
46

Evolution of Attacks, Threat Models and Solutions for Virtualized
Systems

Daniele Sgandurra, Imperial College London
Emil Lupu, Imperial College London

Virtualization technology enables Cloud providers to efficiently use their computing services and resources.
Even if the benefits in terms of performance, maintenance, and cost are evident, virtualization has also been
exploited by attackers to devise new ways to compromise a system. To address these problems, research
security solutions have considerably evolved over the years to cope with new attacks and threat models. In
this work we review the protection strategies proposed in the literature and show how some of the solutions
have been invalidated by new attacks, or threat models, that were previously not considered. The goal is to
show the evolution of the threats, and of the related security and trust assumptions, in virtualized systems
which have given rise to complex threat models and the corresponding sophistication of protection strategies
to deal with such attacks. We also categorize threat models, security and trust assumptions, and attacks
against a virtualized system at the different layers, in particular hardware, virtualization, OS, application.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection - Unauthorized access

General Terms: Security, Algorithms, Measurement

Additional Key Words and Phrases: Virtualization, Threat Models, Cloud Computing, Integrity Attacks

1. INTRODUCTION
Virtualization increases the efficient use of computing services and resources in terms
of their performance, maintenance, and cost, by enabling multiple environments, such
as operating systems (OSes), to share the same physical resources. While its advan-
tages are well documented [Creasy 1981] [Uhlig et al. 2005a] [Rosenblum 2004], virtu-
alization also gives rise to several security concerns [Sahoo et al. 2010] [Garfinkel and
Rosenblum 2005] [Pearce et al. 2013]. Some of these concerns are not entirely novel,
whereas others, such as multi-tenancy or high-privileges of the hypervisor, are specific
to virtualization and require novel solutions [Azab et al. 2010], [Szefer et al. 2011],
[Zhang et al. 2011a], [Butt et al. 2012], [Xia et al. 2013], [Wu et al. 2013], [Hofmann
et al. 2013].

Addressing security concerns in virtualized system requires a careful consideration
of the threats; however, when the virtualized environment is “outsourced to the Cloud”,
i.e., run by an external provider, the trust placed in that provider (trust assumptions)
also needs to be examined [Butt et al. 2012] [Szefer et al. 2011] [Li et al. 2013] [Santos
et al. 2012]. It is important to realize that such trust assumptions, as well as other

This work is supported by FP7 EU-funded project Coco Cloud under grant No. 610853 and EPSRC Project
CIPART, grant no. EP/L022729/1.
Author’s addresses: D. Sgandurra and E. C. Lupu, Computer Science Department, Imperial College London,
Department of Computing, Huxley Building 180 Queen’s Gate, South Kensington Campus, London SW7.
2AZ, UK; emails: {d.sgandurra, e.c.lupu}@imperial.ac.uk
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/01-ART46 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

46:2 D. Sgandurra et al.

security assumptions, are not fixed, but change in time owing to changes in the tech-
nology, the discovery of new vulnerabilities amongst others. Threat models for virtu-
alized systems have considerably evolved over the years, and, therefore, research so-
lutions have also become increasingly sophisticated to cope with them [Garfinkel and
Rosenblum 2003], [Bryan D. Payne and Martim Carbone and Wenke Lee 2007], [Jiang
et al. 2007]. For example, early studies assumed the hypervisor of a remote host to be
trusted, and used this assumption to build a trusted chain of enforcement [Keller et al.
2010], [Hofmann et al. 2011], [Azab et al. 2009], [Xiong et al. 2011]. More recent stud-
ies consider this assumption to be too strong [Wu et al. 2013] [Xia et al. 2013] [Ding
et al. 2013a], especially in light of new attacks against the hypervisor that have since
been discovered [Wang and Jiang 2010], [Ding et al. 2013a] and the correspondingly
updated threat models.

Figure 1 shows the evolution of the threat models and of the security goals as a
function of the attacks discovered and the threat assumptions. We can see that over
the years threat models have evolved, from considering only attacks on the tenant OS,
such as control-flow attacks [Abadi et al. 2005; Petroni and Hicks 2007], to lower-level
attacks on the hypervisor, such as virtualization-based rootkits [King and Chen 2006],
[Dai Zovi 2006], [Rafal Wojtczuk 2008], or cross virtual machines attacks [Kortchinsky
2009], [Xu et al. 2011]. As a consequence, the trust assumptions have also changed
by reducing the size of the trusted computing base (TCB). To address new threats,
with weaker assumptions, research solutions have also evolved, by firstly proposing
protection models that assume a trusted monitoring application, then a trusted kernel,
to solutions adding the enforcement into an administrative virtual machine. They then
have further evolved by proposing solutions where only the hypervisor is trusted to,
finally, solutions that protect the (untrusted) hypervisor from lower-levels. In parallel,
technologies for root-of-trust have evolved to cope with these new protection needs.

Fig. 1. Evolution of Threat Models and Corresponding Solutions Over Time

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:3

This survey arises from the observation that many publications in this area have be-
come narrower in focus and often rely on implicit, and different, assumptions. Threat
models are often presented in different ways making it difficult to evaluate the efficacy
of solutions: which threats do they address? and under which assumptions? Moreover,
to the best of our knowledge, the evolution of threat models, attacks and research so-
lutions for virtualized systems is not presented in the existing literature. Hence, in
this survey, we categorize threat models, security and trust assumptions, and attacks
against a virtualized system at the different layers: hardware, hypervisor, virtualiza-
tion, OS, and application. We review protection strategies proposed in the literature
and show why some of the solutions have been invalidated by new attacks, or by threat
models previously not considered. We focus in particular on attacks and security solu-
tions of the compute virtualization area, and do not cover all possible attacks against
network and storage virtualization, as well as overall virtualization infrastructure se-
curity. We also aim to provide a first guide towards presenting in one uniform frame-
work the threat models (security and trust assumptions), the security properties (goals
and TCB) and implementation strategies (methodology and features) for the proposed
solutions, in the hope that future papers can use a standard approach to define their
assumptions and goals. Other recent surveys cover related topics and, thus, sometimes
refer to the same literature, in particular:

. [Ryan 2013] surveys four generic solutions for Cloud security, i.e., homomorphic
encryption, key translation, hardware-anchored security and CryptDB; it also out-
lines the weaknesses of each approach and discusses their applicability in real sce-
narios; these solutions are orthogonal to the ones discussed in this paper.
. [Bouchenak et al. 2013] survey existing studies towards verifying that Cloud-
based services behave as expected. Their work focuses on verifying the identity
of the service and of the nodes the service runs on, on verifying the functional
correctness of a service with respect to service level agreements parameters (e.g.,
performance and dependability) and on the compliance of the service with secu-
rity requirements as specified by a security policy. In contrast, we focus here on
virtualization-based solutions to protect the integrity of software running on Cloud.
. [Xiao and Xiao 2013] survey studies on Cloud security and privacy, by clustering
problems and solutions in five areas: Cloud confidentiality, Cloud integrity, Cloud
availability, Cloud accountability and Cloud privacy. In this survey we also consider
the evolution of threat models, the taxonomy of attacks and protection solutions,
with more emphasis on integrity and confidentiality rather than availability and
accountability.
. [Pearce et al. 2013] focus on threats and solutions in virtualized scenarios.
Amongst the related work, this paper is probably closest to ours. However, in con-
trast with this work, we provide a taxonomy of attacks and solutions by considering
the level at which they apply and, furthermore, we discuss the threat models and
their evolution, and the different TCB presented in the papers. Finally, we also con-
sider attestation techniques for virtualized environments and provide a first guide
towards a uniform framework for presenting threat models and protection solutions.
. [Pék et al. 2013] focus on low-level attacks on the virtualization layers and other
issues introduced by such layer. We also consider higher-level issues and we discuss
in detail existing solutions to cope with these attacks.

This paper is organized as follows. In Sect. 2 we introduce some key concepts of vir-
tualization and Cloud computing. In Sect. 3 we present a taxonomy of attacks that
exploit virtualization. In Sect. 4 we survey and categorize research solutions aimed at
protecting virtualized environments. In Sect. 5 we discuss the threat models on virtu-
alization resources at different levels, i.e., hardware, virtualization and Cloud. We also

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:4 D. Sgandurra et al.

propose a methodology to define, categorize and evaluate the security solutions under
a common framework. In Sect. 6 we analyze the results of this survey by showing the
trend of the protection solutions. In particular, we show that usually solutions only
consider a specific threat model and, for this reason, they are highly sensitive to vari-
ations to that model, e.g. if an assumption is removed, or a new threat is considered,
the solution is no longer valid. Finally, in Sect. 7 we conclude the paper.

2. BASICS OF VIRTUALIZATION
We start by recalling some of the key concepts of virtualization. Virtualization enables
the software emulation of the physical properties of a physical computer, which is en-
capsulated in a Virtual Machine (VM) that can be used and managed independently
from other VMs. This allows the resources of a physical computer, including proces-
sor, memory, storage and I/O channels, to be shared between several concurrent VMs,
while preserving isolation. In turn, this allows for a more efficient use of the physical
resources and the on-demand allocation of resources to the tenants. For example, in
current virtualized environments, a new VM can be created in a matter of seconds.
Usually an administrative VM (Admin VM1) takes care of configuring and initializing
the VMs. The replacement of a physical system with a VM is, in theory, transparent
to the applications and to the OS, which can run unchanged. The tenants’ applications
can therefore run in a VM, exactly as they do on a physical architecture. A virtual
machine monitor (VMM) [Goldberg 1973] [Goldberg 1974] is the software component
that creates, manages and monitors VM, and can be of two types: (i) a type I VMM2,
which is a thin software layer that runs on top of the hardware/firmware layer; (ii) a
type II VMM, which runs on top of a host OS and implements each tenant VM as a
guest OS process that emulates a physical architecture. VMs allow distinct OSes and
applications in them to run concurrently. From a security point of view, the VMM must
guarantee the isolation of the VMs to ensure that any erroneous or malicious behavior
within a VM is confined within it. This isolation is fundamental, and must be ensured
even for processes running with administrative permissions within a VM and requires
mediating each access from a VM to shared resources.

2.1. Cloud Computing
Virtualization is the key foundation for realising Cloud computing – a form of com-
puting similar in several respects to utility computing [Rappa 2004] – in which ser-
vices, including storage, computation and applications, are provided by large pools of
remote resources. We recall the major service models of Cloud computing, which are
known as [Mell and Grance 2011]: (i) software-as-a-service (SaaS), where tenants are
provided with the capability to use the provider’s applications but do not manage or
control the infrastructure; (ii) platform-as-a-service (PaaS), where tenants can deploy
onto the Cloud infrastructure consumer-created or acquired applications created using
programming languages and tools supported by the provider. In PaaS the consumer
has control only over the deployed applications and possibly their hosting configura-
tions; and (iii) infrastructure-as-a-service (IaaS) where tenants can access virtualized
physical resources such as processing, storage, networks, where they can deploy and
run arbitrary software. Tenants manage the use of the OS and the resources they have
purchased. These Cloud services may be offered in four different deployment models:

1The VM used by administrators to manage the platform that has a privileged access to the VMM interfaces
and the VMs, e.g. to create them, stop them, use the introspection interface. An example is Dom0 in Xen. In
literature it is also referred as Privileged VM, Control VM, Root VM, etc.
2A type I VMM is also called hypervisor: we will use the term hypervisor interchangeably with any type of
VMM.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:5

— private Cloud: operated solely for an organization and managed by it (although the
management may be subcontracted);

— community Cloud: shared by several organizations and supports a specific commu-
nity that has shared concerns. It may be managed by the organizations or a con-
tracted third party;

— public Cloud: available to the general public or a large industry group and is owned
by an organization selling Cloud services;

— hybrid Cloud: a composition of two or more Clouds (private, community, or public)
that remain unique entities but are bound together by standardized or proprietary
technology that enables data and application portability.

There is clearly a trade-off for tenants between flexibility and control (and security
and trust assumptions) among these service and deployment models. In fact, tenants
have more control (and better security) and flexibility (e.g., in terms of configuration
options) when moving from SaaS to IaaS and, analogously, when moving from a public
Cloud to a private Cloud. The drawback in these cases is that when moving from SaaS
to IaaS the user interface to the Cloud, i.e., to allocate services or resources, places an
additional burden to the user in terms of ease of use.

3. ATTACKS IN VIRTUALIZED ENVIRONMENTS
While virtualization offers many advantages, as discussed in the previous section, it
also introduces new security concerns linked mainly to the loss of control arising from
the usage of third-party owned resources, the sharing of resources among VMs and
vulnerabilities of the hypervisor itself. In particular, attacks due to vulnerabilities in
the hypervisor itself have a high impact, since they allow an attacker to control all
the VMs. We therefore start by first describing the categories of attacks possible in a
virtualized environment as described in the literature. Firstly, attacks can be catego-
rized by considering their possible targets, i.e., at what level an attacker can exploit a
vulnerability. The taxonomy we present here span from the higher to the lowest levels:

— application-level (guest VM’s user-space): these are attacks against user applications,
such as through injection of malicious code inside an application to divert its control-
flow and execute the attacker’s code [Aleph One 1996] [Roemer et al. 2012];

— kernel-level (guest VM’s kernel-space): these attacks target the OS, such as kernel
rootkits [Sparks and Butler 2005] [Hoglund and Butler 2006][Levine et al. 2006],
which allow an attacker to fully control the system;

— virtualization layer: these attacks exploit the virtualization features in many ways,
such as to attack VMs residing on the same host [Xu et al. 2011] [Zhang et al. 2012];

— hypervisor: these attacks try to exploit vulnerabilities at the hypervisor level (see
also Table I, described later) to gain control of it, and of all the VMs on top of it; other
ways require escaping from a VM to attack the hypervisor [Kortchinsky 2009];

— lower levels: in these attacks, an attacker tries to subvert the levels below the hyper-
visor, such as the hardware or the System Management Mode (SMM), e.g. to directly
access the memory to modify/read the hypervisor virtual space [Embleton et al. 2008]
[Stewin and Bystrov 2013].

Attacks can also be categorized by taking into account the source of attacks [Jamkhed-
kar et al. 2013], i.e., from where the attack is originated. In particular, they can be
initiated by the same VM (e.g., from kernel, other applications, or by the application
not respecting its intended behavior), or from the same host (e.g., co-resident VMs, the
hypervisor, lower levels), or external hosts. As far as internal or external attack sources
are concerned, we consider as possible attackers: (i) the Cloud providers, which can be
considered as trusted providers, honest-but-curios providers, malicious providers, or

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:6 D. Sgandurra et al.

trusted with insider threats; (ii) tenants of other VMs; (iii) tenants of the same VM
(from the point of view of the provider). Any other possible source of external attacks,
such as a server in the same Cloud environment or a remote host, is considered as a
generic external attacker. The sources of attacks can be further fine-grained if we con-
sider entities such as the manufacturer of the hardware used by the provider, the de-
velopers of the software run by the provider, and, in general, any third-party involved
with the provider. Such issues are covered well in [Bleikertz et al. 2013]. Finally, we
need to consider the goal of the attack in virtualized environments, which can be the
compromise of the (i) integrity, (ii) confidentiality, (iii) availability. In this work we do
not consider attacks against the availability of the services because these are usually
regulated by service-level agreements (SLAs) and they are more easy to be checked
and accounted for.

3.1. Attack Paths in Virtualized Systems

Fig. 2. Attack Paths

Taking into account the previous taxonomy of attacks, we have enumerated in Fig. 2
the possible attack paths in virtualized environments. The double circled letters in-
dicate the initial existing accesses to the assets according to the considered threat
model. In particular, in A , a honest-but-curios provider has (read-only) access to the

Admin VM, whereas in B a malicious administrator has a read-and-write access to
the Admin VM. The Admin VM may export a management tool, with virtual machine
introspection (VMI) capabilities, that enables direct access to the VMM through its
management interface (see path E) to modify configuration files, start new VMs or
halt existing ones, read/modify the memory of the VMs. Having physical access to the
premises, a malicious administrator can also directly access the VMM (see C) and

the layers below (see D). Instead, a tenant has usually only access to a guest VM

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:7

(see F), which may entitle him to either access the entire stack of the VMs (in IaaS
model) or only some applications (in SaaS model). Here, we consider the case where
the (malicious) tenant has full access to the VM (as in IaaS model).

The second set of paths, highlighted with circled numbers, show possible attack hops.
In particular, in 1 we show the path that enables an entity using the management
interface to (maliciously) access the state of a VM (e.g., memory, processor’s registers
etc). As an example, this path may enable an attacker to modify the status of the
VM (integrity) or read private files (confidentiality) or stop/start VMs (availability).
With path 2 an entity owning a guest VM gains access to the Admin VM, either
because of its vulnerabilities or open ports, which may be open only to the internal
network or to the virtual private network of the VMM, or because of Cross-VM attacks
(described later in Sect. 3.2.1). With 3 a guest VM exploits a vulnerability of the

VMM to gain access to the VMM or to attack it. In 4 a guest VM either gains access
to another VM (not belonging to the user of the guest VM) or exploits Cross-VM attacks
to steal private data from the co-located VM. The difference with 2 is that in 2
usually the attacker wants to elevate his/her privileges, whereas in 4 the target is
the VM itself. In 5 we show the path where a (compromised) hypervisor is exploited

to attack, or access, a guest VM illegally. In 6 , 7 and 8 a remote attacker exploits
a vulnerability to illegally attack (or access), respectively, a tenant VM, the VMM, or
the Admin VM. The Admin VM can also be used to exploit a vulnerability of the VMM

to attack it, or gain access to it, as shown in path 9 . Finally, path 10 shows the
compromise of the VMM from the layers below.

We want to underline that these paths can be combined together, such as with the
combination of 6 and 3 , where an attacker that wants to subvert an hypervisor

firstly attacks a guest VM (6) and then attacks the VMM from the guest VM (3),

or analogously with paths 8 and 1 .

3.2. Existing Attacks
In the following, we briefly survey known attacks against a virtualized environment
at different levels. In particular, we focus on the last three targets of the previous tax-
onomy, namely virtualization layer (attacks to VMs), hypervisor (attacks to and from
hypervisor) and attacks to lower levels. Figure 3 pictorially reports some of the attacks
discussed in the following by showing at which level they are deployed.

3.2.1. Attacks to VMs. The first layer we consider is the virtualization one; in partic-
ular, we describe known attacks against VMs or attacks that are facilitated by the
presence of the virtualization layer. We show that the presence of a VMM does not
necessarily make a system more secure. In fact, even if virtualization enables strong
separation among VMs on the same host, it may happen that one of its interfaces,
such as hypercalls [Barham et al. 2003], is vulnerable and exploited by an attacker.
Furthermore, we need to consider whether an attacker can detect if the target runs
in virtualized environment and if he can exploit this knowledge. We will then discuss
existing attacks facilitated by the virtualization layer.

