
Policy Conflict Resolution in IoT via Planning

Emre Göynügür1(B), Sara Bernardini2, Geeth de Mel3,
Kartik Talamadupula3, and Murat Şensoy1

1 Ozyegin University, Istanbul, Turkey
emre.goynugur@ozu.edu.tr, murat.sensoy@ozyegin.edu.tr

2 Royal Holloway University of London, London, UK
sara.bernardini@rhul.ac.uk

3 IBM Research, Hampshire, UK
geeth.demel@uk.ibm.com, krtalamad@us.ibm.com

Abstract. With the explosion of connected devices to automate tasks,
manually governing interactions among such devices—and associated
services—has become an impossible task. This is because devices have
their own obligations and prohibitions in context, and humans are not
equipped to maintain a bird’s-eye-view of the environment. Motivated
by this observation, in this paper, we present an ontology-based policy
framework which can efficiently detect policy conflicts and automatically
resolve such using an AI planner.

Keywords: IoT · Semantic web · Policy · Conflict resolution · Planning

1 Introduction

Internet connected and interconnected devices—collectively referred to as Inter-
net of Things (IoT)—are fast becoming a reliable and cost effective means
to automate daily activities for people and organizations. This interconnection
among devices—and services—not only yields to the need for representing such
interactions, but also to the problem of efficiently managing them.

In traditional systems, policies are typically used to govern these interactions.
However, most of these systems are static in nature when compared with IoT-
enabled systems. In IoT, resources supporting capabilities could become avail-
able w.r.t. time, location, context, and so forth. Thus, much efficient tooling
is required to handle the governance. There are a multitude of frameworks—
some with rich policy representations [10], others targeting pervasive environ-
ments [5,7]. However, with respect to IoT, these frameworks are either compu-
tationally intensive or are not expressive enough to be effective.

Inspired by this observation, we present a semantically-aware policy frame-
work based on OWL-QL [2] to effectively represent interactions in IoT as poli-
cies and an efficient mechanism to automatically detect and resolve conflicts. In
the context of IoT, we predominantly observe two types of policies—obligations
which mandates actions, and prohibitions which restrict actions [6]. Conflicts
among such policies occur when prohibitions and obligations get applied to the
c⃝ Springer International Publishing AG 2017
M. Mouhoub and P. Langlais (Eds.): Canadian AI 2017, LNAI 10233, pp. 169–175, 2017.
DOI: 10.1007/978-3-319-57351-9 22

sara.bernardini@rhul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


170 E. Göynügür et al.

same action of a device or a service at the same time. In order to provide a uni-
form solution to this problem, we propose and implement a mechanism which
minimizes the policy violations by automatically reformulating the conflict res-
olution as an AI planning problem.

2 Policy Representation and Reasoning

We use OWL-QL [2], a language based on DL-Lite [1] family, to represent and
reason about policies. DL-Lite has low reasoning overhead with expressivity
similar to UML class diagrams. A DL-lite knowledge base K consists of a TBox
T and an ABox A, and the reasoning is performed by means of query rewriting.
Due to the page limitations, we refer the reader to [1] for a detailed description
on syntax and semantics of DL-Lite.

In order to motivate and to provide a consistent example throughout the
document, we base our scenario in a smart home environment. Table 1 shows
snippets of the TBox and the ABox of our smart home.

Table 1. Example TBox and ABox for an OWL-QL ontology.

TBox ABox

MobilePhone ⊑ PortableDevice Awake ⊑ ¬Sleeping Baby(John)

SomeoneAtDoor ⊑ Event Baby ⊑ Person Adult(Bob)

PortableDevice ⊑ Device Adult ⊑ Person Doorbell(dbell)

SoundNotification ⊑ Sound ⊓ Notification Speaker ⊑ Device Flat(flt)

TextNotification ⊑ Notification Doorbell ⊑ Device inFlat(Bob, flt)

TV ⊑ ∃hasSpeaker ⊓ ∃hasDisplay ∃playSound ⊑ Device Sleeping(John)

