proportional hazard model is that it allows for survival time relationship to 

be modelled through hazard function. Cox’s regression model is a non-

parametric approach to survival data. Users can also incorporate time-varying 

covariates or explanatory variable that change with time. For example, if the 
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system degrades before failing, the hazard model will change and it will be 

revealed in the health of system checks. Explanatory variable or predictors, X 

can be voltage, degradation parameter or others.  

This model interprets the benefits of parametric and semi parametric 

approaches to statistical inferences. Also known as the Cox model, it presumes 

that the ratio of the hazard rate to a baseline hazard rate is an exponential 

function of the parameter vector. 

,ݐ)ߣ (ݖ = ݆)∑)	݌ݔ݁(ݐ)	଴ߣ =  ((	݆)ܺ		݆ߚݍ^(1

Where z is a vector and β 

(Equation 4-2) 

ℎ(ݐ)
ℎ଴(ݐ) = exp	(ݔᇱܾ) 

(Equation 4-3) 

ℎ(ݐ)
ℎ଴(ݐ) = exp(ܺᇱܤ) = ݁௕భ௫భା௕మ௫మା...ା௕೛௫೛  

(Equation 4-4) 

ℎܽ݀ݎܽݖ	ݐ)݋݅ݐܽݎ, (଴ݔ,ଵݔ =
ℎ(ݐ, (ߚ,ଵݔ
ℎ(ݔ,ݐ଴,ߚ) 

 

ℎܽ݀ݎܽݖ	݋݅ݐܽݎ	(ݔ,ݐଵ,ݔ଴) = 	 ݁ఉ(௫భି௫బ)  

 

The failure data (part total hour) will be correlated using the equation above 

with	ߣ଴(t) unknown and ߚ unknown. ܺ on the other hand, will be the parameters 

to be studied such as temperature, humidity and vibration. When the hazard is 

logged, the coefficients are called the risk score, represented by β. When β is 

positive, it means that the two variables are positively correlated with higher 

better representing higher correlation. Otherwise, if β is negative, it means the 

opposite. One other method to find β is solving the Partial Likelihood Estimation 

(PLE). PLE can be calculated using the steps below: 

1. Order failure times such that t1<t2<…<tk where ti denotes failure time for 

ith individual 
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2. For censored cases, define it as ‘1’ 

3. Ordered events are then modeled as a function of covariates, x 

4. Take the product of conditional probability of failure at time tt, provided 

the number of cases 

5. The results will then show the probability of the jth case will fail at time T 

Last but importantly, traditional statistical approaches such as regression 

models for survival analysis will be used to correlate environment parameters 

without knowing its distribution. Cox’s proportional hazard model in particular 

was chosen to be used since no assumptions need to be made about the shape 

of time to event distribution (Shyur, 2008). It is also suitable for semi-parametric 

or non-parametric statistical models, which will be used for this study. Cox’s 

regression analysis were mostly used in the medical field, but recently, it has 

also gained popularity in areas such as reliability engineering, finance for 

bankruptcy estimation, transportation and also system failures in general. With 

this model, many parameters can be taken into account, which is considered an 

important section of this research.  

 Advantages and disadvantages of Cox model: 4.3.2

 Provide estimate (statistical technique) of behaviour or condition effect 

on failure time given their prognostic variables. 

 Data needs to be fitted using a mathematical model and final model will 

output a formula for hazard as a function of several explanatory 

variables. 

 To analyse the model, coefficients are examined. Positive coefficient for 

the variable dictates that hazard is higher which then means prognostic 

work is worsening. However, if negative coefficient is shown, it means 

that prognosis is better for the system.  

 The disadvantage of this model is that it only simultaneously explores 

using available data and not directly model based using sensor of any 

type.  
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4.4 Kaplan Meier 

Coit presented a similar way to do reliability prediction. However, the 

demonstration was done with 39 circuit cards with different operating conditions 

(Coit et al., 2005). The end product shows reliability versus time graph as 

shown in Figure 4-3.  

 

Figure 4-5: Reliability chart to determine time to failure (Coit et al., 2005)  

                                                                                                                                                                                                                                                              

However, they have assumed that the distribution of sample to be normal. 

Kaplan Meier is a method to estimate the cumulative survival distribution 

without making any distribution assumptions. It has proved to be an excellent 

use for large datasets and provides means to capture the lifetime distribution for 

‘snapshot’ data. An output from the Kaplan Meier method can be shown in 

Figure 4-4. The disadvantage of using this method is it only provides an 

estimate of proportion of population that will survive and not truly accurate. 

However, for a simplistic view, this method seems to be practical. 

Appropriate probabilistic model for time to failure is needed to be constructed 

and parameters need to be estimated so that the information can be suited to 



 

89 

predict remaining useful life. Other usage is to establish inventory rules and also 

part replacement programmes. This technique will also help in the reliability 

program for the company. In order for prognostic technology to be applied 

successfully, the economic aspect of it is a priority. Broad prognosis indicator 

being the key identifier to any signature failure can contribute to cost saving 

(Hecht, 2006) . Many different prognostic techniques have been applied such as 

statistical methods, artificial intelligence methods and fuzzy-rule systems 

(Jianhui Luo et al., 2003). Prognostics, while has been established in 

automotive and power-plants, it is still quite new in application where many high 

failure rate parts are dominant with few recognisable failure mode. 

 

Figure 4-6: An example of graph produced using Kaplan Meier method 
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  CHAPTER 5

 TERRAIN AWARENESS AND 5
WARNING SYSTEM (TAWS) 

This chapter provides some understandings regarding Terrain Awareness and 

Warning System (TAWS) or sometimes referred to as Enhanced Ground 

Proximity System (EGPWS). The insights of this chapter cover TAWS/EGPWS 

functions and operating modes, TAWS/EGPWS system architecture and 

components, TAWS/EGPWS performance requirements and performance 

degradation pattern. Other than that, main fault mode and failure effects and 

how failure is propagated in the system will be analysed in this chapter. The 

reliability rates and failure rates will also be discussed as it will also be used for 

analysis in the later chapters. 

5.1 Introduction 

“ICAO’s first action in this regard can be traced back to 1978, when 

requirements for equipping commercial air transport aircraft with GPWS were 

introduced in Part I of Annex 6 to the Chicago Convention. This led to a 

significant decrease in the number of CFIT occurrences, but not to their 

complete elimination. A further step was taken with the development of GPWS 

with a forward looking terrain avoidance function, generally referred to as 

enhanced GPWS and known in the United States as Terrain Awareness and 

Warning System (TAWS).” 

 -ICAO MODEL REGULATION AND GUIDANCE MATERIAL ON 

GROUND PROXIMITY WARNING SYSTEM (GPWS) 
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Enhanced ground proximity warning system was pioneered by Allied Signal now 

known as Honeywell. The main purpose of EGPWS is to provide basic ground 

proximity warning. Aircraft input such as position, altitude, air speed, glideslope 

and flight plan along with internal terrain and airport database allow EGPWS to 

predict potential conflict between the aircraft’s future flight path and terrain. It is 

also to alert pilots on altitude awareness, excessive bank angle alert, terrain 

clearance, and terrain and obstacle awareness alerts. It is to warn the pilot of 

any inadvertent distance to the ground. It was before the use of enhanced 

ground proximity warning system (EGPWS) that occurrence of controlled-flight-

into-terrain (CFIT) accidents was high. It was intended to reduce the incidents 

happening. These incidents happen with no signs of mechanical failure or fault 

but crashes to ground. These accidents usually occur in conditions of poor 

visibility due to atmospheric obscuration such as fog or rain, or darkness of 

night. Federal aviation regulations (FAR) have required installation of the 

system on large turbine-powered aircraft in commercial service since 1975. 

These system consist of a computer which gets inputs from sensors on aircraft 

and provides warnings to pilot. This is done through visual and aural alerting 

devices.  

The system is designed to detect and warn the pilot of excessive descent rate 

near the ground, excessive terrain closure rate, approaching the ground with 

landing gear or flaps not in the landing configuration, and descending 

significantly below the ILS electronic glideslope when on approach to landing. 

Also, during take-off and immediately after initiating a missed-approach go-

around, the system warns the pilot when the aircraft is descending when it 

should normally be climbing.  
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5.2 Hardware composition of the EGPWS (TAWS) and 
performance requirement of components 

 

Figure 5-1: EGPWS composition 

Figure 5-1 shows the composition on input going in and output leaving EGPWS. 

In the figure, outputs can be shown on the display and also through the voice 

warning for aural sounds. Some of inputs into the system includes reading from 

the radio altimeter, and the GPS integrated with data downloaded through the 

Ethernet and the FMS (flight management system. 

5.3 Functions and operating modes of EGPWS 

It is a system that warns the crew if the aircraft’s current flight path would result 

in impact with the ground. The system is designed to capture the aircraft’s flight 

path with respect to the terrain at all altitudes between 50 and 2450 ft. It uses 

inputs from systems providing radio altitude, air speed (Mach number), landing 
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gear and flap position, and decision height (DH) setting. The system provides 

both visual alert message and aural alert warnings. The various dangerous 

conditions that can be encountered in flight are divided into six modes. They are 

mode 1: Excessive descent rate, mode 2: Excessive terrain closure rate, mode 

3: Loss of altitude after take-off (or go-around) when not in the landing 

configuration, mode 4: Insufficient terrain clearance, mode 5:  Descent below 

ILS glide slope and mode 6: Descent below selected minimum decision height 

(DH).  

Advanced versions of the equipment have additional facilities of radio altitude 

callouts and aural warnings at excessive high bank angles. The other feature in 

these versions is that spurious and nuisance warnings are minimized. The 

system has a major drawback in that it cannot look ahead at terrain but can be 

integrated with a Worldwide Terrain database to give some look ahead 

prediction. However, this would introduce another failure mode which could be 

difficult to test. Consequently, it cannot always give pilots sufficient time to 

predict and plan avoidance manoeuvres. Enhanced GPWS (EGPWS), besides 

providing traditional GPWS alerting functions, displays the surrounding terrain 

(up to 320 NM) on an EFIS (electronic flight instrument system) screen or 

weather radar CRT (cathode-ray tube) and provides alerts about a minute’s 

flight time or more away from terrain.  

