
Attribute Expressions, Policy Tables and
Attribute-Based Access Control

Jason Crampton

Royal Holloway University of London

Egham Hill

Egham, Surrey TW20 0EX

jason.crampton@rhul.ac.uk

Conrad Williams

Royal Holloway University of London

Egham Hill

Egham, Surrey TW20 0EX

conrad.williams.2010@rhul.ac.uk

ABSTRACT
Attribute-based access control (ABAC) has attracted considerable

interest in recent years, prompting the development of the stan-

dardized XML-based language XACML. ABAC policies written in

languages like XACML have a tree-like structure, where leaf nodes

are associated with authorization decisions and non-leaf nodes

are associated with decision-combining algorithms. However, it

may be difficult in XACML to construct a given policy due to the

tree-structured nature of XACML and the way in which combining

algorithms are defined. Furthermore, there is limited control over

how requests are evaluated with respect to targets.

In this paper, we introduce the notion of an attribute expression,

which generalizes the notion of a target, and show how attribute

expressions are used to specify policies in tabular form. We demon-

strate why representing policies in this manner is convenient, in-

tuitive and flexible for policy authors, and provide a method for

automatically compiling policy tables into machine-enforceable

policies. Thus, we bridge the gap between a policy representation

that is convenient for end-users and a policy that can be enforced

by a PDP. We then describe various methods to reduce the size of

policy tables.

In addition, we compare our language with XACML, highlighting

various shortcomings of XACML and demonstrating how to express

XACML policies in a tabular form. We then show how policy tables

can be used as leaf nodes in a tree-structured language, providing a

modular method for constructing enterprise-wide policies. Finally,

we show how attribute expressions and policy tables can be used to

make role-based access control and access control lists “attribute-

aware”.

KEYWORDS
Attribute-based access control; attribute expressions; AEPL; policy

tables; XACML; PTACL

ACM Reference format:
Jason Crampton and Conrad Williams. 2017. Attribute Expressions, Policy

Tables and Attribute-Based Access Control. In Proceedings of SACMAT’17,
June 21–23, 2017, Indianapolis, IN, USA, , 12 pages.
DOI: http://dx.doi.org/10.1145/3078861.3078865

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA
© 2017 ACM. ACM ISBN 978-1-4503-4702-0/17/06. . . $15.00.

DOI: http://dx.doi.org/10.1145/3078861.3078865

1 INTRODUCTION
Access control restricts the interactions that are possible between

users (or programs operating under the control of users) and sensi-

tive resources, and is an essential security service in any multi-user

computing system. The most common means of implementing ac-

cess control is to define an authorization policy, specifying which re-
quests (that is, attempted user-resource interactions) are authorized

and can thus be allowed. In a typical implementation, all requests

are intercepted and evaluated with respect to the policy by trusted

software components, often known as the policy enforcement point
and policy decision point, respectively.

Thus, in general terms, an authorization policy is a function

P : Q → D, where Q is the set of requests and D is the set of autho-

rization decisions. We assume 0 and 1 belong to D, representing
the “deny” and “allow” decisions, respectively. Traditionally, Q was

modeled as a set of triples of the form (s,o,a), where s is a subject, o
is an object, and a is an action: a subject represents an authenticated
entity, an object represents a protected resource, and an action is

the means by which the subject wishes to interact with the object.

In recent years, we have seen the emergence of attribute-based
access control, in part to cater for open, distributed computing en-

vironments where it is not necessarily possible to authenticate all

entities directly. Instead, subjects and objects are associated with

attributes, requests are collections of attributes associated with

the subjects and objects, and these attributes determine whether a

request is authorized or not. Thus we may imagine representing a

policy as a table in which columns are indexed by attributes, rows

represent the presence or otherwise of the respective attribute in a

request, with the final column in the table indicating the authoriza-

tion decision associated with a particular collection of attributes.

A simple example is shown in Figure 1, where 1 indicates the

presence of the attribute in the request and 0 indicates the attribute

is absent; the dash indicates that the presence or otherwise of a

particular attribute is irrelevant to the decision. Thus the first row

of the table indicates that the deny decision (0) should be returned

if attributes a1 and a2 are present in a request. If no row exists for

a particular combination, then we assume that the decision is ⊥

(“not-applicable”); that is, the policy is “silent” for such a request

and does not return a conclusive decision. Thus, for example, the

decision is ⊥ if attribute a1 is not present in the request.

While it is certainly convenient and intuitive to represent au-

thorization policies in tabular form, this representation is not com-

patible with many languages that have been developed for writing

attribute-based authorization policies. XACML [11], PTaCL [6] and

PBel [5], for example, are “tree-structured” languages, where poli-

cies are, essentially, terms in a logic-based formalism. These terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/83926567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

a1 a2 a3 d

1 1 − 0

1 0 1 1

Figure 1: A simple policy table

may be represented by trees, in which leaf nodes are attribute-

decision pairs and interior nodes are attribute-operator pairs.
1

Figure 2 illustrates the policy ((a1,do), ((a2,0), (a3,1))). In this

case, the operator do represents the “deny-overrides” operator. A
request is evaluated by first pruning the nodes that are not matched

by the attributes in the request. Then the decisions in the remaining

leaf nodes are combined using the policy combining operator(s). If,

for example, all attributes are present in a request (so no pruning is

performed), then the resulting decision is 0 do 1 = 0, corresponding

to the first line in Figure 1.

(a2,0) (a3,1)

(a1,do)

Figure 2: A simple tree-structured policy

In fact, the tree in Figure 2 represents an equivalent policy to the

one tabulated in Figure 1, although this is not immediately apparent.

It is this gap – between (i) how one is likely to conceive of a policy,

and (ii) how one must construct the policy using existing languages

for attribute-based access control – that provides the motivation

for the work in this paper.

A further shortcoming of existingwork on languages for attribute-

based access control is the way in which requests and attributes

are matched. Suppose we have an attribute name-value pair (n,v)
and a request that contains multiple name-value pairs, including

(n,v) and (n,v ′), where v ′ , v . Then one might argue the request

matches the attribute (since it contains (n,v)); on the other hand,

one might argue it doesn’t match the attribute (since it also contains

(n,v ′)). XACML always assumes the former interpretation, which

may be inappropriate if, for example, the policy author wishes to

insist that the request contains exactly one name-value pair for

the named attribute. Although PTaCL has a slightly more com-

plex match semantics for requests and attributes, it ignores several

possible match semantics that might be relevant in practice.

In this paper, we use prior work on canonical completeness to

develop a new way of defining authorization policies using policy

tables. In doing so, we support all possible match semantics for

an attribute and request, thereby facilitating much greater control

over policy specification. We then show how such tables can be

automatically compiled into machine-enforceable policies. Thus,

we are able to bridge the gap between a policy representation

that is convenient for end-users and a policy that can be enforced

1
This is something of a simplification, but is a good approximation of how such policies

are structured.

by a PDP. We also demonstrate that policy tables can be used as

the leaf nodes in a tree-structured language, thereby facilitating

the modular construction of enterprise-wide policies. Finally, we

show how such policy tables can be used to enhance existing access

control paradigms, such as access control lists and role-based access

control, by making them “attribute-aware”.