MakeSound ⊑ Action ⊓ ∃playSound Notify ⊑ Action SomeoneAtDoor(e1)

NotifyWithSound ⊑ MakeSound ⊓ Notify Awake ⊑ State producedBy(e1, dbell)

∃hasSpeaker ⊑ ∃playSound Sleeping ⊑ State hasResident(flt , John)

MediaPlayer ⊑ ∃playSound inFlat(dbell ,flt)

Motivated by the work of Sensoy et al. [10], we formalize a policy as a six-
tuple (α, N , χ : ρ, a : ϕ, e, c) where (1) α is the activation condition of the
policy; (2) N is either obligation (O) or prohibition (P ); (3) χ is the policy
addressee and ρ represents its roles; (4) a : ϕ is the description of the regulated
action; a is the variable of the action instance and ϕ describes a; (5) e is the
expiration condition; and (6) c is the policy’s violation cost.

In a policy, ρ, α, ϕ, and e are expressed using a conjunction of query atoms.
A query atom is in the form of either C(x) or P (x, y), where C is a concept, P is
either a object or datatype property from the QL ontology, x is either a variable
or individual, and y a variable, an individual, or a data value. For instance,
using variables b and f , the conjunction of atoms Baby(?b) ∧ Sleeping(?b) ∧
inF lat(?b, ?f) describes a setting where there is a sleeping baby in a flat.

sara.bernardini@rhul.ac.uk



Policy Conflict Resolution in IoT via Planning 171

Table 2. Example prohibition and obligation policies

Prohibition Obligation

χ : ρ ?d : Device(?d) ?d : Doorbell(?d)

N P O

α Baby(?b) ∧ Sleeping(?b)∧
inF lat(?b, ?f) ∧ inF lat(?d, ?f)

SomeoneAtDoor(?e) ∧ producedBy(?e, ?d)∧
belongsToF lat(?d, ?f) ∧ hasResident(?f, ?p)

a : ϕ ?a : MakeSound(?a) ?a : NotifyWithSound(?a) ∧ hasTarget(?a, ?p)

e Awake(?b) notifiedFor(?p?e)

c 10.0 4.0

When multiple policies act upon a device, conflicts could occur. In our con-
text, three conditions have to hold for two policies to be in conflict: (a) policies
should be applied to the same addressee; (b) one policy must oblige an action,
while the other prohibits it; and (c) policies should be active at the same time
in a consistent state according to the underlying ontology. Our example policies
represented in Table 2 satisfy these conditions, thus they are in conflict.

3 Resolving Conflicts via Planning

In order to resolve conflicts, we have utilized planning techniques. We represent
our policies in PDDL2.1 [3]. PDDL is considered to be the standard language for
modeling planning problems which commonly consist of a domain and a problem
files. The domain defines the actions and predicates while the problem defines
the initial and the goal states. Below we illustrate how planning can be useful
in resolving conflicts and then we outline a way to pose this conflict resolution
problem as a planning problem.

3.1 Illustrative Scenario

Let us envision a situation in which an obligation to notify someone within the
house is created, however, there is a prohibition on making sound. This forces the
doorbell to pick between one of the two policies to violate. However, if there was
another way to fulfill both of them without violating one another, the conflict
and ensuing violation could be avoided. Given that we are dealing with complex
domains with multiple devices and services, notification action could be achieved
in multiple possible ways–e.g., instead of making a sound, a visual message could
be used. In more complicated scenarios, the planner would make a decision based
on violation costs; a planer can then use costs of actions and violations to create
a globally optimum plan that minimizes or avoids conflicts.

3.2 PDDL Domain

We exploit the TBox which contains the concepts and their relationships to
construct the planning domain. Concepts and properties are represented using

sara.bernardini@rhul.ac.uk



172 E. Göynügür et al.

PDDL predicates. Though we are unable to perform an automatic translation of
action descriptions to PDDL domain, it is possible to do so via an infrastructure
by exposing device capabilities as services. A discussion on how to do so is beyond
the scope of this paper.

