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Abstract 9 

This paper explores the use of a novel nonlinear parametric modelling technique based on a Volterra Non-linear 10 

Regressive with eXogenous inputs (VNRX) method to quantify the individual, interaction and overall 11 

contributions of six soil properties on crop yield and normalised difference vegetation index (NDVI). The 12 

proposed technique has been applied on high sampling resolution data of soil total nitrogen (TN) in %, total 13 

carbon (TC) in %, potassium (K) in cmol kg-1, pH, phosphorous (P) in mg kg-1 and moisture content (MC) in %, 14 

collected with an on-line visible and near infrared (VIS-NIR) spectroscopy sensor from a 18 ha field in 15 

Bedfordshire, UK over 2013 (wheat) and 2015 (spring barley) cropping seasons. The on-line soil data were first 16 

subjected to a raster analysis to produce a common 5 m by 5 m grid, before they were used as inputs into the 17 

VNRX model, whereas crop yield and NDVI represented system outputs. Results revealed that the largest 18 

contributions commonly observed for both yield and NDVI were from K, P and TC. The highest sum of the 19 

error reduction ratio (SERR) of 48.59% was calculated with the VNRX model for NDVI, which was in line with 20 

the highest correlation coefficient (r) of 0.71 found between measured and predicted NDVI. However, on-line 21 

measured soil properties led to larger contributions to early measured NDVI than to a late measurement in the 22 

growing season. The performance of the VNRX model was better for NDVI than for yield, which was attributed 23 

to the exclusion of the influence of crop diseases, appearing at late growing stages. It was recommended to 24 

adopt the VNRX method for quantifying the contribution of on-line collected soil properties to crop NDVI and 25 

yield. However, it is important for future work to include additional soil properties and to account for other 26 

factors affecting crop growth and yield, to improve the performance of the VNRX model. 27 
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1. Introduction 30 

Increasing crop yields requires the precision management of external farm resources (i.e., 31 

agrochemicals and fertilisers), which will help reduce input costs and detrimental 32 

environmental impacts. Precision management of farm resources requires an understanding 33 

and quantification of factors that limit crop yields, which is a research question yet to be 34 

comprehensively answered. This currently prohibits precision management of farm resources 35 

to be a routine activity. However, precision management of farm resources to correct existing 36 

yield limiting factors require high sampling resolution data of variables impacting crop 37 

growth and yield, which can then be incorporated within an analytical system. To realise this, 38 

robust and reliable sensing platforms for soil and crop are needed. Due to the complexity and 39 

high spatial variability of soils, the application of proximal soil sensors is still under active 40 

research. Kuang et al. (2012) argue that the most favourable methods for on-line 41 

measurement of key soil properties are visible and near infrared (VIS-NIR) spectroscopy and 42 

electrochemical methods. The former is based on diffuse reflectance light collected from a 43 

soil surface subjected to an external light source, whereas the latter uses ion selective 44 

elements to produce a voltage output in a solution in response to the activity of the selected 45 

ion (e.g., hydrogen, nitrate). Whilst VIS-NIR is most appropriate to soil properties have direct 46 

spectral responses in the NIR spectral range, i.e., organic carbon (OC), moisture content 47 

(MC), clay and clay mineralogy (Stenberg et al., 2010), electrochemical methods are capable 48 

of quantifying mobile elements i.e., nutrients, mineral nitrogen, or pH (Adamchuk et al., 49 

1999). Since a soil solution is required for electrochemical sensors, their on-line use is 50 

impeded. Although on-line VIS-NIR spectroscopy sensors are capable of collecting high 51 

sampling resolution data (e.g., >500 samples per ha), they are limited to few research groups 52 

(Christy, 2008; Shibusawa, et al. 2001; Mouazen et al., 2006a). Once key soil properties 53 

needed in the analytical system are successfully collated using an on-line sensor, information 54 
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about crop growth (i.e., normalised difference vegetation index (NDVI) or leaf area index 55 

(LAI)) can be obtained at high sampling resolution by means of earth observation utilising 56 

satellite, airborne, drones or proximal crop sensing platforms. 57 

Previous research has often assumed that the relationship between crop yield and growth 58 

limiting factors is linear or approximately linear, which could be untrue for typically complex 59 

agriculture systems. Mitscherlich (1909) proposed a model that simulates crop response to 60 

growth factors increase. The model assumes that yield potential is constant, and isn’t affected 61 

by other factors that limit actual yields under field conditions; a further assumption that may 62 

be false in complex agricultural systems. To reveal and characterise information hidden 63 

within this complex system, a non-linear modelling approach is required to describe the 64 

dependence among soil properties, NDVI and crop yield. Through these means, yield limiting 65 

soil properties can be quantified. 66 

Nonlinear methods include, among others, non-linear regression analyses and machine 67 

learning. The Nonlinear Auto-Regressive Moving Average Model with eXogenous inputs 68 

(NARMAX) is a parametric modelling method introduced by Billings et al. (1989). It is a 69 

popular class of nonlinear system identification methods for a complex system, which 70 

represents a typical input-output system with an unknown inner structure. Compared to 71 

machine learning methods, an advantage of NARMAX is transparency. This means it can be 72 

written down and easily understood and interpreted, related to known and existing models, as 73 

well as being coupled with frequency domain or statistical analyses. These characteristics are 74 

attractive for studying brain climatic change and agriculture systems that are typical input-75 

output systems with unknown inner structures. A Volterra Nonlinear Regressive with 76 

eXogenous inputs (VNRX) is a special case of NARMAX that has more recently been 77 

introduced. Although VNRX has had successful applications in brain signal analysis 78 