VM Detection. For an attacker, detecting that a target system runs inside a VM
might open new avenues to subvert the system. In fact, by detecting the presence
of the virtualization layer, the attacker can focus its targeted attacks on this layer

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:8 D. Sgandurra et al.

Fig. 3. Summary of Some Attacks at the Various Levels

rather then on the OS or applications so the whole system can be more easily sub-
verted, e.g. by trying to exploit know vulnerabilities of the discovered VMM. Quist and
Smith [2006] describe a method for determining the presence of VM emulation in a
non-privileged operating environment by using the local descriptor table as a signa-
ture for virtualization. In [Garfinkel et al. 2007] the authors discusses the usage of
timing benchmarks to detect the presence of VMMs, whereas [Raffetseder et al. 2007]
surveys alternative strategies to detect system emulators. Ferrie [2006] and Ferrie
[2007] show some possible ways for VMM to hide their presence, such as intercept-
ing non-sensitive instructions (e.g., SIDT), whereas [Carpenter et al. 2007] shows some
mitigation techniques against VM detection on VMware by modifying the VM configu-
ration files (VMX files). Franklin et al. [2008a] and Franklin et al. [2008b] show how it
is possible for an attacker to detect the presence of a VMM under the OS by measuring
the execution time of particular code sequences on the remote system, whose execution
time differs from the perspective of an external verifier when a host runs inside a VM.

Virtualization Extension-based Attacks. This class of attacks exploits existing vir-
tualization technologies, such as AMD-V [Advanced Micro Devices 2005], Intel VT-
x [Uhlig et al. 2005b] or Intel Virtualization Technology for Directed I/O (VT-d)3 by
trying to insert a malware (VM-based rootkits, or VMBRs) at a lower level than the
hypervisor (this techniques is also called “Hyperjacking”). This class of malware in-
serts a malicious hypervisor underneath the OS and leverages virtualization to make
themselves undetectable. Proof-of-concept VMBRs are SubVirt [King and Chen 2006],
Vitriol [Dai Zovi 2006] and Blue Pill [Rafal Wojtczuk 2008]. Wojtczuk and Rutkowska
[2011] show some software attacks to escape from a VM with direct access to physical
devices to gain full control over the whole system. Further attacks against the VMM
which exploit direct device assignment are discussed in [Pék et al. 2014].

VM Escape and VM Hopping. In a VM escape attack, an attacker is able to break out
from a compromised VM and take control of the underlying hypervisor. Once there, an
attacker can invoke any function, such as for creating VMs, or managing I/O devices.

3This technology provides hardware support for I/O Memory Management Units (MMUs), for direct memory
access (DMA) and interrupt virtualization.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:9

For example, Cloudburst [Kortchinsky 2009] is a memory-corruption exploit that en-
ables a guest VM to execute malicious code on the underlying host, and then tunnels
a connection to it. An orthogonal attack is VM hopping [Tsai et al. 2012], which allows
an attacker to move out from one VM to compromise another VM on the same host.

Cross-VM Attacks. In contrast to the attacks described in the previous paragraph,
whose goal is to escape from the VM to control (i.e, getting access to) the hypervisor
or another co-resident VM, Cross-VM attacks aim at attacking co-resident VMs. Ex-
amples of such attacks are limiting the availability of the VMs or retrieving sensitive
information from them. These last attacks are usually implemented by leveraging var-
ious side channels, such as cache covert channels, network-based (such as network
watermarking and fingerprinting) or memory-based (memory deduplication, memory
bus covert channels). In fact, since VMs are sharing the same hardware resource, such
CPU (e.g. caches), memory (e.g. buffers) and network (e.g. virtual interfaces), it is pos-
sible to extract information from the co-hosted VMs. As an example, Xu et al. [2011]
show how to exploit L2 cache covert channels to steal small amount of data from a
co-resident VM, and [Zhang et al. 2012] show how a malicious VM can exploit the L1
cache to capture the target VM’s private ElGamal decryption key. Wu et al. [2012] ex-
ploit the memory bus as a high-bandwidth covert channel medium and demonstrates
realistic covert channel attacks on various virtualized x86 systems. HomeAlone [Zhang
et al. 2011b] is a tool for detecting the existence of side channels on the same host to
launch the attack by examining neighbor VMs L2 cache memory activity. [Irazoqui
et al. 2014] demonstrate a Cross-VM Flush+Reload cache attacks to recover the keys
of an AES implementation of OpenSSL running inside the victim VM, where the VMs
are located on separate cores. A similar attack for commercial PaaS Cloud is proposed
in [Zhang et al. 2014], which has been exemplified with three real attacks. The pro-
posed framework exploits the knowledge of the control-flow graph of an executable
shared with the victim of the attack. The authors propose to build a so called attack
non-deterministic finite automaton to determine which memory chunks should be mon-
itored to trace, and characterize, the victim’s execution for specific attacks. Last-level
cache (LLC, basically L3 cache) attacks are discussed in [Liu et al. 2015], where the
authors show how LLC presents a high-bandwidth channel that can be exploited to
mount (cross-core) Cross-VM side channel attacks. Since this kind of cache is shared
across all cores of the CPU, the impact of such an attack can be much larger. Another
L3 attack is discussed in [Irazoqui et al. 2015], which does not rely on the dedupli-
cation features required by Cross-VM Flush+Reload, and hence applicable in a larger
number of hypervisors. The authors demonstrate the viability of recovering AES keys
when attacker and victim are located in different cores in less than three minutes.

One of the issues in this class of attacks, and also for VM Hopping attacks, is the
identification of where a desired VM is located. Given this knowledge, an attacker then
strives to place the malicious VM on the same host to finally launch the attack using
these techniques. Ristenpart et al. [2009] show that it is possible to (i) map the internal
Cloud infrastructure, (ii) identify where a particular target VM is likely to reside, (iii)
instantiate new VMs until one is placed co-resident with the target. Another attack,
called resource-freeing attacks, modifies the workload of a victim VM in a way that it
frees up resources for the benefit of the attacker’s VM [Varadarajan et al. 2012].

3.2.2. Attacks to Hypervisor. Several research solutions enhance the hypervisor to de-
fend the system from attacks to VMs, such as the ones discussed in the previous sec-
tion. The idea is that, by moving the enforcement and protection mechanism into a
lower level, attackers cannot hide their actions. This is also true for attackers, who
strive to reach the VMM-level to control all the other VMs. Hence, it is a “race to the
bottom” between the attackers and the defenders trying to attack, and protect, the

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:10 D. Sgandurra et al.

Table I. Vulnerabilities in CVE with High Severity for the period January 2012 - June 2015 for Xen, VMWare Esxi,
Hyper-V and KVM (C=Complete, P=Partial, L=Local, L-N=Local Network, R=Remote)

Product CVE ID Vulnerability Type(s) Score Access Complexity Conf. Integ. Avail.

Xen CVE-2015-4104 DoS 7.8 R Low None None C
Xen CVE-2015-3456 DoS Exec Code Overflow 7.7 L-N Low C C C
Xen CVE-2015-3209 Exec Code Overflow 7.5 R Low P P P
Xen CVE-2015-2751 DoS 7.1 R Medium None None C
Xen CVE-2015-2151 DoS Exec Code Mem. Corr. +Info 7.2 L Low C C C
Xen CVE-2015-0361 DoS 7.8 R Low None None C
Xen CVE-2014-9030 DoS 7.1 R Medium None None C
Xen CVE-2014-7188 DoS 8.3 L-N Low C C C
Xen CVE-2014-3969 +Priv 7.4 L-N Medium C C C
Xen CVE-2014-1666 DoS +Priv 8.3 L-N Low C C C
Xen CVE-2013-6375 DoS +Priv 7.9 L-N Medium C C C
Xen CVE-2013-2211 Other 7.4 L-N Medium C C C
Xen CVE-2013-2072 DoS Overflow +Priv Mem. Corr. 7.4 L-N Medium C C C
Xen CVE-2013-1432 DoS +Priv 7.4 L-N Medium C C C
Xen CVE-2012-6030 DoS 7.2 L Low C C C
Xen CVE-2012-3515 +Priv 7.2 L Low C C C
Xen CVE-2012-0217 Overflow +Priv 7.2 L Low C C C
Xen CVE-2011-1763 DoS +Priv 7.7 L-N Low C C C
Esxi CVE-2013-5970 DoS 7.1 R Medium None None C
Esxi CVE-2013-3658 Dir. Trav. 9.4 R Low None C C
Esxi CVE-2013-3657 DoS Exec Code Overflow 7.5 R Low P P P
Esxi CVE-2013-3519 +Priv 7.9 L-N Medium C C C
Esxi CVE-2013-1659 DoS Exec Code Mem. Corr. 7.6 R High C C C
Esxi CVE-2013-1406 +Priv 7.2 L Low C C C
Esxi CVE-2013-1405 DoS Exec Code Mem. Corr. 10 R Low C C C
Esxi CVE-2012-3289 DoS 7.8 R Low None None C
Esxi CVE-2012-3288 DoS Exec Code Mem. Corr. 9.3 R Medium C C C
Esxi CVE-2012-2450 DoS Exec Code 9 R Low C C C
Esxi CVE-2012-2449 DoS Exec Code Overflow 9 R Low C C C
Esxi CVE-2012-2448 DoS Exec Code Overflow 7.5 R Low P P P
Esxi CVE-2012-1518 +Priv 8.3 L-N Low C C C
Esxi CVE-2012-1517 DoS Exec Code Overflow 9 R Low C C C
Esxi CVE-2012-1516 DoS Exec Code Overflow 9 R Low C C C
Esxi CVE-2012-1515 +Priv 8.3 L-N Low C C C
Esxi CVE-2012-1510 Overflow +Priv 7.2 L Low C C C
Esxi CVE-2012-1508 DoS +Priv 7.2 L Low C C C

Hyper-V CVE-2013-3898 DoS Exec Code Mem. Corr. 7.9 L-N Medium C C C
KVM CVE-2015-3456 DoS Exec Code Overflow 7.7 L-N Low C C C
KVM CVE-2011-2212 DoS Overflow +Priv 7.4 L-N Medium C C C

lowest possible level. The basic assumption to insert a protection mechanism into hy-
pervisors is that usually they have a code base that is much smaller than conventional
OSes4 and, should have less bugs (vulnerabilities) and are more difficult to subvert.
Unfortunately, despite the advances due to hardware virtualization and the leverage
of various functionalities in host OS kernels, contemporary hypervisors, such as Xen
and VMware, have a large, and complex, code base5 and thus have a potentially wide
attack surface. Moreover, within the current code base, several components are rather
complex, such as memory virtualization and guest instruction emulation and often
offer venues to various exploitable vulnerabilities.

For the period between January 2012 and June 2015, the National Vulnerability
Database (NVD) records 39 vulnerabilities for hypervisors with a severity higher than
7, i.e., those classified “high”, which means they are very critical from a security point

4As a rule of thumb, hypervisors have a code size in the order of 100K lines of code, whereas OSes in the
order of 10M lines of code, hence with an approximate ratio of one over one hundred lines.
5Xen has more than 200K source lines of code, while KVM kernel module alone contains 33.6K source lines
of code of TCB [Wu et al. 2013]

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:11

of view (see Table I). From the table, we can see that there have been 18 vulnerabili-
ties reported for Xen, 18 for VMWare Esxi, 1 for Hyper-V and 2 for KVM (one shared
with Xen, the CVE-2015-3456, the “VENOM” vulnerability). Some of these vulnera-
bilities allow an attacker to directly compromise the hypervisor, e.g. by escaping from
a VM. Once a hypervisor is compromised, the attacker can further take over all the
VMs it hosts, which could lead to not only disrupting hosted services, but also leak-
ing potentially confidential data contained within guest VMs. Concerning hypervisor
vulnerabilities, Perez-Botero et al. [2013] characterize them in three dimensions: the
trigger source, the attack vector and the attack target. The authors have classified
Xen and KVM vulnerabilities into eleven functionalities (attack vectors) that are pro-
vided by hypervisor. The study shows that the most common trigger source is guest
VM user-space, accounting for 39% of Xen and 34.2% of KVM vulnerabilities. Some
of the attacks (and solutions) mainly focus on code or control-flow integrity, without
considering the so called non-control data attacks [Chen et al. 2005], i.e., attacks that
do not tamper with control-data to divert the control-flow of the program. However,
[Ding et al. 2013b] show how to construct attacks that target hypervisor non-control
data to demonstrate which types of data in the hypervisor’s code are critical to system
security by showing that privilege, resource utilization and security policy related data
are vulnerable to return-oriented programming or DMA attacks.

Attacks from Hypervisor. As previously discussed, once hypervisors have been at-
tacked, they can be exploited to attack other VMs on the same host. Other venues of
attacks may stem from high privileged tools available to administrators. These tools, if
attacked, my also provide means for malicious users to control the system. For exam-
ple, the introspection capability (see Sec. 4.1) available to administrators of the VMM,
if attacked or misused, might threaten the VMs confidentiality and integrity, as shown
by DKSM [Bahram et al. 2010], an attack against kernel structures that evade VM
introspection by providing it with false information. In fact, an implicit assumption of
VM introspection is that the guest OS uses the kernel data in a predetermined way.
But, if the guest OS is compromised, any assumption concerning the kernel respecting
data structures may become false. Furthermore, management consoles are at the core
of administrating VMs, and are very attractive for attackers. If an adversary manages
to get access to the management console of the hypervisor, the entire security of virtual
environment is at risk. An example is VM sprawl, which is the excessive creation of
VMs to waste resources and create more entry points for attackers [Chen and Noble
2001].

3.2.3. Lower-Level Attacks. If the threat model considers that physical access is not con-
trolled, then high-impact attacks on the host become possible that make it easier for
an attacker to subvert the security of the system. Often, in these cases it might not be
always possible to find an appropriate security solution. We discuss some attacks that
exploit DMA, SMM and BIOS and Trusted Platform Module (TPM).

DMA Attacks. DMA malware is a class of malware that exploits the DMA to launch
stealthy attacks on a system by executing on dedicated hardware. An example is DAG-
GER [Stewin and Bystrov 2013], which is a keylogger that attacks Linux and Windows
platforms and is executed on the Intel’s Manageability Engine processor. The authors
show that currently a host has no reliable means to protect itself against DMA mal-
ware and that even with IOMMU-enabled platforms there exist several issues that are
not easily tackled.

SMM and BIOS Attacks. The System Management Mode (SMM) is a separate CPU
mode from the protected mode and real mode, which provides a transparent mecha-
nism for implementing system-control functions, such as power management and sys-

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:12 D. Sgandurra et al.

tem security. SMM is implemented by the BIOS and is entered via the system man-
agement interrupt (SMI) when the SMM interrupt pin is asserted. The microprocessor
automatically saves its entire state in a separate address space known as system man-
agement RAM (SMRAM) and enters the SMM to execute an SMI handler. The handler
then executes the rsm instruction to exit the SMM. The SMRAM is inaccessible from
other CPU modes (while not in SMM) and, hence, it can act as a trusted storage space.
Embleton et al. [2008] propose of a proof-of-concept SMM rootkit which implements
a chipset level keylogger and a network backdoor capable of directly interacting with
the network card to send logged keystrokes to a remote machine. Another attack [Wo-
jtczuk and Rutkowska 2009] modifies SMM memory via Intel CPU cache poisoning,
where the attacker can make the CPU execute the SMM code from cache instead of
DRAM.

On the other hand, the Basic Input-Output System (BIOS) is used to initialize the
hardware devices, including the processor, main memory, chipsets, hard disk, and other
necessary I/O devices. BIOS code is normally stored on a non-volatile ROM chip on the
motherboard. Since the BIOS is charged with the correct initialization of the SMM, it
also needs to be protected from malicious tampering. If an attacker is able to attack
the BIOS, he/she can control the SMM or invalidate the chain-of-trust procedure of
the TPM. As an example, Kauer [2007] modify the BIOS by showing that by reboot-
ing the system the Core Root of Trust for Measurement (CRTM) of the TPM can be
changed without being noticed. [Butterworth et al. 2013] also present a vulnerability
that allows an attacker to take control of the BIOS update process and re-flash it with
an arbitrary image despite the presence of signed enforcement. This class of rootkits
has been called “Ring -2 rootkits” (level -1 being hypervisor rootkits). Another, lower-
level, class of rootkit is called “Ring -3 rootkit” [Tereshkin and Wojtczuk 2009], which
are essentially rootkits trying to subvert the chipset functionalities, such as the Intel
Active Management Technology (AMT), to install backdoors (see Fig. 3 for the various
levels of rootkits deployment). Note that rootkits have been demostrated also for other
low-level components, such as UEFI (Unified Extensible Firmware Interface, a low-
level interface designed to replace BIOS) [Hudson and Rudolph 2015] and hard-disk
firmware6.

TPM Attacks. This class of attacks tamper with the TPM to dump the content of its
internal registers, and retrieve its private data (e.g., private keys), or to disable its
functions [Sparks 2007]. Replay attacks are also possible, as shown in [Bruschi et al.
2005], i.e., an attacker can capture a message exchanged between the TPM and some
authorized user, and then use the same message later in a malicious way. [Sparks and
Sparks 2007] discusses time-of-check-to-time-of-use attacks against the TPM, a bus
attack on the low pin count bus and also side channel attacks.

