
Performance of Authenticated Encryption for Payment Cardswith Crypto

Co-processors

Keith Mayes

Royal Holloway, University of London
Egham, Surrey, UK

Email: keith.mayes@rhul.ac.uk

Abstract—Many security protocols rely on authentication of
communicating entities and encryption of exchanged data. Tra-
ditionally, authentication and encryption have been separate
processes, however there are combined solutions, referredto as
authenticated-encryption (AE). The payment card industry is
revising its protocol specifications and considering AE, however
there has been uncertainty around performance and feasibility on
traditional issued smart cards and when loaded as applications on
security chips pre-installed within devices. It is difficult to predict
performance using results from generic CPUs as typical smart
card chips used in payment, have slow CPUs yet fast crypto-
coprocessors. This report is based on a practical investigation,
commissioned by a standards body, that compared secure plat-
form level (MULTOS) and low-level native implementations of
AE on crypto-coprocessor smart cards. The work also suggests
a technology independent benchmark for a CPU with crypto-
coprocessor.

Keywords–Authenticated encryption; EMV; OCB; GCM; ETM;
CCM; smart card; crypto-coprocessor; payment; performance;
MULTOS.

I. I NTRODUCTION

The EMVCo organisation [4] developed the Europay, Mas-
tercard and Visa (EMV) standards [3] that affect billions of
payment smart cards. The cards use secured microcontroller
chips, designed to be strongly tamper-resistant and indepen-
dently evaluated to Common Criteria (CC) [2] levels of at
least Evaluation Assurance Level (EAL)4+. Despite strong
defensive capabilities, the chips lag behind the state-of-the-
art in CPU performance and memory sizes. However, despite
these limitations the chips excel in cryptographic operations
as they incorporate relatively high-speed crypto-coprocessor
hardware. The EMVCo organisation is reviewing the use
of Authenticated Encryption (AE) [10] for future payment
card processing. There are a number of potential modes and
those originally of interest included Offset Codebook (OCB)
[15], Galois Counter Mode (GCM) [20], Counter with Cipher
Block Chaining Message Authentication Code (CCM) [19]
and Encrypt-then-MAC (ETM) [10]. Within this study, GCM
was eventually substituted for OCB3 as the former required
binary field multiplication, which was not supported by the
available crypto-coprocessors. There have been previous stud-
ies of AE performance, however they have generally focussed
on more powerful generic CPUs, without dedicated crypto-
coprocessors. As a starting point we take the study by Krovetz
and Rogaway [14], which shows that OCB performance is
faster (for the given test conditions) than alternatives; however

there are several reasons why these results cannot be immedi-
ately accepted as relevant for EMV protocols:

• The command messages in traditional smart cards are
small; the data field restricted to 255 bytes; larger
payloads accommodated by multiple messages.

• The results do not adequately address the case of a
slow CPU with a relatively fast crypto-coprocessor.

• Support for Associated Data is not required.

• Smart cards have very restricted memory sizes with
different write speeds for Random Access Memory
(RAM) and Non-Volatile Memory (NVM).

• Conventional smart card interfaces are quite slow and
so protocols can be communication limited rather than
processing limited.

In order to gain a better appreciation of the comparative
performance of AE on realistic smart card platforms, a prac-
tical study was initiated, considering first a secure platform
implementation (MULTOS) [17] and then a native mode
equivalent. This report describes the experimental requirements
in Section II and then gives an overview of the AE modes
in Section III. The platform and native results are presented
and discussed in Sections IV and V respectively. Section VI
discusses how implementation security may affect performance
measurements, and Section VII considers communication lim-
itations. Conclusions and suggestions for future work are
presented in Section VIII.