(Sarrigiannis et al., 2014; Zhao et al., 2012), climate change (Bigg et al., 2014; Zhao et al., 79 
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2016) and non-destructive tests (Zhao et al., 2017), its application in agriculture is novel due 80 

to its capability to reveal hidden nonlinear information while other modelling methods cannot. 81 

To our best knowledge no literature about the use of the VNRX model to predict NDVI and 82 

crop yield based on on-line measured soil properties is available. This is important to 83 

investigate, since on-line soil sensors provide high sampling resolution data (>500 sample per 84 

ha), to enable accounting for variability over small spatial scales (e.g., few meters), which 85 

cannot be efficiently achieved using traditional methods of soil sampling and laboratory 86 

analyses that are tedious, time consuming and costly. 87 

This study’s aim is to implement a novel parametric VNRX model to quantify individual, 88 

interaction and collective contribution of six soil properties (i.e., TN, total carbon (TC), 89 

potassium (K), pH, phosphorous (P), and MC) on crop yield and NDVI. Soil data has been 90 

collected at a high sampling resolution with an on-line VIS-NIR spectroscopy sensor. 91 

2. Materials and methods 92 

2.1 Study site and data collection 93 

The study site is located on commercial farmland in Wilstead, Bedfordshire, United Kingdom 94 

at coordinates 52°6’0.00”W latitude and 0°26’42.00”N longitude. The field is approximately 95 

18 ha in area, with an average annual rainfall of 598 mm. The farms crop rotation consists of 96 

barley, wheat and oil seed rape. The representative soil texture across the field to a depth of 97 

0.20 m is non-homogeneous, including three textures of sandy loam, loam and sandy clay 98 

loam in accordance with the United States Department of Agriculture (USDA) texture 99 

classification system (Soil Survey Staff, 1999). Wheat and spring barley were cultivated over 100 

the experiment timescale during the 2013 and 2015 cropping seasons, respectively. Soil 101 

properties, yield and NDVI data were collected using an on-line VIS-NIR spectroscopy 102 

sensor (Mouazen, 2006), on-board yield sensor from the farmer’s combine harvester (New 103 

Holland, CX8070 model), and a Crop Circle sensor (Crop Circle ACS 470, Holland Scientific, 104 
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Lincoln, NE USA), respectively. Wheat NDVI was measured in the booting (growth stage 43) 105 

and heading (growth stage 52) stages, in May and June 2013, respectively. Spring barley 106 

NDVI was measured during the stem extension (growth stage 37) and booting (growth stage 107 

43) stages in April and May 2015, respectively. The growing stages are determined in 108 

accordance with Zadok’s decimal growth scale (Zadoks et al., 1974). 109 

The on-line VIS-NIR soil sensor (Mouazen, 2006b) (Fig. 1) consisted of an AgroSpec mobile, 110 

VIS-NIR spectrophotometer (tec5 Technology for Spectroscopy, Germany), with a 111 

measurement range of 305-2200 nm. It has a differential global positioning system (DGPS) 112 

(EZ-Guide 250, Trimble, USA) to record the position of the on-line measured spectra with 113 

sub-metre accuracy. An optical probe fitted behind a subsoiler collected diffuse reflected 114 

 

Fig. 1.  The tractor mounted on-line visible and near infrared (VIS-NIR) spectroscopy sensor (Mouazen, 

2006b). 
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spectra from the bottom of a smooth soil trench formed by the subsoiler. A 20 W halogen 115 

lamp supplied by a tractor battery illuminated the base of the trench with artificial light. A 116 

semi-rugged laptop was used for data logging and communication to the instrument. 117 

On-line soil measurements were carried out in September 2012 and 2014, following crop 118 

harvest, using the method reported in Mouazen et al. (2005). These measurements will be 119 

referred to as 2013 and 2015 soil measurements, respectively, throughout the manuscript. The 120 

on-line sensor produced measurement transects that were 6 cm wide, 15 cm deep, and were 121 

distanced 15 m apart. The spectral measurements were collected with an average forward 122 

speed of 2 km h-1. Both on-line measurement and collection of soil samples were performed 123 

prior to seed drilling (October in 2012 for wheat and February 2015 for spring barley) and 124 

fertilisation (April to June in 2013 and 2015). Soil property changes during winter between 125 

on-line measurement and next growing season are minimal, except for MC. However, the 126 

spatial distribution of MC in a topographically uniform field like the study site may be 127 

similar to the spatial distribution of clay (Mouazen et al., 2014), suggesting that the general 128 

spatial pattern of MC would not significantly change from year to year. Only nitrogen 129 

fertiliser was homogeneously applied in the 2013 and 2015 cropping seasons, whereas no K 130 

or P fertilisers were applied.  131 

2.2 Laboratory analysis and development of calibration models of soil properties 132 

Ten soil samples per hectare (183 samples per 18 ha field area) based on a 30 by 30 m grid 133 

(Fig. 2) were collected during the on-line measurement in 2012 from the bottom of the 134 

subsoiler trenches. Sampling positions were recorded with a DGPS (Shaddad et al., 2016). 135 