4. SOLUTIONS
The protection of the system running inside a VM can be enforced either from the OS
itself of the guest VM or from a component that is independent from the system being
monitored, i.e., from an Admin VM or from hardware. These two distinct approaches
are known in literature as “in-the-box” and “out-of-the-box” [Jiang et al. 2007]. The in-
the-box method generally relies on the security hooks provided by the monitored OS,
e.g. a Linux kernel patched with Integrity Measurement Architecture (IMA) [Sailer
et al. 2004] or PRIMA [Jaeger et al. 2006], which is able to measure the executable files
through Linux Security Module (LSM) or Linux Integrity Module (LIM). In general,
the disadvantages with these methods are that (i) since modifications must be made to

6http://www.malwaretech.com/2015/06/hard-disk-firmware-rootkit-surviving.html

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://www.malwaretech.com/2015/06/hard-disk-firmware-rootkit-surviving.html

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:13

the monitored OS, they are not always deployable on running systems and may also in-
troduce further vulnerabilities, and (ii) such methods rely on the OS being trusted and
are therefore vulnerable to kernel rootkits. To overcome these shortcomings, virtual
machine introspection (VMI) [Garfinkel and Rosenblum 2003] has been proposed as
an “out-of-the-box” approach that enables an Admin VM to access the memory and vir-
tual CPUs of a monitored VM to check the state of the system, e.g. some critical data-
structures, at the kernel or at the user-level. To improve performance and stealthiness,
VMI-based approaches have been proposed using additional hardware, such as [Zhang
et al. 2002] [Petroni et al. 2004]. In devising protection mechanism with a limited at-
tack surface, other solutions have removed the Admin VM from the TCB by enhancing
the hypervisor directly [Litty and Lie 2006]. This requires that only the hypervisor is
protected from attacks. To this end, several solutions have proposed the protection of
the hypervisor from run-time attacks [Wang and Jiang 2010], or a micro-hypervisor
architecture [Murray et al. 2008] [Steinberg and Kauer 2010], or the introduction of
a further nested layer of virtualization [Carbone et al. 2008] [Zhang et al. 2011a]. All
these approaches will be categorized and detailed in the following.

4.1. Using an Admin VM for Protection
In this category of solutions an Admin VM can analyze the state of the processes and
of the kernel hosted on the monitored VMs using an introspection interface exported
by the hypervisor. In particular, the TCB includes the Admin VM and the hypervisor,
and the lower levels, whereas the attack surface includes the monitored VM, both at
the kernel and user level.

4.1.1. Virtual Machine Introspection-based Solutions. Livewire [Garfinkel and Rosenblum
2003] was the first prototype of an intrusion detection system (IDS) that monitors
VMs through introspection from an Admin VM. One of the problem with VMI is the
semantic gap between the activity of the VM (in terms of processes, files) and the the
low-level view of the introspection interface. One of the first libraries to implements
VMI is XenAccess [Bryan D. Payne and Martim Carbone and Wenke Lee 2007], which
is used for monitoring OSes on Xen. XENKimono [Quynh and Takefuji 2007] detects
violations of the kernel level through VMI using two distinct strategies: (i) integrity
checking of illegal changes to kernel code and system call table, Interrupt Descriptor
Table (IDT), page-fault handler; (ii) comparison from data as seen inside and from
outside the VM to detect malicious modifications to critical kernel objects. VMwatcher
[Jiang et al. 2007] is another out-of-the-box approach that exploits a technique called
view casting to reconstruct internal semantic views (e.g., files, processes, and kernel
modules) of a VM from the outside. This tool can be used to apply: (i) comparison-
based malware detection, which compares a VM’s semantic view obtained from both
inside and outside to detect any discrepancy; (ii) out-of-the-box execution of off-the-
shelf anti-malware software.

Other VMI-based solutions try to detect hidden processes running in the monitored
VM, which are usually an indicator of a rootkit being installed in the monitored VM.
Lycosid [Jones et al. 2008] exploits cross-view validation to detect maliciously hidden
OS processes by comparing the lengths of the process lists obtained, respectively, from
the Admin VM and from the monitored VM. The VIX tools [Hay and Nance 2008]
support a forensic analysis of a guest VM from an Admin VM by including a suite of
tools which mimic the behavior of common Unix command line utilities. [Christodor-
escu et al. 2009] adopts virtualization to monitor and protect the systems running in
a Cloud from a centralized Admin VM. The proposed solution does not assume any
a-priori semantic knowledge of the guest OS or any trust assumptions into the state
of the VM. Another out-of-the-box approach is discussed in [Xing et al. 2014], which

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:14 D. Sgandurra et al.

measures the integrity of critical files through system call interception and without
any modification of the guest VMs.

Several papers have proposed techniques to reduce the semantic gap. For example,
[Srinivasan et al. 2011] present a technique called process out-grafting, which relo-
cates a suspect process from inside a VM to run side-by-side with the out-of-box VM.
SYRINGE [Carbone et al. 2012] protects the monitoring application by moving it in a
separate VM where it can invoke guest functions using function-call injection. Another
solution is Virtuoso [Dolan-Gavitt et al. 2011], which is an approach to automatically
creating introspection tools. The solution analyzes dynamic traces of small, in-guest
programs that retrieve the desired introspection information, and then produces simi-
lar programs that retrieve the same information from outside the guest VM. Similarly,
VMST [Fu and Lin 2012] automatically generates VMI tools by identifying the intro-
spection related kernel data and redirecting these accesses to the in-guest OS memory.
To reduce the huge overhead of the previous solutions, [Saberi et al. 2014] exploit on-
line memoization to cache the trained meta-data in an online fashion to execute the
inspection command (such as ps, netstat, etc).

4.2. Using the Hypervisor for Protection
The second method to protect applications and OS running in a VM is to exploit the
presence of the hypervisor, e.g. by enhancing it with mechanisms to protect the VMs
that run on top of it. These solutions further reduce the TCB, by removing the Admin
VM from it. Some of these solutions perform code authorization at kernel-level. For
example, Manitou [Litty and Lie 2006] ensures that a VM only executes authorized
code, by enabling the executable bit of the virtual page containing the code only if its
hash belongs to a list of authorized hashes. Other solutions periodically check the in-
tegrity of the OS kernel from the VMM [Xu et al. 2007]. As an example, HIMA [Azab
et al. 2009] is a hypervisor-based solution to measure the integrity of VM by monitor-
ing critical guest events and memory protection. It maintains the measurements of the
code segments of all kernel components and user programs running inside the guest
VMs. HookSafe [Wang et al. 2009] is a hypervisor-based system that relocates kernel
hooks to a dedicated page and then exploits hook indirection to regulate accesses to
them through hardware-based page-level protection. KvmSec [Lombardi and Di Pietro
2009] is an extension to Linux KVM with the ability to check the integrity of the guest
VMs [Hofmann et al. 2011] presents OSck, a hypervisor-based system that protects
the system call table through hardware page protection and a hypervisor call that en-
sures that, once the table is initialized, the guest OS may not modify it, by setting as
read-only the hardware page protections on pages containing kernel text. Finally, Ac-
cessMiner [Fattori et al. 2015] is a hypervisor-based detector that models the activities
of benign applications to the OS and use the extracted models to detect the presence
of malicious applications.

Other VMM-based solutions exploit memory techniques. As an example, NICKLE
exploits memory shadowing, in which the VMM maintains a shadow physical memory
of a running VM and performs kernel code authentication so that the shadow memory
only stores authenticated kernel code. Overshadow [Chen et al. 2008] exploits multi-
shadowing which leverages the extra level of indirection offered by memory virtual-
ization in a VMM to offer a VM context-dependent mapping. This mechanism presents
an application with a clear-text view of its pages, and the OS with an encrypted view
to provide confidentiality and integrity. However, Iago attacks (where the semantics of
system calls is maliciously changed) have been shown to be possible in these scenarios
[Checkoway and Shacham 2013].

Finally, other solutions of this category are aimed at protecting the VM from un-
trusted components. For example, CHAOS [Chen et al. 2007] uses a VMM to mediate

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:15

privileged operations, where the goal is to protect a trusted process from exposing
its private data and prevents tampering from a compromised OS kernel and other
processes. Yang and Shin [2008] present an approach for using hypervisors to protect
application data privacy even when the OS cannot be trusted. The hypervisor encrypts
and decrypts each memory page requested depending on the application’s access per-
mission to the page. HUKO [Xiong et al. 2011] is a hypervisor-based integrity pro-
tection system designed to protect commodity OS kernels from untrusted extensions
by confining their behavior through mandatory access control policies and hardware-
assisted paging. InkTag [Hofmann et al. 2013] is a hypervisor-based system that pro-
tects trusted applications from an untrusted OS, allowing them to securely use the OS
services. It does so by introducing paraverification, where an untrusted OS is required
to verify its own behavior by communicating its intent to the hypervisor. [Wen et al.
2013] propose a solution to protect VMs from VMMs in multi-processor Cloud environ-
ments by exploiting hardware mechanisms to enforce access control over the shared
resources (e.g., memory spaces). STEALTHMEM [Kim et al. 2012] is a system-level
protection mechanism against cache-based side channel attacks in the Cloud. The sys-
tem manages a set of locked cache lines per core, which are never evicted from the
cache, and multiplexes them so that each VM can load its own sensitive data into the
locked cache lines. HyperShot [Srivastava et al. 2012] removes the Admin VM from
the TCB and implements a protocol for Cloud environments which allows tenants to
request and verify the run-time status of VM snapshots even in presence of malicious
administrators.

4.3. Protecting the Hypervisor
In the solutions described so far, the threat model assumes that the hypervisor is
trusted. However, this assumption is sometime not true, as demonstrated by the at-
tacks discussed in 3.2.2. Hence, several approaches focus on protecting the integrity
of the hypervisor itself. We categorize the existing research solutions by proposing the
following classes:

— formal verification: formally prove the correctness of the hypervisor (threat model:
the hypervisor is considered trusted);

— hypervisor hardening: these solutions aim to protect the integrity of the hypervisor,
e.g. by protecting from static attacks, control-flow attacks, and non-control-data at-
tacks (threat model: the hypervisor is untrusted but sanitizable [Lacoste 2013]);

— minimize hypervisor TCB: these approaches split functionalities among different
components, and remove some of these component from the TCB, using an approach
similar to microkernel approaches (threat model: the hypervisor is untrusted but is
hardened);

— nested virtualization approaches: these solutions add another layer below the hyper-
visor (threat model: the hypervisor is untrusted, but the new layer is in the TCB);

— hardware-assisted solutions: exploiting hardware features, such as SMM, to protect
the hypervisor (threat model: the hypervisor is untrusted);

— introducing additional hardware: the hypervisor is protected using hardware (threat
model: the hypervisor is untrusted);

— using root-of-trust: these solutions allows the trusted loading of the hypervisor
(threat model: the hypervisor is untrusted).

Each of these techniques will be detailed in the following.

4.3.1. Formal Verification. One approach to remove the hypervisor from the threat
model is to formally verify that it is secure. For example, some approaches can prove
the absence of known classes of vulnerabilities, such as buffer overflows and null

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:16 D. Sgandurra et al.

pointer dereferences, on small micro-kernels (e.g., seL4 [Klein et al. 2009]). However,
these approaches also impose strict requirements on the micro-kernel design and im-
plementation and, even if attractive, they require significant efforts to the design of
hypervisors. We also note that the size of micro-kernel that can be formally verified
is around 10K LOC, whereas commodity hypervisors greatly exceed this size (in the
order of 100K LOC), so this approach is only applicable in very few cases in practice.

4.3.2. Hypervisor Hardening. If the absence of known bugs cannot be ascertained, other
techniques can be used to make it difficult to exploit them. HyperSafe [Wang and Jiang
2010] implements two techniques to protect a Type I VMM: (i) non-bypassable mem-
ory lockdown, where once a memory pages is locked down it guarantees that the page
needs to be unlocked first before being modified; (ii) restricted pointer indexing, which
leverages the memory lockdown to extend the protection coverage from hypervisor code
to control data. HyperVerify [Ding et al. 2013a] is an architecture to monitor hypervisor
non-control data using a introspection VM. Other approaches advocate a self-protection
paradigm [Wailly et al. 2012] by enforcing hypervisor protection using security loops
which control different VMM layers. To this end, hooks mediate and control interac-
tions between a device driver and the VMM environment.

4.3.3. Reducing the Hypervisor TCB. Other solutions revisit hypervisor design by propos-
ing new architectures in an attempt to minimize its TCB [Murray et al. 2008] [Stein-
berg and Kauer 2010]. NOVA [Steinberg and Kauer 2010] is a micro-kernel-based
VMM that decouples the VMM into a modular system by introducing a capability-
based access control for the several components inside a VMM. Another approach that
has been advocated is to isolate buggy or untrusted device drivers of the hypervisor,
such as [Sharif et al. 2009]. HyperLock [Wang et al. 2012] similarly creates a separate
address space in host OS kernel so that the execution of the hypervisor as a loadable
module can be isolated. However, it still runs in privileged mode and requires addi-
tional techniques to avoid possible misuse of privileged code. NoHype [Keller et al.
2010] [Szefer et al. 2011] is a system that implements a microkernel-like hypervisor
to only provide pre-allocated memory and processor core to a guest-OS and by sharing
only the network interface and disk. To reduce the hypervisor TCB, [Gebhardt et al.
2010] exploit hardware protection mechanism to isolate hypervisor security critical
functions, in particular by moving the hypervisor in ring 0 of VMX root mode, whereas
the non security TCB are executed in one of the other VMX root modes. DeHype [Wu
et al. 2013] is a system that deprivileges hypervisor execution to user mode by de-
coupling the hypervisor code from the host OS, hence by reducing the attack surface.
MyCloud [Li et al. 2013] is a reduced VMM system hat removes the Admin VM from
processor root-mode and only keeps crucial security components in the TCB.

4.3.4. Inserting an Additional (Software) Layer Below the Hypervisor. Other solutions insert
another layer below the hypervisor to check the integrity of the hypervisor. GuardHype
[Carbone et al. 2008] is a hypervisor with a focus on VMBR prevention that allows the
execution of legitimate third-party hypervisors but disallow VMBRs. GuardHype me-
diates the access of third-party hypervisors to the hardware virtualization extensions,
effectively acting as a hypervisor for hypervisors. CloudVisor [Zhang et al. 2011a] ex-
ploits nested virtualization [Ben-Yehuda et al. 2010] to introduce a tiny security mon-
itor underneath a commodity hypervisor. CloudVisor is responsible for protecting the
confidentiality and integrity of the resources owned by VMs, whereas the hypervisor is
still responsible of the (de)allocation of the resources to the VM. In other approaches,
such as [Strackx and Piessens 2012], a new (minimal) hypervisor is introduced to pro-
tect applications and kernel. The difference with the previous approaches is that this

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:17

is a thin layer that sits below the OS and applications (it can be seen as a reduced
hypervisor) and not a hypervisor below an existing hypervisor.

4.3.5. Hardware-Assisted Solutions to Protect the Hypervisor. Several approaches [Azab
et al. 2010] have shown that inserting an additional software layer to protect the
integrity of hypervisors may not be sufficient. In fact, the additional layer may in-
troduce new vulnerabilities and could start another race with malicious attackers in
obtaining the highest privilege in the system. Hence, some solutions have proposed to
exploit hardware-supported schemes to monitor the integrity of hypervisors. For ex-
ample, some works exploit SMM mode by adding a small (locked) code to protect the
integrity of the hypervisor [Rutkowska and Wojtczuk 2008] [Wang et al. 2010] [Azab
et al. 2010]. One of the problems with these approaches is that they are not easy to be
updated and/or deployed on commodity systems. Bastion [Champagne and Lee 2010]
is a hardware-software architecture for protecting critical software modules in an un-
trusted software stack. It includes a processor and a thin hypervisor, which are both
enhanced to provide secure execution and storage to these modules. HyperCheck [Wang
et al. 2010] [Zhang et al. 2014] is a hardware-assisted tampering detection framework
designed to protect the integrity of hypervisors by leveraging SMM and a PCI device to
securely generate and transmit the full state of the protected machine to an external
server. HyperSentry [Azab et al. 2010] is a framework for integrity measurement of
a hypervisor that introduces a software component that is isolated from the hypervi-
sor. HyperSentry uses an out-of-band channel to trigger stealthy measurements, and
adopts the SMM to protect its base code and critical data. SICE [Azab et al. 2011]
shows that building strong isolation mechanisms on top of existing SMM requires a
very small TCB of about 300 LOC. DataSafe [Chen et al. 2012] is an architecture
that uses policies to protect data from attacks from untrusted third-party application,
such as untrusted third party applications. To this end, DataSafe provides dynamic
instantiations of secure data compartments and continuously tracks and propagates
hardware tags to identify sensitive data by enforcing unbypassable output control.
HyperWall [Szefer and Lee 2012] exploits hardware to provide VMs protection from
hypervisor by allowing it to freely manage the memory, processor cores and other re-
sources of a platform, and by protecting the memory of the guest VMs from accesses
by the hypervisor or by DMA. The protections are enabled through modifications to
the microprocessor and MMUs. HyperCoffer [Xia et al. 2013] is a hardware-software
framework to protect confidentiality and integrity of tenant’s VMs that only trusts the
processor chip. HyperCoffer requires some changes to the (untrusted) hypervisor by
introducing a mechanism called VM-Shim that runs in-between a guest VM and the
hypervisor.

4.3.6. Protection Using Additional Hardware Units. This set of solutions does not rely on the
hypervisor at all, as an example by exploiting a secure coprocessor [Dyer et al. 2001]
[Zhang et al. 2002]. In [Arbaugh et al. 1997] system integrity is verified at boot time,
and the root of trust is a small bootloader which computes a hash of the content loaded
into memory, and compares this to a signed hash stored in secure ROM. A device is
only allowed to boot if the two hashes match. AEGIS [Suh et al. 2003] is a proces-
sor to build computing systems secure against physical and software attacks. In the
threat model, all the components external to the processor, such as memory, are consid-
ered to be untrusted. AEGIS provides a tamper-evident, authenticated environments
in which any physical or software tampering by an adversary is guaranteed to be de-
tected. COPILOT [Petroni et al. 2004] is a coprocessor-based kernel integrity monitor
for commodity systems designed to detect malicious modifications to the host kernel.
[Dinaburg et al. 2008] proposes Ether, which is a malware analyzer that exploits hard-
ware virtualization to reside completely outside the target OS environment. Finally,

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:18 D. Sgandurra et al.

to protect security critical processes and data from Cloud administrators, [Seol et al.
2015] propose a trusted VMM to encrypt confidential data of guest VMs and a hard-
ware security module called Trusted Cloud Module (TCM), implemented as an external
PCI device, to store the cryptographic keys.

4.3.7. Protection Using Root-of-Trust. Some solutions ascertain the integrity of the hy-
pervisor through hardware-based technologies, including TPM [Bajikar 2002], In-
tel Trusted Execution Technology (TXT) [Greene 2012] and AMD SVM [Uhlig et al.
2005b]. These are capable of effectively establishing static, or dynamic, root-of-trust
by guaranteeing that the hypervisor has loaded in a trustworthy manner, i.e., that its
code has not been tampered and the correct version has been loaded. However, one
of the main challenges with these approaches is how to maintain the same level of
integrity throughout the lifetime of the loaded hypervisor. Since the absence of soft-
ware vulnerabilities in the loaded components (e.g., the hypervisor) cannot be proven,
we have to consider threats that exploit such vulnerabilities after it has been loaded.
The goal of the static root-of-trust (also known as Static Root of Trust Measurement,
SRTM) is to guarantee that the system is started in a known good state by booting it
from some immutable piece of code. The assumption underlying this approach is that
the code used for loading the system is trusted, i.e., it cannot be modified. This code
initiates the measurement process, in which each component measures the next one in
a chain of trust. In particular, the hardware firmware code first calculates the hash of
the BIOS, and extends a TPM’s platform configuration register (PCR) with the value of
this hash. Then, the BIOS continues this chain measurement with the PCI EEPROMs
and the master boot record, before handling execution to them. Finally, the bootloader
measures the OS loader before executing the OS or the hypervisor.