5.4 EGPWS system architecture 

The Figure 5-2 shows the functional diagram of an EGPWC, with its inputs and 

outputs from the EGPWC. 
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Figure 5-2: Overview of EGPWC and its components 

 Aircraft sensors and other system  5.4.1

The sensors and other system provide input signals to be read into the EGPWC 

for processing. 

 EGPWC 5.4.2

The EGPWC is the heart of the system. It computes and analyses the data 

provided to be fed out to the speakers and interphone. 

 Flight deck audio systems (speakers and interphone) 5.4.3

This is one of the outputs which provide sound alert to warn when necessary. 

 Alert lamps and/or digital outputs to EFIS displays  5.4.4

Lamps and EFIS displays are for alert and system status messages. 

 Weather radar indicator or EFIS displays  5.4.5

Weather radar indicator and EFIS displays provide display of terrain. 
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 Switching relay(s) or display switching unit when required 5.4.6

This unit shows switching display inputs from weather display to terrain display. 

5.5 EGPWS performance degradation 

The EGPWS provides a Self-Test capability for verifying and indicating intended 

functions. This Self-Test capability consists of six levels to aid in testing and 

troubleshooting the EGPWS. These six levels are: 

Level 1 – Go / No Go Test provides an overview of the current operational 

functions and an indication of their status. 

Level 2 – Current Faults provides a list of the internal and external faults 

currently detected by the EGPWC. 

Level 3 – EGPWS Configuration indicates the current configuration by listing 

the EGPWS hardware, software, databases, and program pin inputs detected 

by the EGPWC. 

Level 4 - Fault History provides an historical record of the internal and external 

faults detected by the EGPWC. 

Level 5 - Warning History provides an historical record of the alerts given by 

the EGPWS. 

Level 6 - Discrete Test provides audible indication of any change to a discrete 

input state. 

A level 1 Go/No Go Test is normally performed by flight crews as part of pre-

flight checks. All other levels are typically used for installation checkout and 

maintenance operations. 

5.6 Reliability of EGPWS from product specification 

The EGPWC Failure Modes, Effect and Criticality Analysis (FMECA) was 

developed using MIL-STD-1629 as a guideline. The EGPWC reliability 

prediction was developed using MIL-HDBK-217F as a guideline. Historical MK 
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V GPWC reliability data and the EGPWC reliability prediction results were used 

as baseline criteria in establishing the following minimum EGPWC Mean Time 

between Failure (MTBF) and Mean Time between Unit Replacement (MTBUR) 

values. MTBF for confirmed failures will be 10,000 flight hours or better, for the 

latest EGPWS configuration three years from initial production delivery. MTBUR 

will be 7,000 flight hours or better, for the latest EGPWS configuration three 

years from initial production delivery. The MKVII EGPWS MTBUR is expected 

to be similar to that of the MKV EGPWS provided proper line troubleshooting 

procedures are followed when diagnosing system failures. 

Historical MK V GPWC as well as recent Enhanced MK V field reliability data 

and MIL-HDBK-217F were used as baseline in establishing the minimum 

EGPWC MTBF and MTBUR values. MTBF values are per operating hours for 

confirmed failures and apply to corresponding latest EGPWC configuration 

three years from Initial Production Delivery (IPD) date. Similarly, MTBUR values 

are per operating hours for justified removals and apply to corresponding latest 

EGPWC configuration three years from IPD date. MTBUR values presume 

proper line troubleshooting procedures are followed when diagnosing system 

failures. 

5.7 Failure rates of EGPWS components 

 Failure rates standard from product specification 5.7.1

Table 6-1 describes the EGPWS failure rate obtained from product specification 

that is used as a standard or benchmark for comparison with EGPWS failure 

rate obtained from field data.  
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Table 5-1: EGPWS LRU failure rate from product specification 

LRU Failure rate MTBF (hours) 

Radio Altimeter 189.5x10-6 5277 

Vertical Gyro 247.6x10-6 4038.8 

Directional Gyro 247.3x10-6 4048.6 

Global Positioning System (GPS) 85.7x10-6 11682 

TAD Inhibit switch 6.37x10-6 156985.9 

TA Display – Weather Radar PPI 227.1x10-6 4403.3 

EGPWC 80x10-6 125000 

 Failure rates from field data 5.7.2

The EGPWS failure rate field data has been obtained from airlines. The 

datasets were obtained from two different data sources in a form of spread 

sheet which contains removal events between 1st of January 2010 to 31st 

December 2010 and another spread sheet from January 2008 to December 

2010. For each EGPWS removal event, the information obtained is as follows: 

Dataset 1 

 Part number 
 Serial number 
 Date of removal 
 Reason for removal 
 Aircraft registration number 
 Vendor 

Data set 2 

 Aircraft type 
 Ata chapter 
 Part number 
 Time since new 
 Time since fault  
 Time since overhaul 
 Removal date 
 Workshop note 
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5.8 EGPWS FAR regulation compliance 

Table 6-2 presents the FAR regulation compliance with regards to EGPWS. It 

describes the applicable regulation  and accepted probability of failure in 

possible failure condition of an EGPWS system. 

Table 5-2: FAR regulation compliance 

Failure condition Applicable regulations Probability of 
Failure P(F) 

Section 

Loss of all EGPWS 
Function 

AC-23-18, 7.d.(2) (a) 8.031x10-5 3.3  

False Annunciation of 
Mode 1 “Pull Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. 

7.375x10-6 4.4 

Unannunciated loss of the 
Mode 1 “Pull Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. 

9.368x10-6 5.5 

False Annunciation of 
Mode 2 “Pull Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. 

5.909x10-6 6.5 

Unannunciated loss of the 
Mode 1 “Pull Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. AC 
23-18, 7.d.(2)(b) 

6.783x10-6 7.7 

False Annunciation of 
Terrain Awareness “Pull 
Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. AC 
23-18, 7.d.(2)(b) 

1.669x10-6 8.6 

Unannunciated loss of the 
Terrain Awareness “Pull 
Up” Warning 

FAR, Part 23, 23.1309 (b) 
AC 23.1309-1C, 9.d. AC 
23-18, 7.d.(2)(c) 

7.289x10-6 9.9 

Hazardously Misleading 
Information on the Terrain 
Awareness Display 

AC 23-18, 7.d.(2)(d) 1.203x10-5 10.9 

Failure of the installed 
TAWS should not degrade 
any integrity of any 
installed system with the 
TAWS interfaces that 
could have either 
hazardous or catastrophic 
failure conditions as 
defines by AC23.1309-1C 

AC 23-18, 7.d.(2)(e) Qualitative 
analysis 

1.5 

5.9 SLAAP for EGPWS 

Most current avionic systems utilize a federated architecture. Each line 

replaceable unit (LRU) is an independent device made by different 
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manufacturers using potentially very different design approaches. Technological 

diversity and fractal design present a host of challenges to the avionics 

maintenance and logistics process. Each LRU manufacturers provide 

independent diagnostic capability for its unit in the form of built -in -test (BIT), 

automated test equipment (ATE), and test program sets (TPS).  

Non-uniformity of test equipment and unrealized overlap of functional capability 

results in excess test resources at all levels of the maintenance system and 

inhibits interoperability through the inflexibility of process. Commonly lost in this 

process is the working requirement that these distinct avionic components 

function side by side, in a largely autonomous fashion, to provide the total 

system functionality required to fulfil the aircraft’s mission. 

It is this integration and its potential system-level effects that have not been 

considered by the current maintenance infrastructure. Exposing this integration 

of avionics components through the capture and meaningful retention of all 

available data can contribute significant intelligence to avionics diagnostics and 

repair (Kalgren et. al., 2004). 

SLAAP includes several models of computation such as the Markov Model, 

Kaplan Meier Chart, MTTF and Cox’s Regression Analysis. Different models of 

computation can be chosen with regards to availability of data to be analysed. 

SLAAP uses a standard graphical user interface with specific functions to be 

determined. The GUI is presented with a design window to insert inputs and 

calculate outputs or produce graphs.This behaviour is implemented in a 

specially formulated Matlab code. 
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  CHAPTER 6

 RESULTS 6

In this chapter, the application of methodology developed will be illustrated. 

Terrain Awareness Warning System (TAWS) was chosen as a test model for 

the analysis for several reasons. The first reason it is chosen because it is one 

of the equipment of avionics used on board aircraft and secondly, because 

prognostics are feasible and cost-worthy to be applied to safety related 

equipment for cost effectiveness. The other reasons are that the data needed 

for analysis is readily available online and thus the MTBUR and MTBF can be 

compared theoretically and thus, possible to validate field data obtained. The 

last reason is that the equipment falls under ‘navigation’ section of avionics that 

proves to have high breakdown rate. 

6.1 Case studies for trend analysis 

The sample data sets for the case studies were gathered from several airlines 

including Malaysian Airlines and Royal Brunei Airlines. These data consists of 

different types of component removal considered as discrepancies that was 

classified under several ATA chapters. Aircraft fleet involved as sampling 

consists of ATR 72-500, B727, B737, B737-400 (B734), Boeing 767-33AER, 

A319, and A320. There are also sample data that was specifically on EGPWS 

LRUs only. The objective of this section is to analyse and understand common 

problems and trends in maintenance line and then use the methods described 

in the previous chapters to establish results. 

 Source 1 (ATR 72-500 component removal data) 6.1.1

This data was gathered from Maswings and Firefly aircraft, companies which 

are both under Malaysian Airlines Berhad, based in Malaysia. Components 
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removals were gathered between August 2008 and March 2010. The summary 

of the removals are presented in Table 6-1 and will be explained in the 

subsections that follow. 

Table 6-1: Summary of ATR aircraft components removal 

Airline Date Number of data 

Maswings 1 (MW1) 22/9/2008-31/12/2009 416 

Maswings 2 (MW2) 4/2/2010-1/3/2010 25 

Firefly 1 (FF1) 22/8/2008-22/1/2010 510 

Firefly 2 (FF2) 12/1/2010-8/3/2010 35 

6.1.1.1 Maswings 1 data collection 

For the Maswings 1 collection of data, the top three ATA chapters that produce 

highest component removal are from ATA 32 – Landing Gear (46%), ATA 24 – 

Electrical Power (11%) and ATA 34 – Navigation (6%) which occurs from 2008 

to 2009 as shown in Figure 6-1. The removal was 86% unscheduled which is 

shown in Figure 6-3.  