Approximately 700 g representing each soil sample was prepared as a composite of soil 136 

collected over a 1.5 m travel distance at about 0.15 m depth. Soil samples were placed into 137 

tightly sealed plastic bags to hold field moisture, and kept refrigerated at 4 ºC, until  138 
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laboratory  analyses to determine TN, TC, K, pH, P and MC. These analyses were based on 139 

the following procedures: 140 

 TN and TC were determined with CHN 628 elemental analysis by combustion (LECO, 141 

USA) (British Standard Institute, 1995). 142 

 Exchangeable K was determined using an atomic absorption spectrometer (AA 143 

analyst 200 Perkin Elmer Instruments, Shelton, Connecticut, USA). 144 

 pH was measured using a glass electrode in a 1:5 (volume fraction) suspension of soil 145 

in distilled water (British Standard Institute, 1998).  146 

 Extractable P was obtained in sodium hydrogen carbonate solution according to ISO 147 

11263:1994 (Olsen et al., 1954) and was determined by colorimetric approach using 148 

UV-VIS-NIR spectrophotometer (Murphy and Riley, 1962).  149 

 Gravimetric MC was measured with oven drying at 105 ºC for 24 h (British Standards 150 

Institute, 2007). 151 

 

Fig. 2. On-line field survey transects and locations of 183 soil samples (Shaddad et al., 2016). 
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Results of laboratory analyses and spectral measurements were pooled together in one matrix. 152 

The 183 soil samples were randomly split into calibration (70% of samples) and validation 153 

(30%) sets. The calibration set was subjected to partial least squares regression (PLSR) 154 

analysis to establish calibration models for the studied soil properties using Unscrambler 155 

V9.8 software (Camo Software, Norway) (Shaddad et al., 2016). PLSR models were 156 

validated using the 30% validation samples that were not included in the PLSR calibration 157 

stage. Models were then used to predict the six soil properties using the on-line collected soil 158 

spectra in September 2012 and 2014. The accuracy of these models are assessed by means of 159 

the ratio of prediction deviation (RPD), which equals the standard deviation of laboratory 160 

measured values divided by root mean square error of prediction (RMSEP). The following 161 

RPD classes proposed by Viscarra Rossel et al. (2006) were adopted in this study: RPD < 1.0 162 

indicates very poor model predictions and their use is not recommended; an RPD between 1.0 163 

and 1.4 indicates poor model predictions, where only high and low values are distinguishable; 164 

an RPD between 1.4 and 1.8 indicates fair model predictions, which may be used for 165 

assessment and correlation; an RPD between 1.8 and 2.0 indicates good model predictions, 166 

where quantitative predictions are possible; an RPD between 2.0 and 2.5 indicates very good 167 

quantitative model predictions; and an RPD > 2.5 indicates excellent model predictions. 168 

2.3 Data processing 169 

Data processing begun with kriging of the on-line VIS-NIR predicted soil properties and 170 

measured crop NDVI and yield. Kriged data layers were converted into a common 5 m2 raster 171 

grid in ArcGIS (Esri, USA) to aid data fusion (Frogbrook and Oliver, 2007). The 5 m2 raster 172 

grid was converted into a common grid of points that represented the value at the midpoint of 173 

each raster pixel. These steps ensured that all layers consisted of common sets of 5 m2 grid 174 

points, essential for running the VNRX analysis. This method allowed fusion of data from a 175 

diverse range of soil and crop property (e.g., NDVI, Yield, etc.) surveys, measured at 176 
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different resolutions (Khosla et al., 2008). However, it is worth noting that converting data 177 

from 5 m2 raster squares to point locations introduced unavoidable errors to the data’s spatial 178 

distribution. Finally, the different soil and crop layers of 5 m2 grid were subjected to the 179 

VNRX non-linear parametric modelling, which is explained further in the following section. 180 

2.4 Non-linear parametric modelling 181 

The VNRX model, also known as nonlinear finite impulse response (NFIR) model, is used in 182 

this paper to represent a multi-inputs and single-output system. The model can be expressed 183 

as:  184 

  𝑦(𝑘) = 𝑓(𝑢1
[𝑘−1], 𝑢2

[𝑘−1], … , 𝑢𝑅
[𝑘−1]) + 𝜀(𝑘)    (1) 185 

where 𝑘(𝑘 = 1,2, . . ) is a time index, 𝑅 is the number of system inputs, 𝑓 is some unknown 186 

linear or non-linear mapping, which links the system output 𝑦  to the system 187 

inputs 𝑢1, 𝑢2, … , 𝑢𝑅 and 𝜀(𝑘) denotes the model residual. The symbol 𝑢𝑖
[𝑘−1](𝑖 = 1,2, … , 𝑅) 188 

denotes the past information of the input 𝑢𝑖, which can be expanded as: 189 

   𝑢𝑖
[𝑘−1] = ⋃ 𝑢𝑖(𝑘 − 𝑗)𝑛𝑖

𝑗=0       (2) 190 

where 𝑛𝑖 is the maximum temporal lag to be considered for the input 𝑢𝑖.  191 

The Volterra series is a model for nonlinear behaviour that has similarities to the Taylor 192 

series. However, it differs from the Taylor series in its ability to capture 'memory' effects. 193 

The Taylor series can be used to approximate the response of a nonlinear system to given 194 

inputs if the output of this system depends strictly on the inputs at that particular time. In the 195 