With Dynamic Root of Trust (DRTM), which is also referred as secure late launch
[Kauer 2007] [McCune et al. 2008], attestation functions can be invoked long after
the normal boot sequence has completed. This allows the system to transfer control to
known code after hardware specific activities, such as device drivers, have initialized.
The first implementation of DRTM on AMD processors was the Open Secure LOader
(OSLO) [Kauer 2007]. Using this mechanism, also the BIOS and bootloaders can be
removed from the trust chain. Similarly Flicker [McCune et al. 2008] is an infrastruc-
ture for executing security-sensitive code in isolation and for providing attestation of
code execution to a remote party. The TCB is only 250 lines of code and is meant to
execute small sensitive pieces of code. SecVisor [Seshadri et al. 2007] is a tiny hy-
pervisor that ensures code integrity for OS kernels by checking that only previously
approved code can execute in kernel mode. SecVisor exploits late launch technologies
to boot the system safely. The disadvantages of these approaches is that one processor
may interrupt all the other processors on the same machine and it also requires de-
velopers to port their applications. Trusted Execution Environment [Dai et al. 2010]
is an architecture that can run multiple instance of DRTM in parallel in virtualized
environment. TrustVisor [McCune et al. 2010] is a special-purpose hypervisor that
provides code integrity as well as data integrity and secrecy for selected portions of an
application and is initialized via DRTM. SMART [Eldefrawy et al. 2012] is a primi-
tive based on hardware-software for establishing a dynamic root of trust in a remote
embedded device. In [Jayaram Masti et al. 2013] the authors propose an architecture
that enables the creation and management of multiple, concurrent, secure executions
environments on multi-core systems. The architecture relies on new processor exten-
sions and a hardware-based virtualized TPM to support multiple, concurrent, dynamic
root-of-trust requests from different VMs. [Owusu et al. 2013] propose a new a set of
CPU instruction set extension for externally verifiable initiation and execution of an
isolated execution environment.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:19

Recently, new processor extensions have been devised to provide a form of integrity
protection in Cloud environments. In particular, Software Guard Extensions (SGX)
[McKeen et al. 2013], [Anati et al. 2013] for Intel Processors allow an application
to instantiate a protected container, referred to as an enclave, which is a protected
area in the application’s address space having its own entry table, heap, stack and
code. The enclave provides both confidentiality and integrity of the application even in
cases where an attacker has gained the most privileged execution level. To this end,
accesses to the enclave memory area from any software not resident in the enclave
are prevented. Using SGX, the application to be protected can be distributed in clear.
When the protected portion is loaded into an enclave, its code and data are measured
and protected against external software access7. This new set of extensions in a Cloud
environment makes it possible to attest single portion of a host memory without in-
terrupting the execution of other software on the machine. As an example, Guardat
[Vahldiek et al. 2014] is an architecture that enforces data access policies at the stor-
age layer. The enforcement can be implemented in a trustlet within a VMM (or OS)
isolated using a container with SGX. Haven [Baumann et al. 2014] is a system de-
signed to run unmodified legacy applications in the Cloud by exploiting the protection
of SGX to provide integrity and confidentiality of tenant’s applications. In the consid-
ered threat model, the adversary may have full control of the hardware, excluding the
processor but including memory and I/O, besides the entire software stack. The system
is structured in such a way that also Cloud providers are protected from misbehaving
tenants applications. VC3 [Schuster et al. 2015] is a system based on SGX to run dis-
tributed MapReduce computations in the Cloud, and that keeps the code and data
secret as well as ensuring the correctness and completeness of the result. The user
code is loaded into an SGX enclave, and it exploits a key exchange protocol to get the
keys needed to decrypt the provided map and reduce functions. The TCB only contains
Hadoop, while the OS, and the VMM, are outside the TCB. Hence, in the considered
threat model, an attacker can attack OS and hypervisor and can also record, replay,
and modify network packets.

5. FRAMEWORK TO CATEGORIZE, DEFINE AND EVALUATE SECURITY SOLUTIONS
To categorize the solutions discussed so far, we propose a framework that takes into
account their threat model, the security properties of the solution (goal and TCB), and
how the solution is implemented (methodology and features).We believe that such a
common framework is needed also to evaluate different solutions under the same tax-
onomy. Furthermore, such a framework can be used when proposing a new security
solution to clearly define the assumptions and the goals. To this end, in the follow-
ing we propose a categorization of the security solutions based upon the threat models
(security and trust assumptions), security properties (goals and TCB) and the imple-
mentation strategy (methodology and features).

5.1. Threat Models of the Solutions
We have seen that different threat models may exist in a virtualized system, each of
which includes a different set of security and trust assumptions and possible threats
against the assets. A threat model thus comprises a set of threats (and related attacks),
security assumptions and trust assumption. The security assumptions form the basis
from which security control is enforced. For example, if in one model one considers
physical access is not possible, attacks trying to subvert the hypervisor from the lower
level are not taken into account by the solution, but may still exist. In another example,

7For more details, see the Software Guard Extensions Programming Reference: https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

46:20 D. Sgandurra et al.

if the threat model considers the hypervisor to be with no (exploitable) bugs, whereas
the OS is vulnerable, then a proposed protection solution can be deployed directly in-
side the the hypervisor itself to consider possible attacks against the kernel. The trust
assumptions define the level of trust in the system’s components and its principals be-
fore security mechanisms are deployed. Trust assumptions in the threat models might
be based upon trust in the Cloud providers, in SLAs, on an assessment, on proofs, or
on a black box approach. Trust can also be defined as an accepted dependance [Avizie-
nis et al. 2004], where dependence of a component A on a component B represents the
extents to which the security (dependability) of A depends by that of B. In our case,
we are interested in defining the trust of actors (willingness/capacity to operate in a
compliant way), which have direct access to these components (i.e., a component B de-
pends on the trust of the actor A). The notion of dependability, i.e. the ability to deliver
service that can justifiably be trusted, can be related to the security assumptions on
the components, in particular in terms of their trustworthiness (i.e., assurance that
the component will perform as expected) and control (which actor is supposed to be
in control of the component). In our model, the threats are generic (e.g., provider and
an external attackers) rather than specific as in [Avizienis et al. 2004] (administrators,
users, providers, infrastructures, intruders, etc.) and we consider trust assumptions on
the Cloud providers only. The same applies to the classes of attacks (or faults) where,
when defining their threat model, we are usually referring to the security of the com-
ponents with respect to generic attacks. This is due to the fact that we are trying to
depict the worst-case scenarios.

We start by categorizing the existing security and trust assumptions at the different
levels.

5.1.1. Security and Trust Assumptions. Concerning this set of assumptions, the first thing
to consider is how well protected is the physical access to the server hosting the ten-
ants’ VMs. Obviously, any device that can be easily accessed, and tampered with, can-
not be easily protected (even if some form of hardware mechanism and obfuscation
can make this task more difficult [Chakraborty and Bhunia 2009], [Chakraborty and
Bhunia 2010], [Desai et al. 2013]). Then we need to consider the assumptions at the
upper levels.

Security Assumptions at Physical Level. Concerning physical assumptions, those
that may impact the integrity and confidentiality of the tenants system are catego-
rized as follows:

— Is physical access possible? When access is restricted to trusted staff, i.e., this in-
cludes the case in which physical security systems in the Cloud premises are in place
(such as cameras, security personel, etc) [Wang and Jiang 2010] [Azab et al. 2010]
[Szefer et al. 2011], versus those in which attackers may have physical access to the
system [Owusu et al. 2013].

— Is physical tamper possible? When hardware is protected by physical tampering [Suh
et al. 2003]; this caters for cases where, even if physical access in not restricted, some
anti-tampering mechanisms exist. If this is the cases, and depending on the quality
and protection level of such mechanisms, physical attacks might be removed from
the threat model.

— Are BIOS/SMM or DMA malicious? If we consider these threats as possible, such as
DMA attacks, then solutions that are based on the protection mechanisms offered by
the CPU (e.g., paging) are no longer valid, and they propose alternative mechanisms
[McCune et al. 2008]. Other solutions explicitly remove SMM threats from the threat
model [Li et al. 2013] [Wang and Jiang 2010].

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:21

— Is trusted-boot present? When trusted boot is considered to be present or not, one can
assume the loading of the hypervisor to be trustworthy and focus on protecting other
functionalities or the system [Butt et al. 2012] [Strackx and Piessens 2012].

— Is the hardware known? When the hardware is known (CPU, memory, etc), i.e., we as-
sume to know the model of the CPU, its frequency, the amount or RAM. For software-
based attestation solutions [Seshadri et al. 2005] [Perito and Tsudik 2010] this is
usually a mandatory requirement since, being based on timing requirements, it is
mandatory to exactly know the model of the hardware components.

Note that usually some attacks are not considered at all, such as monitoring the high-
speed bus that connects the CPU and memory, because they are very difficult to imple-
ment and also the protection mechanisms to resist such attacks are difficult to deploy.
Fig. 4 shows some of the possible attacks, discussed in Sect. 3, related to each of these
assumptions in case they are not satisfied.

Fig. 4. Security Assumptions at Physical Level

Security Assumptions at Virtualization Level. Next we need to categorize the as-
sumptions concerning the VMs and the hypervisor:

— Is the OS vulnerable? When the OS is benign but may contain vulnerabilities
[Criswell et al. 2014]: this caters for cases where the user trusts the initial setup
of the OS inside the VM, but attacks are still possible due to the presence of bugs.

— Is the OS untrusted? When the OS is considered to be untrusted and can behave in
any malicious way [McCune et al. 2008] [McCune et al. 2010] [Szefer et al. 2011]
[Jayaram Masti et al. 2013] , i.e., we assume it can be remotely (locally) attacked. In
this case, the owner of the VM does not trust the VM OS. A class of attacks due to
improper semantics of the OS are the Iago attacks [Checkoway and Shacham 2013],
where the results of the system call are manipulated in such a way that the request-
ing application is tampered with. In this case, the OS is completely untrusted.

— Is introspection enabled? If this condition is met [Garfinkel and Rosenblum 2003]
[Bryan D. Payne and Martim Carbone and Wenke Lee 2007] [Jiang et al. 2007], an
attacker gaining access to a privileged VM is able to read sensitive data of any guest
VM. Furthermore, it might be able to modify the semantics of programs running
inside VMs or configuration files.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:22 D. Sgandurra et al.

— Is the Admin VM protected? When the Admin VM is considered to be protected [Ding
et al. 2013a] or may be vulnerable to attacks or is considered to be malicious [Butt
et al. 2012] [Srivastava et al. 2012]; in these cases, the attacks might access the
Admin VM from a guest VM, or remotely, and from this privileged VM they may
perform denial-of-service attack, such as stopping a tenant VM. An attacker may
also read, or write, to any portion of memory of the guest VM in an invisible manner.

— Is the configuration interface protected? When a (remote) attacker can modify, read,
restart any other VMs using the hypervisor configuration interface [Santos et al.
2012], [Zhang et al. 2011a]. This might happen because the configuration interface
(e.g., the Web interface) is not well protected (e.g., open port to the outside and
easy password) or the hypervisor itself is not updated and vulnerabilities may be
exploited. Otherwise, it is assumed to be trusted [Szefer et al. 2011]

— Are there any vulnerabilities in the hypervisor? When hypervisor is considered
trusted [Szefer et al. 2011] or it may contain vulnerabilities [Zhang et al. 2011a]:
for example, solutions can consider that the hypervisor is trustworthy (and possibly
loaded with SRTM technologies [Wang and Jiang 2010]) but it may contain vulnera-
bilities that can be exploited by an attacker [Azab et al. 2010].

— Is the hypervisor protected? When protection is in place against attacks on the hy-
pervisor [Xiong et al. 2011] by guest VMs or remote attacks.

Figure 5 shows some of the possible attacks related to these assumptions in the
worst case, i.e., if these assumptions are considered as false in the threat model.

Fig. 5. Security Assumptions at Virtualization Level

Trust Assumptions at Cloud Level. In this context, the trust level is related to the
fact that tenants lose part of their control over the hardware and software components,
and this loss of control means they have to trust to some extent the provider. The trust
assumptions on the Cloud provider are categorized as follows:

— Is the provider trusted? When providers are trusted so no attacks are considered
possible on the virtualized system, especially low-level attacks [Szefer et al. 2011]
[Li et al. 2013].

— It the provider honest-but-curious? When system administrators of guest VMs are
trusted but may have the opportunities to access user’s confidential data [Xiong et al.
2012]. In this case, it is assumed that they cannot alter programs or configuration
files of VMs or the hypervisor.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:23

— Do we consider insider threats or malicious administrator? Even if the providers can
be trusted, it might be the case that either some untrusted staff or trusted staff,
unwillingly, perform operations that might impact the integrity or confidentiality of
VMs [Srivastava et al. 2012], such as deleting files, or stopping a VM.

— What is the Cloud service model? When the tenant is using a IaaS/PaaS/SaaS model
[Mell and Grance 2011]: this sets the tenants’ level of access to the resources, i.e., if
the user is in control of the entire stack of the VM, only of the OS, the middleware or
of the applications.

Regarding the third point, some papers on protecting tenants VMs in the Cloud [Butt
et al. 2012] [Szefer et al. 2011] [Li et al. 2013] [Santos et al. 2012] differentiate between
Cloud service providers and Cloud system administrators. Cloud providers, such as
Amazon EC2 and Microsoft Azure, have a vested interest in protecting their reputa-
tions. On the other hand, Cloud system administrators are individuals entrusted with
system tasks and maintaining the Cloud infrastructure and that have access to Admin
VM and the privileges that it entails. In these papers, it is assumed that Cloud system
administrators are either malicious or they could make mistakes. By extension, the
assumption is that the Admin VM is untrusted, i.e., system administrators can per-
form any operation with high-privileges on the hypervisor and VMs, but they cannot
physically access them. Also in this case, we have depicted some of the possible attacks
if each assumption is not satisfied (see Figure 6).

Fig. 6. Security Assumptions at Cloud Level

Combining Security and Trust Assumptions. In Table II we summarize the set of
possible security and trust assumptions in the threat models. Note that each threat
model includes only those assumptions that the designer of the solution believe to be
considered. Hence, each protection solution is tailored for that specific threat model.
For this reason, before exploiting a protection solution, it is important to understand
what are the exact threats that one needs to cover. In fact, it might be the case that
no solution exist if one considers the worst-case scenario, i.e., with a very restricted
threat model. Note also that once the threat model has been defined, the level of access
of the tenants to the Cloud resources, the attacker’s capabilities, and the provider’s
trustworthiness, the classes of attacks on tenants resources vary noticeably.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:24 D. Sgandurra et al.

Table II. Assumptions in the Threat Model

Assumptions Meaning

Hardware-Level
Physical attacks When physical access is possible.
BIOS/DMA malicious When low-level attacks are possible.
SRTM/DRTM When trusted boot is present.

Virtualization-Level
OS vulnerable When the OS can have bugs.
OS untrusted When OS can be controlled by attackers.
Introspection untrusted When VMI can be used by attackers to read/modify VMs.
Admin VM untrusted When admin VM can be used to access VMs and VMM.
Hypervisor vulnerable When hypervisor can be attacked.
Hypervisor untrusted When hypervisor can be controlled by attackers.

Cloud-Level
Trusted but misoperations When the providers are trusted.
Honest but curious When the provider can read data.
Malicious admins When the provider can read and modify data.

5.2. Security Properties of the Solutions: Goals and TCB
In our categorization of the security solutions for virtualized environments, we also
categorize the solutions based on their security properties, in terms of goals (covered
attacks) and TCB. In particular, we consider these goals:

— integrity of the applications: protection from attacks are aimed at modifying the ap-
plications running in the VM, usually by exploiting standard techniques [Abadi et al.
2005] but by taking advantage of virtualization technology, e.g., by placing them at a
lower level;

— integrity of the VM (OS and applications): protection from attacks that are aimed
at modifying the VM; another distinction here is between static protection (i.e., the
correct loading of the VM [Sailer et al. 2004] [Jaeger et al. 2006]) versus dynamic
protection [Quynh and Takefuji 2007] (e.g., run-time checking of the semantics of the
OS [Criswell et al. 2014] or of the applications [Baiardi et al. 2009]);

— integrity of the VMs by untrusted components (VM isolation): protecting the integrity
of the VMs by isolating them from an untrusted OS [Chen et al. 2008] or other com-
ponents, such as drivers;

— integrity of the hypervisor: protection from attacks against the hypervisor. We fur-
ther differentiate among solutions that provide static integrity protection (Hypeguard
[Rutkowska and Wojtczuk 2008], Hypersentry [Azab et al. 2010], HyperCheck [Wang
et al. 2010]), or control-flow protection (Hypersafe [Wang and Jiang 2010]), or non-
control-data protection (HyperVerify [Ding et al. 2013a]);

— confidentiality of the data or program in the VM: protection from attacks whose goal
is to illegally access (confidential) data of the tenants [Godfrey and Zulkernine 2014],
[Priebe et al. 2014], [Kim et al. 2015];

— protection against specific threats: solutions suited for particular problems, such as
kernel rootkits [Garfinkel and Rosenblum 2003], VMM detection [Carpenter et al.
2007], VM escape, VM hopping, Cross-VM, or for existing known vulnerabilities
(CVE);

Other goals that we do not consider here are, but that can be easily integrated in the
framework, are (i) the integrity of the computation: these attacks are aimed at mod-
ifying the results of a computation (there is a strong interest in this field in current
papers, such as with verifiable computation [Parno et al. 2013] [Vu et al. 2013]; how-
ever, we do not consider these classes of attacks); (ii) program or VM availability.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:25

As far as regards the TCB, we have seen (in particular, in Sect. 4) that all the so-
lutions rely on an (implicit) TCB, which is left outside the attacks surface. Usually
the TCB is strongly related to the security and trust assumptions, e.g. if one assumes
that the hypervisor cannot be attacked then logically it is in the TCB. However, we
have shown that some solutions also introduce additional software, or hardware, com-
ponents that are also included in the TCB. For these reasons, we also explicitly include
the TCB in the categorization. In particular, when analyzing the solutions discussed in
Sect. 4, we have seen there are many possible TCBs, among which the most common
include:

— the Admin VM and the hypervisor (and the layers below): these are solutions based
on an additional VM to check the integrity of the VM;

— only the hypervisor (and the layers below): these are solutions based on monitoring
the VMs from the hypervisor;

— a reduced TCB hypervisor (and the layers below): these are solutions that remove
functionalities from the TCB of the hypervisor;

— a nested micro-hypervisor (and the layers below): these are solutions based on adding
an additional software layer below the hypervisor;

— only the hardware: these are solutions based on exploiting hardware-based mecha-
nisms (such as SMM mode or additional hardware).