In summary, the main contributions of this paper are:

• the introduction of “attribute expressions” and match se-

mantics for attribute based requests;

• the specification of a new policy authorization language

AEPL, which represents policies as tables and provides

a method for automatically converting policy tables into

machine-enforceable policies;

• an overview of various policy compression methods which

can be applied to AEPL policy tables;

• a method for converting tree-structured XACML policies

into policy tables; and

• a demonstration of the various applications of AEPL, in

enhancing existing paradigms such as access control lists

and role-based access control.

In the following section we provide a brief introduction to canon-

ical completeness for lattice-based logics, along with the specifica-

tion of a 4-valued canonically complete logic [8], which we will use

as the underlying logic for AEPL. In Section 3 we define the syntax

and semantics of attribute expressions, along with a justification

for why they are preferable to the use of traditional targets (found

in XACML [11] and PTaCL [6]). Then, we specify the AEPL lan-

guage, showing how policies are constructed as tables, and describe

a method for automatically converting these tables into machine-

enforceable policies. In Section 4, we investigate various methods

for reducing the size of AEPL policy tables. We then discuss the

limitations of targets in XACML, and demonstrate how an XACML

policy can be converted into a policy table in Section 5. Section 6

discusses methods to build complex policies, enabling distributed

specification and evaluation of policy tables, and ways to integrate

policy tables with role-based access control and access control lists.

We conclude the paper with a summary of our contributions and

suggest ideas for future work.

2 BACKGROUND AND RELATEDWORK
We focus our attention on 4-valued logics (and policy languages),

where the set of decisions D is equal to {0,1,⊥,⊤}, corresponding

to the authorization decisions “deny”, “allow”, “not-applicable” and

“conflict”, respectively [5, 10, 13]. In the context of decisions that

arise from policy evaluation, we interpret 0 as a “deny” decision,

1 as “allow”, ⊥ as “not-applicable” and ⊤ as “conflict”. We assume

D is furnished with a partial ordering ⩽ such that (D,⩽) is a lat-
tice, perhaps the most well-known logic of this kind being Belnap

logic [4].

We begin with a brief introduction of Belnap logic in Section 2.1.

Then, we summarize recent work by Crampton and Williams [8] in

Section 2.2, which extends Jobe’s [9] notions of canonical suitability,

selection operators and canonical completeness to lattice-based

logics, and their applications to attribute-based policy authorization

languages.

Attribute Expressions, Policy Tables and
Attribute-Based Access Control SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

We conclude the related work section with a description of a

lattice-based 4-valued canonically complete logic [8]. (For discus-

sion on the use of a 4-valued decision set and lattice-based logics in

access control the reader is the referred to the literature [5, 10, 13])

2.1 Belnap logic
Belnap logic [4] is one of the most well-known lattice-based logics,

and has been used as the formal basis for authorization languages

such as PBel [5], Rumpole [10] and BelLog [13]. It was developed

with the intention of defining ways to handle inconsistent and in-

complete information in a formal manner and uses the truth values

0, 1, ⊥, and ⊤, representing “false”, “true”, “lack of information” and

“too much information”, respectively. In the remainder of this paper,

we will denote the four valued decision set {⊥,0,1,⊤} by 4.
The set of truth values in Belnap’s logic admits two orderings:

a truth ordering ⩽t and a knowledge ordering ⩽k . In the truth

ordering ⩽t , 0 is the minimum element and 1 is the maximum

element, while ⊥ and ⊤ are incomparable indeterminate values. In

the knowledge ordering ⩽k , ⊥ is the minimum element, ⊤ is the

maximum element while 0 and 1 are incomparable. Both (4,⩽t)
and (4,⩽k) are lattices, forming the interlaced bilattice illustrated

in Figure 3.

t

k

⊥

0 1

⊤

Figure 3: The 4 truth values in Belnap logic

We will assume the use of the knowledge ordering throughout

this paper. The intuition is that ⊥ (“not-applicable”) represents no

conclusive decision is possible because of lack of knowledge, while

0 and 1 are (incomparable) conclusive decisions, and ⊤ corresponds

to too much knowledge because of conflicting conclusive decisions.

2.2 Canonical completeness
We now define canonical suitability, functional completeness, se-

lection operators, normal form and canonical completeness for

lattice-based logics [8].

Let L = (V ,Ops) be a logic associated with a lattice (V ,⩽) of
truth values and a set of logical operators Ops. We omitV and Ops
when no ambiguity can occur. We write Φ(L) to denote the set of

formulae that can be written in the logic L.
We say L is canonically suitable if and only if there exist formu-

lae ϕmax and ϕmin of arity 2 in Φ(L) such that ϕmax (x ,y) returns
sup

{
x ,y
}
and ϕmin (x ,y) returns inf

{
x ,y
}
. If a logic is canonically

suitable, we will write ϕmax (x ,y) and ϕmin (x ,y) using infix binary

operators as x ⋎ y and x ⋏ y, respectively.
A function f : V n → V is completely specified by a truth table

containing n columns andmn
rows. However, not every truth table

can be represented by a formula in a given logic L = (V ,Ops). L is

said to be functionally complete if for every function f : V n → V ,
there is a formula ϕ ∈ Φ(L) of arity n whose evaluation corre-

sponds to the truth table. In this sense, XACML is not functionally

complete [7], while PTaCL [6] and PBel [5] are.

Letv denote the minimum value in (V ,⩽). (Such a value must ex-

ist in a finite lattice.)Wewill write a to denote the tuple (a1, . . . ,an) ∈
V n

when no confusion can occur. Then, for a ∈ V n
, the n-ary selec-

tion operator S ja is defined as follows:

S
j
a (x) =




j if x = a,

v otherwise.

Note S
v
a (x) = v for all a,x ∈ V n

. Illustrative examples of unary

and binary selection operators (for Belnap logic) are shown in

Figure 4.

x S0
0
(x) S⊤

1
(x)

⊥ ⊥ ⊥

0 0 ⊥

1 ⊥ ⊤

⊤ ⊥ ⊥

y

S0
(1,⊤)

(x ,y) ⊥ 0 1 ⊤

x

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ ⊥ ⊥ ⊥

1 ⊥ ⊥ ⊥ 0

⊤ ⊥ ⊥ ⊥ ⊥

Figure 4: Examples of selection operators in Belnap Logic

Selection operators play a central role in the development of

canonically complete logics because an arbitrary function f : V n →

V can be expressed in terms of selection operators. Consider, for

example, the function

f (x ,y) =




⊤ if x = 0, y = 1,

0 if x = y = 0,

1 if x = 1, y = ⊥,

⊥ otherwise.

Then it is easy to confirm that

f (x ,y) ≡ S⊤(0,1) (x ,y) ⋎ S
0

(0,0) (x ,y) ⋎ S
1

(1,⊥) (x ,y).

Moreover, Sc
(a,b) (x ,y) ≡ Sca (x) ⋏S

c
b (y) for any a,b,c,x ,y ∈ V . Thus,

f (x ,y) ≡ (S⊤
0
(x) ⋏ S⊤

1
(y)) ⋎ (S0

0
(x) ⋏ S0

0
(y)) ⋎ (S1

1
(x) ⋏ S1⊥ (y))

In other words, we can express f as the “disjunction” (⋎) of “con-
junctions” (⋏) of unary selection operators.

More generally, given the truth table of function f : V n → V ,
we can write down an equivalent function in terms of selection

operators. Specifically, let

A =
{
a ∈ V n

: f (a) > ⊥
}
;

then, for all x ∈ V n
,

f (x) =
j

a∈A
S
f (x)
a (x).

