
Gesture Recognition Implemented on a Personal
Limited Device.

Benoit Ducray∗, Sheila Cobourne∗, Keith Mayes∗ and Konstantinos Markantonakis∗
∗Smart Card Centre, Information Security Group (SCC-ISG)

Royal Holloway, University of London, Egham, Surrey, TW20 0EX
Email: {Benoit.Ducray.2013, Sheila.Cobourne.2008, Keith.Mayes, K.Markantonakis}@rhul.ac.uk

Abstract—For a biometrics system, one of the principal chal-
lenges is to protect the biometric reference template, as if a
malicious individual is able to obtain this template, the genuine
user would not be able to reuse the biometric for any application.
A solution may be to use a new form of authentication based on
gesture recognition. This type of authentication has the added
advantage that in the case of compromise, the gesture can be
changed yet still retain the advantages of the biometric input. In
this paper, we investigate whether it is feasible to implement a
Gesture Recognition system on a personal limited device such as
a smart card. To do this, we set out an experiment using sample
gestures based on practical results of gesture authentication trials
and an optimised version of Dynamic Time Warping (DTW)
algorithm to analyse the data captured. We implemented them on
both a contact Smart Card (SC) and the more powerful Samsung
Galaxy S4 mobile phone, using Host Card Emulation (HCE). The
result of this experiment was that it would take around a minute
for the SC and a second for HCE.

I. INTRODUCTION

One of biometrics systems’ principal challenges is to protect
the biometric reference template. If a malicious individual is
able to obtain the template, that would mean the genuine user
would not be able to reuse this biometric for any application.
A proposed solution used a cancelable biometric [1], but this
method does not protect when the malicious individual gets
access to the original biometric template. To address this issue,
a new form of authentication based on gesture recognition has
been proposed [2], [3], [4]. Gestures are not usually aimed
at high security applications, but as convenient alternatives to
simple PIN or password entry. However, depending on the
method and precision of capture, gestures can include some
biometric related characteristics as well as the something-you-
know, making them more like two-factor authentication inputs.
This type of authentication has the added advantage that in the
case of compromise, the gesture can be changed yet still retain
the advantages of the biometric input. A prime location for the
related reference template would be on a security evaluated
Smart Card (SC), as it is tamper resistant, easy to carry and
if used with Gesture Recognition, the system can provide a
three-factor authentication method. If the matching processes
could also be carried out on-card (Match-on-Card), then this
provides additional protection, as the template does not need to
leave the card during an authentication. It also protects against
attacks on the implementation due to the tamper-resistance of
the smart card chip.

Gesture Recognition is demanding in terms of computa-
tion power and memory storage, so this paper sets out to
investigate whether it is feasible to implement a Gesture
Recognition system on a personal device of limited capability,
such as an SC. To do this, an experiment was performed
using sample gestures based on practical results of gesture
authentication trials which used depth cameras as sensors (i.e.
the KinectTM [5] and Leap Motion [6]) and the Dynamic Time
Warping algorithm (DTW) [7], to analyse the captured data.
We chose DTW because unlike other classifiers such as Hidden
Markov Models or Neural Networks, DTW requires little or
no training. 1 We varied the data length, number of frames and
tracking points of the sample gestures, and implemented them
on both a contact SC and the much more powerful Samsung
Galaxy S4 mobile phone. The latter used Host Card Emulation
(HCE) [9] to emulate the SC, and the DTW algorithm was
optimised to minimise memory usage on both platforms.

The experiment showed that the implementation on an SC
was slow, (in a excess of minute) and the HCE version was
much faster (around 1s or 2s), although the overall processing
time depended on the gesture data length. It should be noted
that the test applications were implemented at the platform
level, rather than in low-level native code which would have
been much faster.

This paper is structured as follows: Section 2 presents
some background information about Smart Cards, Host Card
Emulation, Gesture Recognition and the comparator we use
i.e. the DTW algorithm. In Section 3, we present the details
of the experiment, gestures, hardware and the optimisation of
the gesture comparator used as well as the results. In Section
4 we discuss the feasibility of using gesture recognition on
a personal device of limited capabilities. The conclusion and
future work appear in Section 5.