II. EXPERIMENTAL REQUIREMENTS

The study investigated comparative performance of AE
modes implemented in both a secured smart card application
platform (representative of a pre-deployed device), and as
native code on a smart card chip. The selected platform was
a MULTOS ML3 card, using the Infineon SLE78 chip [7],
which can be CC EAL4+ certified, and includes good defences
against physical, side-channel [12][13] and fault attacks. The
native mode implementation used a Samsung 16-bit smart card
chip (S3CC9E8) [23], and as the crypto-coprocessor did not
support AES, its performance comparisons used 3DES/DES
[5]. The S3CC9E8 is a secured microcontroller with physical
attack protection, fault sensors and some side-channel counter-
measures, however it would normally require added defensive
measures in software; this is discussed further in Section VI.
The AE modes considered in detail were OCB (OCB2 and
OCB3), CCM and ETM; with some GCM experiments.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The EMV protocol would normally have a preliminary
Diffie Hellman key and nonce exchange, however this was not
modelled as would be common to all AE modes and so would
not affect performance comparison. Associated Data is not
needed in the EMV protocol. Communicated data is required
to fit within one or more standard Application Data Protocol
Units (APDU) [8], and with the exception of OCB modes,
all APDU payloads that are not multiples of the encryption
block-size are padded prior to encryption. The memory in
smart card chips is very restricted and protocol/algorithm
execution is expected to place very limited demands on it,
leaving maximum space for OS and applications. For our tests,
a working assumption was that 80-90% of the memory was
unavailable. The RAM in smart cards is usually much faster
for writing than the NVM and so critical objects/buffers are
implemented in a RAM. Our application was limited to no
more than 10% of the available RAM (so if 8k, we could
have 800 bytes). The application was restricted to no more
than 10% of the available code/data space (so if a 64k flash
device then 6.4kbytes was allowed). Some implementations
benefit from trading NVM space for speed using pre-computed
tables, which is not well suited to smart cards, but up to 10%
of the NVM space was assumed available for this. In general
the imposed memory restrictions proved not to be a problem
for the implemented AE modes.

Test software was in ‘C’, so it could be adapted and directly
comparable for both MULTOS and native implementations.
There is a single test application that incorporates all theAE
modes plus test utilities that measure various core functions.
The interface is based on APDU commands and responses,
with the payload data consisting of blocks of plaintext or
ciphertext. For message timing precision, commands were run
1024 times before response, in order to compensate for mea-
surement tolerance. Communication delay was removed (via
calibration) from the test results, although it is reconsidered in
Section VII. We will now continue the discussion by providing
an overview of the AE modes.

III. OVERVIEW OF AUTHENTICATED ENCRYPTION
MODES

Offset Codebook mode is defined as mechanism 1 in
ISO/IEC 19772 [10] and is also described in RFC 7253[15].
The principles of operation are also well presented on Phil
Rogaway’s website [21]. For convenience, we will summarise
the basic operations of OCB2 here. In Figure 1, an initialisation
vector is first computed and then the plaintext message is split
into blocks (M1-3, M* in example), all but the last block must
be the size of the block cipher, so for AES128 we have 128
bit blocks. They are then encrypted (with modification from
the input vector) to produce ciphertext blocks. The complete
output is the sequence of C1-3, C* plus an extra value T. Note
that because of a requirement to recompute the intialisation
vector, this AE is most optimum for a 64 block message
sequence and least optimum for a single block message.

CCM is mechanism 3 in ISO/IEC19772[10] and described
in NIST SP800-38C[19] and [24]. Figure 2 overviews CCM
operation. Whilst the simplified diagram just shows a nonce/-
counter input to the stages of the MAC calculation, the generic
standard description also specifies some flag/length bit fields.

ETM scheme (see Figure 3) is mechanism 5 in ISO/IEC
19772 [10], and is a conventional approach with separate

Figure 1. OCB with Incomplete Blocks [Rogaway]

Figure 2. CCM Overview (simplified)

encryption and MAC processes. It does not support Associated
Data, although this is not required for the study. The encryption
stage uses block encryption in counter mode with key K,
followed by a MAC computation on the cipher text using
a different key (K’) to that used for encryption. According
to ISO/IEC 19772[10] the MAC algorithm is selected from
the ISO/IEC 9797 standards [11], in which there are six
different MAC options, all of which have numerous variants.
The selected options for the tests are listed below.

• MAC Algorithm: 1 (usually referred to as CBC-MAC)

• Padding Method: 1 (zeros)

• Final Iteration: 1 (same as other iterations)

• Output Transformation: 1 (unity = no change)

• Truncation: - (left most 64 bits)

GCM (see Figure 4) mode of operation is mechanism 6 in
ISO/IEC 19772 [10] and also described in NIST SP800-38D
[20] and [22]. The performance of this mode could not be very
usefully compared using the traditional crypto-coprocessors
used for the study as GCM requires support for multiplication
over Galois Field GF (2128) with the hash key H, which is the
encryption of all zeros under EK .