Volterra series the output of the nonlinear system depends on the input to the system at all 196 

previous times. This provides the ability to capture the 'memory' effect of devices like 197 

capacitors and inductors (Tashev, 2009). 198 
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A commonly employed model type to specify the function f  in Eq. (1) is a polynomial 199 

function (Chen and Billings, 1989; Wei et al., 2004), which can be expressed as:  200 

        𝑦 = 𝜃0 + ∑ 𝜃𝑚∅𝑚 + 𝜀𝑁
𝑚=1                                                 (3) 201 

where ∅𝑚 is the 𝑚𝑡ℎ model term generated from all input vectors, 𝜃𝑚 is the corresponding 202 

unknown parameters, and 𝑁 is the total number of potential model terms. It is worth noting 203 

that ∅𝑚 is, in general, non-linear. Considering a system with two inputs 𝑢1 and 𝑢2, a second 204 

order polynomial function can be written as: 205 

     𝑦 = 𝜃0 + 𝜃1𝑢1 + 𝜃2𝑢2 + 𝜃3𝑢1
2 + 𝜃4𝑢2

2 + 𝜃5𝑢1𝑢2 + 𝜀                   (4) 206 

The next step is to estimate the parameters 𝜃𝑚(𝑚 = 0,1, … ,5)  based on the 207 

observations {𝑦, 𝑢1, 𝑢2}. The procedure begins by determining the structure, or the important 208 

model terms, using the orthogonal least squares (OLS) estimation procedures. It determines 209 

which dynamics and nonlinear terms should be included in the model by computing the 210 

contribution that each potential model term makes to the variation of the system output. The 211 

model is to be built up term by term in a manner that exposes the significance of each new 212 

term that is added. Once the structure of the model has been determined, the unknown 213 

parameters can be estimated, and the procedure of model validation can ensure the model is 214 

adequate. In this paper, a routine called adaptive-forward-orthogonal least squares (AFOLS) 215 

was employed, not only to determine the model structure, but also to estimate unknown 216 

parameters. The forward model selection scheme adopted consisted of a greedy optimisation 217 

algorithm that progressively includes additional terms into the model, starting from an empty 218 

structure, on the basis of the error reduction ratio (ERR) criterion (Cantelmo and Piroddi, 219 

2010). It is a well-tested strategy for parsimonious modelling of data due to its effectiveness 220 

and merit to reduce ill conditioning and overfitting problems (Zhao et al., 2012). 221 
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The on-line measured soil properties (i.e., pH, MC, TN, P, K and TC) were normalised by 222 

removing the mean of each property, after which they were used as inputs to the VNRX 223 

model, whereas the model output was mean normalised crop yield and NDVI. The analysis 224 

also included the interaction between pairs of soil properties and their contribution to crop 225 

yield and NDVI. The aim was to investigate the contribution of each soil property and their 226 

pairwise interaction on crop NDVI and yield on one hand and to understand how the 227 

contribution varied amongst different cropping seasons on the other hand. To calculate the 228 

contribution of soil properties on yield, the NVRX analysis was carried out once in each 229 

cropping season in 2013 and 2015. However, for NDVI, the NVRX model was run twice per 230 

cropping season (e.g., May and June in 2013, and April and May in 2015). The VNRX 231 

modelling was carried out utilising Microsoft visual studio code written with C++ 232 

programming language. 233 

Finally, the performance of the VNRX model in the prediction of NDVI and yield was 234 

evaluated by means of the of error reduction ratio (ERR) for each selected term calculated 235 

from AFOLS that measures the percentage this term contributes to the system output. Values 236 

of ERR always range between 0% and 100%. A higher ERR represents a greater dependence 237 

between this term and the output. Therefore, it is an important index for indicating the 238 

importance of each term to the output. To calculate the contribution of each input variable to 239 

the output, the sum of ERR values of all selected terms, denoted by 𝑆𝐸𝑅𝑅, and calculated by 240 

  𝑆𝐸𝑅𝑅 = ∑ [𝑒𝑟𝑟]𝑖
𝑁
𝑖=1                                                             (5) 241 

was used to describe the percentage explained by the identified model to the system output, 242 

where 𝑁 denotes the number of the selected terms. If the considered inputs can fully explain 243 

the variation of system output, the value of 𝑆𝐸𝑅𝑅 is equal to 100%. It is an indicator of 244 

model performance and uncertainty. The contribution of the 𝑖𝑡ℎ input variable to the variation 245 
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of the system output, denoted as 𝐸𝑅𝑅𝐶𝑖, is defined as the sum of ERR values of the terms 246 

that include this input variable. Because some selected terms may involve more than one 247 

input variable due to nonlinearity, the sum of 𝐸𝑅𝑅𝐶𝑖 for all input variables can be greater 248 

than 𝑆𝐸𝑅𝑅. To overcome this problem, the value of 𝐸𝑅𝑅𝐶𝑖 is used, which can be written as: 249 