II. BACKGROUND

A. Smart Card

A modern Smart Card (SC) consists of an integrated circuit
incorporating various types of attack and tamper resistance,
packaged and embedded within a card carrier [10]. The attack
resistant capabilities can be formally certified by independent
evaluation. An SC is able to store and protect modest amounts
of data, carry out on-card processing (e.g encryption and

1A comparison of classification algorithms can be seen in [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mutual authentication) and can communicate with an SC
reader, all via the embedded microcontroller chip [11]. An
SC requires a reader to which it connects either with direct
physical contacts (‘contact card’) or via very short range
wireless (‘contactless card’). Since an SC can store secret
identifiers securely and engage in cryptographically protected
(challenge-response) protocols, SCs play a very useful role
in secure authentication [12]. An SC facilitates high security
protocols and processes in a very user friendly way that is
both easy-to-use and offers tamper-resistant security.

Many research papers have proposed how to store biometric
information on smart cards, for use in two factor authentication
(e.g. [13]) or three factor authentication (e.g. [14]).

B. Host Card Emulation

Host Card Emulation (HCE) is a technology which emulates
an SC on mobile equipment using only software [9], and can
be used with Near Field Communication (NFC) to emulate
a contactless SC. Before HCE, all messages from a card
terminal were routed to a hardware Secure Element (SE)
in the mobile handset. HCE communicates directly with the
mobile operating system, which decides if messages should
be handled by a physical SE or a software application [15].

C. Gesture recognition

In this paper, when we refer to a "gesture" we mean a set
of frames and tracking points produced by our gesture capture
devices. These elements are organised such that every frame
contains the same number of tracking points.
• Frames: they represent the length of a gesture in time.

The frequency generation of a new frame depends on the
sensor: the KinectTM software generates 30 frames per
second [5], the Leap Motion software can produce frames
up to a rate exceeding 100 frames-per-second [16].

• Tracking Points: they represent the features of the gesture.
Movement is usually tracked in three dimensions, which
means that for each point we have information on the
horizontal, vertical and depth (x, y, z). Depending on the
sensor used, there may be support for point tracking, for
example KinectTM is able to track points from the head
to toe including the head, hands, hips, feet, etc [17], but
it is also possible to use the raw image from the sensor
to track other points. The Leap Motion device, which
tracks and records hand movements, could use raw data
to track more information about the hands, such as finger
thickness.

Accelerometers installed in mobile devices can also be used
to capture movement in three dimensions. This has led to
research into authenticating an individual based on gestures
performed while holding a mobile device [18], [19]. One of
the drawbacks of the accelerometer is that it captures only
one point and not physical information about the user. Depth
cameras, on the other hand, can capture several points. Depth
cameras include the KinectTM, which provides us with 20 3D
skeleton tracking points; these points were used by [20] with
the Nearest Neighbor Algorithm to identify walking subjects.

Figure 1. Graph 1 Two time series (A and B): Graph 2 The warping path
between A and B obtained using the DTW algorithm

In [3], upper body parts recorded in the skeleton generated by
the KinectTM were used for authentication based on gesture
recognition: using 6 of the available 20 skeleton tracking
points, gave a True Positive Rate (TPR) of 93%, with 0% False
Positive Rate (FPR) if the attacker 2 did not know the gesture
and 1.7% of FPR once the attacker had seen the gesture. Other
authors chose to use all 20 skeleton tracking points from the
KinectTM [4] which gave them a TPR of 98.11% for 1.89%
of FPR. The KinectTM was used with the DTW algorithm for
analysis and recognition of 3D signatures [21]: here TPR was
99% and 1% FPR.

Hand gesture authentication, accuracy and attack resistance
against shoulder surfing, were explored in [22]. In this exper-
iment, reference hand gestures were recorded using a depth
camera, filmed, and shown to a group of ‘attackers’: they were
then asked to copy the gestures [22]; here the TPR was 96.6%
and FPR was 2.2%.