In other cases, a custom TCB is proposed.

5.3. Implementation Strategy of the Solutions: Methodologies and Features
The next axis to categorize the solutions is their implementation strategy, in particular
in terms of methodologies and proposed features. We recall the categorization of the
solutions for virtualized environment we have proposed in the previous section:

— using an Admin VM for protection:
— e.g., VMI.

— using the hypervisor for protection;
— protecting the hypervisor:

— formal verification;
— hypervisor hardening ;
— minimize hypervisor TCB;
— nested virtualization approaches;
— hardware-assisted solutions;
— introducing additional hardware;
— using root-of-trust.

However, also other methodologies are possible (they also depend on the state-of-the-
art of the technology). We also consider the features of the solutions, such as (i) the
transparency of the solutions, i.e., if the solution requires none or little changes to
virtualization stack (OS, VMM) or if it requires modification of the computing platform
(and at which level, i.e., libraries, or kernel level), (ii) if it can be used in any OS or
hypervisor or only on specific ones (portability), and (iii) the performance overhead of
the solution. Finally, those attacks that are not covered, under the considered threat
model, define the limitations of the proposed solutions.

In the end, by combining the threat models, the goals, the TCB, the methodology
and the features of the protection solutions, we can define of a common methodol-
ogy to categorize and evaluate them. We have summarized all these features these in
Tab. III. This table is by no means exhaustive, i.e., there can be other goals, assump-
tions, methodologies that one can consider and add to it. By using the same approach,
one can clearly understand the attacks that are considered by the protection solutions

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:26 D. Sgandurra et al.

and only under what assumptions they are effective. We think that by using the same
taxonomy for defining, among others, the threat model, the security properties and
implementation strategy of a protection solution, it is possible to qualitatively and
quantitatively evaluate a proposed solution more accurately. To show an instantiation
of this categorization, in Tab. IV we have summarized the threat models (security and
trust assumptions), security properties (goals and TCB) and implementation strategy
methodology and features) of some of the papers previously discussed in Sect 4 (or-
dered chronologically).

Table III. Framework to Categorize, Define and Evaluate Security Solutions

Threat Model: Security Assumptions

Physical Access
BIOS/DMA malicious
SRTM/DRTM available
OS vulnerable
OS untrusted
Introspection untrusted
Admin VM untrusted
Hypervisor vulnerable
Hypervisor untrusted

Threat Model: Trust Assumptions
Trusted
Honest but curious
Malicious admins

Solution: Security Properties - Goals (Attack Covered)
Integrity of the VM (static, dynamic)
VM isolation
Integrity of the hypervisor (static, control-flow attacks, non-control-data)
VM confidentiality
Specific Threats (VMM Detection, VM Escape, VM Hopping, Cross VM, known CVE)

Solution: Security Properties - TCB
Admin VM and hypervisor
Hypervisor
A reduced TCB hypervisor
A nested micro-hypervisor
Only the hardware

Solution: Implementation - Methodology
Using an Admin VM for Protection (e.g., VMI)
Using the Hypervisor for Protection
Protecting Hypervisor (e.g., formal verification, hardening, minimize TCB, ...)

Solution: Implementation - Features
Transparency
Portability
Performance
Limitations (e.g., attacks not covered)

6. DISCUSSION
We have seen that virtualization technology has been used to prevent existing attacks,
e.g. to OS and apps, but in a “clever way”, and also to prevent attacks facilitated by
virtualization, such as Cross-VM, and to prevent attacks against the virtualization
layer itself, e.g. the hypervisor. Most of the proposed solutions address generic threats,
such as integrity or confidentiality, instead of specific ones (such as VM Escape or a
specific CVE). In general, the solutions we have detailed are mainly targeted against

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:27
Ta

bl
e

IV
.C

om
pa

ris
on

of
Th

re
at

M
od

el
s

an
d

G
oa

ls
of

S
om

e
P

ap
er

s
Pa

pe
r

Se
cu

ri
ty

A
ss

um
pt

io
ns

T
ru

st
A

ss
um

pt
io

ns
Se

cu
ri

ty
P

ro
pe

rt
ie

s:
G

oa
l

Se
cu

ri
ty

P
ro

pe
rt

ie
s:

T
C

B
Im

pl
em

en
ta

ti
on

:M
et

ho
do

lo
gy

Im
pl

em
en

ta
ti

on
:F

ea
tu

re
s

[M
cC

un
e

et
al

.2
00

8]

B
IO

S,
O

S,
D

M
A

m
ay

be
m

al
ic

io
us

E
xp

lo
it

A
M

D
SV

M
N

.A
.

E
xe

cu
te

se
ns

it
iv

e
co

de
in

is
ol

at
io

n
A

tt
es

ta
ti

on
of

co
de

ex
ec

ut
io

n
25

0
L

in
es

of
co

de
D

R
T

M
A

pp
lic

at
io

ns
ne

ed
to

be
po

rt
ed

Pa
us

e
al

lt
he

pr
oc

es
se

s

[W
an

g
an

d
Ji

an
g

20
10

]

N
o

ph
ys

ic
al

A
tt

ac
ks

N
o

B
IO

S/
SM

M
at

ta
ck

s
Ye

s
D

M
A

at
ta

ck
s

H
yp

er
vi

so
r

vu
ln

er
ab

le
T

ru
st

ed
-B

oo
t

to
lo

ad
hy

pe
rv

is
or

N
.A

.
In

te
gr

it
y

of
th

e
hy

pe
rv

is
or

(d
yn

am
ic

an
d

no
n-

co
nt

ro
l-

da
ta

)
L

oa
de

d
H

yp
er

vi
so

r
H

yp
er

vi
so

r
H

ar
de

ni
ng

M
od

ifi
ca

ti
on

re
qu

ir
ed

to
hy

pe
rv

is
or

s
5%

ov
er

he
ad

[A
za

b
et

al
.

20
10

]

O
ut

-o
f-

ba
nd

ch
an

ne
l

to
en

ab
le

SM
I

re
m

ot
el

y
P

hy
si

ca
ls

ec
ur

it
y

in
pl

ac
e

T
ru

st
ed

bo
ot

to
la

un
ch

hy
pe

rv
is

or
SM

R
A

M
is

pr
ot

ec
te

d

N
.A

.
H

yp
er

vi
so

r
In

te
gr

it
y

an
d

at
te

st
at

io
n

(i
ns

ta
nt

ia
te

d
in

di
ff

er
en

t
ty

po
lo

gi
es

:
co

de
in

te
gr

it
y,

C
F

G
in

te
gr

it
y)

SM
M

C
od

e
SM

M
-B

as
ed

So
lu

ti
on

D
o

no
t

ad
dr

es
s

pe
ri

od
ic

at
ta

ck
s

in
-b

et
w

ee
n

ch
ec

ks

[M
cC

un
e

et
al

.2
01

0]

U
nt

ru
st

ed
O

S
an

d
ap

pl
ic

at
io

ns
U

nt
ru

st
ed

D
M

A
-d

ev
ic

es
N

o
ph

ys
ic

al
at

ta
ck

s
R

eq
ui

re
s/

E
xp

lo
it

s
D

R
T

M

N
.A

.
R

ed
uc

ed
T

C
B

H
yp

er
vi

so
r

C
od

e
an

d
da

ta
in

te
gr

it
y

fo
r

se
le

ct
ed

po
rt

io
n

of
ap

pl
ic

at
io

ns
6K

L
in

es
of

C
od

e
D

R
T

M

7%
ov

er
he

ad
D

oe
s

no
t

su
pp

or
t

m
ul

ti
-p

ro
ce

ss
or

A
pp

lic
at

io
ns

ne
ed

to
be

po
rt

ed
to

in
cl

ud
e

PA
L

[C
ha

m
pa

gn
e

an
d

L
ee

20
10

]

So
ft

w
ar

e
an

d
ha

rd
w

ar
e

at
ta

ck
s

N
.A

.
P

ro
te

ct
io

n
of

SW
m

od
ul

es
in

un
tr

us
te

d
en

vi
ro

nm
en

ts
M

ic
ro

pr
oc

es
so

r
C

hi
p

H
ar

dw
ar

e-
A

ss
is

te
d

So
lu

ti
on

R
eq

ui
re

s
ne

w
m

ic
ro

pr
oc

es
so

r
re

qu
ir

es
ad

-h
oc

hy
pe

rv
is

or

[S
ze

fe
r

et
al

.
20

11
]

P
hy

si
ca

ls
ec

ur
it

y
co

nt
ro

ls
in

pl
ac

e
U

nt
ru

st
ed

O
S

T
ru

st
ed

hy
pe

rv
is

or

T
ru

st
ed

pr
ov

id
er

T
ru

st
ed

m
ng

m
t

in
te

rf
ac

e
A

tt
ac

ks
to

V
M

M
by

gu
es

t
V

M
s

Is
ol

at
io

n
be

tw
ee

n
V

M
s

N
ew

re
du

ce
d

V
M

M
R

ed
uc

in
g

T
C

B
R

eq
ui

re
s

sl
ig

ht
ly

m
od

ifi
ed

O
S

av
ai

la
bl

e
to

te
na

nt
s

1%
ov

er
he

ad

[Z
ha

ng
et

al
.2

01
1a

]

T
ru

st
ed

bo
ot

to
la

un
ch

C
lo

ud
vi

so
r

V
M

I
is

po
ss

ib
le

M
an

ag
em

en
t

in
te

rf
ac

e
vu

ln
er

ab
le

H
yp

er
vi

so
r

un
tr

us
te

d
N

o
ph

ys
ic

al
at

ta
ck

s

H
on

es
t

pr
ov

id
er

m
is

op
er

at
io

ns
ca

n
ha

pp
en

C
on

fid
en

ti
al

it
y

an
d

in
te

gr
it

y
of

V
M

s
fr

om
ot

he
r

V
M

s
an

d
V

M
M

5K
L

O
C

of
T

C
B

N
es

te
d

vi
rt

ua
liz

at
io

n
1

L
O

C
of

m
od

ifi
ca

ti
on

to
X

en
N

ee
ds

po
rt

in
g

[X
io

ng
et

al
.

20
11

]

U
nt

ru
st

ed
O

S
an

d
E

xt
en

si
on

s
T

ru
st

ed
hy

pe
rv

is
or

N
.A

.
O

S
in

te
gr

it
y

(s
ta

ti
c,

da
ta

in
te

gr
it

y
an

d
co

nt
ro

l-
flo

w
)

H
yp

er
vi

so
r

P
ro

te
ct

io
n

fr
om

H
yp

er
vi

so
r

M
od

ifi
ca

ti
on

to
X

en
(3

.3
K

L
O

C
)

M
od

ifi
ca

ti
on

to
L

in
ux

(4
50

L
O

C
)

[S
tr

ac
kx

an
d

P
ie

ss
en

s
20

12
]

A
tt

ac
ke

r
ca

n
ex

ec
ut

e
ar

bi
tr

ar
y

co
de

at
ke

rn
el

le
ve

l
T

ru
st

ed
bo

ot
to

lo
ad

V
M

M
N

o
ph

ys
ic

al
ac

ce
ss

N
.A

.
P

ro
te

ct
ap

pl
ic

at
io

ns
fr

om
O

S
an

d
ap

ps
T

C
B

7K
N

es
te

d
V

ir
tu

al
iz

at
io

n
N

ew
H

yp
er

vi
so

rs
(1

K
)

3%
-1

4%
ov

er
he

ad

[B
ut

t
et

al
.

20
12

]

A
dm

in
V

M
un

tr
us

te
d

T
ru

st
ed

bo
ot

to
ch

ec
k

sy
st

em
-l

ev
el

T
C

B
P

hy
si

ca
lS

ec
ur

it
y

in
pl

ac
e

C
SP

tr
us

te
d

M
al

ic
io

us
sy

sa
dm

in
s

Te
na

nt
s

V
M

se
cu

ri
ty

an
d

pr
iv

ac
y

H
yp

er
vi

so
r

an
d

D
om

ai
n

bu
ild

er
R

ed
uc

in
g

H
yp

er
vi

so
r

T
C

B
M

od
ifi

ca
ti

on
to

V
M

M

[S
an

to
s

et
al

.2
01

2]

R
em

ot
e

at
ta

ck
er

s
ca

n
do

an
yt

hi
ng

N
o

ph
ys

ic
al

at
ta

ck
s

R
em

ot
e

in
te

rf
ac

e
vu

ln
er

ab
le

T
ru

st
ed

bo
ot

to
lo

ad
hy

pe
rv

is
or

M
al

ic
io

us
ad

m
in

is
tr

at
or

M
is

co
nfi

gu
ra

ti
on

D
at

a
co

nfi
de

nt
ia

lit
y

(r
ev

ea
ld

at
a

on
ly

to
no

de
s

sa
ti

sf
yi

ng
a

po
lic

y)
H

yp
er

vi
so

r
an

d
T

ru
st

ed
N

od
e

T
ru

st
ed

T
hi

rd
Pa

rt
y

A
ss

um
e

a
tr

us
te

d
m

on
it

or
no

de
to

ce
rt

if
y

no
de

s

[C
he

n
et

al
.

20
12

]

A
tt

ac
ke

r
ex

pl
oi

t
ap

ps
or

O
S

to
le

ak
se

ns
it

iv
e

da
ta

O
S

un
tr

us
te

d
Se

cu
re

bo
ot

is
pr

es
en

t
N

o
ha

rd
w

ar
e

at
ta

ck
s

N
o

an
al

og
ue

ho
le

N
.A

.
D

at
a

co
nfi

de
nt

ia
lit

y
(o

nl
y

au
th

or
iz

ed
ap

ps
ca

n
ac

ce
ss

da
ta

pr
ot

ec
t

ag
ai

ns
t

da
ta

di
ss

em
in

at
io

n)
O

nl
y

ha
rd

w
ar

e
H

ar
dw

ar
e-

A
ss

is
te

d
R

eq
ui

re
s

ne
w

ha
rd

w
ar

e

[S
ri

va
st

av
a

et
al

.2
01

2]

M
al

ic
io

us
A

dm
in

V
M

T
ru

st
ed

bo
ot

to
lo

ad
hy

pe
rv

is
or

N
o

ha
rd

w
ar

e
at

ta
ck

s

T
ru

st
ed

pr
ov

id
er

M
al

ic
io

us
ad

m
in

is
tr

at
or

s
P

ro
vi

de
at

te
st

at
io

n
of

in
te

gr
it

y
of

V
M

s
to

te
na

nt
s

H
yp

er
vi

so
r

P
ro

te
ct

io
n

fr
om

H
yp

er
vi

so
r

A
dd

s
4K

L
O

C
to

hy
pe

rv
is

or
R

eq
ui

re
s

tr
us

te
d

th
ir

d
pa

rt
y

[H
of

m
an

n
et

al
.2

01
3]

U
nt

ru
st

ed
O

S
T

ru
st

ed
H

yp
er

vi
so

r
N

.A
.

P
ro

te
ct

V
M

ap
ps

fr
om

un
tr

us
te

d
O

S
H

yp
er

vi
so

r
T

ru
st

ed
lib

ra
ry

P
ro

te
ct

io
n

fr
om

H
yp

er
vi

so
r

35
00

hy
pe

rv
is

or
L

O
C

(e
xt

en
si

on
to

K
V

M
)

A
dd

(t
ru

st
ed

)u
se

r-
lib

ra
ry

5x
-5

5x
sl

ow
do

w
n

[L
i

et
al

.
20

13
]

N
o

ph
ys

ic
al

at
ta

ck
s

T
ru

st
ed

-b
oo

t
P

ro
te

ct
io

n
to

SM
M

in
pl

ac
e

(c
us

to
m

B
IO

S)

M
al

ic
io

us
sy

sa
dm

in
s

P
ro

vi
de

r
tr

us
te

d

T
C

B
re

du
ct

io
n

P
ro

vi
de

pr
iv

ac
y

to
V

M
s

V
M

-t
o-

V
M

M
at

ta
ck

s
V

M
-t

o-
V

M
at

ta
ck

s
In

si
de

r
at

ta
ck

s

T
C

B
5.

8K
L

O
C

R
ed

uc
in

g
T

C
B

N
ew

hy
pe

rv
is

or
2-

9%
sl

ow
do

w
n

[W
u

et
al

.
20

13
]

N
o

ph
ys

ic
al

A
tt

ac
ks

H
yp

er
vi

so
r

vu
ln

er
ab

le
H

os
t

O
S

T
ru

st
ed

N
.A

.
R

ed
uc

in
g

H
yp

er
vi

so
r

T
C

B
T

C
B

2.
3K

L
O

C
R

ed
uc

in
g

hy
pe

rv
is

or
T

C
B

A
dd

ed
10

ne
w

sy
st

em
ca

lls
6%

ov
er

he
ad

[O
w

us
u

et
al

.2
01

3]

A
tt

ac
ke

r
ca

n
ha

ve
ph

ys
ic

al
ac

ce
ss

C
an

ta
m

pe
r

w
it

h
B

U
Se

s
O

S,
A

pp
,F

ir
m

w
ar

e
un

tr
us

te
d

T
ru

st
ed

C
SP

M
al

ic
io

us
ad

m
in

is
tr

at
or

s
Is

ol
at

ed
ex

ec
ut

io
n

en
vi

ro
nm

en
t

O
nl

y
C

P
U

D
R

T
M

R
eq

ui
re

s
a

ne
w

C
P

U

[J
ay

ar
am

M
as

ti
et

al
.2

01
3]

H
yp

er
vi

so
r

is
tr

us
te

d
O

S
ca

n
be

m
al

ic
io

us
N

.A
.