A. Workload Estimation

Table I gives an indication of the underlying workload for
each mode when processing the representative test message
sizes (as advised by the commissioning standards body).

Figure 3. Encrypt then MAC

Figure 4. CCM Overview (simplified)

IV. PLATFORM MODE RESULTS

For security, certification and reliability reasons, it is not
normal to have native code access to a smart card or similar
security chip once deployed. Instead the chip may offer a
secure platform where added functionality is constrained to a
tightly controlled application layer, using APIs to accesssecu-
rity capabilities. The MULTOS card is such a secure platform
whereby the application execution language is abstracted from
the underlying hardware (see [18]), offering high standards of
security, but making it difficult to predict performance of the
core AE functionality. The results of initial benchmark tests

TABLE I. ALGORITHM WORKLOAD PER MODE

Bytes Blks Msgs OCB GCM CCM ETM
E Init E Mul E E

8 1 1 3 1 2 2 3 2
16 1 1 3 1 2 2 3 2
20 2 1 4 1 3 3 5 4
32 2 1 4 1 3 3 5 4
40 3 1 5 1 4 4 7 6
64 4 1 6 1 5 5 9 8
128 8 1 10 1 9 9 17 16
192 12 1 14 1 13 13 25 24

TABLE II. MULTOS BENCHMARK MEASUREMENTS (ms)

Function Primitive Application Used
RAM NVM RAM NVM

Block Encrypt 3.3 6.4 3.3
Block Xor 0.73 3.94 3.21 15.84 0.73
Block Shift 1.24 2.7 1.24
Block Copy 0.36 0.65 0.36
GF Multiply 199 199

are shown in Table II.

The time measured for a block encrypt with a 128-bit
key was 3.3ms (confirmed by MULTOS as matching in-house
results). The underlying chip crypto-engine is much faster, and
the speed disparity is due to software reliability and security
measures. The 3.3ms is only valid when writing encrypted
data to RAM, as NVM increases the time to 6.4ms (although
reading from NVM is fast); so the outputs of all functions were
written to RAM. In all cases where a primitive was available,it
was considerably quicker than any equivalent implemented at
the application layer, although considerably slower than what
might be imagined from a low-level native implementation

GCM requires a finite field multiply, but such a function
did not exist as a MULTOS primitive and so was provided in a
simple implementation similar toAlgorithm 1 in the standard
[16]. Multiplying a single block takes 199ms, even when
using primitivesmultosBlockShiftRight and MultosBlockXor.
Other implementations are described in the standard, although
they make use of time/memory trade-offs, which is not a
strength for a memory limited smart card. For the initial tests,
all the modes and the extra test utilities were built into a
single application with the following memory requirements.

• Code Size (NVM): 5701 bytes
• Static Data (NVM): 498 bytes
• Session Data (RAM): 113 bytes

All the sizes are well within the realistic and practical
design targets defined at the start of the project. For a single
mode application the code size would be considerably less,
and the static data is mainly internally stored test-vectors that
would not normally be present. The session data could be
reduced, if required.

A. Initial Tests and Optimisation

Following the MULTOS benchmark tests, the GCM mode
was removed from the study (on request of the commissioning
standards body) and more attention given to OCB (version 2)
optimisation; and later OCB3 was also added. GCM requires
specialist hardware support that was not available from the
crypto-coprocessors in the test chips, whereas the other AE
modes could be implemented in a straightforward manner.
OCB2 was initially implemented from the published example
code (see Figure 5)that was critically dependent on a function
called two times().

This was replaced with a version (with less shifts) more
suited to the MULTOS Platform (see Figure 6), which had a
marked improvement on performance.

Given the resulting speed-up (four/five times on larger
messages) from improving OCB2 code, it was decided to also
implement OCB3 based on the pseudo code and test vectors
in RFC7253 [14].