D. Comparator : Dynamic Time Warping

There are several algorithms that can be used for gesture
recognition: for example, Dynamic Time Warping (DTW);
Neural Network; or Hidden Markov Model. The Dynamic
Time Warping (DTW) algorithm is frequently used to do
the comparison, but some systems may instead use a mix of
Bayes, Neural Network or Random Decision Forest [2]. In
this paper we will focus on the DTW algorithm, because it
requires little or no training. Other classification algorithms
such as the Neural Network or the Hidden Markov Model
need several examples from the user in order to get an
accurate authentication rate. The DTW algorithm looks for
an optimal alignment between two time-bound sequences,
independently of the variation of speed or time between
both sequences. Originally, this algorithm was used in
speech recognition [23]. The interested reader is referred
to other works that have used this method e.g. [24], [25], [26].

In practice, the principle of DTW is to define a warping
path with the minimal cost. This cost is given by the cost
function (or distance function) which is the distance (or the
error) between the two sequences, as shown in Figure 1. DTW
is reviewed in [7] and can be summarised as follows:

2“attacker”, in this paper, means an unauthorised person who copies a
gesture with the aim to be authenticated



Table I
INFORMATION ON THE GESTURES AND APDU SENT.

Gesture size in
bytes

Number of
frames

Number of
tracking points

Number of
frames sent per

APDU

Size of the
APDU data

Number of
APDU sent

Gesture 1 3240 90 6 1 36 90
6 216 15

Gesture 2 1764 49 6 1 36 49
6 216 9

Gesture 3 5940 90 11 1 66 90
3 198 30

Gesture 4 3234 49 11 1 66 49
3 198 17

To use DTW to align two sequences A and B, where
A = (a1, a2, ..., aN ) of length N ∈ N (i.e a positive integer)
and B = (b1, b2, ..., bM ) of length M ∈ N, we construct
an N-by-M matrix where the (ith, jth) element of the matrix
contains the distance d (xi, yj) between the two points xi and
yj , using a distance function, generally the Euclidean distance,
d(xi, yj) = (xi − yj)

2. Each element (i, j) of the matrix
corresponds to a hypothetical alignment between the points
xi and yj . From this matrix we can determine a warping path
W where the kth element of W is defined as wk = (i, j)k so
we have:

W =w1, w2, . . . , wk, . . . , wK

max(m,n) ≤ K < m+ n− 1
(1)

The warping path is typically subject to constraints on bound-
ary conditions, continuity and monotonicity.
• Boundary conditions: w1 = (1, 1) and wk = (m,n), the

warping path must start and finish in diagonally opposite
corner cells of the matrix.

• Continuity: Given wk = (x, y) then wk−1 = (x′, y′)
where x−x′ ≤ 1 and y− y′ ≤ 1. Allowable steps in the
warping path are restricted to adjacent cells (including
diagonally adjacent cells).

• Monotonicity: Given wk = (x, y) then wk−1 = (x′, y′)
where x − x′ ≥ 0 and y − y′ ≥ 0. The points in W are
forced to be monotonically spaced in time.

We are interested only in the path which minimises the
warping cost:

DTW (AB) = min(

√√√√ K∑
k=1

wk) (2)

We can find this path using dynamic programming to
evaluate the following recurrence which defines the cumulative
distance γ(i, j) as the distance d(i, j) found in the current cell
and the minimum of the cumulative distances of the adjacent
elements:

γ (m;n) =d(m;n) +min(γ (m− 1;n− 1);

γ(m− 1;n); γ(m;n− 1))
(3)

Where: γ (m;n) is an (M +1)× (N +1) matrix; γ (0;n)
and γ (m; 0) are initialized with a large number representing

infinity, or zero, depending on the application; γ (0; 0) with
zero; d(m;n) is the cost function.

The cost of the minimal path between both sequences is
contained at γ(M ;N).

The next section describes the performance evaluation ex-
periments that were conducted.