U
si

ng
T

X
T

in
m

ul
ti

-c
or

e
ar

ch
it

ec
tu

re
s

(c
on

cu
rr

en
t

ex
ec

ut
io

n
of

se
cu

re
en

vi
ro

nm
en

ts
e.

g.
on

C
lo

ud
)

H
yp

er
vi

so
r

D
R

T
M

R
eq

ui
re

s
ch

an
ge

s
to

x8
6

pl
at

fo
rm

[X
ia

et
al

.
20

13
]

U
nt

ru
st

ed
H

yp
er

vi
so

r
P

hy
si

ca
la

tt
ac

ks
ar

e
po

ss
ib

le
R

eq
ui

re
se

cu
re

pr
oc

es
so

r
V

M
no

t
vu

ln
er

ab
le

M
al

ic
io

us
ad

m
in

is
tr

at
or

P
ro

te
ct

io
n

of
V

M
s

fr
om

un
tr

us
te

d
hy

pe
rv

is
or

V
M

-S
hi

m
(1

,1
00

L
O

C
)

H
ar

dw
ar

e-
ba

se
d

38
0

L
O

C
of

ch
an

ge
s

to
hy

pe
rv

is
or

re
qu

ir
es

ha
rd

w
ar

e
su

pp
or

t

[D
in

g
et

al
.

20
13

a]

U
nt

ru
st

ed
hy

pe
rv

is
or

A
ss

um
e

hy
pe

rv
is

or
co

de
in

te
gr

it
y

is
en

su
re

d
U

nt
ru

st
ed

V
M

s
ca

n
at

ta
ck

hy
pe

rv
is

or
T

ru
st

ed
ad

m
in

V
M

D
M

A
en

ab
le

d

N
.A

.
M

on
it

or
hy

pe
rv

is
or

no
n-

co
nt

ro
ld

at
a

A
dm

in
V

M
an

d
L

oa
de

d
H

yp
er

vi
so

r
H

ar
de

ni
ng

V
M

I
ca

n
be

fo
ol

ed
A

tt
ac

ks
in

-b
et

w
ee

n
pe

ri
od

ic
ch

ec
ks

[B
au

m
an

n
et

al
.2

01
4]

U
nt

ru
st

ed
ha

rd
w

ar
e

(e
xc

ep
t

pr
oc

es
so

r)
U

nt
ru

st
ed

C
lo

ud
pr

ov
id

er
U

nt
ru

st
ed

ad
m

in
s

In
te

gr
it

y
an

d
C

on
fid

en
ti

al
it

y
L

ib
O

S
(2

09
M

B
)a

nd
Sh

ie
ld

M
od

ul
e

(1
80

K
B

)
H

ar
dw

ar
e-

ba
se

d
A

ro
un

d
31

%
-5

4%
ov

er
he

ad

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

46:28 D. Sgandurra et al.

integrity attacks, in all their variants, whereas only a limited number of them address
confidentiality issues (e.g., Cross-VM), and almost none of them consider availability
issues.

In this survey we have provided a thorough review of threats and attacks against
a system running in a virtualized environment and the research solutions aimed at
addressing a set of threats. We have seen that to devise a protection mechanisms in
a virtualized environment, one needs to consider the possible threat models, i.e., at-
tacks, usage scenarios, trust assumptions at each architectural layer, e.g. hardware,
hypervisor, VM – the security of the system being linked to a set of threats and trust
assumptions. One of the issues with this approach is that solutions only consider a
specific threat model and are highly sensitive to variation to that model, e.g. if an as-
sumption is removed, or a new threat is considered, the solution is no longer valid.
Such changes occur naturally because new issues and attacks arise as new technolo-
gies emerge, as we have described for virtualization technology. We have seen that the
hypervisor is a worthy target since if an attacker is able to compromise the hypervisor
of a physical host of the provider, he/she is potentially able to access, and modify, any
tenants’ data or application, possibly without being noticed [Kortchinsky 2009], [El-
hage 2011]. Hence, many studies exploit virtualization to provide application integrity
but assume that the hypervisor is trusted [Keller et al. 2010], [Hofmann et al. 2011],
[Azab et al. 2009], [Xiong et al. 2011]. This is the case of solutions based upon virtual
machine introspection [Garfinkel and Rosenblum 2003] [Bryan D. Payne and Martim
Carbone and Wenke Lee 2007] [Jiang et al. 2007], which check the memory of a VM for
compromise, and rely on the data gathered from a introspection interface exported by
the hypervisor itself. However, in these scenarios, should a hypervisor be compromised,
either fake data might be returned by the introspection interface or, worst, other VMs
resident on the same host might by attacked from the compromised hypervisor. The
argument that hypervisor is secure is based on the observation of its restricted code-
base, and narrow interface. However, as the hypervisor size is continuously increasing,
and taking into account also existing attacks against the hypervisor (e.g., VM escape),
the assumption no longer holds and new threat models no longer consider it trusted
[Szefer et al. 2011] [Azab et al. 2010]. As we have depicted in Fig. 7, we can see that
proposed security solutions are increasingly moving closer to the hardware. Further-
more, we can clearly see a trend towards TCB reduction: this has happened as new
attacks made it possible, and likely, to attack firstly the tenant VMs, then the Admin
VM, then the hypervisor and so on. In particular, regarding the hypervisor, we have
seen that it has been initially assumed to be part of the TCB; then solutions have di-
rectly enhanced it to protect it from external attacks; newer solutions have striven to
reduce its TCB; finally, some recent solutions consider the hypervisor not part of the
TCB anymore.

An interesting aspect that we want to underline is that, in the existing studies,
threats are considered either possible or not possible, i.e., threat models only consider
worst-case scenarios, e.g. the hypervisor is either fully compromised or trusted, with-
out considering probabilities. Another interesting characteristic is whether solutions
can be combined together. We have seen that some can be merged, such as those to
provide hypervisor integrity with those that guarantee the VM integrity, to produce
a larger protection interface. Furthermore, we can also envision the combination of
solutions that provide control-flow integrity with those that provide data-flow, and
non-control data integrity. Analogously, we can consider the combination of solutions
tackling different goals, such as system integrity and confidentiality. Obviously, some
of these combinations may increase the size of the TCB, whereas some other combina-
tions are not directly possible because they need to be integrated (e.g., in the hypervi-
sor) and this might require some effort to make them cooperate.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:29

Fig. 7. Trends of Virtualization-based Solutions

7. CONCLUSION
In this survey we have provided a taxonomy of attacks in virtualized systems, by con-
sidering the target at the different levels, the source and goals of the attackers and
also shown the possible attack paths. We have then proposed a framework to catego-
rize more clearly the threat models, which can be used to define precisely the security
and trust assumptions when proposing a new protection solution. This framework also
includes the security properties of the solutions, such as their goal, for which we have
proposed a taxonomy that considers the kind of attacks they aim to prevent. We have
also categorized the solutions using their implementation strategy, such as with a set
of methodologies to protect the virtualized environment. We believe that the use of a
common and standardized framework could ease the categorization, description, and
evaluation, of the security solutions for virtualized environments. In fact, we have
witnessed, across the papers, several different ways to express the threat model and
some assumptions are not always evident. Furthermore, by clearly defining the se-
curity properties of the solutions, we can compare different solutions with the same
security properties using their implementation strategies, and it also becomes easier
to evaluate if different solutions can be combined to solve a complex problem.

REFERENCES
Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow Integrity. In Proceedings of the

12th ACM Conference on Computer and Communications Security (CCS ’05). ACM, New York, NY, USA, 340–353.
DOI:http://dx.doi.org/10.1145/1102120.1102165

Advanced Micro Devices. 2005. AMD AMD64 Virtualization Codenamed “Pacifica” Technology. Technology: Secure Virtual
Machine Architecture Reference Manual (2005), 1–124.

Aleph One. 1996. Smashing the stack for fun and profit. Phrack magazine 7, 49 (1996), 14–16.
Ittai Anati, Shay Gueron, S Johnson, and V Scarlata. 2013. Innovative Technology for CPU Based Attestation and Sealing.

Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, HASP
13 (2013).

W. A. Arbaugh, D. J. Farber, and J. M. Smith. 1997. A Secure and Reliable Bootstrap Architecture. In Proceedings of the
1997 IEEE Symposium on Security and Privacy (SP ’97). IEEE Computer Society, Washington, DC, USA, 65–. http:
//dl.acm.org/citation.cfm?id=882493.884371

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. 2004. Basic concepts and taxonomy of dependable
and secure computing. Dependable and Secure Computing, IEEE Transactions on 1, 1 (Jan 2004), 11–33.
DOI:http://dx.doi.org/10.1109/TDSC.2004.2

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dx.doi.org/10.1145/1102120.1102165
http://dl.acm.org/citation.cfm?id=882493.884371
http://dl.acm.org/citation.cfm?id=882493.884371
http://dx.doi.org/10.1109/TDSC.2004.2

46:30 D. Sgandurra et al.

A.M. Azab, Peng Ning, E.C. Sezer, and Xiaolan Zhang. 2009. HIMA: A Hypervisor-Based Integrity Mea-
surement Agent. In Computer Security Applications Conference, 2009. ACSAC ’09. Annual. 461 –470.
DOI:http://dx.doi.org/10.1109/ACSAC.2009.50

Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and Nathan C. Skalsky. 2010. HyperSentry: Enabling
Stealthy In-context Measurement of Hypervisor Integrity. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10). ACM, New York, NY, USA, 38–49. DOI:http://dx.doi.org/10.1145/1866307.1866313

Ahmed M. Azab, Peng Ning, and Xiaolan Zhang. 2011. SICE: A Hardware-level Strongly Isolated Computing Environment
for x86 Multi-core Platforms. In Proceedings of the 18th ACM Conference on Computer and Communications Security
(CCS ’11). ACM, New York, NY, USA, 375–388. DOI:http://dx.doi.org/10.1145/2046707.2046752

Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan, Junghwan Rhee, and Dongyan Xu.
2010. DKSM: Subverting Virtual Machine Introspection for Fun and Profit. In Proceedings of the 2010 29th IEEE
Symposium on Reliable Distributed Systems (SRDS ’10). IEEE Computer Society, Washington, DC, USA, 82–91.
DOI:http://dx.doi.org/10.1109/SRDS.2010.39

Fabrizio Baiardi, Diego Cilea, Daniele Sgandurra, and Francesco Ceccarelli. 2009. Measuring Semantic Integrity for Re-
mote Attestation. In Trusted Computing, Second International Conference, Trust 2009, Oxford, UK, April 6-8, 2009,
Proceedings (Lecture Notes in Computer Science), Vol. 5471. Springer, 81–100.

Sundeep Bajikar. 2002. Trusted platform module (tpm) based security on notebook pcs-white paper. White Paper, Mobile
Platforms Group–Intel Corporation 20 (2002).

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and An-
drew Warfield. 2003. Xen and the Art of Virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164–177.
DOI:http://dx.doi.org/10.1145/1165389.945462

Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation (OSDI’14). USENIX
Association, Berkeley, CA, USA, 267–283. http://dl.acm.org/citation.cfm?id=2685048.2685070

Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasser-
man, and Ben-Ami Yassour. 2010. The Turtles Project: Design and Implementation of Nested Virtualization. In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10). USENIX Association,
Berkeley, CA, USA, 1–6. http://dl.acm.org/citation.cfm?id=1924943.1924973

S. Bleikertz, T. Mastelic, S. Pape, W. Pieters, and T. Dimkov. 2013. Defining the Cloud Battlefield - Supporting Secu-
rity Assessments by Cloud Customers. In Cloud Engineering (IC2E), 2013 IEEE International Conference on. 78–87.
DOI:http://dx.doi.org/10.1109/IC2E.2013.31

Sara Bouchenak, Gregory Chockler, Hana Chockler, Gabriela Gheorghe, Nuno Santos, and Alexander Shraer.
2013. Verifying Cloud Services: Present and Future. SIGOPS Oper. Syst. Rev. 47, 2 (July 2013), 6–19.
DOI:http://dx.doi.org/10.1145/2506164.2506167

D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. 2005. Replay attack in TCG specification and solution. In Computer
Security Applications Conference, 21st Annual. 11 pp.–137. DOI:http://dx.doi.org/10.1109/CSAC.2005.47

Bryan D. Payne and Martim Carbone and Wenke Lee. 2007. Secure and Flexible Monitoring of Virtual Machines. Computer
Security Applications Conference, Annual 0 (2007), 385–397. DOI:http://dx.doi.org/10.1109/ACSAC.2007.10

Shakeel Butt, H. Andrés Lagar-Cavilla, Abhinav Srivastava, and Vinod Ganapathy. 2012. Self-service Cloud Computing.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS ’12). ACM, New York, NY,
USA, 253–264. DOI:http://dx.doi.org/10.1145/2382196.2382226

John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. 2013. BIOS Chronomancy: Fixing the Core Root
of Trust for Measurement. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS ’13). ACM, New York, NY, USA, 25–36. DOI:http://dx.doi.org/10.1145/2508859.2516714

Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. 2012. Secure and Robust Monitor-
ing of Virtual Machines Through Guest-assisted Introspection. In Proceedings of the 15th International Con-
ference on Research in Attacks, Intrusions, and Defenses (RAID’12). Springer-Verlag, Berlin, Heidelberg, 22–41.
DOI:http://dx.doi.org/10.1007/978-3-642-33338-5 2

Martim Carbone, Diego Zamboni, and Wenke Lee. 2008. Taming Virtualization. IEEE Security and Privacy 6, 1 (2008),
65–67. DOI:http://dx.doi.org/10.1109/MSP.2008.24

Matthew Carpenter, Tom Liston, and Ed Skoudis. 2007. Hiding Virtualization from Attackers and Malware. IEEE Security
and Privacy 5, 3 (May 2007), 62–65. DOI:http://dx.doi.org/10.1109/MSP.2007.63

R.S. Chakraborty and S. Bhunia. 2009. HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protec-
tion. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 28, 10 (Oct 2009), 1493–1502.
DOI:http://dx.doi.org/10.1109/TCAD.2009.2028166

Rajat Subhra Chakraborty and Swarup Bhunia. 2010. RTL Hardware IP Protection Using Key-Based Control and Data
Flow Obfuscation. In Proceedings of the 2010 23rd International Conference on VLSI Design (VLSID ’10). IEEE Com-
puter Society, Washington, DC, USA, 405–410. DOI:http://dx.doi.org/10.1109/VLSI.Design.2010.54

D. Champagne and R.B. Lee. 2010. Scalable architectural support for trusted software. In High
Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on. 1–12.
DOI:http://dx.doi.org/10.1109/HPCA.2010.5416657

Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the System Call API is a Bad Untrusted RPC Interface.
SIGPLAN Not. 48, 4 (March 2013), 253–264. DOI:http://dx.doi.org/10.1145/2499368.2451145

Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang, Rong Chen, Binyu Zang, Wenbo Mao, Haibo Chen, Fengzhe Zhang,
Cheng Chen, Ziye Yang, Rong Chen, Binyu Zang, and Wenbo Mao. 2007. Tamper-Resistant Execution in an Untrusted
Operating System Using A Virtual Machine Monitor. (2007).

Peter M. Chen and Brian D. Noble. 2001. When Virtual Is Better Than Real. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems (HOTOS ’01). IEEE Computer Society, Washington, DC, USA, 133–. http://dl.acm.org/
citation.cfm?id=874075.876409

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. 2005. Non-control-data Attacks Are Real-
istic Threats. In Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14 (SSYM’05). USENIX

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dx.doi.org/10.1109/ACSAC.2009.50
http://dx.doi.org/10.1145/1866307.1866313
http://dx.doi.org/10.1145/2046707.2046752
http://dx.doi.org/10.1109/SRDS.2010.39
http://dx.doi.org/10.1145/1165389.945462
http://dl.acm.org/citation.cfm?id=2685048.2685070
http://dl.acm.org/citation.cfm?id=1924943.1924973
http://dx.doi.org/10.1109/IC2E.2013.31
http://dx.doi.org/10.1145/2506164.2506167
http://dx.doi.org/10.1109/CSAC.2005.47
http://dx.doi.org/10.1109/ACSAC.2007.10
http://dx.doi.org/10.1145/2382196.2382226
http://dx.doi.org/10.1145/2508859.2516714
http://dx.doi.org/10.1007/978-3-642-33338-5_2
http://dx.doi.org/10.1109/MSP.2008.24
http://dx.doi.org/10.1109/MSP.2007.63
http://dx.doi.org/10.1109/TCAD.2009.2028166
http://dx.doi.org/10.1109/VLSI.Design.2010.54
http://dx.doi.org/10.1109/HPCA.2010.5416657
http://dx.doi.org/10.1145/2499368.2451145
http://dl.acm.org/citation.cfm?id=874075.876409
http://dl.acm.org/citation.cfm?id=874075.876409

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:31

Association, Berkeley, CA, USA, 12–12. http://dl.acm.org/citation.cfm?id=1251398.1251410
Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey

Dwoskin, and Dan R.K. Ports. 2008. Overshadow: A Virtualization-based Approach to Retrofitting Protection in Com-
modity Operating Systems. SIGPLAN Not. 43, 3 (March 2008), 2–13. DOI:http://dx.doi.org/10.1145/1353536.1346284

Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. 2012. A Software-hardware Architecture for Self-protecting Data.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS ’12). ACM, New York, NY,
USA, 14–27. DOI:http://dx.doi.org/10.1145/2382196.2382201

Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgandurra, and Diego Zamboni. 2009. Cloud security is
not (just) virtualization security: a short paper. In CCSW ’09: Proceedings of the 2009 ACM workshop on Cloud computing
security. ACM, New York, NY, USA, 97–102. DOI:http://dx.doi.org/10.1145/1655008.1266852

Robert J. Creasy. 1981. The origin of the VM/370 time-sharing system. IBM Journal of Research and Development 25, 5
(1981), 483–490.