Figure 5. Published Example Code fortwo times()

Figure 6. MULTOS Code fortwo times()

1) OCB3 Memory considerations: At the beginning of the
OCB3 encrypt pseudo code, a number of bit arrays need to
be set-up, see Figure 7, noting that ‘’ is used to indicate
subscript in the pseudo code and thatdouble() is the same
as thetwo times() function used in OCB2. The array Li to
use in block processing, varies per message block using index
L [ntz(i)]. L i: If we allow for processing 64 blocks of 128

Figure 7. OCB3 Key-dependent Variable Set-up

bits then it might appear that we need 64 of the Li arrays.
However thentz(i) index means we only need 6 (26 = 64)
L i arrays, as well as L*, L $ and L 0. Therefore we need 9
blocks (144 bytes), rather than 67 blocks; which is well within
our target RAM limit.

ntz(): Another memory requirement arises from the ntz()
function. Bit/byte manipulations at the MULTOS application
layer are slow and so it is quicker to implement the function as
a look up table. For a maximum 64 block message we require
a 64 byte array that can be precomputed and stored in NVM.
This small amount of memory is easily accommodated within
a smart card.

2) OCB3 Functional Aspects: OCB3 defines a hash func-
tion for use with Associated Data, however this is not needed
in the EMV experiments. OCB3 has a preparation stage where
key and nonce related data is readied prior to processing mes-
sage blocks. The key data was described earlier (computation is
relatively straight forward) and nonce related data is illustrated
in Figure 8. This is mostly straightforward apart from the
innocuous looking line showing the calculation ofOffset 0.
The variablebottom will have a value between 0 and 63; and
it is effectively used as a bit-wise left shift. As discovered

Figure 8. OCB3 Nonce and Pre-encrypt Variables

TABLE III. MULTOS PLATFORM RESULTS (ms)

Bytes OCB2 CCM ETM OCB3
8 16.59 17.78 14.27 28.66

16 16.61 17.22 13.70 29.27
20 22.17 25.73 22.21 34.40
32 22.17 25.16 21.62 35.00
40 27.72 33.67 30.15 40.12
64 33.35 41.09 37.57 46.42

128 55.77 72.91 69.38 69.21
192 78.17 104.73 101.22 92.06

Figure 9. AE Comparative Performance on MULTOS Platform

previously, application level bit-shifts are inefficient on the
MULTOS test platform, however the primitivesmultosBlock-
ShiftLeft/Right are much quicker. Unfortunately, the primitives
require a fixed constant value for the number of places to shift.
Although the operation is only carried out once per message it
could adversely affect efficiency, especially of small messages
and so effort was directed towards optimisation. The first step
was to splitbottom into a number of byte shifts plus a smaller
number (up to seven) bit shifts. Byte shifts are easy as we
can just change the array index. The bit-shifts were used in
a switch/case to reach primitive calls with the appropriate
number of shifts. More code was needed, but the overall code
space requirements are small.

B. MULTOS Platform Results

The results from testing OCB2, CCM, ETM and OCB3 are
shown in Table III.

From the MULTOS results we can see OCB2 is the
quickest mode for message sizes beyond 32bytes. OCB3’s
initial processing makes it slower than OCB2, and OCB3 only
overtakes ETM for messages larger than 128 bytes. CCM is
always a little slower than ETM due to the extra encryption
block, and both are less efficient when working on input data
that requires padding.

Although OCB2 seems the faster option for the MULTOS
platform (for messages 32+bytes) the relative difference in
processing time is not enormous. OCB2 benefited from some
optimisation, however there is little scope for improvement
in ETM and CCM as much of their time is spent encrypt-
ing, which is only possible via a MULTOS API call. The
MULTOS platform (and platforms in general) add abstraction
between the application layer and the underlying hardware,
and so there is considerable uncertainty that the comparative
results of Table III would be similar in a native mode smart
card implementation. Furthermore, the absolute performance

TABLE IV. TDES MASKED MODE AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 3.04 2.16 1.53 5.75

16 3.07 2.12 1.49 5.81
20 4.19 3.48 2.85 6.73
32 4.24 3.43 2.80 6.81
40 5.37 4.77 4.15 7.76
64 6.57 6.04 5.42 8.81

128 11.23 11.28 10.65 12.82
192 15.89 16.51 15.89 16.82

times on the MULTOS platform, would be expected to be
at least one order of magnitude slower than a simple native
implementation. Therefore, the AE modes were next tested on
a hardware emulator for an older, but still relevant 16-bit smart
card chip (Samsung S3CC9E8).