III. EXPERIMENT

In the work of [3], six of the available KinectTM skele-
ton tracking points were used in a gesture authentication
system with promising results, giving an Equal Error Rate
(EER) of 2.8%. We devised a proof-of concept authentication
experiment using a Leap Motion device, which tracks and
records hand movements in three dimensions. For more tech-
nical information concerning the Leap Motion device please
see [6]. Preliminary results from a small sample of volunteers
indicated that it is feasible to use this device in gesture
authentication systems although the EER is 11.88%.

For the performance evaluation in this paper, we used the
Leap Motion to record a gesture of 90 frames with 11 tracking
points (the five finger tips and roots and the palm centre) from
which we truncated the floating numbers and encoded them
all into two bytes.

We chose to emulate gestures from these two capture
devices, setting the number of frames and tracking points
in our sample gestures accordingly to reflect the different
characteristics of the sensors. The DTW algorithm was used
to analyse the gestures.

We are not assessing the performance of any cryptographic
protocols because they would be the same for both SC and
HCE.

A. Gesture Data and Hardware

1) The gestures: We created four different sample gestures
with varying memory requirements and processing time, de-
scribed as follows:
• Gesture 1: This gesture represents the capture of six

points in three dimensions and is composed of 90 frames.
The total amount of data of this gesture is 3240 bytes.
This gesture represents a three second gesture obtained
with a device capturing at 30 frames per second. The



number of tracking points represents either the five fin-
gertips and the palm centre (if performing hand gesture
recognition), or both hands, elbows and shoulders for
upper body gesture recognition.

• Gesture 2: This gesture captures six points in three
dimensions and is composed of 49 frames. The total
amount of data of this gesture is 1764 bytes. This gesture
may represent a 1.63s gesture obtained with a device
capturing at 30 frames per second. The tracking points
are the same as in Gesture 1.

• Gesture 3: This gesture captures 11 points in three
dimensions and is composed of 90 frames. The total
amount of data of this gesture is 5940 bytes. Again, this
gesture may represent a three second gesture obtained
with a device capturing at 30 frames per second. The
tracking points can represent the five fingertips, five finger
roots and the palm centre for hand gesture recognition, or
both feet, knees, hands, elbows, shoulders and the head
for body gesture recognition.

• Gesture 4: This gesture captures 11 points in three
dimensions and is composed of 49 frames. The total
amount of data of this gesture is 3234 bytes. This gesture
may represent a 1.63s gesture obtained with a device
capturing at 30 frames per second. The tracking points
are the same as in Gesture 3.

2) The hardware: The devices used for the experiment
were: an ACR1281U reader which can be used with both
SC and NFC devices as contactless reader, attached to a PC
running Windows 7 with 2 GB of RAM and a processor of
1.86 GHz. As an SC, we used a Java Card 2.2.2 with 16 bits
processor, and a HCE equivalent application running on a
Samsung Galaxy S4 with Android 5.0.1, 2 GB RAM, Quad-
core (4x1.6 GHz Cortex-A15 and 4x1.2 GHz Cortex-A7).

3) The experiment protocol: Firstly, we needed to decide
how to send the gesture information from the terminal to
the card. A normal Application Protocol Data Unit (APDU),
which is how we communicate with a card, can send up to
256 bytes. We tested two methods for sending the gestures
information:

• Sending all the information frame by frame: in this way
the APDU data size is 36 bytes for Gesture 1 and 2 and
66 bytes for Gesture 3 and 4

• Sending the maximum number of frames that an APDU
can handle: for Gesture 1 and 2, it is six frames which
gives an APDU data size of 216 bytes and for Gesture 3
and 4, it is three frames, so the APDU data size is 198
bytes

All the information about the gestures and the APDUs sent
are summarized in Table I.

We measured the communication time for the APDUs
described above for both SC and HCE, in order to know
how this decision may affect the performance evaluation. We
carried out 100 time measurements, to assess if the measured

Figure 2. Application of DTW with only one row in memory

response time was stable.
We then performed the Gesture Recognition application

with DTW. First, we captured 100 time measurements for
each of the four gestures, when running the application by
sending the gesture frame by frame to the SC. We repeated
the experiment packing the maximum number of frames into
the APDU. We then repeated these two steps using HCE.