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

Jobe established a number of results connecting the functional

completeness of a logic with the unary selection operators, summa-

rized in the following theorem.

Theorem 2.1 (Jobe [9, Theorems 1, 2; Lemma 1]). A logic L is
functionally complete if and only if each unary selection operator is
equivalent to some formula in L.

The normal form of formula ϕ in a canonically suitable logic is a

formula ϕ ′ that has the same truth table as ϕ and has the following

properties:

• the only binary operators it contains are ⋎ and ⋏;
• no binary operator is included in the scope of a unary

operator;

• no instance of ⋎ occurs in the scope of the ⋏ operator.

A canonically suitable logic is canonically complete if every unary

selection operator can be expressed in normal form. Crampton

and Williams showed that there are considerable advantages to

using a canonically complete logic as the basis for an authorization

language [7]. In particular, it will often be easier to specify policies

using a language based on a canonically complete logic and such

policies can be compiled automatically into a normal form.

2.3 A 4-valued canonically complete logic
While Belnap logic is known to be functionally complete [3], Cramp-

ton and Williams [8] showed it is not canonically complete, essen-

tially because only one unary operator (negation ¬) is defined.

Crampton and Williams developed a new set of operators based on

the knowledge ordering (4,⩽k), which produced a canonically com-

plete 4-valued logic. For brevity, henceforth we denote the lattice

(4,⩽k) by 4k .
They defined two new unary operators − and ⋄ whose truth

tables are shown in Figure 5a: − swaps the values of ⊥ and ⊤;

⋄ permutes the values ⊥,0,1 and ⊤. In addition, they reused the

operator ⊗ which acts as the meet operation (⋏) for the lattice 4k ,
whose truth table is shown in Figure 5b. We represent this logic

using the notation L(4k , {−,⋄,⊗}).

d −d ⋄d

⊥ ⊤ 0

0 0 1

1 1 ⊤

⊤ ⊥ ⊥

(a) − and ⋄

⊗ ⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 ⊥ 0

1 ⊥ ⊥ 1 1

⊤ ⊥ 0 1 ⊤

(b) ⊗

Figure 5: Canonically complete operators

Crampton and Williams [8] used the logic L(4k , {−,⋄,⊗}) as a
basis for the policy authorization language PTaCL

⩽
4 , highlighting

the numerous advantages that can be gained in using a canonically

complete logic as the underlying logic, opposed to other languages

such as PBel [5] which use the canonically incomplete Belnap logic.

Accordingly, we will use the logic L(4k , {−,⋄,⊗}) as the underlying
logic when we develop our new policy authorization language.

3 THE AEPL LANGUAGE
As we noted in the introduction, an authorization policy may be

represented as a function P : Q → D, whereQ is the set of requests

and D is the set of decisions. In other words, P (q) represents the
result of evaluating policy P for request q, thereby determining

whether q is authorized by policy P .
In attribute-based access control, a request is assumed to be a

set of name-value pairs, where a name is an attribute and a value

is taken from some domain over which the binary relations =, ,,
<, ⩽, > and ⩾ are defined. We assume it is possible to determine

whether a pair of values belongs to a given relation efficiently. In

particular, we assume henceforth that all attribute values are strings

of bounded length defined over some alphabet Σ.
It is usually impossible to specify an attribute-based policy P

by specifying a decision for every possible request, given the size

of the domain of P . Thus, it is usual to specify P in terms of the

relationship between a policy and the attribute name-value pairs

that constitute a request. This relationship is typically expressed

in terms of “targets”, which are predicates specified in terms of

attributes values and whose truth values are determined by com-

paring the attribute values specified in the target with those present

in the request.

3.1 Attribute expressions
Our attribute-expression policy language, AEPL, is based on the

idea of an attribute expression. Informally, the input to P is a tuple

of logical values, and those values are determined by “matching”

a request to a set of attribute expressions. More formally, we de-

fine an attribute expression to be a tuple (n,v,∼,⊕), where n is an

attribute name, v is an attribute value or regular expression, ∼

is an associative, commutative, binary relation, and ⊕ is a binary

operator.

Given a binary relation R defined over some domainV , we write

R to denote the complement of R: that is (a,b) ∈ R iff (a,b) < R.

We will usually write R as an infix relation ∼ and R as ≁. Typical

examples of R and R include = and ,, < and ≮ (that is, ⩾).
In many cases, v will be an attribute value and ∼ will be a com-

parison operator, such as equality or greater-than. However, the

use of regular expressions means that more complex attribute ex-

pressions may be defined. Given a regular expression e (defined

over Σ), let L (e) denote the set of strings that match e . Then we

define ∼e to be the set of pairs {(e,w) : w ∈ L (e)}. Moreover, for

any regular expression e , there exists a regular expression e , the
complement of e , such thatw < L (e) if and only ifw ∈ L (e).

In the interests of clarity of exposition, we will assume hence-

forth that ∼ is always = (corresponding to exact string matching).

Note that this does not affect the generality of our approach: we

only require that it is efficient to determine whether a pair belongs

to the relation ∼.

The operator ⊕ determines the result of evaluating a request in

which some name-value pairs match the attribute expression and

some don’t. (This contrasts with the approach taken in XACML

and PTaCL.) We discuss this in more detail in Section 3.2.

We define three binary operators in Figure 6: ∨ and ∧ are de-

fined on the set {0,1,⊥}; and ! is defined on {0,1,⊥,⊤}. Since ⊕ is

Attribute Expressions, Policy Tables and
Attribute-Based Access Control SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

associative and commutative, the expression

(. . . ((x1 ⊕ x2) ⊕ x3) ⊕ · · · ⊕ xk−1) ⊕ xk)

may be written without ambiguity as

⊕k
i=1 xi .

∧ ⊥ 0 1

⊥ ⊥ 0 1

0 0 0 0

1 1 0 1

∨ ⊥ 0 1

⊥ ⊥ 0 1

0 0 0 1

1 1 1 1

! ⊥ 0 1 ⊤

⊥ ⊥ 0 1 ⊤

0 0 0 ⊤ ⊤

1 1 ⊤ 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

Figure 6: Binary operators for attribute expressions

3.2 Evaluating requests
A request is a set of name-value pairs of the form (n,v). The eval-
uation of a request q = {(n1,v1), . . . , (nℓ ,vℓ)} with respect to an

attribute expression α = (n,v,∼,⊕) is denoted by eval(q,α). Infor-
mally, eval(q,α) is determined by combining the results of evaluat-

ing the elements of the request (ni ,vi) using ⊕. More formally, we

define:

eval(∅, (n,v,∼,⊕)) = ⊥m;

eval(
{
(n′,v ′)

}
, (n,v,∼,⊕)) =




1m if n = n′ and v ∼ v ′,

0m if n = n′ and v ≁ v ′,

⊥m otherwise.

We say a name-value pair (n′,v ′) matches an attribute expression

α if eval(
{
(n′,v ′)

}
,α) = 1m; and we say (n′,v ′) does not match

α if eval(
{
(n′,v ′)

}
,α) = 0m. Throughout this section, we use the

subscript m (for “match”) to denote explicitly logical values that

arise from the evaluation of attribute expressions (request matches).

In Section 3.3, we use the subscript d to denote logical values that

arise from policy evaluation (authorization decisions). When no

ambiguity can occur we will omit the subscripts.