V. NATIVE MODE

Obtaining a native mode hardware emulator for a ”real”
smart card with crypto-coprocessor (for use in academic re-
search) is not trivial and only the S3CC9E8 emulator/chip was
suitable and used in payment cards; although because it did
not support AES, substitute 16 byte block encryption func-
tions were needed. To ensure that comparative performance
results would be relevant to standards, the commissioning
standards body was consulted on the substitutes. The AES
16byte data block was considered as a pair of 8byte data
blocks (M1 and M2) to be coded with DES or triple DES
(TDES), i.e., TDES(M1)||(M2) or DES(M1)||(M2). Clearly
these functions were for performance evaluation only, although
TDES(M1)||TDES(M2) was also coded as a more secure, but
overly co-processor intensive alternative.

A. Initial Implementation and Measurement

This stage was focussed on porting the MULTOS code
to the native emulator and generating early raw results for
functional checking. They derive from non-optimised code,
simply replacing the MULTOS primitive calls with equivalents.
The performance of the AE modes (including OCB3) was
measured in a similar way to the MULTOS work. The first
tests used the dual TDES(M1)||TDES(M2) block encryption
option (hardest to compute) and the results are in Table IV.

From these initial native results, we observe that the pro-
cessing time for a single message was under 17ms, regardless
of the AE mode. Although the block ciphers were of course
different, the overall native execution times were significantly
faster than those from the MULTOS experiments, even without
optimisation. ETM was the best option for single APDU
messages, although in absolute terms there was not much to
choose between any of the modes. For smaller messages, ETM
and CCM still seemed to have the advantage over the OCB
modes. Common to both native and MULTOS implementations
ETM is always a little better than CCM and OCB3 does not
seem to improve on OCB2.

B. Optimisations

The original source code used within the initial tests was
very similar to the MULTOS code. The scope for optimisation
on the MULTOS platform was limited as core functions were
most efficiently carried out using platform primitives thatwere
abstracted from the underlying hardware. Native mode pro-
gramming generally offers more opportunity for optimisation
as there is less hardware abstraction. Only speed optimisation

TABLE V. OPTIMISATION OF CORE FUNCTION EXECUTION (ms)

Function Original Optimised
Block Xor 0.161 0.071
Block Copy 0.114 0.064
ECB TDES|| TDES + mask 0.608 0.381
Fixed Block Shift Left 0.330 0.073

was considered in this part of the study as all versions of the
native code were well within our target memory bounds.

Data Block Copy and XOR: The algorithm modes make
use of simple byte manipulation functions including XOR and
Copy. In the MULTOS implementation these functions were
provided by MULTOS primitives, which in the native code
were initially replaced by simple equivalents that assumed
variable sized fields and handled data byte-by-byte. However,
within the authentication modes, very few operations use
variable sized fields, with the majority working on 16 byte
memory blocks. Knowing the field size, means that we can
avoid loop counters, and by ensuring that the blocks are aligned
on 4-byte boundaries we can perform operations on unsigned
long integer types rather than bytes. Referring to Table V we
see that as a result, BlockXor and BlockCopy have almost
doubled in speed, which has also improved the overall block
cipher performance. Note that functional calls are still used at
this stage rather than in-line code.

Block Shifts: The OCB modes use Copy and XOR op-
erations, but also rely on the functiontwo times() (discussed
earlier), which in turn makes use of a function for shifting
the contents of a block to the left. The function from the
first tests,BlockShiftLeft() was a direct replacement for the
MULTOS primitive that supported variable shifts on variable
sized blocks, referred to by pointer parameters. However, in
practice,two times() can be constrained to always use shifts of
one place in a 16 byte global variable block. It was therefore
possible to create a simplerFixBlockShiftLeft() function to
use instead. The resulting speed improvement for the shift
functions was very significant, as shown in Table V.