John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete Control-Flow Integrity for Commodity Op-
erating System Kernels. In Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP ’14). IEEE Computer
Society, Washington, DC, USA, 292–307. DOI:http://dx.doi.org/10.1109/SP.2014.26

Weiqi Dai, Hai Jin, Deqing Zou, Shouhuai Xu, Weide Zheng, and Lei Shi. 2010. TEE: A Virtual DRTM Based Execution
Environment for Secure Cloud-end Computing. In Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security (CCS ’10). ACM, New York, NY, USA, 663–665. DOI:http://dx.doi.org/10.1145/1866307.1866390

D.A. Dai Zovi. 2006. Hardware Virtualization Rootkits. BlackHat Briefings USA, August (2006).
Avinash R. Desai, Michael S. Hsiao, Chao Wang, Leyla Nazhandali, and Simin Hall. 2013. Interlocking Obfuscation for Anti-

tamper Hardware. In Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research Workshop
(CSIIRW ’13). ACM, New York, NY, USA, Article 8, 4 pages. DOI:http://dx.doi.org/10.1145/2459976.2459985

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: Malware Analysis via Hardware Virtualization
Extensions. In Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS ’08). ACM,
New York, NY, USA, 51–62. DOI:http://dx.doi.org/10.1145/1455770.1455779

Baozeng Ding, Yeping He, Yanjun Wu, and Yuqi Lin. 2013a. HyperVerify: A VM-assisted Architecture for Monitoring
Hypervisor Non-control Data. In Software Security and Reliability-Companion (SERE-C), 2013 IEEE 7th International
Conference on. 26–34. DOI:http://dx.doi.org/10.1109/SERE-C.2013.20

Baozeng Ding, Yeping He, Yanjun Wu, and Jiageng Yu. 2013b. Systemic threats to hypervisor non-control data. Information
Security, IET 7, 4 (December 2013), 349–354. DOI:http://dx.doi.org/10.1049/iet-ifs.2012.0252

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and Wenke Lee. 2011. Virtuoso: Narrowing the Semantic
Gap in Virtual Machine Introspection. In Security and Privacy (SP), 2011 IEEE Symposium on. 297–312.
DOI:http://dx.doi.org/10.1109/SP.2011.11

Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn, Sean W. Smith, and
Steve Weingart. 2001. Building the IBM 4758 Secure Coprocessor. Computer 34, 10 (Oct. 2001), 57–66.
DOI:http://dx.doi.org/10.1109/2.955100

Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. 2012. SMART: Secure and Minimal Architecture
for (Establishing a Dynamic) Root of Trust. In NDSS 2012, 19th Annual Network and Distributed System Security
Symposium, February 5-8, San Diego, USA. San Diego, UNITED STATES. http://www.eurecom.fr/publication/3536

Nelson Elhage. 2011. Virtunoid: Breaking out of KVM. (2011).
Shawn Embleton, Sherri Sparks, and Cliff Zou. 2008. SMM Rootkits: A New Breed of OS Independent Malware. In Pro-

ceedings of the 4th International Conference on Security and Privacy in Communication Netowrks (SecureComm ’08).
ACM, New York, NY, USA, Article 11, 12 pages. DOI:http://dx.doi.org/10.1145/1460877.1460892

Aristide Fattori, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. 2015. Hypervisor-based malware protection with
AccessMiner. Computers & Security 52, 0 (2015), 33 – 50. DOI:http://dx.doi.org/10.1016/j.cose.2015.03.007

P. Ferrie. 2006. Attacks on Virtual Machine Emulators. Technical Report. Symantec Security Response.
P. Ferrie. 2007. Attacks on More Virtual Machine Emulators. Technical Report. Symantec Security Response.
Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig, and Leendert van Doorn. 2008a. Re-

mote detection of virtual machine monitors with fuzzy benchmarking. SIGOPS Oper. Syst. Rev. 42, 3 (2008), 83–92.
DOI:http://dx.doi.org/10.1145/1368506.1368518

Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig, and Leendert van Doorn. 2008b. Towards
Sound Detection of Virtual Machines. In Botnet Detection. Advances in Information Security, Vol. 36. Springer, 89–116.

Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically Bridging the Semantic Gap in Virtual
Machine Introspection via Online Kernel Data Redirection. In Security and Privacy (SP), 2012 IEEE Symposium on.
586–600. DOI:http://dx.doi.org/10.1109/SP.2012.40

Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. 2007. Compatibility is Not Transparency: VMM Detec-
tion Myths and Realities. In Proceedings of the 11th Workshop on Hot Topics in Operating Systems (HotOS-XI).

Tal Garfinkel and Mendel Rosenblum. 2003. A virtual machine introspection based architecture for intrusion detection. In
Proceedings of the 2003 Network and Distributed System Symposium.

Tal Garfinkel and Mendel Rosenblum. 2005. When Virtual is Harder Than Real: Security Challenges in Virtual Machine
Based Computing Environments. In Proceedings of the 10th Conference on Hot Topics in Operating Systems - Volume 10
(HOTOS’05). USENIX Association, Berkeley, CA, USA, 20–20. http://dl.acm.org/citation.cfm?id=1251123.1251143

Carl Gebhardt, Chris I. Dalton, and Allan Tomlinson. 2010. Separating Hypervisor Trusted Computing Base Supported by
Hardware. In Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing (STC ’10). ACM, New York, NY,
USA, 79–84. DOI:http://dx.doi.org/10.1145/1867635.1867648

M. Godfrey and M. Zulkernine. 2014. Preventing Cache-Based Side-Channel Attacks in a Cloud Environment. Cloud
Computing, IEEE Transactions on 2, 4 (Oct 2014), 395–408. DOI:http://dx.doi.org/10.1109/TCC.2014.2358236

R. P. Goldberg. 1973. Architecture of virtual machines. In Proceedings of the workshop on virtual computer systems. ACM
Press, New York, NY, USA, 74–112. DOI:http://dx.doi.org/10.1145/800122.803950

R. P. Goldberg. 1974. Survey of virtual machine research. IEEE Computer 7, 6 (1974), 34–45.
James Greene. 2012. Intel Trusted Execution Technology - Hardware-based Technology for Enhancing

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dx.doi.org/10.1145/1353536.1346284
http://dx.doi.org/10.1145/2382196.2382201
http://dx.doi.org/10.1145/1655008.1266852
http://dx.doi.org/10.1109/SP.2014.26
http://dx.doi.org/10.1145/1866307.1866390
http://dx.doi.org/10.1145/2459976.2459985
http://dx.doi.org/10.1145/1455770.1455779
http://dx.doi.org/10.1109/SERE-C.2013.20
http://dx.doi.org/10.1049/iet-ifs.2012.0252
http://dx.doi.org/10.1109/SP.2011.11
http://dx.doi.org/10.1109/2.955100
http://www.eurecom.fr/publication/3536
http://dx.doi.org/10.1145/1460877.1460892
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1145/1368506.1368518
http://dx.doi.org/10.1109/SP.2012.40
http://dl.acm.org/citation.cfm?id=1251123.1251143
http://dx.doi.org/10.1145/1867635.1867648
http://dx.doi.org/10.1109/TCC.2014.2358236
http://dx.doi.org/10.1145/800122.803950

46:32 D. Sgandurra et al.

Server Platform Security. (2012). http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/
trusted-execution-technology-security-paper.pdf.

Brian Hay and Kara Nance. 2008. Forensics examination of volatile system data using virtual introspection. SIGOPS Oper.
Syst. Rev. 42, 3 (2008), 74–82. DOI:http://dx.doi.org/10.1145/1368506.1368517

Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett Witchel. 2011. Ensuring operat-
ing system kernel integrity with OSck. In Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems (ASPLOS ’11). ACM, New York, NY, USA, 279–290.
DOI:http://dx.doi.org/10.1145/1950365.1950398

Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. 2013. InkTag:
Secure Applications on an Untrusted Operating System. SIGPLAN Not. 48, 4 (March 2013), 265–278.
DOI:http://dx.doi.org/10.1145/2499368.2451146

Greg Hoglund and James Butler. 2006. Rootkits: subverting the Windows kernel. Addison-Wesley Professional.
Trammell Hudson and Larry Rudolph. 2015. Thunderstrike: EFI Firmware Bootkits for Apple MacBooks. In Proceedings

of the 8th ACM International Systems and Storage Conference (SYSTOR ’15). ACM, New York, NY, USA, Article 15, 10
pages. DOI:http://dx.doi.org/10.1145/2757667.2757673

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A shared cache attack that works across cores and defies
VM sandboxingand its application to AES. In 36th IEEE Symposium on Security and Privacy (S&P 2015).

Gorka Irazoqui, MehmetSinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014. Wait a Minute! A fast, Cross-VM
Attack on AES. In Research in Attacks, Intrusions and Defenses, Angelos Stavrou, Herbert Bos, and Georgios
Portokalidis (Eds.). Lecture Notes in Computer Science, Vol. 8688. Springer International Publishing, 299–319.
DOI:http://dx.doi.org/10.1007/978-3-319-11379-1 15

Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: Policy-reduced Integrity Measurement Architecture. In
Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies (SACMAT ’06). ACM, New
York, NY, USA, 19–28. DOI:http://dx.doi.org/10.1145/1133058.1133063

P. Jamkhedkar, J. Szefer, D. Perez-Botero, Tianwei Zhang, G. Triolo, and R.B. Lee. 2013. A Framework for Realizing
Security on Demand in Cloud Computing. In Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, Vol. 1. 371–378. DOI:http://dx.doi.org/10.1109/CloudCom.2013.55

Ramya Jayaram Masti, Claudio Marforio, and Srdjan Capkun. 2013. An Architecture for Concurrent Execution of Secure
Environments in Clouds. In Proceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop (CCSW ’13).
ACM, New York, NY, USA, 11–22. DOI:http://dx.doi.org/10.1145/2517488.2517489

Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy malware detection through vmm-based ”out-of-the-box”
semantic view reconstruction. In CCS ’07: Proceedings of the 14th ACM conference on Computer and communications
security. ACM, New York, NY, USA, 128–138. DOI:http://dx.doi.org/10.1145/1315245.1315262

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2008. VMM-based hidden process detection
and identification using Lycosid. In VEE ’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments. ACM, New York, NY, USA, 91–100. DOI:http://dx.doi.org/10.1145/1346256.1346269

Bernhard Kauer. 2007. OSLO: Improving the Security of Trusted Computing. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium (SS’07). USENIX Association, Berkeley, CA, USA, Article 16, 9 pages.
http://dl.acm.org/citation.cfm?id=1362903.1362919

Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. 2010. NoHype: Virtualized Cloud In-
frastructure Without the Virtualization. SIGARCH Comput. Archit. News 38, 3 (June 2010), 350–361.
DOI:http://dx.doi.org/10.1145/1816038.1816010

Chung Hwan Kim, Sungjin Park, Junghwan Rhee, Jong-Jin Won, Taisook Han, and Dongyan Xu. 2015. CAFE: A
Virtualization-Based Approach to Protecting Sensitive Cloud Application Logic Confidentiality. In Proceedings of the
10th ACM Symposium on Information, Computer and Communications Security (ASIA CCS ’15). ACM, New York, NY,
USA, 651–656. DOI:http://dx.doi.org/10.1145/2714576.2714594

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM: System-Level Protection Against Cache-
Based Side Channel Attacks in the Cloud. In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12). USENIX, Bellevue, WA, 189–204. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/kim

S.T. King and P.M. Chen. 2006. SubVirt: implementing malware with virtual machines. In Security and Privacy, 2006 IEEE
Symposium on. 14 pp.–327. DOI:http://dx.doi.org/10.1109/SP.2006.38

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP ’09). ACM, New York, NY, USA, 207–220. DOI:http://dx.doi.org/10.1145/1629575.1629596

Kostya Kortchinsky. 2009. Cloudburst - Hacking 3D and Breaking out of VMware. Black Hat USA (June 2009).
Marc Lacoste. 2013. What Does The Future Hold for Hypervisor Security? (2013). http://workshop13.tclouds-project.eu/

abstracts/what does future.pdf
J.F. Levine, J.B. Grizzard, and Henry L. Owen. 2006. Detecting and categorizing kernel-level rootkits to aid future detection.

Security Privacy, IEEE 4, 1 (Jan 2006), 24–32. DOI:http://dx.doi.org/10.1109/MSP.2006.11
Min Li, Wanyu Zang, Kun Bai, Meng Yu, and Peng Liu. 2013. MyCloud: Supporting User-configured Privacy Protection

in Cloud Computing. In Proceedings of the 29th Annual Computer Security Applications Conference (ACSAC ’13). ACM,
New York, NY, USA, 59–68. DOI:http://dx.doi.org/10.1145/2523649.2523680

Lionel Litty and David Lie. 2006. Manitou: a layer-below approach to fighting malware. In ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for improving software dependability. ACM, New York, NY, USA, 6–11.
DOI:http://dx.doi.org/10.1145/1181309.1181311

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-Level Cache Side-Channel Attacks are
Practical. In 36th IEEE Symposium on Security and Privacy (S&P 2015).

Flavio Lombardi and Roberto Di Pietro. 2009. KvmSec: A Security Extension for Linux Kernel Virtual Machines. In
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC ’09). ACM, New York, NY, USA, 2029–2034.

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://dx.doi.org/10.1145/1368506.1368517
http://dx.doi.org/10.1145/1950365.1950398
http://dx.doi.org/10.1145/2499368.2451146
http://dx.doi.org/10.1145/2757667.2757673
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1145/1133058.1133063
http://dx.doi.org/10.1109/CloudCom.2013.55
http://dx.doi.org/10.1145/2517488.2517489
http://dx.doi.org/10.1145/1315245.1315262
http://dx.doi.org/10.1145/1346256.1346269
http://dl.acm.org/citation.cfm?id=1362903.1362919
http://dx.doi.org/10.1145/1816038.1816010
http://dx.doi.org/10.1145/2714576.2714594
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
http://dx.doi.org/10.1109/SP.2006.38
http://dx.doi.org/10.1145/1629575.1629596
http://workshop13.tclouds-project.eu/abstracts/what_does_future.pdf
http://workshop13.tclouds-project.eu/abstracts/what_does_future.pdf
http://dx.doi.org/10.1109/MSP.2006.11
http://dx.doi.org/10.1145/2523649.2523680
http://dx.doi.org/10.1145/1181309.1181311

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:33

DOI:http://dx.doi.org/10.1145/1529282.1529733
J.M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, A. Datta, V. Gligor, and A. Perrig. 2010. TrustVisor: Ef-

ficient TCB Reduction and Attestation. In Security and Privacy (SP), 2010 IEEE Symposium on. 143–158.
DOI:http://dx.doi.org/10.1109/SP.2010.17

Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki. 2008. Flicker: An Execution
Infrastructure for Tcb Minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008 (Eurosys ’08). ACM, New York, NY, USA, 315–328. DOI:http://dx.doi.org/10.1145/1352592.1352625

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R.
Savagaonkar. 2013. Innovative Instructions and Software Model for Isolated Execution. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for Security and Privacy (HASP ’13). ACM, New York,
NY, USA, Article 10, 1 pages. DOI:http://dx.doi.org/10.1145/2487726.2488368

Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud Computing. Technical Report. National
Institute of Standards & Technology, Gaithersburg, MD, United States.

Derek Gordon Murray, Grzegorz Milos, and Steven Hand. 2008. Improving Xen Security Through Disaggregation. In
Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’08). ACM, New York, NY, USA, 151–160. DOI:http://dx.doi.org/10.1145/1346256.1346278

Emmanuel Owusu, Jorge Guajardo, Jonathan McCune, Jim Newsome, Adrian Perrig, and Amit Vasudevan. 2013. OA-
SIS: On Achieving a Sanctuary for Integrity and Secrecy on Untrusted Platforms. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (CCS ’13). ACM, New York, NY, USA, 13–24.
DOI:http://dx.doi.org/10.1145/2508859.2516678

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio: Nearly Practical Verifiable Computation.
In Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE Computer Society, Washington, DC,
USA, 238–252. DOI:http://dx.doi.org/10.1109/SP.2013.47

Michael Pearce, Sherali Zeadally, and Ray Hunt. 2013. Virtualization: Issues, Security Threats, and Solutions. ACM
Comput. Surv. 45, 2, Article 17 (March 2013), 39 pages. DOI:http://dx.doi.org/10.1145/2431211.2431216

Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. 2013. A Survey of Security Issues in Hardware Virtualization. ACM
Comput. Surv. 45, 3, Article 40 (July 2013), 34 pages. DOI:http://dx.doi.org/10.1145/2480741.2480757

Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti, Aurélien Francillon, and Christoph Neumann. 2014. On
the Feasibility of Software Attacks on Commodity Virtual Machine Monitors via Direct Device Assignment. In Proceed-
ings of the 9th ACM Symposium on Information, Computer and Communications Security (ASIA CCS ’14). ACM, New
York, NY, USA, 305–316. DOI:http://dx.doi.org/10.1145/2590296.2590299

Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. 2013. Characterizing Hypervisor Vulnerabilities in Cloud Computing
Servers. In Proceedings of the 2013 International Workshop on Security in Cloud Computing (Cloud Computing ’13).
ACM, New York, NY, USA, 3–10. DOI:http://dx.doi.org/10.1145/2484402.2484406

Daniele Perito and Gene Tsudik. 2010. Secure Code Update for Embedded Devices via Proofs of Secure Erasure. In Com-
puter Security ESORICS 2010, Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou (Eds.). Lecture Notes in
Computer Science, Vol. 6345. Springer Berlin Heidelberg, 643–662. DOI:http://dx.doi.org/10.1007/978-3-642-15497-3 39

Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. 2004. Copilot - a Coprocessor-based Ker-
nel Runtime Integrity Monitor. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13
(SSYM’04). USENIX Association, Berkeley, CA, USA, 13–13. http://dl.acm.org/citation.cfm?id=1251375.1251388

Nick L. Petroni, Jr. and Michael Hicks. 2007. Automated Detection of Persistent Kernel Control-flow Attacks. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS ’07). ACM, New York, NY, USA, 103–115.
DOI:http://dx.doi.org/10.1145/1315245.1315260

Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, David Eyers, Brian Shand, Ruediger Kapitza, and Peter Pietzuch.
2014. CloudSafetyNet: Detecting Data Leakage between Cloud Tenants. In ACM Cloud Computing Security Workshop
(CCSW). ACM, ACM, Scottsdale, Arizona, USA.

Danny Quist and Val Smith. 2006. Detecting the Presence of Virtual Machines Using the Local Data Table. Technical Report.
Offensive Computing.

Nguyen Anh Quynh and Yoshiyasu Takefuji. 2007. Towards a tamper-resistant kernel rootkit detector. In SAC
’07: Proceedings of the 2007 ACM symposium on Applied computing. ACM, New York, NY, USA, 276–283.
DOI:http://dx.doi.org/10.1145/1244002.1244070

Alexander Tereshkin Rafal Wojtczuk, Joanna Rutkowska. 2008. Bluepilling the Xen Hypervisor. http://invisiblethingslab.
com/resources/bh08/part3.pdf. (Aug 2008).

Thomas Raffetseder, Christopher Krügel, and Engin Kirda. 2007. Detecting System Emulators. In Information Security,
10th International Conference, ISC 2007, Valparaı́so, Chile, October 9-12, 2007, Proceedings (Lecture Notes in Computer
Science), Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta (Eds.), Vol. 4779. Springer, 1–18.