A request q = {(n1,v1), . . . , (nℓ ,vℓ)} may contain two name-

value pairs, one of which matches α = (n,v,∼,⊕) and one which

doesn’t. The choice of operator ⊕ determines how the results of

the matches will be combined. Formally, we have

eval(q, (n,v,∼,⊕)) =
k⊕
i=1

eval({(ni ,vi)} , (n,v,∼,⊕)).

Thus, we have the following possibilities.

• eval(q, (n,v,∼,∨)) = 1m if there exists i such that

eval((ni ,vi), (n,v,∼,∨)) = 1m; in other words, if the re-

quest contains at least one name-value pair that matches

the attribute expression.

• eval(q, (n,v,∼,∧)) = 0m if there exists i such that

eval((ni ,vi), (n,v,∼,∧)) = 0m; in other words, if the re-

quest contains at least one name-value pair that does not

match the attribute expression.

• eval(q, (n,v,∼, !)) = ⊤m, indicating conflict, if there ex-

ist i and j such that eval((ni ,vi), (n,v,∼, !)) = 0m and

eval((nj ,vj), (n,v,∼, !)) = 1m.

It is worth noting that neither XACML nor PTaCL provide this

level of control over how a request is evaluated with respect to a

target (the concept analogous to an attribute expression). Roughly

speaking, target evaluation in both languages only returns 0m or

1m and (effectively) always assumes the use of ∨ when a request

contains attribute values that both match and don’t match a target.

3.3 AEPL policies
A policy in AEPL is a pair P = (A(P),F (P)), where

• A(P) = {α1, . . . ,αℓ } is a set of attribute expressions,
• Di ⊆ {⊥m,0m,1m,⊤m} is the range of values that eval(q,αi)

can take, and

• F : D1 × · · · × Dℓ →
{
⊥
d
,0

d
,1

d
,⊤

d

}
is a function.

Then we define:

P (q) = F (eval(q,α1), . . . ,eval(q,αℓ)).

We will write A and F for A(P) and F (P), respectively,

when P is clear from context. We will also write eval(q,A) for
eval(q,α1), . . . ,eval(q,αℓ) where no confusion can occur.

We may visualize F as a table having ℓ + 1 columns. The first ℓ

columns are indexed by the attribute expressions in A. The entries
in the ith column are the possible values that eval(q,αi) can take.

The final entry in the row with entries d1, . . . ,dℓ is F (d1, . . . ,dℓ).
In other words, policies are defined in the form suggested in the

introduction and illustrated in Figure 1. Thus we specify an AEPL

policy in two steps: define the relevant attribute expressions; and

then define the policy table. Note that a policy is defined directly in

terms of the match relationships that exist between the elements

of a request and the policy’s attribute expressions.

In the remainder of the paper, we use an example of a simple

policy containing two attribute expressions. Let Pex = (Aex,Fex) be
a policy, where

Aex = {α1,α2} = {(n1,v1,=,∧), (n2,v2,=,∧)}

and Fex is defined in Figure 7.

x1 = eval(q,α1) x2 = eval(q,α2) Pex (x1,x2)

⊥m ⊥m ⊥
d

⊥m 0m ⊥
d

⊥m 1m 1
d

0m ⊥m 0
d

0m 0m 0
d

0m 1m 0
d

1m ⊥m 1
d

1m 0m 0
d

1m 1m 1
d

Figure 7: Policy function defined as a table

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

The decisions in the final column of Figure 7 are determined

by the policy author, for each combination of attribute expression

matches. This allows for precise specification of how the policy Pex
should behave under each different attribute expression evaluation

outcome and differs significantly from the evaluation of targets in

XACML and PTaCL. We discuss this in more detail in Section 5.

3.4 Policies in normal form
Crampton and Williams [7] extended work by Jobe [9] to develop

a method for converting arbitrary tables representing functions of

the form F : Dn → D, where D is the set of values in a multi-valued

logic, into an equivalent logical formula using selection operators.

We now show how this method can be applied to AEPL policies to

generate standardized policy representations that can be evaluated

automatically.

We writeD to denote D1 × · · · ×Dℓ . Given (x1, . . . ,xℓ) ∈ D, we

will write xwhere no ambiguity can occur. For each row in the table

representing F , we may construct an equivalent logical formula

comprising a “disjunction” of selection operators. Specifically, if

F (a) = d for a ∈ D, then, we may write this as Sda (x). Let D+ =
{x ∈ D : F (x) , ⊥}. Then

F (x) =
∨

a∈D+
Sda (x) and Sd(a1, ...,aℓ)

(x) ≡
ℓ∧
i=1

Sdai .

Hence F may be represented as a disjunction of conjunctions of

unary selection operators [8].

Consider Fex, and let x1 = eval(q,α1) and x2 = eval(q,α2). Then,
we may express the policy Pex (q) = Fex (x1,x2) as a disjunction of

selection operators:

Fex (x1,x2) ≡ S⊥(⊥,⊥) (x1,x2) ⋎ S
⊥
(⊥,0) (x1,x2) ⋎ S

1

(⊥,1) (x1,x2)

⋎ S0(0,⊥) (x1,x2) ⋎ S
0

(0,0) (x1,x2) ⋎ S
0

(0,1) (x1,x2)

⋎ S1(1,⊥) (x1,x2) ⋎ S
0

(1,0) (x1,x2) ⋎ S
1

(1,1) (x1,x2).

This, in turn, may be represented as a disjunction of conjunctions

of unary selection operators (as described above).

Furthermore, Crampton and Williams have derived expressions

for the unary selection operators in terms of the operators {−,⋄,⊗}
(see Appendix A). Hence, we can derive a formula in normal form

for the policy Pex = (Aex,Fex). Of course, one would not usually

construct the normal form by hand, as we have done above. Indeed,

Crampton and Williams [8] have developed an algorithm which

takes an arbitrary policy expressed as a table as input, and outputs

the equivalent normal form expressed in terms of the operators

{−,⋄,⊗}.

3.5 AEPL policy trees
An AEPL policy is a pair (A,F). While this method of policy spec-

ification provides an intuitive and flexible method for defining

policies, it will not scale to situations where many attribute expres-

sions need to be specified and evaluated. In this case, it makes sense

to use the policy-combining operators found in XACML and other

tree-structured authorization languages to combine the results of

evaluating multiple policies, each using a small number of attribute

expressions. Thus, the set of attribute expressions in each policy

will act in the same way as a target in a language like XACML.

In this section we revise the syntax and semantics for policy

evaluation of the tree-structured ABAC language PTaCL
⩽
4 [8]. We

use the operators −,⋄ and ⊗ from PTaCL
⩽
4 (defined in Section 2.3)

and demonstrate how policies of the form (A,F) can be used in tree-

structured policies, and how we may replace targets with attribute

expressions.

We define an attribute expression based target, or simply an AE-
target, to be a pair (A,T), whereA = {α1, . . . ,αℓ } is a set of attribute
expressions and T ⊆ D1 × · · · × Dℓ , where Di is the set of values

that eval(q,αi) can take. If q is a request andT is an AE-target such

that eval(q,A) ∈ T then q is said to match T .
Given an AEPL policy P = (A,F), then P , ⋄P and −P are AEPL

policy trees, where

(⋄P) (q)
def

= ⋄(P (q)) and (−P) (q)
def

= −(P (q)).