Further Refinement: When implementing the block ci-
pher functions, further optimisation removed calls to core
functions involving variable length arguments, and in some
cases replaced them with simple in-line code. The block
encryption function no longer called the core functions, but
had faster in-line equivalents. The different block functions
are handled by compile-time switches. Note that when using
a crypto-coprocessor an input may be masked to reduce side-
channel leakage and so a dummy mask was included in the
test modes. An option was also added to clear the keys after
use, however this was not used in the main measurements.
The extended set of benchmarked measurements is shown in
Table VI, however now that operations are speed optimised
the absolute figures are significantly influenced by the mea-
surement command handling. It is more useful to consider the
relative measurements, e.g., by subtracting the FixBlockCopy
time from the others.

C. Native Mode Results

Following the additional optimisations, the message tests
were repeated for the substitute block cipher function
TDES(M1)||M2. The functions are clearly intended to assess
performance, rather than to ensure security of the data. The
results are provided in Table VII and shown graphically in
Figure 10.

TABLE VI. OPTIMISED CORE PERFORMANCE BENCHMARKS (ms)

Functionality Time
FixBlockXor 0.071
FixBlockCopy 0.064
FixBlockShiftLeft 0.073
DES(M1)||M2 0.128
DES(M1)||DES(M2) 0.141
DES(M1)||DES(M2) + mask XOR 0.146
DES(M1)||DES(M2) + mask XOR + key clear 0.154
TDES(M1)||M2 0.140
TDES(M1)||TDES(M2) 0.163
TDES(M1)||TDES(M2) + mask XOR 0.169
TDES(M1)||TDES(M2) + mask XOR + key clear 0.178

TABLE VII. TDES(M1)||M2 AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 0.54 0.34 0.27 0.83

16 0.57 0.30 0.23 0.79
20 0.65 0.50 0.43 0.92
32 0.70 0.45 0.38 0.91
40 0.79 0.64 0.57 1.07
64 0.95 0.75 0.68 1.16

128 1.46 1.35 1.28 1.65
192 1.96 1.95 1.88 2.14

D. Observations on the Native Tests

Considering Table VI we have significantly improved the
performance of core functions. We can also use these resultsto
estimate the achievable raw speed of the crypto-coprocessor,
by cancelling out the software manipulations. For both DES
and TDES operations we set-up the same keys (two are
redundant for DES, but help our timing comparison), wrote
in the input data once and read out the result once. The
DES crypto-engine overwrites its input data with its output
and so for TDES the CPU does not need to move data
between the sequence of DES executions; it just refers to a
different pre-stored key for each execution. Therefore, ifwe
look at the times for an equivalent DES and TDES operation
the difference should be the time taken for the extra DES
executions. This time is largely dependent on the hardware
although the execution has to be started and checked for
completion by the CPU. We can estimate the core DES run
time td using the following example, wheret(f) is the time to
execute functionf.

Figure 10. Optimised TDES(M1)||M2 AE Times (ms)

2td = t(TDES(M1)||M2)− t(DES(M1)||M2)

= 0.140− 0.128

= 0.012ms

(1)

There were two extra DES runs in the TDES version so
we might suppose that each was about 6us. We can check this
by calculating the following.

4td = t(TDES(M1)||TDES(M2))

− t(DES(M1)||DES(M2))

= 0.163− 0.141

= 0.022ms

(2)

The four extra DES runs take 22us, about 5.5us each; which
is close to our earlier estimate. We can also see from Table
VI that the dummy XOR on a 16byte block using in-line code
takes about the same time, 5-6us. The key-clear, which is a 24
byte write, takes about 8-9us, so a 16byte block copy should
be in a similar 5-6us range. The optimisations improved the
speed of all AE modes.

E. Technology Independent Gain Assessment
Generally the native mode results demonstrated that for

the particular chip, the crypto-coprocessor could executeits
main block cipher in about the same time as the simplest of
CPU functions (XOR) on a similar sized block. This could be
defined as say the Technology Independent Gain Assessment
(TIGA) for any CPU with a crypto-coprocessor. It could be
expressed as the percentage of the block encryption that can
be completed by the crypto-coprocessor in the time it would
take the CPU to compute a block XOR; in our native case this
would be 100% and 33% respectively for DES and TDES. In
the case of a platform, the benchmark would be computed from
the API measurements as we are restricted to the application
level. Referring back to the MULTOS measurements in Table
II then the TIGA benchmark figure would be approximately
22%. Although we are not comparing like-with-like block
ciphers due to practical experimental restrictions, TIGA is at
least a means to make comparison. A high figure would suggest
that a designer could use block encryptions as readily as XORs
and so algorithm optimisation and performance would be quite
different to conventional (non crypro-coprocessor) CPUs.