 

Figure 6-1: MW1 record of ATA chapter count 
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Figure 6-2: Common removal for Chapter 34 (Navigation) 

Figure 6-2 shows the detail of data from ATA Chapter 34 of ATR aircraft data 

for MW1 whereby the common removal is from Terrain and Traffic Collision 

Avoidance System (T2CAS) labelled as 9000000-10008 and radio altimeter 

labelled as 959960714562. Both of these components are categorised as one 

of the components in TAWS or the position and warning system of aircraft.  

 

Figure 6-3: Scheduled versus Unscheduled removal of components of MW1 
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Figure 6-4 elaborates the number of Maswings 1 aircraft by category. Out of the 

6 aircraft, 9M-MWA (MWA) has the highest removal with a count of components 

removal. 

 

Figure 6-4: Count of aircraft registration or tail number of MW1 

6.1.1.2 Maswings 2 data collection 

From this record labelled as MW2, a number of 25 data was collected from ATA 

Chapters 23, 24, 30, 32, 34. The highest count of removal has been from ATA 

32, which is the landing system. However, ATA 34, which is navigation, is 

among the highest three removals. Figure 6-5 shows the graph that illustrates 

the count for ATA chapters in MW2 record and Figure 6-6 shows the count of 

aircraft based on the registration number of category MW2. 
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Figure 6-5: MW2 record of ATA chapter count 

 

Figure 6-6: Count of aircraft registration or tail number of MW2 

6.1.1.3 Firefly 1 data collection 

This record gathered an amount of 510 samples of data. Based on Figure 6-7, 

the majority of removal is from ATA chapter 32 (landing gear). The Figure 6-8 

shows once again the unscheduled removal being the majority cases as 

compared to a scheduled removal of components in an airlines maintenance 
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line. Lastly, Figure 6-9 shows the count of aicraft registration or tail number for 

FF1 data. 

 

Figure 6-7: FF1 record of ATA chapter count 

 

Figure 6-8: Scheduled versus Unscheduled removal of components of FF1 
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Figure 6-9: Count of aircraft registration or tail number of FF1 

6.1.1.4 Firefly 2 data collection 

From this record labelled as FF2, a number of 35 data was collected from ATA 

Chapters 24, 26, 27, 32, 36, 61. The highest count of removal has been from 

ATA 32, which is the landing system as shown in Figure 6-10 and count of 

aircraft registration or tail number of FF2 is shown in Figure 6-11.  

 

Figure 6-10: FF2 record of ATA chapter count 
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Figure 6-11: Count of aircraft or tail number of FF2 
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 Source 2 (EGPWS removal data for Boeing 727, 737)  6.1.2

Table 6-2: EGPWS removal including EGPWC and Terrain Display Unit (TDU) for EGPWC and TDU 

P/N S/N Removal date Reason for removal Aircraft RegistrationVendor Repair shop findings Aircraft type
80-5145-9-3 111 30/05/2008 FO EGPWS INOP 9M-TGG HONEYWELLNil record from Tspares B727-247
80-5145-9-3 325 04/06/2008 CAPT EGPWS INSERVICEABLE 9M-TGG HONEYWELLDefect confirmed B727-247
80-5145-9-3 289 17/06/2008 CAPT TDU INOP 9M-TGH HONEYWELLDefect confirmed B727-247
80-5145-9-3 125 17/12/2008 FO TDU INOP HS-SCH  (TGJ)HONEYWELLDefect not confirmed B727-247
80-5145-9-3 327 22/06/2009 CAPT TDU INOP 9M-TGM HONEYWELLDefect not confirmed B727-200
80-5145-9-3 386 10/04/2010 CAPT TDU NIL DISPLAY 9M-TGG HONEYWELLDefect confirmed B727-247
80-5145-9-3 323 14/06/2010 FO TDU GOES BLANK AND HOT 9M-TGB HONEYWELLDefect not confirmed B727-200
80-5145-9-3 111 02/10/2010 FO TDU INOP 9M-TGM HONEYWELLDefect not confirmed B727-200
80-5145-9-3 288 15/11/2010 CAPT TDU GOES BLANK 9M-TGB HONEYWELLDefect confirmed B727-200
80-5145-9-3 323 29/12/2010 CAPT TDU UNABLE TO ADJ BRIGHTNESS 9M-TGB HONEYWELLDefect not confirmed B727-200
80-5145-9-3 199 30/12/2008 CAPT TDU UNSERVICEABLE 9M-PMW HONEYWELLDefect confirmed B737
80-5145-9-3 9570 27/06/2010 CAPT TDU GOES BLANK 9M-PMW HONEYWELLDefect confirmed B737
965-1076-020-212-212 2707 28/03/2008 Both captain and FO terrain warning INOP HS-SCJ  (TKJ)HONEYWELLNil record from Tspares B727-247
965-1076-020-212-212 487 04/08/2008 No terrain displayed on TDUs 9M-TGE HONEYWELLDefect confirmed B727-200
965-1076-020-212-212 N/A 22/09/2008 FO TDU INOP 9M-TGM HONEYWELLDefect confirmed B727-200
965-1076-020-212-212 2707 17/11/2008 GPWS MODE "TERRAIN" INOP HS-SCJ  (TKJ)HONEYWELLDefect not confirmed B727-247
965-1076-020-212-212 3791 29/05/2009 EGPWS INOP 9M-TGH HONEYWELLDefect not confirmed B727-247
965-1076-020-214-214 2876 26/11/2009 WINDSHEAR AND GPWS FAIL LIGHTS ON AND "NO TERRAIN" & TERRAIN SYSTEM OVERRIDE LIGHTS REMAINS ON 9M-TGG HONEYWELLDefect confirmed B727-247
965-1076-020-212-212 4123 26/03/2010 TERRAIN SYSTEM OVERRIDE LIGHTS REMAIN ON 9M-TGG HONEYWELLDefect not confirmed B727-247
965-1076-020-212-212 3747 04/06/2010 TERRAIN WARNING SYSTEM INOP 9M-TGE HONEYWELLDefect not confirmed B727-200
965-1076-020-212-214 3270 11/07/2010 TERRAIN WARNING DISPLAY INOP 9M-TGE HONEYWELLDefect confirmed B727-200
965-1076-020-212-214 3270 13/05/2010 EGPWS NUISSANCE "PULL UP" WARNING CAME ON WHEN ESTABLISHED ON GLIDEPATH 9M-PML HONEYWELLDefect not confirmed B737
965-1076-020-212-214 2876 18/07/2010 EGPWS "NO TERRAIN" DISPLAYED ALL  THE TIME 9M-PML HONEYWELLDefect confirmed B737
965-1076-020-212-212 3747 11/07/2010 EGPWS "NO TERRAIN" DISPLAYED ALL  THE TIME 9M-PML HONEYWELLDefect confirmed B737
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Table 6-2 describes the data for EGPWS removal from 30th May 2008 to 29th of 

December 2010. These data were gathered from Transmile Airlines now known 

as Raya Airways.  

 

Figure 6-12: Count of aircraft registration for EGPWC removal 

 

Figure 6-13: Count of aircraft registration for TDU removal 

The data in Table 6-2 consists of EGPWC and TDU removal of aircrafts of B727 

and B737. Figure 6-12 and Figure 6-13 show the summary of aircraft count 
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based on aircraft registration for the removal of EGPWC and TDU. The total 

unscheduled removal over period of 3 years for EGPWC is 12 and the total 

unscheduled removal over period of 3 years for TDU is also 12. Based on fleet, 

for EGPWC, B727 contributes a total of 9 removals while B737 contributes a 

total of 3 removals. For TDU removals, a number 10 removal has been made 

on B727 and 2 removals have been done on B737. The Table 6-3 illustrates the 

number of flight hours for the two aircraft in 2008, 2009 and 2010. Table 6-4 

shows the total flight hours characterised by type of aircraft for the three 

consecutive years. 

Table 6-3: Yearly flight hours recorded for B727 and B737 

  2008 2009 2010 

Flight hours B727 B737 B727 B737 B727 B737 

8790 2583 8350 675 7729 1667 

Total Flight 
hours 

11373 
 

9025 9396 

 

Table 6-4: Total flight hours for the three years for B727 & B737 

B727 Total Flight Hours 
(2008 through 2010) 

8790+8350+7729 24869 

B737 Total Flight Hours 
(2008 through 2010) 

2583+675+1667 4925 

With the removal records from the sample data, the MTBUR and MTBF can be 

calculated. From the MTBF, failure rate can then be known. With failure rate 

value known, it can then be compared with the benchmark given by the original 

equipment manufacturer (OEM). The OEM for this product is Honeywell 

International Incorporated. 

In order to determine the MTBUR Equation 6-1 and Equation 6-2 has been 

used: 
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periodthatforremovaldunscheduleofnumber
aircraftperinstalledunitshoursflightMTBUR

______
____ 

  

(Equation 6-1) 

And, in order to calculate the MTBF, this equation has been used: 

periodthatduringfailureconfirmedofnumber
aircraftperinstalledunitshoursflightMTBF

______
____ 

  

(Equation 6-2) 

  

From Honeywell Product specification which is available online as characterised 

according to function and according to component in the fault tree diagram; the 

loss of all EGPWS functions given the probability per flight hour is presented to 

be 8.031x10-5 and so, the calculated MTBF is 12451.7 hours. The given the 

failure rate of EGPWC per flight hour is 80x10-6, so, the MTBF is then 12500 

hours. 

6.1.2.1 EGPWC removal 

The calculation for MTBUR and MTBF is shown below using equations 7-1 and 

7-2. 

MTBUR for EGPWC: 
B727 MTBUR (EGPWC) = 24869 × ଵ

ଽ
= 2763.3	ℎݏݎݑ݋ 

B737 MTBUR (EGPWC) = 4925 × ଵ
ଷ

= 1642	ℎݏݎݑ݋ 

Thus, the average MTBUR (EGPWC) is 2202.5 hours 
 
MTBF for EGPWC: 
B727 MTBF (EGPWC) = 24869 × ଵ

ସ
= 6217.25	ℎݏݎݑ݋ 

B737 MTBF (EGPWC) = 4925 × ଵ
ଶ

= 2462.5	ℎݏݎݑ݋ 

Average MTBF (EGPWC) = 4339.9 hours  

Thus, failure rate for EGPWC is then 230.42 x 10-6 per hour 
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6.1.2.2 TDU removal  

The calculation for MTBUR and MTBF is shown below using equations 7-1 and 

7-2. 