If P1 and P2 are AEPL policy trees and T is an AE-target, then

(T ,P1 ⊗ P2) is a AEPL policy tree, where

(T ,P1 ⊗ P2) (q)
def

=




P1 (q) ⊗ P2 (q) if eval(q,A) ∈ T ,

⊥ otherwise.

The ability to use AEPL policies (A,F) as leaf nodes (atomic

policies) in AEPL policy trees provides us with a number of ad-

vantages (over PTaCL
⩽
4). We get the additional expressive power

of policy specification for leaf nodes, together with the full power

and functional completeness of PTaCL
⩽
4 . By facilitating high-level

operators in addition to specifying policies via a policy table and

attribute expressions, we provide a hybrid means of constructing

policies, which can be both bottom-up and top-down. This provides

a great deal of flexibility and expressivity for policy authors. We

can support low level policies specified by functions, and merge

the policies using high-level policy operators. In addition, we have

greater control of the applicability of policies due to the use of

targets based on attribute expression (over “traditional” targets in

PTaCL
⩽
4). We discuss PTaCL

⩽
4 targets and their limitations in more

depth in Section 5.2.

4 POLICY COMPRESSION
While representing a policy P as a pair (A,F) is more concise and

an easier task than specifying a decision for every possible request,

the policy tables will be large when many attribute expressions

are involved. To tackle this problem, we now investigate methods

for policy compression, with the aim of reducing the size of these

policy tables.

4.1 Removing redundancies
We begin with the following two remarks about methods for merg-

ing and omitting rows from policy tables.

Attribute Expressions, Policy Tables and
Attribute-Based Access Control SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Remark 1. Suppose F (a,x2) = d for all x2 ∈ D2, as illustrated in
the policy table fragment below.

x1 x2 P (x1,x2)

a ⊥ d

a 0 d

a 1 d

a ⊤ d

Then it is easy to show that

Sd(a,⊥) (x1,x2) ⋎ S
d
(a,0) (x1,x2) ⋎ S

d
(a,1) (x1,x2) ⋎ S

d
(a,⊤) (x1,x2)

is equivalent to Sda (x1). (This equivalence is formally established in
Table 14 in Appendix B.) And this may be represented in tabular form
as a single row, shown below, where we use − to signify that x2 can
take any value.

x1 x2 P (x1,x2)

a − d

Remark 2. We may omit any rows from the policy table in which
the final column contains the value ⊥. Recall

Sda (x) =



d if x = a,

⊥ otherwise.

Moreover, (⊥ ⋎ x) = (x ⋎ ⊥) = x for all x ∈ {0,1,⊥,⊤}. Thus

Sd1a1 (x) ⋎ S
d2
a2 (x) ⋎ . . . ⋎ S

dn
an (x) = ⊥,

except when x ∈ {a1, . . . ,an}.

Thus, we may assume the policy returns ⊥ if the table does not

contain an entry for a particular tuple x. In this case, we say the

policy is not applicable for any request q such that eval(q,A) = x.
Returning to our example policy Pex, we apply the results from

the remarks above to reduce the size of the policy table which

defines the function Fex. First, note that

Fex (0,⊥) = Fex (0,0) = Fex (0,1) = 0.

Thus, by Remark 1, we may merge these three rows into a single

row, represented by Fex (0,−) = 0. In addition, by Remark 2, we

may omit the rows Fex (⊥,⊥) and Fex (⊥,0) since they contain ⊥ in

the final column. Hence, we have the reduced policy table shown

in Figure 8.

x1 = eval(q,α1) x2 = eval(q,α2) Pex (x1,x2)

⊥m 1m 1

0m − 0

1m ⊥m 1

1m 0m 0

1m 1m 1

Figure 8: Reduced policy table

Expressing the policy Pex (q) = Fex (x1,x2) as a disjunction of

selection operators, we have

Fex (x1,x2) ≡ S1(⊥,1) (x1,x2) ⋎ S
0

0
(x1) ⋎ S

1

(1,⊥) (x1,x2) ⋎

S0(1,0) (x1,x2) ⋎ S
1

(1,1) (x1,x2).

We may apply Remark 1 directly during policy specification. If,

for example, a policy author decides during the construction of a

policy table that if x1 = 0 then the value of x2 is irrelevant, the
policy should return 0 (the case in our example). In other words, we

can, if desired, directly encode a deny-overrides or allow-overrides

in the policy table when certain attribute expressions are matched

or not matched. And we can allow the policy author to use − as

syntactic sugar for a “decision” in the policy table, thereby saving

the policy author from entering multiple rows (as seen in Figure 7).

4.2 Policies as Boolean functions
We now demonstrate that it is possible to reduce certain policies

to Boolean functions. Specifically, if F (x) ∈ {0,1} for all x ∈ D,

then we can eliminate the values ⊥ and ⊤ from the policy table. In

particular, we may replace an attribute expression α = (n,v,∼,⊕)
with two simpler attribute expressions α1 = (n,v,∼) and α2 =
(n,v,≁). We then encode the semantics of ⊕ directly in a policy

table only containing 0s and 1s.

Consider the example in Table 9. There are four values in the

decision setD = {⊥,0,1,⊤}, and there are four unique combinations

of 0 and 1, represented by the four rows in Table 9b. Each of these

values arises because of matches or the absence of matches, thus

allowing us to encode the semantics of ⊕ directly in a policy table

only containing 0s and 1s.

(n,v,∼, !) F

⊥ 0

0 0

1 1

⊤ 0

(a) Policy containing ⊥ and ⊤

(n,v,∼) (n,v,≁) F

0 0 0

0 1 0

1 0 1

1 1 0

(b) Policy using only 0 and 1

Figure 9: Converting a simple policy into a Boolean function

There are a number of advantages in expressing an attribute

expression α = (n,v,∼,⊕) as a combination of two attribute expres-

sions (n,v,∼) and (n,v,≁) and encoding the semantics of ⊕ directly.

In particular, the resulting policy table contains only binary values.

Hence, we may employ existing techniques for Boolean function

minimization [2].

5 COMPARISONWITH XACML AND PTACL
Having defined the AEPL policy authorization language, we now

provide a brief summary of XACML and compare it with AEPL.

We discuss the limitations of targets in XACML and PTaCL, before

showing how XACML rules and policies may be represented in

AEPL. We conclude by showing how an XACML policy set may be

represented using a single AEPL policy.

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

5.1 XACML targets
AnXACML target, like an attribute expression, is expressed in terms

of attribute name-value pairs. It is used to determine whether a

rule, a policy or a policy set is applicable to a request.

A target is defined in terms of AllOf and AnyOf elements. The

AllOf element is used to group such pairs. Such an element is

“matched” by a request if the request matches each of the name-

value pairs. The AnyOf element is used to group AllOf elements.

Such an element is matched if any one of the AllOf elements is

matched. Evaluation of an XACML target returns one of two values

(“matched” or “not-matched”), unlike the evaluation of an attribute

expression.

Moreover, evaluation of an XACML target disregards whether

a request contains a name-value pair that doesn’t match a target

if it also contains a name-value pair that does match. In other

words, XACML provides less control over target evaluation than

our approach for the evaluation of attribute expressions.

5.2 PTaCL targets
A PTaCL target is defined to be a tuple (n,v, f), where n is an

attribute name, v is an attribute value and f is a binary predicate.