At this point it should be recalled that cards/chips of
interest are security sensitive and likely to be attacked. Fortu-
nately countermeasures are quite well understood by the card
industry, but they can potentially impact on performance, and
so in the next section we consider how our results might be
affected.

VI. I MPLEMENTATION SECURITY AND PERFORMANCE

Payment cards safeguard financial transactions of signifi-
cant value and so are required to strongly resist a wide range
of attacks. EMV cards rely on the protection of various stored
assets including cryptographic keys, account details and PINs,
as well as on the integrity of critical functionality Adhering to
information security best practice guidelines for design,(e.g.,
for algorithms, keys and random number generation) is not at
all sufficient as many of the attacks target the implementation
rather than the design. In smart cards, the attack resistance will
be provided by a mix of hardware and software measures and

so there is potential for performance impact. We can consider
such attacks under the following three categories.

• Physical

• Fault

• Side-Channel

A. Physical Attack Resistance

Physical attack generally requires considerable expertise,
equipment and time. It may for example involve decapsulat-
ing a chip, hardware reverse engineering, probing buses and
memories and modifying tracks. However smart card chips
have numerous defences against such intrusions, including:

• Passive and active shields - to prevent access to a
working chip

• Encrypted buses and memories - to impede direct
probing

• Light sensors - to detect decapsulation

• Scrambled circuit layout - to make hardware reverse
engineering difficult

Both the chips used in this study incorporate these protec-
tive measures, and because they are inherent in the hardware
we do not need to degrade our performance test results.

B. Fault Attack Resistance

Fault attacks are active, in that they use means to disrupt
the normal operation of the target device (chip); but without
damaging it. The faults can, for example, be generated from
voltage glitches, radiation pulses and operating the target
outside of its operational specification. Under fault conditions
the chip may reveal all kinds of information that it would not
do when working normally and there are some very elegant
attacks including extraction of RSA keys [1]. The hardware
sensors in traditional tamper-resistant smart cards (likethe
S3CC9E8) are intended to detect the likely means of fault
insertion and prevent a response useful to the attacker; so
there may be no significant added overhead for the software.
A sophisticated attack might possibly bypass the sensors,
however by adopting openly peer-reviewed algorithms and
using diversified card keys, we remove motivation for such
effort. Added countermeasures could be to verify a result or
to run an algorithm twice and only output a response if the
result is valid/consistent, however both strategies rely on the
correct outcomes of flag tests and loop counts. It is therefore
good practice to add defensive coding of loop and flag tests,
at the cost of some additional processing overhead,

The SLE78 chip works very differently to a traditional
smart card chip as it has two CPUs working in tandem and a
fault is detected if their processing does not agree. This isan
innovative and effective approach, which would make it very
difficult to succeed with a fault attack. As the protection is
inherent in the chip hardware it should not noticeably impact
our test results.

C. Side-Channel Attack Resistance

Side-channel leakage implies the leakage of sensitive infor-
mation (especially keys) via an unintentional channel. This can
take the form of key/data-dependent timing variations, power
supply fluctuations or electromagnetic emissions. Analysis

techniques are well known (see [12] [13]) and can be very
powerful against unprotected implementations, includingbest-
practice algorithm designs such as AES. Fortunately, modern
smart cards are well protected against such attacks, with
a range of countermeasures that mainly impede statistical
averaging of signals (used to detect signals in noise) or reduce
the source generation of the leakage. Attack countermeasures
include:

• Power smoothing

• Noise insertion

• Randomisation of execution

• Timing equalisation

• Dual-rail logic (or Dual CPUs)

The SLE78 chip used in the MULTOS card has a so-
phisticated dual processing arrangement known as “Integrity
Guard” that is believed to be effective at suppressing leakage
at source, and this coupled with the Common Criteria certified
MULTOS secured OS would suggest that no significant further
performance degradation would be incurred from application
level countermeasures.