𝐸𝑅𝑅𝐶𝑖 =
∑ ([𝑒𝑟𝑟]𝑗|𝑢𝑖∈∅𝑗)𝑁

𝑗=1

∑ ∑ ([𝑒𝑟𝑟]𝑗|𝑢𝑝∈∅𝑗)𝑁
𝑗=1

𝑟
𝑝=1

×𝑆𝐸𝑅𝑅                                     (6) 250 

The value of 𝐸𝑅𝑅𝐶𝑖 should be always between 0% and 100%. 251 

2.5 Mapping 252 

Similar spatial distributions of measured versus predicted NDVI and yield were evaluated by 253 

comparing the corresponding maps. Maps were produced through interpolation with an 254 

inverse distance weighing (IDW) method, using ArcGIS software (ESRI, USA). The 255 

interpolation grid size of all maps had a radius of 12.5 m and a power of 2. The map cell size 256 

was 2.5 m2 with 254 rows and 282 columns. Similarity between maps was assessed by visual 257 

comparison. In addition, Pearson’s correlation (r) coefficient was calculated between each 258 

pair of data sets used to produce maps. 259 

3. Results and discussion 260 

3.1 Accuracy of on-line measured soil properties 261 

The best independent validation of PLSR calibration models using on-line spectra (Table 1) 262 

is obtained for pH and TN with RPD values of 2.06 (very good prediction) and 1.85 (good 263 

model prediction), and RMSEP values of 0.434 and 0.013 (%), respectively (Shaddad, 2013). 264 

These results are better than those reported by Mouazen et al. (2007). Although both TC and 265 

MC have direct spectral responses in the NIR spectral range, they have not resulted in the 266 

best prediction accuracy in this study (Table 1). RPD values of P, TC and MC are rather 267 

small with values of 1.77, 1.50 and 1.49, respectively, which are classified as fair model 268 
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predictions. The lowest RPD value of 1.31 is calculated for K, indicating poor prediction 269 

accuracy (Viscarra Rossel et al., 2006). 270 

 271 

3.2 Influences of soil properties on yield 272 

Statistics for on-line measured soil properties used as input in the VNRX model are provided 273 

in Table 2. Observed ranges (e.g., minimum and maximum values) are different between 274 

2013 and 2015, which can be attributed to farm practices (e.g., fertilisation) and different 275 

weather conditions affecting soil MC in particular.  276 

 277 

Table 1: Range of on-line measured soil pH, phosphorous (P), total nitrogen (TN), total carbon (TC), moisture 

content (MC) and exchangeable potassium (K) used in the Volterra Nonlinear Regressive with eXogenous 

inputs (VNRX) models.  

Year Range pH P (mg kg-1) TN (%) TC (%) MC (%) K (cmol kg-1) 

2013 Min 5.31 20.33 0.11 1.46 11.98 0.18 

Max 7.83 56.21 0.18 2.40 17.41 0.31 

2015 Min 5.87 26.83 0.05 0.92 4.53 0.22 

Max 6.44 43.34 0.16 1.81 9.79 0.47 

 

 

Table 2: Validation of partial least squares regression (PLSR) models to predict soil pH, phosphorous (P), total 

nitrogen (TN), total carbon (TC), moisture content (MC) and exchangeable potassium (K) using on-line 

collected spectra of the prediction set. 

 
Soil properties 

Statistics pH P (mg kg-1) TN (%) TC (%) MC (%) K (cmol kg-1) 

Sample no 48 23 22 24 45 24 

Min 5.16 4.80 0.11 1.30 13.41 0.12 

Max 8.17 50.00 0.20 2.46 24.28 0.40 

Mean 6.46 22.50 0.15 1.79 18.03 0.23 

SD 0.90 15.23 0.02 0.28 2.16 0.08 

RMSEP* 0.43 8.61 0.01 0.18 1.45 0.06 

R2 0.73 0.69 0.72 0.57 0.56 0.44 

RPD 2.06 1.77 1.85 1.50 1.49 1.31 

Model quality** A B A B B C 

*RMSEP: Root mean square error of prediction; **Model quality is categorized according to Viscarra Rossel et 

al. (2006) (A: residual prediction deviation (RPD)>1.8; B: RPD=1.4–1.8; C: RPD<1.4). 
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Based on Eq. (3), the polynomial model to express the relationship between the six input soil 278 

variables and the output NDVI and yield is of quadratic terms, written as:  279 

𝑦 = 𝜃0 + ∑ 𝜃𝑖𝑢𝑖 + ∑ ∑ 𝜃𝑖𝑗𝑢𝑖𝑢𝑗 + 𝜀6
𝑗=𝑖

6
𝑖=1

6
𝑖=1     (7) 280 

This model includes 28 terms consisting of 7 linear terms {𝜃0, 𝜃𝑖𝑢𝑖|𝑖 = 1,2, … ,6} and 21 281 

nonlinear terms {𝜃𝑖𝑗𝑢𝑖𝑢𝑗|𝑖 = 1,2, … ,6; 𝑗 = 𝑖, 𝑖 + 1, … ,6} . The main reason for selecting 282 

quadratic instead of cubic terms is to balance the number of candidate terms and number of 283 

samples. If cubic terms are considered, there are 84 candidate terms, which require a large 284 

memory and high computational cost to implement the algorithm based on 7187 sampled 285 

points. A model with cubic terms was tested and revealed no significant differences in results, 286 

hence, the quadratic terms’ model was adopted. 287 

Values of ERRC calculated by Eq. (6), explaining the contribution of individual soil 288 

properties to the crop yield in 2013 and 2015 cropping seasons, are shown in Table 3. To 289 

evaluate the change of model uncertainty, the value of 𝑆𝐸𝑅𝑅 needs to be examined. It is 290 

observed that the 𝑆𝐸𝑅𝑅 value in 2013 (21%) was larger than the corresponding value in 2015 291 