Type feature of PDDL is suitable to encode simple class hierarchies, yet it
is not sufficient to express multiple inheritance and subclass expressions with
object or data properties. Thus, we represent types with PDDL predicates and
encode the rules for inferences using derived predicates and disjunctions. For
instance, to infer that someone is a parent we can use: (:derived (Parent ?p)

(or (hasChild ?p ?unbound 1) (Mother ?p) (Father ?p)))

The planning problem contains a total cost function that keeps track of the
accumulated cost associated with executing the found plan. In addition to the
total cost, a new cost function is introduced for each different active prohibition
policy. These prohibition cost functions are associated with the effects of the
actions that they regulate to increase the total cost, when the policy is violated.
For instance, we can encode the sound prohibition in PDDL as follows:

(:action NotifyWithSound :parameters (?person ?event ?device ?soundAction)
:precondition (and (MakeSound ?soundAction) (canPerform ?device ?soundAction))
:effect (and (gotNotifiedFor ?person ?event) (increase (total-cost) (p1Cost ?device))))

3.3 PDDL Problem

The instances in ABox, which contains knowledge about individual objects are
mapped to the initial state and to the goal of the planning instance. For example,
the atom (canPerform dbell PlaySoundDbell) indicates that dbell can produce
a sound to notify when needed. Moreover, total and violation cost functions are
initialized in the initial state. e.g. (= (total-cost) 0) (= (p1Cost dbell) 10)

We note that whenever there is a change in the world, it is reflected on
the initial state. For example, when the baby wakes up, the value of function
(= (p1Cost dbell) 10) is updated to 0 in the initial state. Recall that the goal
of the planning problem is to fulfill the obligations while minimizing the total
cost. However, if the final plan cost exceeds the violation cost of obligations, the
planner chooses to violate the obligations instead of executing the plan.

4 Automated Translation from OWL-QL to PDDL

In order to resolve policy conflicts found through planning, we first need to
represent policies in the planning domain. Below we describe how policies were
translated into PDDL automatically while preserving their semantics.

The translation process starts with encoding all concepts and properties from
the ontology as predicates and their inference rules as derived predicates in the
PDDL domain. This allows us to represent the information in the knowledge base
(KB) in the planning problem. The inference rules are generated using Quetzal
[8], which is a framework to query graph data efficiently.

sara.bernardini@rhul.ac.uk



Policy Conflict Resolution in IoT via Planning 173

Next, all individuals in the KB are defined as objects in the PDDL problem.
Similarly, class and property axioms of these individuals are selected from the
KB and written into the initial state using PDDL predicates. We note that each
entry in the KB is either a concept or a property assertion. The total cost is
initially set to zero and prohibition cost functions for each policy-addressee pair
are set to the corresponding violation costs. Cost functions for unaffected objects
are initialized to zero. Finally, the goal state is produced by using the expiration
conditions of the active obligation’s instances with disjunctions. Lets assume
there is another resident, Alice, at home. Now, it could be sufficient to notify
either Bob or Alice. The goal state is defined as (:goal (or(gotNotifiedFor bob

someoneAtFrontDoor) (gotNotifiedFor alice someoneAtFrontDoor)))

All active prohibition policies along with their bindings are encoded in the
planning problem to prevent unintentional violation of other active policies while
avoiding the actual conflict. In our implementation, we used a central server to
processes the policies of all the connected devices for convenience. We note that
for each prohibition instance, a cost function predicate is created using its name,
and added to the effects of actions that the policy prohibits. For example, if p1
is the name of the policy, then (increase (total-cost) (p1 ?x)) statement is added
into the effects of notifyWithSound action. Finally, each function is initialized
in the problem file.

Encoding an obligation policy becomes relatively simple when the desired
goal state is already defined in the expiry conditions—i.e., the variables in the
condition get bounded when the activation query is executed over the knowledge
base. For example, in the case of Bob and Alice, activation condition would
return two rows with different bindings; {?d = dbell, ?p = Bob, ?f = flt, ?e =
someoneAtDoor} and {?d = dbell, ?p = Alice, ?f = flt, ?e = someoneAtDoor}.