M. A. Rappa. 2004. The Utility Business Model and the Future of Computing Services. IBM Syst. J. 43, 1 (Jan. 2004),
32–42. DOI:http://dx.doi.org/10.1147/sj.431.0032

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, You, Get off of My Cloud: Exploring In-
formation Leakage in Third-party Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (CCS ’09). ACM, New York, NY, USA, 199–212. DOI:http://dx.doi.org/10.1145/1653662.1653687

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-Oriented Programming: Sys-
tems, Languages, and Applications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages.
DOI:http://dx.doi.org/10.1145/2133375.2133377

Mendel Rosenblum. 2004. The Reincarnation of Virtual Machines. Queue 2, 5 (July 2004), 34–40.
DOI:http://dx.doi.org/10.1145/1016998.1017000

Joanna Rutkowska and Rafał Wojtczuk. 2008. Preventing and detecting Xen hypervisor subversions. Blackhat Briefings
USA (2008).

Mark D. Ryan. 2013. Cloud computing security: The scientific challenge, and a survey of solutions. Journal of Systems and
Software 86, 9 (2013), 2263 – 2268. DOI:http://dx.doi.org/10.1016/j.jss.2012.12.025

Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. HYBRID-BRIDGE: Efficiently Bridging the Semantic Gap in Virtual

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dx.doi.org/10.1145/1529282.1529733
http://dx.doi.org/10.1109/SP.2010.17
http://dx.doi.org/10.1145/1352592.1352625
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/1346256.1346278
http://dx.doi.org/10.1145/2508859.2516678
http://dx.doi.org/10.1109/SP.2013.47
http://dx.doi.org/10.1145/2431211.2431216
http://dx.doi.org/10.1145/2480741.2480757
http://dx.doi.org/10.1145/2590296.2590299
http://dx.doi.org/10.1145/2484402.2484406
http://dx.doi.org/10.1007/978-3-642-15497-3_39
http://dl.acm.org/citation.cfm?id=1251375.1251388
http://dx.doi.org/10.1145/1315245.1315260
http://dx.doi.org/10.1145/1244002.1244070
http://invisiblethingslab.com/resources/bh08/part3.pdf
http://invisiblethingslab.com/resources/bh08/part3.pdf
http://dx.doi.org/10.1147/sj.431.0032
http://dx.doi.org/10.1145/1653662.1653687
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1145/1016998.1017000
http://dx.doi.org/10.1016/j.jss.2012.12.025

46:34 D. Sgandurra et al.

Machine Introspection via Decoupled Execution and Training Memoization. In Proceedings Network and Distributed
Systems Security Symposium (NDSS14)(February 2014).

J. Sahoo, S. Mohapatra, and R. Lath. 2010. Virtualization: A Survey on Concepts, Taxonomy and Associated Se-
curity Issues. In Computer and Network Technology (ICCNT), 2010 Second International Conference on. 222–226.
DOI:http://dx.doi.org/10.1109/ICCNT.2010.49

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004. Design and Implementation of a TCG-based
Integrity Measurement Architecture. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume
13 (SSYM’04). USENIX Association, Berkeley, CA, USA, 16–16. http://dl.acm.org/citation.cfm?id=1251375.1251391

Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. 2012. Policy-sealed Data: A New Abstraction for
Building Trusted Cloud Services. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).
USENIX Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=2362793.2362803

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russi-
novich. 2015. VC3: Trustworthy Data Analytics in the Cloud using SGX. In 36th IEEE Symposium on Security and
Privacy (S&P 2015).

J. Seol, S. Jin, D. Lee, J. Huh, and S. Maeng. 2015. A Trusted IaaS Environment with Hardware Security Module. Services
Computing, IEEE Transactions on PP, 99 (2015), 1–1. DOI:http://dx.doi.org/10.1109/TSC.2015.2392099

Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’07). ACM, New York, NY, USA, 335–350. DOI:http://dx.doi.org/10.1145/1294261.1294294

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla. 2005. Pioneer: Verifying
Code Integrity and Enforcing Untampered Code Execution on Legacy Systems. SIGOPS Oper. Syst. Rev. 39, 5 (Oct.
2005), 1–16. DOI:http://dx.doi.org/10.1145/1095809.1095812

Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009. Secure in-VM Monitoring Using Hardware Virtual-
ization. In Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS ’09). ACM, New
York, NY, USA, 477–487. DOI:http://dx.doi.org/10.1145/1653662.1653720

Evan R. Sparks. 2007. A Security Assessment of Trusted Platform Modules. Technical Report TR2007-597. Dartmouth
College, Computer Science, Hanover, NH. http://www.cs.dartmouth.edu/reports/TR2007-597.ps.Z

Evan R Sparks and Evan R Sparks. 2007. A Security Assessment of Trusted Platform Modules Computer Science Technical
Report TR2007-597. Technical Report. Technical report, Department of Computer Science Dartmouth College.

Sherri Sparks and Jamie Butler. 2005. Shadow Walker: Raising the bar for rootkit detection. Black Hat Japan (2005),
504–533.

Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. 2011. Process Out-grafting: An Efficient
”out-of-VM” Approach for Fine-grained Process Execution Monitoring. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11). ACM, New York, NY, USA, 363–374.
DOI:http://dx.doi.org/10.1145/2046707.2046751

Abhinav Srivastava, Himanshu Raj, Jonathon Giffin, and Paul England. 2012. Trusted VM Snapshots in Untrusted Cloud
Infrastructure. In Proceedings of the 15th International Conference on Research in Attacks, Intrusions, and Defenses
(RAID’12). Springer-Verlag, Berlin, Heidelberg, 1–21. DOI:http://dx.doi.org/10.1007/978-3-642-33338-5 1

Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-based Secure Virtualization Architecture. In Pro-
ceedings of the 5th European Conference on Computer Systems (EuroSys ’10). ACM, New York, NY, USA, 209–222.
DOI:http://dx.doi.org/10.1145/1755913.1755935

Patrick Stewin and Iurii Bystrov. 2013. Understanding DMA Malware. In Detection of Intrusions and Malware, and
Vulnerability Assessment, Ulrich Flegel, Evangelos Markatos, and William Robertson (Eds.). Lecture Notes in Computer
Science, Vol. 7591. Springer Berlin Heidelberg, 21–41. DOI:http://dx.doi.org/10.1007/978-3-642-37300-8 2

Raoul Strackx and Frank Piessens. 2012. Fides: Selectively Hardening Software Application Components Against Kernel-
level or Process-level Malware. In Proceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS ’12). ACM, New York, NY, USA, 2–13. DOI:http://dx.doi.org/10.1145/2382196.2382200

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. 2003. AEGIS: Architecture
for Tamper-evident and Tamper-resistant Processing. In Proceedings of the 17th Annual International Conference on
Supercomputing (ICS ’03). ACM, New York, NY, USA, 160–171. DOI:http://dx.doi.org/10.1145/782814.782838

Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. 2011. Eliminating the Hypervisor Attack Surface for a More
Secure Cloud. In Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS ’11). ACM,
New York, NY, USA, 401–412. DOI:http://dx.doi.org/10.1145/2046707.2046754

Jakub Szefer and Ruby B. Lee. 2012. Architectural Support for Hypervisor-secure Virtualization. SIGPLAN Not. 47, 4
(March 2012), 437–450. DOI:http://dx.doi.org/10.1145/2248487.2151022

Alexander Tereshkin and Rafal Wojtczuk. 2009. Introducing ring-3 rootkits. Black Hat USA (July 2009).
Hsin-Yi Tsai, M. Siebenhaar, A. Miede, Yu-Lun Huang, and R. Steinmetz. 2012. Threat as a Service?: Virtualization’s

Impact on Cloud Security. IT Professional 14, 1 (Jan 2012), 32–37. DOI:http://dx.doi.org/10.1109/MITP.2011.117
R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson, S.M. Bennett, A. Kagi, F.H.

Leung, and L. Smith. 2005a. Intel virtualization technology. Computer 38, 5 (May 2005), 48–56.
DOI:http://dx.doi.org/10.1109/MC.2005.163

Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Martins, Andrew V Anderson, Steven M Bennett,
Alain Kagi, Felix H Leung, and Larry Smith. 2005b. Intel virtualization technology. Computer 38, 5 (2005), 48–56.

Anjo Vahldiek, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel, Ansley Post, Rodrigo Rodrigues, and Johannes
Gehrke. 2014. Guardat: A foundation for policy-protected data. Technical Report 014-002, MPI-SWS. MPI-SWS. http:
//www.mpi-sws.org/cont/tr/2014-002.pdf

Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas Ristenpart, and Michael M. Swift. 2012.
Resource-freeing Attacks: Improve Your Cloud Performance (at Your Neighbor’s Expense). In Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA, 281–292.
DOI:http://dx.doi.org/10.1145/2382196.2382228

V. Vu, S. Setty, A.J. Blumberg, and M. Walfish. 2013. A Hybrid Architecture for Interactive Verifiable Computation. In

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dx.doi.org/10.1109/ICCNT.2010.49
http://dl.acm.org/citation.cfm?id=1251375.1251391
http://dl.acm.org/citation.cfm?id=2362793.2362803
http://dx.doi.org/10.1109/TSC.2015.2392099
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1095809.1095812
http://dx.doi.org/10.1145/1653662.1653720
http://www.cs.dartmouth.edu/reports/TR2007-597.ps.Z
http://dx.doi.org/10.1145/2046707.2046751
http://dx.doi.org/10.1007/978-3-642-33338-5_1
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1007/978-3-642-37300-8_2
http://dx.doi.org/10.1145/2382196.2382200
http://dx.doi.org/10.1145/782814.782838
http://dx.doi.org/10.1145/2046707.2046754
http://dx.doi.org/10.1145/2248487.2151022
http://dx.doi.org/10.1109/MITP.2011.117
http://dx.doi.org/10.1109/MC.2005.163
http://www.mpi-sws.org/cont/tr/2014-002.pdf
http://www.mpi-sws.org/cont/tr/2014-002.pdf
http://dx.doi.org/10.1145/2382196.2382228

Evolution of Attacks, Threat Models and Solutions for Virtualized Systems 46:35

Security and Privacy (SP), 2013 IEEE Symposium on. 223–237. DOI:http://dx.doi.org/10.1109/SP.2013.48
Aurelien Wailly, Marc Lacoste, and Hervé DEBAR. 2012. KungFuVisor : enabling hypervisor self-defense. In EuroDW ’12 :

The 6th EuroSys Doctoral Workshop. Bern, Switzerland. https://hal.archives-ouvertes.fr/hal-00738069
Jiang Wang, Angelos Stavrou, and Anup Ghosh. 2010. HyperCheck: A Hardware-Assisted Integrity Monitor. In Recent

Advances in Intrusion Detection, Somesh Jha, Robin Sommer, and Christian Kreibich (Eds.). Lecture Notes in Computer
Science, Vol. 6307. Springer Berlin Heidelberg, 158–177. DOI:http://dx.doi.org/10.1007/978-3-642-15512-3 9

Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). IEEE Computer Society, Wash-
ington, DC, USA, 380–395. DOI:http://dx.doi.org/10.1109/SP.2010.30

Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. 2009. Countering kernel rootkits with lightweight hook protection.
In CCS ’09: Proceedings of the 16th ACM conference on Computer and communications security. ACM, New York, NY,
USA, 545–554. DOI:http://dx.doi.org/10.1145/1653662.1653728

Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. 2012. Isolating Commodity Hosted Hypervisors with HyperLock.
In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys ’12). ACM, New York, NY, USA,
127–140. DOI:http://dx.doi.org/10.1145/2168836.2168850

Yuanfeng Wen, JongHyuk Lee, Ziyi Liu, Qingji Zheng, Weidong Shi, Shouhuai Xu, and Taeweon Suh. 2013. Multi-processor
Architectural Support for Protecting Virtual Machine Privacy in Untrusted Cloud Environment. In Proceedings of
the ACM International Conference on Computing Frontiers (CF ’13). ACM, New York, NY, USA, Article 25, 10 pages.
DOI:http://dx.doi.org/10.1145/2482767.2482799

Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM memory via Intel CPU cache poisoning. Invisible Things
Lab (2009).

Rafal Wojtczuk and Joanna Rutkowska. 2011. Following the White Rabbit: Software attacks against Intel VT-d technology.
ITL: http://www. invisiblethingslab. com/resources/2011/Software% 20Attacks% 20on% 20Intel% 20VT-d. pdf (2011).

Chiachih Wu, Zhi Wang, and Xuxian Jiang. 2013. Taming Hosted Hypervisors with (Mostly) Deprivileged Execution. In
Proceedings of the Network and Distributed System Security Symposium (NDSS). San Diego, CA.

Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space: High-speed Covert Channel Attacks in the
Cloud. In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12). USENIX, Bellevue, WA,
159–173. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu

Yubin Xia, Yutao Liu, and Haibo Chen. 2013. Architecture support for guest-transparent VM protection from untrusted hy-
pervisor and physical attacks. In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on. 246–257. DOI:http://dx.doi.org/10.1109/HPCA.2013.6522323

Zhifeng Xiao and Yang Xiao. 2013. Security and Privacy in Cloud Computing. Communications Surveys Tutorials, IEEE
15, 2 (Second 2013), 843–859. DOI:http://dx.doi.org/10.1109/SURV.2012.060912.00182

Bin Xing, Zhen Han, Xiaolin Chang, and Jiqiang Liu. 2014. OB-IMA: out-of-the-box integrity measurement ap-
proach for guest virtual machines. Concurrency and Computation: Practice and Experience (2014), n/a–n/a.
DOI:http://dx.doi.org/10.1002/cpe.3273

Huijun Xiong, Xinwen Zhang, Wei Zhu, and Danfeng Yao. 2012. CloudSeal: End-to-End Content Protection in
Cloud-Based Storage and Delivery Services. In Security and Privacy in Communication Networks, Muttukrish-
nan Rajarajan, Fred Piper, Haining Wang, and George Kesidis (Eds.). Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, Vol. 96. Springer Berlin Heidelberg, 491–500.
DOI:http://dx.doi.org/10.1007/978-3-642-31909-9 30

Xi Xiong, Donghai Tian, and Peng Liu. 2011. Practical Protection of Kernel Integrity for Commodity OS from Untrusted
Extensions.. In NDSS.

Min Xu, Xuxian Jiang, Ravi Sandhu, and Xinwen Zhang. 2007. Towards a VMM-based usage control framework for OS
kernel integrity protection. In SACMAT ’07: Proceedings of the 12th ACM symposium on Access control models and
technologies. ACM Press, New York, NY, USA, 71–80. DOI:http://dx.doi.org/10.1145/1266840.1266852

Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and Richard Schlichting. 2011.
An Exploration of L2 Cache Covert Channels in Virtualized Environments. In Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop (CCSW ’11). ACM, New York, NY, USA, 29–40.
DOI:http://dx.doi.org/10.1145/2046660.2046670

Jisoo Yang and Kang G. Shin. 2008. Using Hypervisor to Provide Data Secrecy for User Applications on a Per-page Basis. In
Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’08). ACM, New York, NY, USA, 71–80. DOI:http://dx.doi.org/10.1145/1346256.1346267

Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011a. CloudVisor: Retrofitting Protection of Virtual Machines
in Multi-tenant Cloud with Nested Virtualization. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). ACM, New York, NY, USA, 203–216. DOI:http://dx.doi.org/10.1145/2043556.2043576

Fengwei Zhang, Jiang Wang, Kun Sun, and Angelos Stavrou. 2014. HyperCheck: A Hardware-Assisted
Integrity Monitor. IEEE Transactions on Dependable and Secure Computing 11, 4 (2014), 332–344.
DOI:http://dx.doi.org/10.1109/TDSC.2013.53

Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner Sailer. 2002. Secure Coprocessor-based In-
trusion Detection. In Proceedings of the 10th Workshop on ACM SIGOPS European Workshop (EW 10). ACM, New York,
NY, USA, 239–242. DOI:http://dx.doi.org/10.1145/1133373.1133423

Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011b. HomeAlone: Co-residency Detection in the Cloud via
Side-Channel Analysis. In Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP ’11). IEEE Computer
Society, Washington, DC, USA, 313–328. DOI:http://dx.doi.org/10.1109/SP.2011.31

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM Side Channels and Their Use to
Extract Private Keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS ’12).
ACM, New York, NY, USA, 305–316. DOI:http://dx.doi.org/10.1145/2382196.2382230

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-Tenant Side-Channel Attacks in PaaS
Clouds. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS ’14).
ACM, New York, NY, USA, 990–1003. DOI:http://dx.doi.org/10.1145/2660267.2660356

ACM Computing Surveys, Vol. 48, No. 3, Article 46, Publication date: January 2016.

http://dx.doi.org/10.1109/SP.2013.48
https://hal.archives-ouvertes.fr/hal-00738069
http://dx.doi.org/10.1007/978-3-642-15512-3_9
http://dx.doi.org/10.1109/SP.2010.30
http://dx.doi.org/10.1145/1653662.1653728
http://dx.doi.org/10.1145/2168836.2168850
http://dx.doi.org/10.1145/2482767.2482799
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
http://dx.doi.org/10.1109/HPCA.2013.6522323
http://dx.doi.org/10.1109/SURV.2012.060912.00182
http://dx.doi.org/10.1002/cpe.3273
http://dx.doi.org/10.1007/978-3-642-31909-9_30
http://dx.doi.org/10.1145/1266840.1266852
http://dx.doi.org/10.1145/2046660.2046670
http://dx.doi.org/10.1145/1346256.1346267
http://dx.doi.org/10.1145/2043556.2043576
http://dx.doi.org/10.1109/TDSC.2013.53
http://dx.doi.org/10.1145/1133373.1133423
http://dx.doi.org/10.1109/SP.2011.31
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1145/2660267.2660356

	Introduction
	Basics of Virtualization
	Cloud Computing

	Attacks in Virtualized Environments
	Attack Paths in Virtualized Systems
	Existing Attacks
	Attacks to VMs
	Attacks to Hypervisor
	Lower-Level Attacks

	Solutions
	Using an Admin VM for Protection
	Virtual Machine Introspection-based Solutions

	Using the Hypervisor for Protection
	Protecting the Hypervisor
	Formal Verification
	Hypervisor Hardening
	Reducing the Hypervisor TCB
	Inserting an Additional (Software) Layer Below the Hypervisor
	Hardware-Assisted Solutions to Protect the Hypervisor
	Protection Using Additional Hardware Units
	Protection Using Root-of-Trust

	Framework to Categorize, Define and Evaluate Security Solutions
	Threat Models of the Solutions
	Security and Trust Assumptions

	Security Properties of the Solutions: Goals and TCB
	Implementation Strategy of the Solutions: Methodologies and Features

	Discussion
	Conclusion