MTBUR for TDU: 
B727 MTBUR (TDU) = 24869 × ଶ

ଵ଴
= 4974	ℎݏݎݑ݋ 

B737 MTBUR (TDU) = 4925 × ଶ
ଶ

= 4925	ℎݏݎݑ݋ 

Average MTBUR (TDU) = 4949.5 hours 
 
MTBF for TDU: 
B727 MTBF (TDU) = 24869 × ଶ

ସ
= 12434.5	ℎݏݎݑ݋ 

B737 MTBF (TDU) = 4925 × ଶ
ଶ

= 9850	ℎݏݎݑ݋ 

Average MTBF (TDU) = 111142 hours 
 

Thus, the average MTBF (EGPWC and TDU) is 57741 hours,  

It can be concluded that the failure rate for the items is as above expected 

performance standard whereby the MTBF benchmark for EGPWS was found to 

be 12451.7 hours.  

 Source 3 (EGPWS removal data 737-400) 6.1.3

In this set of TAWS/EGPWS removal data of Boeing 737-400 aircraft, a number 

of 35 samples have been collected. Figure 6-14 shows the monthly removal 

trend for the particular aircraft. However, only 16 (46%) was a confirmed failure 

and 19 (54%) has been labelled as defect not confirmed. From the records, the 

MTBUR was calculated using Equation (6-1) and are found to be 2617.257 

hours and the calculated MTBF using Equation (6-2) to be 7046.462 hours. The 

total flight hours recorded for the sample given is 91604 hours. So, from the 

MTBF number then, failure rate is found to be 141.915x10-6 hours. 



 

114 

 

Figure 6-14: Removal of EGPWS monthly for B737-400 (B734) 

With this set of data, Kaplan Meier chart can be used to calculate the time to 

failure which was found to be 40000 plus hours (42717) as shown in Figure 6-

15. 

 

Figure 6-15: Kaplan Meier Chart for B737-400 (B734) using the TSN value 
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An example of a Matlab software based GUI for the Kaplan Meier simulation 

produced an output as shown in Figure 6-16 which was run using input given in 

the Appendix. Inputs include State Transition (ST), Number at risk, and Number 

of failure. 

 

Figure 6-16: Kaplan Meier GUI 

 Source 4 (ATA 34 removal data Airbus) 6.1.4

This data contains removal report for Airbus A319 and Airbus A320 aircrafts for 

the year 2003 through 2010 from Royal Brunei Airlines. The data sample was 

specifically chosen for ATA chapter 34 which focused on Navigation 

Instruments.  It has been labelled using A, B, C, and D and consists of the 

following number of samples: 

1. Airbus A- 327 samples 
2. Airbus B- 291 samples 
3. Airbus C- 93 samples (up to 2006 only) 
4. Airbus D- 334 samples 

6.1.4.1 Airbus A 

These data sets contain removal report from 26th August 2003 to 9th of January 

2011. Out of these data sets, 13 reported on GPWS. One example of recorded 

report states ‘NAV GPWS FAULT DURING CLB, MSG DISAPPEARED ON 
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LANDING’. From Table , MA refers to Maintenance Report and PI refers to 

defects reported by pilots and it can be concluded that faults were detected 

during flight or during pre-flight as faults were detected and reported by pilots.  

Table 6-5: Summary of removal report for ATA 34 

Airbus Dates Sample Count MA PI 

A 26/8/2011-9/1/2011 327 46% 54% 

B 8/9/2003- 4/1/2011 291 53% 47% 

C 16/1/2004-9/3/2006 93 39% 61% 

D 25/9/2010-9/1/2011 334 32% 68% 

 

 Source 5 (ATA 34 removal data Boeing) 6.1.5

The data gathered for this section was from Royal Brunei Airlines. The aircraft 

under analysis were six Boeing 767-33AER aircraft.  These data includes 

discrepancies dated from 2nd January 2009 to 15th December 2010. The data 

consisted of 523 recorded discrepancies which falls under ATA 34. All 

categories under the ATA 34 such as the 3410, 3420 and 3460 were highlighted 

as shown in Figure 6-17. 
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Figure 6-17: A two-year discrepancies of ATA 34 of B767 aircraft 

6.2 Case study for Proportional Hazard Ratio  

A series of analysis was done to calculate the beta values of covariates 

(temperature and stress) using the failure rates generated for a digital circuit 

board. The purpose of this analysis is to study the effect of temperature and 

stress on failure rates of the device. In this case, the failure rate is fitted for Cox 

Proportional hazard function with the variable, X being temperature and stress 

using some sample data in Table 7-6. There are two environment classifications 

to the data which are the ground benign and ground fixed. The table lists the 

failure rates at different combination of temperature and stress conditions of a 

digital circuit board. An assessment of the significance of the predictor variable 

will follow afterwards.  
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Table 6-6: Digital circuit board failure rates in 106 part-hours (Denson, 1998) 

 Ground benign Ground fixed 

Temperature 10°C 70°C 10°C 70°C 

Stress 10% 50% 10% 50% 10% 50% 10% 50% 

ALCATEL 6.59 10.18 13.30 19.89 22.08 29.79 32.51 47.27 

Bellcore Issue 4 5.72 7.09 31.64 35.43 8.56 10.63 47.46 53.14 

Bellcore Issue 5 8.47 9.25 134.45 137.85 16.94 18.49 268.90 275.70 

British Telecom 
HDR4 

6.72 6.72 6.72 6.72 9.84 9.84 9.84 9.84 

British Telecom 
HDR5 

2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 

MH-217E Notice 1 10.92 20.20 94.37 111.36 36.38 56.04 128.98 165.91 

MH-217F Notice 1 9.32 18.38 20.15 35.40 28.31 48.78 45.44 79.46 

MH-217F Notice 2 6.41 9.83 18.31 26.76 24.74 40.15 73.63 119.21 

To compare empirical methodologies, the failure rates in Table 6-6 were each 

calculated for each combination of environment. The analysis using Cox’s 

hazard function is represented in Table 6-7. Using the beta values found, 

prediction of hazard ratio between different environments can be analysed. 

Table 6-7: Results of “covariate b” or the coefficient, b using Cox’s Regression 
analysis for temperature and stress on failure rates 

Ground benign Ground fixed 

Temperature 
constant 

Stress constant Temperature 
constant 

Stress constant 

10° 70° 10% 50% 10° 70° 10% 50% 
10% 
0 

70% 
1 

10% 
0 

50% 
1 

10° 

0 
70° 

1 
10° 
0 

70° 
1 

10% 
0 

70% 
1 

10% 
0 

50% 
1 

10° 
0 

70° 
1 

10° 
0 

70° 
1 

0.3034 0.2721 0.6648 0.5054 -0.8043 -0.3615 -1.6139 -1.2648 

These results from Table 6-7 are interpreted using the GUI as shown in Figure 

6.18 and Figure 6.19. 

For example, if Ground Fixed was considered at 10% constant stress, covariate 

b was calculated to be -1.6139. Hazard ratio in this case has also been 

calculated. The estimated hazard ration calculated using exp(b) is 0.1991. This 
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carries a meaning that hazard for 70° is 0.1991 higher than that of 10° 

temperature. The explanation is based on the following: 

To predict survival as a function of a dichotomous IV such as an 

Experimental v control groups;   

In such cases, the IV is treated as a dummy variable and coded either 0 

or 1 

The resulting Cox regression model:  

h (t) = [h0 (t) ] e ( b1X1) 

When X = 0, h (t) = [h0 (t) ] (1), since e0 = 1 

When X = 1, h (t) = [ h0 (t) ] e ( b1) (1) 

b1 = Cox regression coefficient, determined by partial likelihood 

estimation using matlab function  

Linearizing the Hazard Function with a Dichotomous Independent 

Variable 

h (t) = [h0 (t) ] e ( b1X1) 

Dividing both sides by h0 (t) 

h (t)     = [ h0 (t) ] e ( b1X1)  

h0 (t)      [ h0 (t) ]  

h (t)     =   e ( b1X1) 

  h0 (t) 

This is the hazard ratio or relative hazard  which is Exp (b).  

This ratio indicates the expected change in the risk of the terminal event 

when X changes from 0 to 1. (i.e. 1 = presence of the characteristic X) 
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When X = 0, the hazard ratio = 1.0 

When X = 1, the hazard ratio Exp(b) = e ( b1) 

Possible Relationships 

If the hazard ratio = 1; The IV does not affect survival.  

If the hazard ratio  1; The IV is associated with increased survival 

If the hazard ratio is  1; The IV is associated with decreased survival 

If the hazard ratio = 1; The parameter does not affect the time to failure.  

If the hazard ratio  1; The parameter is associated with decreased time 

to failure 

If the hazard ratio is  1; The parameter is associated with increased 

time to failure. 
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Figure 6-18: GUI for calculating the Hazard Ratio of Constant Pressure 
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Figure 6-19: GUI for calculating the Hazard Ratio for Constant Temperature 

6.3 Case study using Markov Model 

The case study for Markov Model illustrates the use of fault tree to find the 

failure rates at different stages of a system. From the fault tree diagram below, 

mean time to failure (MTTF) can be calculated using Markov model. The 

diagram below has been simplified to show less complicated method in 

achieving time to failure value. This method uses eigenvalues and eigenvectors 

in finding estimated failure time. As such, any system with known fault tree 

diagram and failure rate of components can apply such method easily. As 

opposed to just fault tree diagram, Markov model gives a quantitative insight to 

a problem and will be an added advantage for top level, black box analysis for 

any system. In a way, Markov model uses linear regression analysis in solving 

P(t). 