5 Evaluation

In order to evaluate our approach, we augmented our IoT framework [4] with the
LAMA [9] planner; we then tested our implementation w.r.t. our running sce-
nario of home automation. We compared our approach in the following settings:
always prohibition, always obligation, and higher violation cost. We generated
60 problem files in total—i.e., 15 problem files for 4 different number of devices
(2, 3, 5, 20). Our intuition here was that each newly added device favors the
planning method even if they did not add a new capability.

Below we show and discuss the outcomes of our experiments—due to the
page limitations, we only present results when the device numbers were 2 and
20. The abbreviations in the result tables are as follows: SCNT =number of times
the obligation is fulfilled, SAVG =average violation cost to fulfill the obligation,
SMAX =max violation cost, and F stands for Failed.

Table 3 depicts the results obtained. As shown by the results, when 2 devices
were used, the planner violated a policy to fulfill the obligation at least once;
adding more devices (e.g., when the number of device were 20) reduced policy
violations to zero. Thus, it supports our intuition—i.e., adding more devices with

sara.bernardini@rhul.ac.uk



174 E. Göynügür et al.

Table 3. Obtained results for problems with 2 and 20 devices.

Method SCnt FCnt SAvg SMax SMin FAvg FMax FMin SCnt FCnt SAvg SMax SMin FAvg FMax FMin

Number of devices: 2 Number of devices: 20

Prohi. 0 15 0 0 0 4 8 1 0 15 0 0 0 7 10 3

Obli. 15 0 6 10 1 0 0 0 15 0 6 10 2 0 0 0

Cost 4 11 3 6 1 4 8 1 9 6 4 8 2 6 10 3

Planning 15 0 0 3 0 0 0 0 15 0 0 0 0 0 0 0

different capabilities to the system spans the solution space for our planning
problem. However, adding more devices do not necessarily affect the results
of other strategies as they are not aiming to resolve conflicts from a system’s
perspective.

6 Conclusions

In conclusion, in this paper, we discussed how a planner could be used in a
lightweight policy framework to automate policy conflict resolution. The policy
framework is based on OWL-QL as it targets IoT applications, which generate
large volumes of instance data, and efficient query answering w.r.t. policy repre-
sentation and reasoning. We reformulated policy conflict resolution as a planning
problem by encoding policies in PDDL by means of cost functions and goals. We
then utilized a planner to avoid or mitigate conflicts found in plethora of policies.
We then presented our initial results which scales well especially when the device
numbers increase which is promising. We currently are investigating means to
use user history to learn violation costs associated with policies.

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

2. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL: a language for deductive query answer-
ing on the semantic web. Web Semant.: Sci. Serv. Agents World Wide Web 2(1),
19–29 (2004)

3. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

4. Goynugur, E., de Mel, G., Sensoy, M., Talamadupula, K., Calo, S.: A knowledge
driven policy framework for internet of things. In: Proceedings of the 9th Interna-
tional Conference on Agents and Artificial Intelligence (2017)

5. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing envi-
ronment. In: IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, June 2003

6. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as building
blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)

7. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng. 25(6), 852–869 (1999)

sara.bernardini@rhul.ac.uk



Policy Conflict Resolution in IoT via Planning 175

8. Quetzal-RDF: Quetzal (2016). https://github.com/Quetzal-RDF/quetzal. Acce-
ssed 02 Oct 2016

9. Richter, S., Westphal, M.: The lama planner: guiding cost-based anytime plan-
ning with landmarks. J. Artif. Int. Res. 39(1), 127–177 (2010). http://dl.acm.org/
citation.cfm?id=1946417.1946420

10. Sensoy, M., Norman, T., Vasconcelos, W., Sycara, K.: OWL-POLAR: a framework
for semantic policy representation and reasoning. Web Semant.: Sci. Serv. Agents
World Wide Web 12, 148–160 (2012)

sara.bernardini@rhul.ac.uk