The key difference between PTaCL targets and attribute expressions,

comes in the choice of the binary operator ⊕ present in attribute

expressions. Attribute expressions allow this operator to be selected

from the set {∧,∨, !}, dependent on the way in which conflicting

attribute values should be handled. Targets in PTaCL implicitly

assume that the operator ∨ is always used. This makes it impossible

to distinguish scenarios where there are two name value pairs

(n′,v ′) and (n′′,v ′′) such that n = n′,v = v ′ and n = n′′,v , v ′′.
Furthermore, PTaCL targets, much like XACML targets, are unable

to return ⊤. Hence, our attribute expressions are more expressive,

and provide greater control over their evaluation compared to the

evaluation of targets in PTaCL.

5.3 XACML rules
An XACML rule is specified by a target t and a decision d (known

as the “effect” of the rule in XACML), which may be either “allow”

or “deny”. The evaluation of a rule for a given request returns d
if the request matches the target and “not-applicable” otherwise.

Thus, an XACML rule may be encoded as a particularly simple

policy table. Specifically:

• each AllOf element is encoded as a row in the table, in

which the last entry is always d ; and
• the AnyOf element is encoded by the different rows in the

table.

Clearly, our policy tables can encode more general structures

than XACML rules. Informally, a policy table would have to be

encoded using two XACML rules, one for the rows for which the

decision is 1 and one for the rows for which the decision is 0. Even

so, such an encoding could not, for example, return ⊤. In other

words, AEPL provides a richer framework than the target-decision

paradigm for specifying the “leaf” policies in tree-structured lan-

guages such as XACML or PTaCL.

5.4 XACML policies
We now illustrate how attribute expressions can be used to encode

an entire XACML policy set directly. Consider the tree-structured

policy P illustrated in Figure 10, where dov and pov represent

the XACML deny-overrides and permit-overrides combining al-

gorithms respectively. This policy tree represents a XACML policy

set (t1,dov) which contains one policy (t3,po) one rule (t2,0); and
the policy (t3,pov) in turn contains two rules (t4,1) and (t5,0)

2
. We

assume for simplicity that each target is a single name-attribute

pair. In Section 6.1 we explain how we can extend our method of

specifying a policy as a pair (A,F) to more complex scenarios.

(t5,0)(t4,1)

(t3,pov) (t2,0)

(t1,dov)

Figure 10: A simple tree-structured policy

Then we can represent this policy as the following policy table,

which is created by considering every possible outcome of matching

requests to targets.Wewrite xi to denote eval(q,ti), and− to signify
the value of eval(q,ti) is irrelevant.

x1 x2 x3 x4 x5 P (q)

0 − − − − ⊥

1 1 − − − 0

1 0 0 − − ⊥

1 0 1 1 − 1

1 0 1 0 1 0

1 0 1 0 0 ⊥

Hence, P may be represented by the pair (A,F), where A =
{t1,t2,t3,t4,t5} and F : {0,1}5 → {⊥,0,1} is defined in the table

above. Then

F (x1, . . . ,x5) ≡ S0(1,1) (x1,x2) ⋎ S
1

(1,0,1,1) (x1,x2,x3,x4) ⋎

S0(1,0,1,0,1) (x1,x2,x3,x4,x5).

Note that we need not include the selection operators S⊥
0
(x1),

S⊥
(1,0,0)

(x1,x2,x3) and S⊥
(1,0,1,0,0)

(x1,x2,x3,x4,x5) representing the

first, third and sixth rows, since the policy evaluates to ⊥ in these

rows.

The representation of the policy tree in Figure 10 can be reduced

to a simple policy table, which in turn is reduced into a formula

comprising just three selection operators. By expressing this policy

tree as a policy table, it is much easier for a policy author to un-

derstand how this policy will behave under each different result of

target evaluation. Furthermore, we have a simple formula that can

2
This is a simplification in terms of the structure of XACML policy sets, policies and

rules but approximate enough for the sake of exposition. For explicit definitions the

reader is referred to the XACML standard [11].

Attribute Expressions, Policy Tables and
Attribute-Based Access Control SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

be automatically converted into a machine-enforceable policy and

evaluated by a PDP.

6 APPLICATIONS
We now demonstrate how complex policies can be built, enabling

distributed policy specification and evaluation (much as in XACML

and PTaCL). Furthermore, we explore how policy tables can be

used to enhance existing access control paradigms, such as role-

based access control and access control lists. Informally, in the first

case, we show that a set of attribute expressions in an AEPL policy

table (each of which evaluates to an element in {0,1,⊥,⊤}) may be

replaced with a set of policies. And in the second case, we show

that the policy decisions in an AEPL table can be replaced with a

set of role identifiers or similar.

6.1 Complex policies as tables
By specifying policies as a pair (A,F), we implicitly restrict the

depth of policies (or policy trees) to one. However, this may not

be the way in which some policies are structured in the real world

(indeed, most policy trees in XACML have depth greater than one).

We now develop a method for constructing more complex policies

from simple AEPL policies, using the structure of simple policies as

a template. A complex policy P is a pair ({P1, . . . ,Pℓ } ,F), where
Pi = (Ai ,Fi) is a simple AEPL policy. We define

P (q) = F (P1 (q), . . . ,Pℓ (q)).

Now, instead of the columns of the policy table representing

the function F being indexed by attribute expressions, they are

indexed by policies. Each row represents a possible combination

of the values that may arise from the evaluation of the respective

policies P1, . . . ,Pn . Of course, each of these policies is itself defined

by a set of attribute expressions and function (Ai ,Fi), which will

need to be specified and evaluated first. The policy P, much like

previous policies, can be automatically converted into a machine-

enforceable form via the use of selection operators. Hence, we

have developed a way in which to combine arbitrary policies into

machine-enforceable form. This approach can be easily scaled, pro-

viding the means to construct policies of any desired depth (much

in the same manner as XACML policies).

One of the main advantages in using this method for building

up complex policies, is the distributed nature in which it can be

applied. For instance, in a large organization, each department

could construct their own complex policy, which can be converted

into a tree. Each department’s policy can then become a node in

a bigger tree, and be combined with other policies through the

use of another policy table. A simple example of this is shown in

Figure 11, demonstrating how four individual policies P1,P2,P3 and
P4 produced by each department can be combined in a policy table

to create the overall organizations policy Porg.
This policy table can be specified by someone who understands

the complete policy structure of the organization and can place

adequate restrictions on the interactions of policies between depart-

ments. Constructing policies in this manner allows each department

to design their own specific policy, without the need to worry about

how their policy interacts with other department’s policies. The

P1 P2 P3 P4 Porg

d1 d2 d3 d4 dorg
...

...
...

...
...

Figure 11: Combining policies in another table

combination of policies is then moderated by a person who under-

stands the organization wide policy strategy. We believe this both

simplifies specification of complex corporate policies, and reduces

the likely number of misconfigurations and errors.

In addition to the distributed nature in which policies can be spec-

ified using the approach, policy evaluation may also be distributed.

In the real world it is common practice for multiple PDPs to be

deployed, and this architecture may be leveraged by our method

of specifying complex policies. For instance, imagine the scenario

where a central PDP is in charge of evaluating the organization’s

policy Porg. This central PDP may then delegate the evaluation of

policies P1, . . . ,P4 to other PDPs, and combine the resulting deci-

sions that are reported back by each PDP. There are many reasons

why distributing the evaluation of policies in this way could be

advantageous: (i) the load on the central PDP is reduced, (ii) free

or available PDPs are fully utilised, (iii) the evaluation time for

policies is reduced, and (iv) in some instances requests may even

be evaluated locally.