B. Dynamic Time warping: Memory optimisation
The main drawback of the DTW algorithm is that, for a

gesture A of M frames and a gesture B of N frames, it needs
to fill an M x N matrix where the cell (i,j) represents the score
between frame i of gesture A and frame j of gesture B plus
the cumulative score.

Some works try to optimise the DTW either in calculation,
memory or both. In [27], they reduced the amount of calcula-
tion and memory needed by focussing on a part of the DTW
matrix, which may contain the warping path. But they force
the warping path of any comparison to be in this calculated
section which may imply more false positive results. The same
comment can be made if we do not calculate the full matrix
as the warping path will be altered.

Equation 3 shows we only need three elements, γ(m−1;n−
1), γ(m − 1;n), γ(m;n − 1). Thus we only need to have in
memory two rows, either the row m and row m-1, or the row
n and row n-1. Let us say that we have in memory the row m
and row m-1: this method then reduces the memory cost from
M x N to 2M, although the number of calculations remain
unchanged.

We found that it is possible to implement the DTW algo-
rithm by storing only one row of size M plus a temporary
variable of the size of one element of M. This method



Table II
TIMES MEASURED IN MILLISECOND

Size of Number of Communication time
per APDU

Average time for the
full application Estimate processing time

the APDU APDU sent SC HCE SC HCE SC HCE

Gesture 1
36 90 6.71 23.65 92982.15 2228.48 92378.09 99.48

216 15 24.72 77.54 76029.02 1196.35 75658.16 33.12

Gesture 2
36 49 6.71 23.65 50622.60 1214.52 50293.73 55.40

216 9 24.72 77.54 43760.30 667.18 43555.80 23.14

Gesture 3
66 90 9.79 31.81 108674 3084.76 107792 221.60

198 30 23.76 71.80 94083.19 2253.42 93370.15 99.30

Gesture 4
66 49 9.79 31.81 32448.10 1684.36 31968.07 125.52

198 17 23.76 71.80 28092.53 1237.19 27702.44 64.68

overwrote the row at each iteration and saved the temporary
variable in the last overwritten cell.

So if we are looking for γ(m;n) which will be saved in the
cell c(a), we can find γ(m;n−1) in the cell c(a-1); γ(m−1;n)
is the current value of c(a), and γ (m− 1;n− 1) is saved in
the temporary variable. Once the cost γ(m;n) is calculated,
we have to save the value in c(a) in the temporary variable
then overwrite c(a) with the value of γ(m;n). Figure 2 is
illustrating this method.

C. Results

For the communication, the SC is always more than three
times quicker than the HCE (the average time for each kind of
APDU can be seen in the Table II in the communication time
per APDU column) and is more stable as its average standard
deviation is 0.29ms against 5.65ms for HCE.

We then measured the time for the full application (com-
munication time plus processing time) as described earlier
in III-A3. The average time for each gesture can be seen
in Table II under the column Average time for the full
application. Knowing the communication time, the number
of APDUs sent and the full time for the application, we can
calculate the time needed by the devices to process the Gesture
Recognition. This time can be seen in Table II under the
column Estimate processing time.

We observed that the SC needed a lot of time to process
a gesture; more than 27s for the quickest. Even if we used
SC technology with a quicker communication interface, the
SC processing would still be a bottleneck. On the other hand,
the HCE had a slow communication time, but its processing
time was much quicker than the SC, rarely exceeding 100ms
duration.

IV. DISCUSSION

The experiment has shown that it is possible to implement
authentication based on Gesture Recognition on an SC at
platform level, however the performance (one minute duration

for a three second gesture) was far too slow to be practical. A
solution to this problem could be to develop the application
on a lower level, either in hardware or in native code. Based
on the work of [28] who implemented signature recognition
on an SC, on both application level and native level, using a
algorithm of similar complexity to the one we used, we can
estimate that the process time would be three times faster.