 

123 

 

Figure 6-20: EGPWC fault tree from product specification list 

From the fault tree in Figure 6-20, the minimum cut set of the above fault tree 

can be simplified. It only highlights the major events which affect loss of all 

EGPWS functions as shown in Figure 6-21. The simplified fault tree has been 

labelled appropriately with representation of A, B and C as the bottom level 

event as shown in Figure 6-22. From there, the conversion of fault tree to 

Markov Model has been made. With the failure rate value fitted in in the Markov 

Model, the links or state transition diagram is drawn for further analysis.  This is 

shown in Figure 6-23, where the failure rates are fitted into the transition 

diagram which shows the event change for all possible states. 
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Figure 6-21: Simplified fault tree 

 

Figure 6-22: Basic fault tree from simplified diagram 
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Figure 6-23: Markov state diagram for top level EGPWS fault tree 
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Failure rate value derived from the fault tree from product specification has 

allocated as in Table 6-8: 

Table 6-8: Failure rate from fault tree 

λA 0.0001895 

λB 0.0009687 

λC 0.000068966 

1-λA 0.9998105 

1-λB 0.9990313 

1-λC 0.999931 

Step 1: Set up transition matrix (Q) from failure rate data 

Step 2: Find P(t) by finding eigenvalues and eigenvectors of Q 

Step 3: Establish equation for P(t) 

Step 4: Determine limiting distribution for each state 

Step 5: Set up minimum cut set transition matrix to find Pnew(t)  

Step 6: Determine ܴ(ݐ) = ∑ ௡ܲ௘௪(ݐ)  

Step 7: Find MTTF using  ܨܶܶܯ = ∫ ஶݐ݀(ݐ)ܴ
଴  

The entire algorithm above has been realised using MATLAB and can be seen 

in Figure  

 
Q=[-0.0012272 0.0001895 0.0009687 0 0.00006896 0 0;0.9998105 -1.0008 0 
0.0009687 0 .000068966 0; 0.9990313 0 -0.9992899 189.5E-6 0 0 
0.000068966; 0 0.9990313 0.9998105 -1.9988 0 0 0; 0.999931 0 0 0 -
1.0011 189.5E-6 0.9687E-3; 0 0.999931 0 0 0.9998105 -1.9997 0; 0 0 
0.999931 0 0.9990313 0 -1.999] 
[V D]=eig(Q) 
syms t; 
P0=[1 0 0 0 0 0 0]; 
P=P0*V*expm(D*t)*inv(V); 
Pt=vpa(P) 
 
Q = 
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   -0.0012    0.0002    0.0010         0    0.0001         0         0 
    0.9998   -1.0008         0    0.0010         0    0.0001         0 
    0.9990         0   -0.9993    0.0002         0         0    0.0001 
         0    0.9990    0.9998   -1.9988         0         0         0 
    0.9999         0         0         0   -1.0011    0.0002    0.0010 
         0    0.9999         0         0    0.9998   -1.9997         0 
         0         0    0.9999         0    0.9990         0   -1.9990 
 
 
V = 
 
   -0.3780    0.0000    0.0000    0.0000    0.0001    0.0006   -0.0000 
   -0.3780   -0.0002   -0.0000   -0.0007   -0.5780   -0.0003    0.0006 
   -0.3780   -0.0001   -0.0000   -0.0001    0.0003   -0.5808    0.0004 
   -0.3780    0.1528    0.1014    0.7069   -0.5778   -0.5817    0.0010 
   -0.3780   -0.0006   -0.0001    0.0007    0.0019    0.0120    0.5770 
   -0.3780    0.9058   -0.9437   -0.1211   -0.5762    0.0117    0.5776 
   -0.3780    0.3952    0.3148   -0.6969    0.0022   -0.5693    0.5775 
 
 
D = 
 
   -0.0000         0         0         0         0         0         0 
         0   -2.0005         0         0         0         0         0 
         0         0   -1.9995         0         0         0         0 
         0         0         0   -1.9999         0         0         0 
         0         0         0         0   -1.0000         0         0 
         0         0         0         0         0   -1.0000         0 
         0         0         0         0         0         0   -1.0000 
 
  
Pt = 
  
0.99877*exp(0*t)+0.17258e-6*exp(-2 *t)+0.371e-7*exp(-1.999*t)+0.536e-7*exp(-
1.999*t)+0.1883e-3*exp(-1*t)+0.9668e-3*exp(-1*t)+0.7148e-4*exp(-1*t),  
 
0.1893e-3*exp(0*t)-0.1038e-6*exp(-2*t)-0.854e-8*exp(-1.999*t)-0.842e-7*exp(-
1.999*t)-0.189e-3*exp(-1*t)-0.991e-7*exp(-1*t)-0.204e-6*exp(-1*t), 
 
0.9685e-3*exp(0*t)-0.142e-6*exp(-2*t)-0.539e-7*exp(-1.999*t)-0.5464e-7*exp(-
1.999*t)+0.467e-6*exp(-1*t)-0.967e-3*exp(-1*t)-0.131e-5*exp(-1*t), 
 
0.1836e-6*exp(0*t)+0.731e-7*exp(-2*t)+0.2529e-7*exp(-1.999*t)+0.852-7*exp(-
1.999*t)-0.1831e-6*exp(-1*t)-0.18363e-6*exp(-1*t)-0.4458e-9*exp(-1*t), 
 
0.6888e-4*exp(0*t)-0.996e-7*exp(-2*t)-0.118e-7*exp(-1.999*t)+0.316e-7*exp(-
1.999*t)+0.2069e-6*exp(-1*t)+0.878e-6*exp(-1*t)-0.6988e-4*exp(-1*t), 
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0.1306e-7*exp(0*t)+0.3081e-7*exp(-2*t)-0.1674e-7*exp(-1.999*t)-0.10382*exp(-
1.999*t)-0.12986e-7*exp(-1*t)+0.1596e-9*exp(-1*t)-0.13261e-7*exp(-1*t), 
 
0.6679e-7*exp(0*t)+0.688e-7*exp(-2*t)+0.2857e-7*exp(-1.999*t)-0.3056e-7*exp(-
1.999*t)+0.2328e-9*exp(-1*t)-0.6593e-7*exp(-1*t)-0.67856e-7*exp(-1*t) 
 
 
 
syms t; 
Q=[-0.0012272 0.0001895 0.0009687;0.9998105 -1.0008 0; 0.9990313 0 -
0.9992899]; 
[V D]=eig(Q); 
P0=[1 0 0]; 
P=P0*V*expm(D*t)*inv(V); 
Pt=vpa(P) 
 
Pt = 
  
0.9988*exp(-.694e-4*t)+0.506e-3*exp(-1*t)+0.651e-3*exp(-1*t), 
 
0.189e-3*exp(-.694e-4*t)+0.1298e-3*exp(-1*t)-0.319e-3*exp(-1*t), 
 
0.968e-3*exp(-.6936e-4*t)-0.636e-3*exp(-1*t)-0.332e-3*exp(-1*t) 
  
 >>  
 
P1=(0.99884288089923034958045305504472/0.0000693577016739370730410638166
14127)+(0.00050612129455726605682202990553425/1.000060912711275173947456
0963572)+(0.00065099780621238538936622010328356/1.0011868295870502976185
889565386) 
 
P1 = 
 
  1.4401e+004 

The results: 
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Figure 6-24: GUI for MTTF Calculation 

MTTF evaluated by Markov model yields 14401 as compared to theoretical 

value of 14234.9. This value has been obtained from failure rate of 7.025x10-5 

per flight hour. This is shown in Figure 6.24. The input is entered on the left 

hand side of the GUI simulation and can be seen in Figure 6-25. The Figure 6-

26 to Figure 6-32 shows the out graph for simulation at different states of the 

Markov Chain. 

 

Figure 6-25: Input entered in GUI for Markov Model Simulation 
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Figure 6-26: Markov Model Simulation at State 1 

 

Figure 6-27: Markov Model Simulation at State 2 
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Figure 6-28: Markov Model Simulation at State 3 

 

 

Figure 6-29: Markov Model Simulation at State 4 
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Figure 6-30: Markov Model Simulation at State 5 

 

Figure 6-31: Markov Model Simulation at State 6 
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Figure 6-32: Markov Model Simulation at State 7 

6.4 Case study using various reliability standards 

Table 6-9 describes the different quality for various reliability standards that can 

be applied to avionics. The highest reliability amongst all four is the MIL-HDBK 

217, which most avionics specification refers to. The highest specification in 

terms of quality has to be for space usage, where faults and failure cannot be 

tolerated. 
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Table 6-9: Heritage-based MTBF for small, medium and large characteristic units 
(Borer et al., 2010) 

Quality Unit size MIL-HDBK 
217 

Relex RiaC Vendor 
DB 

Space Small 183429 183429 183429 183429 

Medium 100000 100000 100000 100000 

Large 52543 52543 52543 52543 

Military Small 18343 50519 146743 141057 

Medium 10000 27542 80000 76900 

Large 5254 14471 42034 40406 

Rugged Small 9171 32741 91715 84561 

Medium 5000 17849 50000 46100 

Large 2627 9379 26272 24222 

Communication Small 4586 14962 36686 42372 

Medium 2500 8157 20000 23100 

Large 1314 4286 10509 12137 
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Figure 6-33: Bar graph generated based on the Table 6-9 

As shown in Figure 6-33, Space category shows the highest MTBF as 

compared to the military and rugged category. This reliability number reflects 

the least expected of failure time of those components or systems. 



 

136 

Table 6-10: Failure rate according to size of EGPWS  

  Items Failure rate (10-6) 

1 Cockpit speakers 2.1 

2 Cockpit lamps 4.455 

3 Discreet switches 6.37 

4 Internal GPS circuit card assembly 10.909 

5 TA/Wx Relay 28 

6 Global positioning system 85.7 

7 Radio altimeter 198.5 

8 Data computer 205 

9 TA display 227.1 

10 Instrument landing system 312 

Table 6-10 contains data of EGPWS failure rate which will be cross synthesised 

with the reliability standards given in Table 6-9. For example, as shown in Table 

6-11, a radio altimeter has a failure rate of 198.5(10-6), and according to the 

reliability standards in Table 6-9, MTBF of 5050.5 falls under the ‘large’ 

category. 

Table 6-11: Failure rate conversion to MTBF and size 

 Failure rate 
(10-6) 

MTBF Component 
Size 

Radio altimeter 198.5 5050.5 large 

Data computer 205 4878 large 

Instrument landing system 312 3205.1 large 

Global positioning system 85.7 11668.6 medium 

Internal GPS circuit card assembly 10.909 91667.4 medium 

Cockpit lamps 4.455 224466.9 small 

Cockpit speakers 2.1 476190.5 small 

Discreet switches  6.37 156985.9 small 

TA/Wx Relay 28 35714.3 medium 

TA display 227.1 4403.3 large 



 

137 

 Failure rate temperature dependent of avionics 6.4.1

Because all electronics are susceptible to temperature changes, failure rate of 

avionics will take effect as well. In a study by Vaziry-Zanjany, failure rate 

increases as junction temperature increases for typical integrated circuit (IC) 

components. 