(12.51%), which could be attributed to varying weather conditions that exert a big impact on 292 

crop growth and yield (Renouf et al., 2010; Boone et al., 2016), or to errors in the estimation 293 

models (both kriging and PLSR models). Other affecting factors that vary through cropping 294 

seasons are pests, which are similarly associated with different weather conditions, but are 295 

strongly linked to crop variety (Eberhart and Russell, 1966; Paveley et al., 2012). Finally, the 296 

different crops grown throughout the experiment (in 2013 and 2015) represents one of the 297 

major factors that explaining why contribution of soil properties to yield differ through the 298 

two cropping seasons.  299 
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 300 

Observations show that K, P and TC contribute most to wheat yield in 2013, whereas TC and 301 

TN contribute most to spring barley yield in 2015. The largest contributor to wheat yield in 302 

2013 is K (𝐸𝑅𝑅𝐶 = 7.66%) followed by P, which represent key nutrients to crop growth and 303 

development (Baligar et al., 2001). This is the reason why P and K together with nitrogen are 304 

applied annually. However, this is not the case for the spring barley in 2015, at least for K. It 305 

seems that TC retains almost the same contribution to wheat yield in 2013 and spring barley 306 

yield in 2015, which may be explained by nutrient demands varying between crops. For 307 

example, wheat requires about 200 kg N, 55 kg P2O5 and 252 kg K2O/ha (Roy et al., 2006), 308 

whereas the UK national averages are 175 kg, 69 kg and 212 kg ha-1, respectively. 309 

Furthermore, nutrient requirements for the same crop vary between seasons and have to be 310 

checked every 3 to 5 years (Nicholls, 2015). Depending on the cropping system, carbon in the 311 

form of organic fertilisers is frequently added to agriculture fields, as it supports 312 

photosynthesis (Ravikumar, 2013) and improves soil structure and hydraulic conductivity. 313 

Therefore, it is unsurprising to observe that TC is a strong contributor to yield in both study 314 

years. pH was a persistently strong contributing soil property, particularly in 2013. An acidic 315 

or basic soil can prevent nutrient uptake and thus impede plant production (Schubert et al., 316 

Table 3: Calculated individual contribution (ERRC) of normalised on-line soil properties on wheat and spring 

barley yields in 2013 and 2015, respectively. 

 ERRC 

Input 2013 2015 

K (cmol kg-1) 7.66 0.23  

P (mg kg-1) 4.28 1.96  

TC (%) 3.99 3.23 

pH 3.51 1.45 

TN (%) 1.56 4.46 

MC (%) 0.00 1.18 

Total (SERR) 21.00 12.51 

TC is total carbon, TN is total nitrogen, K is exchangeable potassium, P is extractable phosphorous and MC is 

moisture content.  
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1990). Farmer’s guides commonly argue that the optimum pH for soils under continuous 317 

arable cropping (wheat and barley) is between 6 and 7 with 6.5 being optimum. Since the soil 318 

pH range in this study is wider than the optimum range (Table 2), pH is considered to have an 319 

influence on nutrient availability and subsequently yield. Although TN contribution ranks 5th 320 

in 2013, it has the largest contribution to yield in 2015. The narrow variation range over two 321 

sampled years: 2013 (0.05 to 0.16%), and 2015 (0.11 to 0.18%) (Table 2) may explain the 322 

fluctuated 𝐸𝑅𝑅𝐶 value of TN to yield (Table 3). MC has low yield contribution, where the 323 

𝐸𝑅𝑅𝐶 value in 2013 is null. This could be explained by the time difference between MC and 324 

yield measurements. However, this time difference has only a minor influence on the 325 

remaining five soil properties considered in this study, as they are much less dynamic 326 

compared to MC. 327 

3.2 Influences of soil properties on NDVI 328 

Table 4 shows calculated 𝐸𝑅𝑅𝐶 and 𝑆𝐸𝑅𝑅 values for NDVI in 2013 and 2015 based on the 329 

on-line measured soil properties in 2013 and 2015, respectively. 𝑆𝐸𝑅𝑅 values, indicating the 330 

total contribution of soil properties to NDVI (Table 4), are much larger than the 331 

corresponding figures for yield (Table 3). These are 30.92% and 35.42% for May and June 332 

2013, and 48.59% and 11.35% for April and May 2015, respectively. However, 𝑆𝐸𝑅𝑅 value 333 

in May 2015 is notably low (11.35%), which can be attributed to a drought period occurring 334 

mid growing season; where the combination of a dry March and the sunniest April on record 335 

with little rainfall was recorded (UK Meteorological Office). This is because NDVI 336 

measurement took place at the booting growing stage, at which point the crop is particularly 337 

susceptible to drought and certain diseases. Elsewhere, a decrease in growth rate has been 338 

attributed to drought imposed at various growth stages in wheat, among which booting was 339 

listed (Ashraf, 1998). 340 
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341 
Similar to crop yield (Table 3), K (𝐸𝑅𝑅𝐶 = 9.82% and 3.19%) and P (𝐸𝑅𝑅𝐶  = 6% and 342 

12.33%) are the largest contributors to NDVI after TC (𝐸𝑅𝑅𝐶 = 10.25% and 16.46%) in 343 

2013 (Table 4). A similar trend can be observed for NDVI response in 2015, where K, P and 344 