An HCE application would be more feasible for a real
application as it takes around one second. However, an HCE
application does not provide the attack resistance offered by
an SC. The HCE application could be protected at least
from phone malware, by running within a Trusted Execution
Environment (TEE). A TEE offers a more restricted/protective
environment for running sensitive code, compared to normal
phone applications [29], although does not offer the tamper
resistance of an SC.

Using a device with faster communication speed, or devices
supporting extended APDUs (an extended APDU is able to
support up to 216 data bytes [30]) will reduce the time needed
for the full Gesture Recognition application. The application
installed on a personal, limited device, will still remain slower
than an equivalent application installed on a secure server, but
it will be more versatile, supporting both on-line and off-line
transactions.

An example application that could use this kind of authen-
tication would be for building access. If a sensor and a reader
are installed at a restricted area entry point, possession of
the SC (or the phone) plus knowledge of the correct gesture
performed in the correct manner would be needed to enter.
This three factor authentication then reduces the likelihood
that the system could be hacked.

V. CONCLUSION

In this paper we introduced gesture recognition as a means
of authentication that included some biometric content, and
that implementation required a secure means to store and
process the reference template. We investigated whether an SC



or an HCE implementation would be feasible for a Gesture
Recognition application, when using the DTW algorithm to
compare gestures. Thus, we measured communication and
processing time for both SC and HCE.

Although it is possible to run a Gesture Recognition ap-
plication on an SC at platform level, it is not feasible for a
real application as our implementation took around a minute.
There is scope for improving performance by implementing
the application at a lower level, either in hardware or with
native code.

Our HCE application, was far more practical for a real world
application, although it did not provide the attack resistance
that an SC offers. The use of a TEE may enhance security and
resist logical and malware attacks, although a TEE does not
offer the tamper-resistance of an SC.

Future work includes the implementation of Gesture Recog-
nition in hardware and/or native SC code, and frame optimi-
sation research.The latter may determine the minimal number
of gesture frames to authenticate genuine users whilst still
rejecting attackers.

REFERENCES

[1] N. Ratha, J. Connell, R. M. Bolle, and S. Chikkerur, “Cancelable bio-
metrics: A case study in fingerprints,” in 18th International Conference
on Pattern Recognition (ICPR’06), vol. 4. IEEE, 2006, pp. 370–373.

[2] A. Chahar, S. Yadav, I. Nigam, R. Singh, and M. Vatsa, “A leap password
based verification system,” in Biometrics Theory, Applications and
Systems (BTAS), 2015 IEEE 7th International Conference on. IEEE,
2015, pp. 1–6.

[3] B. Ducray, S. Cobourne, K. Mayes, and K. Markantonakis, “Authenti-
cation based on a changeable biometric using gesture recognition with
the KinectTM,” in 2015 International Conference on Biometrics (ICB).
IEEE, 2015, pp. 38–45.

[4] J. Wu, J. Konrad, and P. Ishwar, “Dynamic Time Warping for gesture-
based user identification and authentication with Kinect,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 2371–2375.

[5] Microsoft, “Kinect for Windows Sensor Components and Specifi-
cations,” http://msdn.microsoft.com/en-us/library/jj131033.aspx, 2014,
[Online; accessed 16 November 2016].

[6] “Leap Motion,” https://developer.leapmotion.com/getting-started/
javascript/developer-guide, 2016, [Online; accessed 25 February 2016].

[7] E. Keogh and C. A. Ratanamahatana, “Exact indexing of Dynamic Time
Warping,” Knowledge and information systems, vol. 7, no. 3, pp. 358–
386, 2005.

[8] G. D. Clark and J. Lindqvist, “Engineering gesture-based authentication
systems,” IEEE Pervasive Computing, vol. 14, no. 1, pp. 18–25, 2015.

[9] N. Prakash, “Host card emulation,” International Journal of Scientific
and Research Publications, vol. 5, no. 8, pp. 1–3, 2015.

[10] K. Eagles, K. Markantonakis, and K. Mayes, “A comparative analysis
of common threats, vulnerabilities, attacks and countermeasures within
smart card and wireless sensor network node technologies,” in Informa-
tion Security Theory and Practices. Smart Cards, Mobile and Ubiquitous
Computing Systems. Springer, 2007, pp. 161–174.