 

Figure 6-34: Temperature in Celsius versus relative failure rate 

The Figure 6-34 describes the average failure rate demonstrated from a typical 

two extreme groups of avionics components that are highly (graph A) shown in 

Figure 6-35 and poorly (graph B) as shown in Figure 6-36. According to the 

study, at 100 degrees Celsius, the rate of failure is 0.4x106 per hour, for 

component A.  
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Figure 6-35: Based on Graph A (Vaziry-Zanjany, 1996) 

 

Figure 6-36: Based on graph B (Vaziry-Zanjany, 1996) 

Figure 6-37 on the other hand has been averaged based on the two graphs A 

and B. The failure rate determined to relate failure rate and temperature junction 

for avionics equipment follows the following formula: 

λ= 
32 )7exp(5713.600007575.000322.006058.0 junctionjunctionjunction TTT   
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Figure 6-37: Based on Table C-7 (Vaziry-Zanjany, 1996) 

In Figure 6-38, the three graphs are shown on the same window.  

 

Figure 6-38: The three curves shown on one platform for comparison 
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The failure rate however, shows very insignificant values where the failure rates 

were significantly small. With the reliability standards set earlier, failure rates 

were scaled up by a factor of 10 and simulated again for results. It can be seen 

in Figure 6-39 that the values were more realistic and can be used to correlate 

future failure rate-temperature data. 

 

Figure 6-39: The graphs scaled up by a factor of 10 

The graphs of scaled up failure rate and temperature were drawn up with the 

four reliability benchmark of MIL-HDBL, RELEX, RiAC and vendor as shown in 

Figure 6-40 to Figure 6-43. And the correlation of each graphs were also 

calculated.  From observation RiAC was possibly the closest of the three 

reliabilty standards where the curve fitted best.   
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Figure 6-40: The reliability standard of MIL-HDBK with temperature dependent 
graphs 
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Figure 6-41: The reliability standard of RELEX with temperature dependent 
graphs 
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Figure 6-42: The reliability standard of RiAC with temperature dependent graphs 
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Figure 6-43: The reliability standard of Vendor with temperature dependent 
graphs 

 Correlation analysis 6.4.2

From the Table 7-12, it can be concluded that the trend or pattern for correlation 

analysis shows that MIL-HDBK correlates the highest with the EGPWS failure 

rate data. Similarly, the same result shows in Figure 7-47 where the EGPWS 

data has the closest pattern to MIL-HDBK as opposed to the other reliability 

standards shown. 
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Table 6-12: Correlation analysis using Microsoft Excel for all reliability methods 
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Figure 6-44: MTBF reliability standards with EGPWS components 
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One method of assessing the removal pattern of an aircraft is by analysing a 
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An SDR is completed for instances of equipment inoperability. SDRs provide 

information about problems or failures of aircraft components and equipment 

("Automated Trend Monitoring for Service Difficulty Reports", 1998). SDRs are 

completed for each instance of equipment inoperability such as, in-service 

difficulties, malfunctions, and defects. The data collected and the result from the 

analysis will be shown in the tables and graphs. 

A number of Service Difficulty Report submitted to FAA (Federal Aviation 

Administration) under Navigation System (ATA 34) installed in Boeing Aircraft. 

The number of Service Difficulty Report that has been collected is present in the 

table below categorized according to few set of variables. This research 

analysed the trend of avionics equipment that is prone to system fault, which 

includes system malfunction, damaged, unserviceable by using data report from 

SDR database. Service Difficulty Reports (SDR) consist of maintenance 

incidents collected by the FAA for the purpose of tracking repair problems with 

private, commercial and military aircraft and aircraft component. This SDR 

reports data for the analysis which dated back from 1990 to present. They are 

largely self-reported by the aircraft owners. The data is reported by tail number 

and aircraft serial number, so it is possible to trace the maintenance history of 

the particular airplane with this database. 

Table 7.14 shows the number of reports regarding to the number of 

Service Difficulty Report submitted to FAA (Federal Aviation Administration) 

under Navigation (ATA 34) installed in Boeing Aircraft. According to the 

research that has been made, the researcher managed to collect faulty and 

problems data occurred in the equipment.  The reports contain several 

information includes submitter operation, type of aircraft, problem description, 

part or structure causing difficulty and etc. Each of the reports submitted to FAA 

is categorized according to its ATA chapter for ease review. 

Table 6-13: List of Service Difficulty Report for Navigation System (ATA 34) 

 
ATA 

 
Component 

No. of reports   
Percentage  

(%) 737 series 
only 

All Boeing 
Series 

3412  Air Data Computer System 96 285 33.68 
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3417 Altitude Alerting System 1 3 33.33 
3428 Inertial Reference System 41 103 39.81 
3431 VOR/ILS Navigation System 3 10 30 
3441 Weather Radar 300 781 38.41 
3442 GPWS 9 60 15 
3445 TCAS 6 45 13.33 
3448 Radio Altimeter 19 148 12.84 
3453 ATC 7 43 16.28 
3455 DME 5 40 12.5 
3457 ADF 0 14 0 
3458 GPS 7 14 50 

Total 494 1546 31.95 

6.6 Summary  

MTBF and MTBUR are considered key reliability metric or parameter that 

industries in aerospace and defence use. Even EGPWS manufacturers still 

refer to MIL HDBK-217F in their manual for EGPWS. MTBF predicts elapse 

time between what is defined as a failure of system during operation while 

MTBUR finds the average time (flying hours) that a component functions 

without the need of any unplanned removal for repair or maintenance. Although 

it is thought to be appropriate measurement in product reliability it is sometimes 

even a removal is considered non-trivial as removals can be quite rare.  

Table 6-14: Comparison of MTBUR and MTBF values 

 MTBUR MTBF 

Product Specification  7000 hours or better 10000 hours or better 

Calculation (Probability 
of loss of all EGPWS 
functions) top level 
analysis 

N/A 12451.7 hours. 
(Calculated from known 
Pfhr=8.031x10-5 per flight 
hour. 
:. λ=8.031x10-5 hour 

Source 2 (EGPWC) 2202.5 hours 4339.9 hours 

Source 2 (TDU) 4949.5 hours 111142 hours 

Source 3 2617.3 hours 7046.5 hours 
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  CHAPTER 7

 DISCUSSION 7

This chapter reports the findings by revisiting the presented research aim and 

objectives. This methodology aims to find the time to failure in order to provide 

ample time for maintenance personnel to take action before any avionic 

equipment fail. System level in this context means prognostics will be analysed 

at the line replaceable unit (LRU) which is a step higher than component level. 

This research work involves the integration of three research subjects which are 

prognostics methodology, degradation model and time to failure prediction. In 

order to achieve the aim of this research, research objectives were identified.  

7.1 Achievement of research aim and objectives 

The research aims are achieved by: 

 Objective 1 7.1.1

“To analyse the dependency of avionic systems including Line Replaceable 

Units (LRU) and Line Replaceable Modules (LRM) for fault propagation 

behaviour degradation” 

First of all, it can be concluded that the majority of avionics discrepancies are 

unscheduled. As a result, flight status will be affected. Secondly, the number of 

‘Navigation’ category of removal record was among the highest. The field data 

on EGPWS recorded an MTBF value which was roughly 3000 hours lower than 

the published product specification.  
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 Objective 2 7.1.2

“To research and develop methods to predict  the remaining useful life of 

avionics LRUs or LRMs” 

In the case of simulation of the fault tree diagram transformed into Markov 

model in achieving the probability of failure in each state of the fault tree, the 

dependencies among the components in the EGPWS system was established. 

The failure at each level could be seen to be affecting the probability of failure in 

relation to other components in the system. With regards to the results, it has 

been proven that the time to failure estimated by using this method is relatively 

precise whereby the MTTF evaluated by Markov model yields 14401 hours as 

compared to theoretical value of 14234.9 hours. This value of 14234.9 hours 

has been obtained from failure rate of 7.025x10-5 per flight hour. 

 Objective 3 7.1.3

“To research and develop methods to evaluate and predict the degradation 

performances of avionic systems” 

With regards to the reliability standards in avionics, few has been found to be 

showing strong correlation to the EGPWS MTBF scale of reading. After 

correlating the EGPWS data sample obtained from the product specification, 

MIL-HDBK reliability standards shows closest and highest correlation by a 

factor of 0.922. However, using the failure rate versus temperature standards 

which has been up scaled by a factor of 10, the EGPWS MTBF showed better 

correlation with the RIAC and the VENDOR reliability standards.  

One of the reasons being, product specification are to be produced with the 

most rigid quality standards and thus, the EGPWS MTBF value which was 

extracted from a product specification could have been following the stringent 

guidelines. The failure rate versus temperature model on the other hand, could 

have been more realistic although it has been up scaled by a factor of 10, it 

probably has improved as time passed.  
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 Objective 4 7.1.4

“To develop software simulation systems to evaluate methods developed above 

considering aircraft environment and flight conditions in which avionics 

experience”.  

A matlab graphical user interface software has been created for the methods 

developed for the prognostics of avionics. This system is named “System Level 

Airborne Avionic Prognostics”. The two conditions considered were temperature 

and stress of an EGPWS (airborne avionics) system. 
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  CHAPTER 8

 CONCLUSION 8

This chapter aims to conclude this research by summarising the main 

contribution, limitations and present the future research in order to fulfil the aim 

and objectives of this work. It is also in this chapter that the thesis is finalised. 

8.1 Main contribution 

This research has contributed in investigating on prognostics methodology 

specifically for airborne avionics system, considering environmental features of 

temperature and stress as the factors. This study has suggested using different 

methodologies in finding estimated failure time of avionics equipment in helping 

MRO overcome logistic issues. 

In detail, these are the highlights of this study: 

 Critical analysis on different existing approaches suitable for prognostics 

study. This was done by studying trend of failures through component 

removal reported by airlines. Most of the reports had shown that majority 

removals were unscheduled and therefore contributed to major issues 

such as delays and aircraft on grounds. 