TC are again the largest contributors to NDVI (Table 4), except P in May. It is important to 345 

note that P contribution to NDVI surges in April 2015, with a 𝐸𝑅𝑅𝐶 value of about 6 times 346 

of those of K and TC. Phosphorus is an essential nutrient for both plant structural compounds 347 

and energy conversion (Ozanne et al., 1980). P availability is essential for crop growth during 348 

spring. For example, Grant et al. (2001) reported for a barley crop that during the period from 349 

March to May, 70% of phosphate is taken up. This may explain the surge in P contribution to 350 

NDVI in the April 2015 measurement. pH, MC and TN have low contributions to NDVI in 351 

both years. 352 

3.3 Prediction of NDVI and yield based on on-line measured soil properties  353 

To evaluate the performance of the proposed model for predicting NDVI and yield based on 354 

on-line measured soil properties, the first five terms ranked by 𝐸𝑅𝑅𝐶 were selected, and the 355 

corresponding parameters were estimated, to establish the following model: 356 

Table 4: Calculated individual contribution (ERRC) of normalised on-line measured soil property to normalised 

difference vegetation index (NDVI) of wheat and spring barley in 2013 and 2015, respectively. 

ERRC 

 2013 2015 

Input May June April May 

TC (%) 10.25 16.46 5.86 3.52 

K (cmol kg-1) 9.82 3.19 5.90 4.12 

P (mg kg-1) 6.00 12.33 31.31 0.00 

pH 2.69 0.91 3.21 0.00 

MC (%) 1.71 1.39 2.31 2.83 

TN (%) 0.45 1.14 0.23 0.88 

Total (SERR) 30.92 35.42 48.59 11.35 

TC is total carbon, TN is total nitrogen, K is exchangeable potassium, P is extractable phosphorous and MC is 

moisture content. 
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        𝑦 = 𝜃0 + ∑ 𝜃𝑚∅𝑚
5
𝑚=1                                                 (8) 357 

The input variables used are the normalisation values obtained with mean normalisation. 358 

Table 5 shows the first five (largest contributors) individual and interaction terms to describe 359 

the relationship between on-line measured soil properties and NDVI and yield in 2013 and 360 

2015 cropping seasons. Generally, TC, P, K and MC are the most influential variables on 361 

NDVI in the two experimental years. Among the interaction terms, TC * K appears first in 362 

June 2013 and April 2015 measurements, whereas MC * TC appears first in May 2013 and 363 

2015. Interaction P * K is the second most contributing term to NDVI in June, 2013. Once 364 

again this confirms the high individual and interaction contributions of TC, P and K on crop 365 

NDVI for the two studied cereal crops. 366 

Examining interaction effects of soil properties on yield reveals almost a similar trend to that 367 

of NDVI, where K, P and TC are the most influential individual factors in 2013 only, 368 

whereas no individual influence for K and P can be observed in 2015 (Table 5). However, 369 

MC is not part of the most influential interactive terms anymore, and is instead replaced by 370 

pH. This may be attributed to the drought impact during spring in 2015, according to the UK 371 

Meteorological Office. Both pH * K and TN * P are the most influential interaction terms on 372 

yield in 2013, whereas TN * K and pH * P are the most important interaction terms in 2015. 373 

Although N, P and K are key nutrients for crop growth and yield, pH is important for nutrient 374 

availability to plants (Schubert et al., 1990). 375 

NDVI and yield can now be predicted, by substituting values of on-line measured soil 376 

properties into Eq. (8) using coefficients shown in Table 5. A map showing the spatial 377 

distribution of predicted versus measured NDVI and yield is shown in Fig. 3 and Fig. 4, 378 

respectively.  379 

 380 
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 381 

Observations show that similarities exist between the spatial distributions between each pair 382 

of maps, particularly for NDVI. Interestingly, there is a distinct similarity between NDVI and 383 

yield maps in 2013 (high r values in Table 6) for both measured and predicted maps (Figs. 3  384 

and 4). Conversely, similarities in 2015 for both measured and predicted maps are not clear 385 

(low r values in Table 6). The poor similarities shown in the 2015 cropping season may be 386 

attributed to deterioration in PLSR prediction accuracy for the on-line collected soil data in 387 

2015, since PLSR calibration models were developed on the basis of samples collected in 388 

2013.  This could also explain the drop in the total contribution of soil properties to yield 389 

(SERR = 12.51) and low r (Table 6). Another potential explanation is that external factors not 390 

accounted for in this study (e.g., fungi diseases) have a stronger influence on crop yield in 391 

2015 than in 2013. 392 

Pearson correlation coefficient values shown in Table 6 demonstrate that the prediction 393 

performance for NDVI is more successful than yield in three out of four occasions. This 394 

observation is supported by the fact that SERR values for NDVI are consistently higher than 395 

Table 5: Individual and interaction relationship between on-line measured soil properties and normalised 

difference vegetation index (NDVI) and yield for data collected in 2013 and 2015. The order of the terms was 

ranked by the calculated individual contribution (ERRC) of each soil property. 