[11] X. Leng, “Smart card applications and security,” information security
technical report, vol. 14, no. 2, pp. 36–45, 2009.

[12] K. Mayes, F. Piper, and K. Markantonakis, “Smart card based authenti-
cation: any future,” Computers & Security, vol. 24, pp. 188–191, 2005.

[13] C.-T. Li and M.-S. Hwang, “An efficient biometrics-based remote user
authentication scheme using smart cards,” Journal of Network and
computer applications, vol. 33, no. 1, pp. 1–5, 2010.

[14] X. Huang, Y. Xiang, A. Chonka, J. Zhou, and R. H. Deng, “A
generic framework for three-factor authentication: preserving security
and privacy in distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 8, pp. 1390–1397, 2011.

[15] A. Umar, K. Mayes, and K. Markantonakis, “Performance variation in
host-based card emulation compared to a hardware security element,” in
Mobile and Secure Services (MOBISECSERV), 2015 First Conference
on. IEEE, 2015, pp. 1–6.

[16] “Leap Motion,” https://developer.leapmotion.com/documentation/cpp/
unreal/Leap_Unreal_Cpp_Tutorial.html, 2016, [Online; accessed 16
November 2016].

[17] Microsoft, “Human Interface Guidelines v1.8,” http://go.microsoft.com/
fwlink/?LinkID=247735, 2013, [Online; accessed 16 November 2016].

[18] F. Hong, M. Wei, S. You, Y. Feng, and Z. Guo, “Waving authentication:
your smartphone authenticate you on motion gesture,” in Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems. ACM, 2015, pp. 263–266.

[19] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “UWave:
Accelerometer-based personalized gesture recognition and its applica-
tions,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657–675,
2009.

[20] R. M. Araujo, G. Grana, and V. Andersson, “Towards skeleton biometric
identification using the Microsoft Kinect sensor,” in Proceedings of the
28th Annual ACM Symposium on Applied Computing. ACM, 2013, pp.
21–26.

[21] J. Tian, C. Qu, W. Xu, and S. Wang, “Kinwrite: Handwriting-based
authentication using Kinect.” in NDSS, 2013.

[22] M. T. I. Aumi and S. Kratz, “AirAuth: evaluating in-air hand gestures
for authentication,” in Proceedings of the 16th international conference
on Human-computer interaction with mobile devices & services. ACM,
2014, pp. 309–318.

[23] V. Velichko and N. Zagoruyko, “Automatic recognition of 200 words,”
International Journal of Man-Machine Studies, vol. 2, no. 3, pp. 223–
234, 1970.

[24] D. Gavrila and L. Davis, “Towards 3-d model-based tracking and recog-
nition of human movement: a multi-view approach,” in International
workshop on automatic face-and gesture-recognition. Citeseer, 1995,
pp. 272–277.

[25] G. Ten Holt, M. Reinders, and E. Hendriks, “Multi-dimensional dynamic
time warping for gesture recognition,” in Thirteenth annual conference
of the Advanced School for Computing and Imaging, vol. 300, 2007.

[26] J. F. Lichtenauer, E. A. Hendriks, and M. Reinders, “Sign language
recognition by combining statistical DTW and independent classifica-
tion,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 30, no. 11, pp. 2040–2046, 2008.

[27] J. Putz-Leszczyńska and M. Kudelski, “Hidden signature for DTW
signature verification in authorizing payment transactions,” Journal of
telecommunications and information technology, pp. 59–67, 2010.

[28] O. Henniger and K. Franke, “Biometric user authentication on smart
cards by means of handwritten signatures,” in Biometric Authentication.
Springer, 2004, pp. 547–554.

[29] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted execution envi-
ronments on mobile devices,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp.
1497–1498.

[30] “ISO 7816-4,” http://www.cardwerk.com/smartcards/smartcard_
standard_ISO7816-4.aspx, 2013, [Online; accessed 11 November
2016].