 Considered temperature and stress as an environmental factor that 

affects equipment failure. In this issue, the suggested methodology is by 

using the Cox’s regression analysis though the use of GUI software in 

seeing the highest possible contributor towards the failure of a system. 

One other method to predict failure time when field data are available; is 

the Markov Model.  
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 Included variety of reliability standards used in common avionics 

industry. For the study, in relating failure rates and temperature of avionic 

system, reliability standards such as the ML-HDBK, RELEX, RiAC and 

vendor were used as a benchmark.  

 Limitation to study 8.1.1

One main limitation of this study is that failure data is commercially sensitive 

and that limits the availability of data for analysis in this study. Because data is 

scarce, this study was fitted towards the kinds of data that was available. 

Another limitation of this study is that avionic equipment deteriorates at many 

different parts, at different times and into many levels of degradation. So, the 

definition of the exactly where the prognostics are applied can send different 

meaning to readers, It is also worth mentioning that this study focuses on 

system level which has been defined to be the LRU level of avionics. As such, it 

is hardly possible to actually pin point the exact failure time and as the nearest 

to it is probably looking into the probability of failure at an instantaneous period 

of time and probability of failure at different states of time. Other possibilities is 

to venture in examining the failure modes of equipment to look for common 

highest incidences and try to apply the methodologies developed on modules. 

8.2 Future research 

Further research is needed in order to improve on accuracy and precision of 

estimating failure time. This study should also further be developed for use in 

system design process, as a built-in rather than an add-on prognostic for 

avionics. Although real-life case study was used in this research for validation, 

more information is needed on various avionics LRU so proper justification can 

be provided to the airlines and OEM. Proposed changes would be feasible if 

data were more readily available. 

8.3 Research conclusion 

This study has presented on the approach of prognostics best suited for the 

airborne avionics systems. Although only top level solution n airborne avionics 
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system has been the focus of this research, it could provide a general view to 

the maintenance personnel to at least have an idea, when to expect a failure.  

The objectives of this research are met and a methodology to predict failure 

time using field data and product specification were proposed. The research 

has been unable to provide an intensive result of environmental factors which 

could have been impressive due to the limitation of sample data and would 

have required more work and time. 

Overall, it can be concluded that this research has enhanced the possibility of 

improving the avionics maintenance strategy process which plays a major role 

in the airline industry in general, but specifically focusing on MRO industry.
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APPENDIX 1 

GUI For Kaplan Meier  Chart Source Code 
 
function varargout = kaplan_meier(varargin) 
% KAPLAN_MEIER MATLAB code for kaplan_meier.fig 
%      KAPLAN_MEIER, by itself, creates a new KAPLAN_MEIER or raises 
the existing 
%      singleton*. 
% 
%      H = KAPLAN_MEIER returns the handle to a new KAPLAN_MEIER or 
the handle to 
%      the existing singleton*. 
% 
%      KAPLAN_MEIER('CALLBACK',hObject,eventData,handles,...) calls 
the local 
%      function named CALLBACK in KAPLAN_MEIER.M with the given input 
arguments. 
% 
%      KAPLAN_MEIER('Property','Value',...) creates a new KAPLAN_MEIER 
or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before kaplan_meier_OpeningFcn gets called.  
An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to kaplan_meier_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help kaplan_meier 
  
% Last Modified by GUIDE v2.5 27-Jan-2016 17:09:46 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @kaplan_meier_OpeningFcn, ... 
                   'gui_OutputFcn',  @kaplan_meier_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
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else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before kaplan_meier is made visible. 
function kaplan_meier_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to kaplan_meier (see VARARGIN) 
  
% Choose default command line output for kaplan_meier 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes kaplan_meier wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = kaplan_meier_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%ST 
dataQ=get(handles.uitable1, 'data') 
Q = str2double(dataQ) 
%detect empty rows 
empty_rowsQ = all( isnan(Q), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsQ == false, 1, 'last') 
empty_rowsQ(1:last_nonempty) = false 
%remove them 
Q(empty_rowsQ,:) = [] 
empty_columnQ = all( isnan(Q), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnQ == false, 1, 'last') 
empty_columnQ(1:last_nonempty) = false 
%remove them 
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Q(:,empty_columnQ) = [] 
ST= Q' 
  
%number at risk 
dataX=get(handles.uitable2, 'data') 
X = str2double(dataX) 
%detect empty rows 
empty_rowsX = all( isnan(X), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsX == false, 1, 'last') 
empty_rowsX(1:last_nonempty) = false 
%remove them 
X(empty_rowsX,:) = [] 
empty_columnX = all( isnan(X), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnX == false, 1, 'last') 
empty_columnX(1:last_nonempty) = false 
%remove them 
X(:,empty_columnX) = [] 
NumberAtRisk= X' 
  
%number of failure 
dataP=get(handles.uitable3, 'data') 
P = str2double(dataP) 
%detect empty rows 
empty_rowsP = all( isnan(P), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsP == false, 1, 'last') 
empty_rowsP(1:last_nonempty) = false 
%remove them 
P(empty_rowsP,:) = [] 
empty_columnP = all( isnan(P), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnP == false, 1, 'last') 
empty_columnP(1:last_nonempty) = false 
%remove them 
P(:,empty_columnP) = [] 
NumberofFailure= P' 
  
E=1-(NumberofFailure./NumberAtRisk) 
cdf=zeros(1,10)'; 
cdf(1)=E(1) %initialize cdf(1)=E 
  
axes(handles.axes1); 
for i=2:9; 
    cdf(i)=E(i)*cdf(i-1) 
    i=i+1 
end 
stairs(ST,cdf) 
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APPENDIX 2  

GUI For Simple Markov Source Code 

 
function varargout = markov_simple_final(varargin) 
% MARKOV_SIMPLE_FINAL MATLAB code for markov_simple_final.fig 
%      MARKOV_SIMPLE_FINAL, by itself, creates a new 
MARKOV_SIMPLE_FINAL or raises the existing 
%      singleton*. 
% 
%      H = MARKOV_SIMPLE_FINAL returns the handle to a new 
MARKOV_SIMPLE_FINAL or the handle to 
%      the existing singleton*. 
% 
%      MARKOV_SIMPLE_FINAL('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in MARKOV_SIMPLE_FINAL.M with the given 
input arguments. 
% 
%      MARKOV_SIMPLE_FINAL('Property','Value',...) creates a new 
MARKOV_SIMPLE_FINAL or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before markov_simple_final_OpeningFcn gets 
called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to markov_simple_final_OpeningFcn 
via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help 
markov_simple_final 
  
% Last Modified by GUIDE v2.5 25-Jan-2016 20:36:09 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @markov_simple_final_OpeningFcn, 
... 
                   'gui_OutputFcn',  @markov_simple_final_OutputFcn, 
... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
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end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before markov_simple_final is made visible. 
function markov_simple_final_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to markov_simple_final (see 
VARARGIN) 
  
% Choose default command line output for markov_simple_final 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes markov_simple_final wait for user response (see 
UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = markov_simple_final_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
dataX=get(handles.uitable1, 'data') 
X = str2double(dataX) 
%detect empty rows 
empty_rowsX = all( isnan(X), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsX == false, 1, 'last') 
empty_rowsX(1:last_nonempty) = false 
%remove them 
X(empty_rowsX,:) = [] 
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empty_columnX = all( isnan(X), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnX == false, 1, 'last') 
empty_columnX(1:last_nonempty) = false 
%remove them 
X(:,empty_columnX) = [] 
  
dataP=get(handles.uitable2, 'data') 
P = str2double(dataP) 
%detect empty rows 
empty_rowsP = all( isnan(P), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsP == false, 1, 'last') 
empty_rowsP(1:last_nonempty) = false 
%remove them 
P(empty_rowsP,:) = [] 
  
empty_columnP = all( isnan(P), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnP == false, 1, 'last') 
empty_columnP(1:last_nonempty) = false 
%remove them 
P(:,empty_columnP) = [] 
  
Xsteady=[P'-
eye(size(P));ones(1,length(P))]\[zeros(length(P),1);1]%Probability of 
state at maximum limit 
After2steps= X*P 
After3steps= After2steps*P 
  
set(handles.uitable3, 'data', Xsteady); 
set(handles.uitable4, 'data', After2steps); 
set(handles.uitable5, 'data', After3steps); 
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APPENDIX 3 

GUI For Markov with Output Graph Source Code 
 
function varargout = MARKOV_WITH_GRAPH(varargin) 
% MARKOV_WITH_GRAPH MATLAB code for MARKOV_WITH_GRAPH.fig 
%      MARKOV_WITH_GRAPH, by itself, creates a new MARKOV_WITH_GRAPH 
or raises the existing 
%      singleton*. 
% 
%      H = MARKOV_WITH_GRAPH returns the handle to a new 
MARKOV_WITH_GRAPH or the handle to 
%      the existing singleton*. 
% 
%      MARKOV_WITH_GRAPH('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in MARKOV_WITH_GRAPH.M with the given 
input arguments. 
% 
%      MARKOV_WITH_GRAPH('Property','Value',...) creates a new 
MARKOV_WITH_GRAPH or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before MARKOV_WITH_GRAPH_OpeningFcn gets 
called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to MARKOV_WITH_GRAPH_OpeningFcn 
via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help MARKOV_WITH_GRAPH 
  
% Last Modified by GUIDE v2.5 27-Jan-2016 22:22:02 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @MARKOV_WITH_GRAPH_OpeningFcn, 
... 
                   'gui_OutputFcn',  @MARKOV_WITH_GRAPH_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
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    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before MARKOV_WITH_GRAPH is made visible. 
function MARKOV_WITH_GRAPH_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to MARKOV_WITH_GRAPH (see 
VARARGIN) 
  