6.2 ABAC policies for RBAC
In role-based access control (RBAC) [12], we tend to assume that

users are authorized for roles on the basis of identity. With the

emergence of attribute-based access control, we have an alternative

option: authorizing users on the basis of their attributes. Al-Kahtani

and Sandhu [1] created a model for attribute-based user-role assign-

ment, in which an enterprise defines a set of rules that are triggered

to automatically assign roles to users. The motivation for a mech-

anism to do this, is to reduce the number of manual user-to-role

assignments that are required, which can become troublesome in

large environments such as utility companies and popular online

websites [1].

We now demonstrate how we can automatically assign roles

to users using policies in AEPL. Previously, authorization policies

were represented by a function P : Q → D, where Q is the set of

requests and D is the set of decisions. Now, we represent a role

assignment authorization policy by a function P : Q → R, where
Q is the set of requests and R is the set of roles. The function P is

used to determine how users are assigned to roles based on their

attributes. Consider the simple example for an attribute-role table

which assigns roles based on the attribute “age” for the purpose of

filtering age-restricted content, shown in Table 1 [1].

Let P be a policy which comprises of four attribute expressions

α1,α2,α3 and α4 where α1 = (age,3,≥),α2 = (age,11,≥),α3 =
(age,16,≥) and α4 = (age,18,≥)3, with policy function F , defined
in Figure 12.

3
The choice of operator ⊕ is irrelevant in this example, since requests will not contain

two pairs (n,v ′) and (n,v ′′) such that n is age and v ′ , v ′′, hence we omit it.

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

eval(q, (age,3,≥)) eval(q, (age,11,≥)) eval(q, (age,16,≥)) eval(q, (age,18,≥)) Role

1 0 0 0 Child

1 1 0 0 Juvenile

1 1 1 0 Adolescent

1 1 1 1 Adult

Figure 12: Policy table for attribute-based role assignment

Table 1: Age to role assignment

Age Role

≥ 3 Child

≥ 11 Juvenile

≥ 16 Adolescent

≥ 18 Adult

Hence, we have represented the age-to-role assignment as a pol-

icy P = (A,F), which may in turn be represented as a combination

of selection operators and converted into a machine-enforceable

policy. It is easy to imagine how thismethodology could be extended

and applied in a setting where it is useful to automatically assign

roles to users on the basis of attributes rather than identity. Our

approach is scalable, simple for policy authors to understand and

can be applied with various other techniques discussed throughout

this paper such as ways to compress policies and using policies

as leaf nodes in tree-structured languages, to produce a machine-

enforceable policy which assigns roles to users.

6.3 Access control lists
In an access control system using access control lists based on

identifiers, a user is associatedwith one ormore identifiers: a unique

user identifier (UID) and zero or more group identifiers (GIDs). Each

object is associated with an access control list (ACL). Each ACL

may be modelled as a list of access control entries (ACEs), where an

ACE comprises an identifier and a set of authorized actions. Finally,

a request contains a UID and a set of GIDs, an object identifier

(OID) and a requested action. The UID and GIDs in the request

will be compared with those in the ACEs of the object’s ACL and a

decision will be reached based on the actions that are authorized

by the ACEs and those that have been requested.

We may extend this idea of identity-based ACLs to attribute-

based ACLs. Each ACE contains a group identifier, as before, which

represents an attribute-based policy. Then, we represent a group

membership policy as a function P : Q → G, were Q is the set of

requests andG is the set of group identifiers. The policy P specifies

the attributes that a user must have to be regarded as a member of

that group. We may represent this policy using a set of attribute

expressions A and a function F defined as a policy table, in an

identical manner to that illustrated in Section 6.2. Hence, we can

use AEPL to support attribute-based access control in a ACL-based

system.

7 CONCLUDING REMARKS
The development and specification of attribute-based access con-

trol languages such as XACML [11], PTaCL [6] and PBel [5] will

continue to increase to meet the demand for open, distributed, inter-

connected and dynamic systems. While XACML is a standardized

language, constructing some policies may be difficult (and may be

impossible due to the functional incompleteness of XACML [7]),

and there is little support or guidance provided for policy authors.

This problem provides the primary motivation for this paper: the

development of a convenient and intuitive method for authoring

policies, which can be expressed in a form that may be easily eval-

uated by a PDP.

In this paper, we make important contributions to the develop-

ment of ABAC authorization languages. First, we define attribute

expressions, which provide greater control over how requests are

evaluated, compared to XACML [11] and PTaCL [6]. Then, we spec-

ify policies as tables, in which the columns are indexed by attribute

expressions. Defining policies in this manner is both simple and

intuitive, and allows policy authors to specify how a policy will

behave under each different evaluation of attribute expressions. In

XACML and other tree-structured languages, it can be difficult to

foresee how large policies will evaluate under different requests.

This can often lead to policy misconfigurations and errors. In ad-

dition, we demonstrate how policy tables may be automatically

compiled into machine-enforceable policies, and explore various

methods for policy compression, thus reducing the size of policy

tables.

Second, we compare XACML and PTaCL with AEPL, show-

ing that AEPL provides more control over target evaluation than

XACML and PTaCL. Furthermore, we show how an XACML pol-

icy can be converted into a policy table. By representing XACML

policies in a tabular form, it becomes easier for a policy author to

understand how policies will behave under each different result of

target evaluation. Finally, we demonstrate the various applications

of AEPL. We show how complex policies can be constructed as

tables, thus enabling a distributed method for building and evaluat-

ing enterprise-wide policies. We also show how policy tables can

be used in RBAC [12] and ACLs for role and group assignments

respectively, making these paradigms “attribute-aware”.

There is a considerable amount of future work which naturally

proceeds from the work in this paper. We plan to develop policy

authoring software that provides a graphical user interface for pol-

icy authors, allowing them to specify attribute expressions, and

construct a table for the desired policy. This table will then be auto-

matically converted into a machine-enforceable policy. Naturally,

Attribute Expressions, Policy Tables and
Attribute-Based Access Control SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

we hope to develop a modified XACML PDP that can evaluate at-

tribute expressions and the machine-enforceable policies produced

by policy authoring software at a PDP. There is also motivation to

develop a tool which converts a policy expressed as a tree-structured

policy into an equivalent policy table, much like the example in

Section 5.4. This will help facilitate the smooth transition from

XACML tree-structured policies to policies defined as tables. We

would also like to investigate how arbitrary conditions (found in

XACML) may be included in AEPL

We would also like to conduct a usability study to test the hy-

pothesis that the construction of AEPL policy tables is easier and

less error-prone than writing XACML policies. Our vision of this

study requires the participants to construct a policy presented in

natural language, first as a tree-structured XACML policy, and then

as a policy table in AEPL. We may then compare various elements

such as (i) the ease with which the testers could construct each

policy, (ii) whether the XACML and AEPL policy are equivalent,

(iii) the “correctness” of each policy (how close they are to the de-

scribed policy in natural language), and (iv) other metrics such as

the time taken to construct each policy.