Month 

 
 0 1 2 3 4 5 

N
D

V
I 

May-13 ∅𝑚*  constant P TC K K2 TN*MC 

𝜃𝑚** 0.45 -0.003 0.095 0.7 16.45 0.804 

Jun-13 ∅𝑚 constant  TC P TC*K P*K pH*K 

𝜃𝑚 0.488 0.1 -0.002 2.159 -0.036 -0.397 

Apr-15 ∅𝑚 constant  P K*TC MC pH TC 

𝜃𝑚 0.345 0.014 3.798 0.024 -0.162 -0.068 

May-15 ∅𝑚   constant K TC MC MC*TC TN2 

𝜃𝑚 0.485 0.297 -0.069 0.006 -0.032 13.589 

Y
ield

 

2013 ∅𝑚   constant K pH*K TN*P P TC 

𝜃𝑚 6.711 13.712 -21.677 1.902 -0.036 1.226 

2015 ∅𝑚 constant  TN TC TN*K pH2 pH*P 

𝜃𝑚 8.449 35.843 -2.457 -153.7 6.971 -0.279 

*∅𝑚: Model term; **𝜃𝑚: coefficient of the model term 
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the corresponding values for yield (Tables 3 and 4). The highest SERR value of 48.59% is 396 

calculated for NDVI prediction in April 2015 (Table 4), which is in line with the highest r 397 

value of 0.71 calculated between measured and predicted values (Table 6). 398 

 399 

Although r values are larger for NDVI than for yield during the two cropping seasons (Table 400 

6), it is not recommended to rely on only the six on-line measured soil properties to predict 401 

yield. Low r values for yield could be attributed to the exclusion of other factors affecting 402 

yield and encountered at late growing stages such as soil compaction, inter plant competition, 403 

fungal disease and insect pressures (Donald, 1963; Cannell et al., 1980; Coakley, 1988; 404 

Paveley et al., 2012). The latter factors have high spatial variability and can reduce yields by 405 

up to 7 tonne ha-1 (Bravo et al., 2003). Therefore, it is suggested to expand the current work 406 

by accounting for other soil properties and diseases, alongside weather conditions, which is 407 

considered the most influential factor controlling the distribution and severity of fungal 408 

infections (Dammer, 2006). 409 

Table 6: Pearson correlation coefficient (r) values between measured and predicted crop yield and normalised 

difference vegetation index (NDVI), based on Eq. (8) and identified terms and coefficients shown in Table 5. 

The crops were wheat and spring barley in 2013 and 2015, respectively. 

Year Output Correlation coefficient 

2013 Yield  0.48 

2015 Yield 0.38 

2013 NDVI May 0.56 

2013 NDVI June 0.60 

2015 NDVI April 0.71 

2015 NDVI May 0.40 

2013 NDVIm (May) vs Yieldm 0.60 

2013 NDVIp (May) vs Yieldm 0.40 

2013 NDVIp (May) vs Yieldp 0.83 

2015 NDVIm (April) vs Yieldm 0.12 

2015 NDVIp (April) vs Yieldm 0.10 

2015 NDVIp (April) vs Yieldp 0.25 

The significance threshold is 0.062 at 95% confidence level, NDVIm is measured NDVI, NDVIp is predicted 

NDVI, Yieldm is measured yield and Yieldp is predicted yield 
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410 
This study has presented a novel application of nonlinear parametric modelling technique 411 

based on a Volterra Nonlinear Regressive with eXogenous inputs (VNRX) model to study the 412 

influences of six soil properties: total nitrogen (TN), total carbon (TC), moisture content    413 

(MC), potassium (K), phosphorous (P) and pH. Soil properties were collected at high 414 

 

(a) 

 

 (b) 

Fig. 3. Comparison between measured (right) and predicted (left) normalised difference vegetation index 

(NDVI) based on Eq. (8) and corresponding terms and coefficients shown in Table 5 for May 2013 (a) and 

April 2015 (b). 
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sampling resolution with an on-line soil sensor on crop yield and normalised difference 415 

vegetation Index (NDVI). The analysis was carried out in two cropping seasons in 2013 416 

(wheat) and 2015 (spring barley). The results provided for the following conclusions: 417 

 

 (a) 

 

(b) 

Fig. 4. Comparison between measured (right) and predicted (left) crop yield using the model of Eq. (8) 

and corresponding terms and coefficients shown in Table 5 for wheat in 2013 (a), and spring barley in 

2015 (b). 
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1. The performance of the VNRX model in the prediction of yield evaluated with the 418 

error reduction ratio contribution (ERRC) indicated that different soil properties have 419 

different influences on yield. K, P and TC were the highest contributors to wheat yield 420 

and TN, TC and P to spring barley. 421 

2. Sum of error reduction ratio (SERR) showed soil property contributions to NDVI to  422 

be higher than those to yield, with TC, K and P being the most influencing factors. 423 

The highest SERR value of 48.59% was calculated for NDVI, which was in line with 424 

the highest Pearson correlation coefficient (r) of 0.71 calculated between measured 425 

and predicted NDVI. 426 

3. The highest influential interaction terms of soil properties on NDVI were TC * K, and 427 

MC * TC, whereas the most important terms for yield were pH * K and TN * P for 428 

wheat and TC * K and pH * P for spring barley. These contributions may vary among 429 

different fields, crops, weather conditions and soil fertility status. 430 

4. Although VNRX models allowed the prediction of yield and NDVI to a given degree 431 

of success, relatively low correlations between measured and predicted yield 432 

necessitate a need to understand other influencing factors (i.e., weather conditions, 433 

disease and other soil properties), to improve VNRX model predictions. 434 
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