% Choose default command line output for MARKOV_WITH_GRAPH 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes MARKOV_WITH_GRAPH wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = MARKOV_WITH_GRAPH_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on selection change in listbox1. 
function listbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = cellstr(get(hObject,'String')) returns listbox1 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
listbox1 
  
dataS=get(handles.uitable1, 'data') 
S = str2double(dataS) 
%detect empty rows 
empty_rowsS = all( isnan(S), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsS == false, 1, 'last') 
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empty_rowsS(1:last_nonempty) = false 
%remove them 
S(empty_rowsS,:) = [] 
empty_columnS = all( isnan(S), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnS == false, 1, 'last') 
empty_columnS(1:last_nonempty) = false 
%remove them 
S(:,empty_columnS) = [] 
  
dataQ=get(handles.uitable2, 'data') 
Q = str2double(dataQ) 
%detect empty rows 
empty_rowsQ = all( isnan(Q), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsQ == false, 1, 'last') 
empty_rowsQ(1:last_nonempty) = false 
%remove them 
Q(empty_rowsQ,:) = [] 
empty_columnQ = all( isnan(Q), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnQ == false, 1, 'last') 
empty_columnQ(1:last_nonempty) = false 
%remove them 
Q(:,empty_columnQ) = [] 
  
[V D]=eig(Q) 
syms t; 
  
dataP0=get(handles.uitable3, 'data') 
P0 = str2double(dataP0) 
%detect empty rows 
empty_rowsP0 = all( isnan(P0), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsP0 == false, 1, 'last') 
empty_rowsP0(1:last_nonempty) = false 
%remove them 
P0(empty_rowsP0,:) = [] 
empty_columnP0 = all( isnan(P0), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnP0 == false, 1, 'last') 
empty_columnP0(1:last_nonempty) = false 
%remove them 
P0(:,empty_columnP0) = [] 
  
P=P0*V*expm(D*t)*inv(V); 
Pt=vpa(P) 
N=length(S) 
  
a=get(handles.listbox1, 'Value'); 
if(a==1) 
    axes(handles.axes1); 
    x=1 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 0'); 
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elseif(a==2) 
    axes(handles.axes1); 
    x=2 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 1'); 
elseif(a==3) 
    axes(handles.axes1); 
    x=3 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 2') 
elseif(a==4) 
    axes(handles.axes1); 
    x=4 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 3'); 
elseif(a==5) 
    axes(handles.axes1); 
    x=5 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 4'); 
elseif(a==6) 
    axes(handles.axes1); 
    x=6 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 5'); 
elseif(a==7) 
    axes(handles.axes1); 
    x=7 
    Pt(x) 
    ezplot(Pt(x)); 
    ylabel(['P( ' num2str(S(x)) ')']); 
    xlabel('Time') 
    title('Probabilities of being in states 6'); 
end 
  
% --- Executes during object creation, after setting all properties. 
function listbox1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: listbox controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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APPENDIX 4 

GUI For Mean Time to Failure Source Code 
 
function varargout = MTTF(varargin) 
% MTTF MATLAB code for MTTF.fig 
%      MTTF, by itself, creates a new MTTF or raises the existing 
%      singleton*. 
% 
%      H = MTTF returns the handle to a new MTTF or the handle to 
%      the existing singleton*. 
% 
%      MTTF('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in MTTF.M with the given input 
arguments. 
% 
%      MTTF('Property','Value',...) creates a new MTTF or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before MTTF_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to MTTF_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help MTTF 
  
% Last Modified by GUIDE v2.5 27-Jan-2016 17:39:12 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @MTTF_OpeningFcn, ... 
                   'gui_OutputFcn',  @MTTF_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
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% --- Executes just before MTTF is made visible. 
function MTTF_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to MTTF (see VARARGIN) 
  
% Choose default command line output for MTTF 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes MTTF wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = MTTF_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
dataQ=get(handles.uitable1, 'data') 
Q = str2double(dataQ) 
%detect empty rows 
empty_rowsQ = all( isnan(Q), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsQ == false, 1, 'last') 
empty_rowsQ(1:last_nonempty) = false 
%remove them 
Q(empty_rowsQ,:) = [] 
empty_columnQ = all( isnan(Q), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnQ == false, 1, 'last') 
empty_columnQ(1:last_nonempty) = false 
%remove them 
Q(:,empty_columnQ) = [] 
  
dataP0=get(handles.uitable2, 'data') 
P0 = str2double(dataP0) 
%detect empty rows 
empty_rowsP0 = all( isnan(P0), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsP0 == false, 1, 'last') 
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empty_rowsP0(1:last_nonempty) = false 
%remove them 
P0(empty_rowsP0,:) = [] 
empty_columnP0 = all( isnan(P0), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnP0 == false, 1, 'last') 
empty_columnP0(1:last_nonempty) = false 
%remove them 
P0(:,empty_columnP0) = [] 
  
syms t; 
[V D]=eig(Q); 
P=P0*V*expm(D*t)*inv(V); 
Pt=vpa(P) 
F = int(Pt(1),t,0,Inf) 
mttf=single(F) 
set(handles.result,'String',mttf) 
  
function result_Callback(hObject, eventdata, handles) 
% hObject    handle to result (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of result as text 
%        str2double(get(hObject,'String')) returns contents of result 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function result_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to result (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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APPENDIX 5 

GUI for Constant Pressure Source Code 
 
function varargout = CONSTANT_PRESSURE(varargin) 
% CONSTANT_PRESSURE MATLAB code for CONSTANT_PRESSURE.fig 
%      CONSTANT_PRESSURE, by itself, creates a new CONSTANT_PRESSURE 
or raises the existing 
%      singleton*. 
% 
%      H = CONSTANT_PRESSURE returns the handle to a new 
CONSTANT_PRESSURE or the handle to 
%      the existing singleton*. 
% 
%      CONSTANT_PRESSURE('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in CONSTANT_PRESSURE.M with the given 
input arguments. 
% 
%      CONSTANT_PRESSURE('Property','Value',...) creates a new 
CONSTANT_PRESSURE or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before CONSTANT_PRESSURE_OpeningFcn gets 
called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CONSTANT_PRESSURE_OpeningFcn 
via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help CONSTANT_PRESSURE 
  
% Last Modified by GUIDE v2.5 27-Jan-2016 23:36:12 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @CONSTANT_PRESSURE_OpeningFcn, 
... 
                   'gui_OutputFcn',  @CONSTANT_PRESSURE_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
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    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CONSTANT_PRESSURE is made visible. 
function CONSTANT_PRESSURE_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CONSTANT_PRESSURE (see 
VARARGIN) 
  
% Choose default command line output for CONSTANT_PRESSURE 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes CONSTANT_PRESSURE wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = CONSTANT_PRESSURE_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
dataQ=get(handles.uitable1, 'data') 
Q = str2double(dataQ) 
%detect empty rows 
empty_rowsQ = all( isnan(Q), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsQ == false, 1, 'last') 
empty_rowsQ(1:last_nonempty) = false 
%remove them 
Q(empty_rowsQ,:) = [] 
empty_columnQ = all( isnan(Q), 1 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnQ == false, 1, 'last') 
empty_columnQ(1:last_nonempty) = false 
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%remove them 
Q(:,empty_columnQ) = [] 
%select column 
xdatatemp = Q(:,[1]) 
xdatatemp2 = Q(:,[2]) 
  
[b, log1, H, stats]=coxphfit(xdatatemp2,xdatatemp) 
hazardRatio=char(vpa(exp(b),4)) 
set(handles.edit1,'String',num2str(stats.covb,4)) 
set(handles.edit2,'String',num2str(stats.beta,4)) 
set(handles.edit3,'String',num2str(stats.se,4)) 
set(handles.edit4,'String',num2str(stats.z,4)) 
set(handles.edit5,'String',num2str(stats.p,4)) 
set(handles.edit6,'String',hazardRatio) 
  
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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APPENDIX 6 

GUI for Constant Temperature Source Code 
 
function varargout = CONSTANT_TEMPERATURE(varargin) 
% CONSTANT_TEMPERATURE MATLAB code for CONSTANT_TEMPERATURE.fig 
%      CONSTANT_TEMPERATURE, by itself, creates a new 
CONSTANT_TEMPERATURE or raises the existing 
%      singleton*. 
% 
%      H = CONSTANT_TEMPERATURE returns the handle to a new 
CONSTANT_TEMPERATURE or the handle to 
%      the existing singleton*. 
% 
%      CONSTANT_TEMPERATURE('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in CONSTANT_TEMPERATURE.M with the 
given input arguments. 
% 
%      CONSTANT_TEMPERATURE('Property','Value',...) creates a new 
CONSTANT_TEMPERATURE or raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before CONSTANT_TEMPERATURE_OpeningFcn gets 
called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CONSTANT_TEMPERATURE_OpeningFcn 
via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 
only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help 
CONSTANT_TEMPERATURE 
  
% Last Modified by GUIDE v2.5 27-Jan-2016 23:31:17 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @CONSTANT_TEMPERATURE_OpeningFcn, 
... 
                   'gui_OutputFcn',  @CONSTANT_TEMPERATURE_OutputFcn, 
... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
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if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CONSTANT_TEMPERATURE is made visible. 
function CONSTANT_TEMPERATURE_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CONSTANT_TEMPERATURE (see 
VARARGIN) 
  
% Choose default command line output for CONSTANT_TEMPERATURE 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes CONSTANT_TEMPERATURE wait for user response (see 
UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = CONSTANT_TEMPERATURE_OutputFcn(hObject, 
eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
dataQ=get(handles.uitable1, 'data') 
Q = str2double(dataQ) 
%detect empty rows 
empty_rowsQ = all( isnan(Q), 2 ) 
%but we only want to strip trailing empty rows 
last_nonempty = find(empty_rowsQ == false, 1, 'last') 
empty_rowsQ(1:last_nonempty) = false 
%remove them 
Q(empty_rowsQ,:) = [] 
empty_columnQ = all( isnan(Q), 1 ) 
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%but we only want to strip trailing empty rows 
last_nonempty = find(empty_columnQ == false, 1, 'last') 
empty_columnQ(1:last_nonempty) = false 
%remove them 
Q(:,empty_columnQ) = [] 
%select column 
xdatatemp = Q(:,[1]) 
xdatatemp2 = Q(:,[2]) 
  
[b, log1, H, stats]=coxphfit(xdatatemp2,xdatatemp) 
hazardRatio=char(vpa(exp(b),4)) 
set(handles.edit1,'String',num2str(stats.covb,4)) 
set(handles.edit2,'String',num2str(stats.beta,4)) 
set(handles.edit3,'String',num2str(stats.se,4)) 
set(handles.edit4,'String',num2str(stats.z,4)) 
set(handles.edit5,'String',num2str(stats.p,4)) 
set(handles.edit6,'String',hazardRatio) 
  
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
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function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 