REFERENCES
[1] Mohammad A. Al-Kahtani and Ravi S. Sandhu. 2002. AModel for Attribute-Based

User-Role Assignment. In 18th Annual Computer Security Applications Conference
(ACSAC 2002), 9-13 December 2002, Las Vegas, NV, USA. IEEE Computer Society,

353–362. DOI:https://doi.org/10.1109/CSAC.2002.1176307
[2] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E.

Saks. 2006. Minimizing DNF Formulas and AC0 Circuits Given a Truth Table.

In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-
20 July 2006, Prague, Czech Republic. IEEE Computer Society, 237–251. DOI:
https://doi.org/10.1109/CCC.2006.27

[3] Ofer Arieli and Arnon Avron. 1998. The Value of the Four Values. Artif. Intell.
102, 1 (1998), 97–141. DOI:https://doi.org/10.1016/S0004-3702(98)00032-0

[4] Nuel D Belnap Jr. 1977. A useful four-valued logic. In Modern uses of multiple-
valued logic. Springer, 5–37.

[5] Glenn Bruns and Michael Huth. 2011. Access control via Belnap logic: Intuitive,

expressive, and analyzable policy composition. ACM Trans. Inf. Syst. Secur. 14, 1
(2011), 9. DOI:https://doi.org/10.1145/1952982.1952991

[6] Jason Crampton and Charles Morisset. 2012. PTaCL: A Language for Attribute-

Based Access Control in Open Systems. In Principles of Security and Trust - First
International Conference, POST 2012, Proceedings, Pierpaolo Degano and Joshua D.
Guttman (Eds.). Lecture Notes in Computer Science, Vol. 7215. Springer, 390–409.

DOI:https://doi.org/10.1007/978-3-642-28641-4_21
[7] Jason Crampton and Conrad Williams. 2016. On Completeness in Languages for

Attribute-Based Access Control. In Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies, SACMAT 2016, Shanghai, China, June 5-8,
2016, X. Sean Wang, Lujo Bauer, and Florian Kerschbaum (Eds.). ACM, 149–160.

DOI:https://doi.org/10.1145/2914642.2914654
[8] Jason Crampton and Conrad Williams. 2017. Canonical Completeness in Lattice-

Based Languages for Attribute-BasedAccess Control. CoRR abs/1702.04173 (2017).
http://arxiv.org/abs/1702.04173 To appear in the Proceedings of CODASPY 2017;

pre-print available at http://arxiv.org/abs/1702.04173.

[9] William H. Jobe. 1962. Functional Completeness and Canonical Forms in Many-

Valued Logics. J. Symb. Log. 27, 4 (1962), 409–422. DOI:https://doi.org/10.2307/
2964548

[10] Srdjan Marinovic, Naranker Dulay, and Morris Sloman. 2014. Rumpole: An

Introspective Break-Glass Access Control Language. ACM Trans. Inf. Syst. Secur.
17, 1 (2014), 2:1–2:32.

[11] Erik Rissanen. 2012. eXtensible Access Control Markup Language (XACML)

Version 3.0 OASIS Standard. (2012). http://docs.oasis-open.org/xacml/3.0/

xacml-3.0-core-os-en.html.

[12] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. 1996.

Role-Based Access Control Models. IEEE Computer 29, 2 (1996), 38–47. DOI:
https://doi.org/10.1109/2.485845

[13] Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and David A. Basin.

2014. Decentralized Composite Access Control. In POST (Lecture Notes in Com-
puter Science), Vol. 8414. Springer, 245–264.

A UNARY SELECTION OPERATOR
ENCODINGS

Figure 13 shows the normal forms of the unary selection operators

Sba . Note that S
⊥
a (x) = ⊥ for all a,x ∈ {0,1,⊥,⊤}.

S⊥a (x) x ⋏ (⋄−x) ⋏ (⋄−⋄−x)

S0⊥ (x) ⋄(x) ⋏ (−⋄−⋄−x) ⋏ (−⋄−⋄x)

S0
0
(x) x ⋏ (−x) ⋏ (−⋄−x)

S0
1
(x) (⋄−⋄−x) ⋏ (−⋄−⋄−x) ⋏ (⋄x)

S0⊤ (x) (⋄−x) ⋏ (−⋄−x) ⋏ (⋄⋄−⋄x)

S1⊥ (x) (⋄−⋄x) ⋏ (−⋄−⋄x) ⋏ (⋄⋄x)

S1
0
(x) (⋄x) ⋏ (−⋄x) ⋏ (⋄−x)

S1
1
(x) x ⋏ (−x) ⋏ (⋄⋄−⋄x)

S1⊤ (x) (⋄−⋄−x) ⋏ (−⋄−⋄−x) ⋏ (⋄⋄−x)

S⊤⊥ (x) (−⋄−x) ⋏ (−⋄−⋄−x) ⋏ (−x)

S⊤
0
(x) (⋄−⋄−x) ⋏ (⋄−⋄x) ⋏ (⋄⋄x)

S⊤
1
(x) (⋄x) ⋏ (⋄−x) ⋏ (⋄−⋄⋄−⋄x)

S⊤⊤ (x) x ⋏ (−⋄x) ⋏ (−⋄−⋄x)

Figure 13: Normal forms for the unary selection operators

B EQUIVALENCE OF SELECTION
OPERATORS

Figure 14 establishes the following equivalence of Sda (x1) and

Sd(a,⊥) (x1,x2) ⋎ S
d
(a,0) (x1,x2) ⋎ S

d
(a,1) (x1,x2) ⋎ S

d
(a,⊤) (x1,x2).

https://doi.org/10.1109/CSAC.2002.1176307
https://doi.org/10.1109/CCC.2006.27
https://doi.org/10.1016/S0004-3702(98)00032-0
https://doi.org/10.1145/1952982.1952991
https://doi.org/10.1007/978-3-642-28641-4_21
https://doi.org/10.1145/2914642.2914654
http://arxiv.org/abs/1702.04173
http://arxiv.org/abs/1702.04173
https://doi.org/10.2307/2964548
https://doi.org/10.2307/2964548
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-os-en.html
https://doi.org/10.1109/2.485845

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA Jason Crampton and Conrad Williams

x1 x2 Sd
(a,⊥) (x1,x2) Sd

(a,0) (x1,x2) Sd
(a,1) (x1,x2) Sd

(a,⊤) (x1,x2) Sda (x1)

a ⊥ d ⊥ ⊥ ⊥ d

a 0 ⊥ d ⊥ ⊥ d

a 1 ⊥ ⊥ d ⊥ d

a ⊤ ⊥ ⊥ ⊥ d d

Figure 14: Equivalence of selection operators

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Belnap logic
	2.2 Canonical completeness
	2.3 A 4-valued canonically complete logic

	3 The AEPL Language
	3.1 Attribute expressions
	3.2 Evaluating requests
	3.3 AEPL policies
	3.4 Policies in normal form
	3.5 AEPL policy trees

	4 Policy Compression
	4.1 Removing redundancies
	4.2 Policies as Boolean functions

	5 Comparison with XACML and PTaCL
	5.1 XACML targets
	5.2 PTaCL targets
	5.3 XACML rules
	5.4 XACML policies

	6 Applications
	6.1 Complex policies as tables
	6.2 ABAC policies for RBAC
	6.3 Access control lists

	7 Concluding Remarks
	References
	A Unary selection operator encodings
	B Equivalence of selection operators