The S3CC9E8 used in the native implementation is a
traditional secured microcontroller chip with a single CPU
and so it will include some noise smoothing and execution
randomisation, but will not suppress the leakage signals at
source. Given the age of the chip one would expect some
extra side-channel leakage protection to be required from the
software, which will have a performance impact. Our tests
already included a dummy XOR to represent masking the
data used in the crypto-coprocessor, however for this type of
chip more help would be needed. One technique used for fast,
but perhaps “leaky” crypro-processors is to run the algorithm
multiple times, so that an attacker does not know which run
used the correct data rather than a dummy pattern. Clearly
if you hide your data in a 10 algorithm sequence, you would
expect to lose an order of magnitude in performance. Hamming
weight equalisation is another technique (used in non-secured
CPUs) that seeks to reduce information leakage by ensuring
that for each bit transition there is a complementary transition;
so as a ‘1’ changes to ‘0’ there is also a ‘0’ changing to
‘1’. In principle this should reduce leakage, however due to
electrical, timing and physical layout factors, register bits do
not contribute equally to leakage, so the reduction is inferior to
hardware measures and may not justify the effort. In a practical
implementation this could for example be a 16-bit processor
where the lower 8-bits of a register handle the normal data and
the upper 8-bits handle the complementary data. This alone
is not sufficient as it is necessary to also clear the registers
before and after use and so rather than a two-fold reduction
in performance, at least an order of magnitude should be
anticipated.

D. Observations

It is likely that physical and fault attack protection can
be handled by the smart card hardware without significantly
degrading performance. For the MULTOS card based on the
SLE78 we have sophisticated hardware coupled to an OS de-
signed for the highest levels of security, and Common Criteria
evaluation checks for strong protection against side-channel
leakage. For the native implementation in the S3CC9E8 we

TABLE VIII. CARD INTERFACE TRANSMISSION TIMES (ms)

Bytes Contact (bits/s) Contactless (bits/s)
13441 78125 312500 106000 424000

8 4.76 0.82 0.20 0.60 0.15
16 9.52 1.64 0.41 1.21 0.30
20 11.90 2.05 0.51 1.51 0.38
32 19.05 3.28 0.82 2.42 0.60
40 23.81 4.10 1.02 3.02 0.75
64 28.09 6.55 1.64 4.83 1.21

128 76.19 13.11 3.28 9.66 2.42
192 114.28 19.66 4.92 14.49 3.62

would anticipate additional side-channel countermeasures in
software and if we consider the techniques in the earlier section
then losing an order of magnitude in performance should be
expected.

The motivation for a side-channel attack just to capture
the EMV session keys is questionable, however discovery of
the keys might expose other assets or assist with sophisticated
attack strategies. Therefore, it would be prudent to consider an
order of magnitude speed degradation when considering the
results in Table VII; although processing would still be fast,
with the worst case time for a 192 byte payload being just over
21ms for the slowest mode. However, to know whether this
processing is fast enough, or the bottleneck for the protocol,
we need to also consider the communication speed via the
smart card to Point of Sale (POS) interface.

VII. C OMMUNICATION EFFECTS ONPERFORMANCE

Performance tests of AE, normally just focus on the
processing aspects, as communication in an Internet-connected
world is generally fast enough (e.g., 25-100Mbps) to cause
negligible delay. However, for payment card use of AE we
are dealing with interfaces that may bemuch slower and
so transactions might hit communication limits before card
processing limits.

A. Payment Card Interfaces

The interfaces for payment cards fall into two main cate-
gories. The contact interface is the oldest and has dominated
payment card transactions using Chip & PIN, however many
cards now support the contactless interface for touch and pay
(no PIN). Within the standards (contact [8] and contactless
[9]) a range of interface speeds are defined, however this
does not mean the fastest modes are supported in all deployed
cards, or POS terminals. Table VIII shows an example range of
transmission speeds and an estimation of the time to transmit
the data associated with the different sized test messages.
Note that the working interface speed is negotiated and agreed
between the smart card and the POS terminal as part of the
pre-transaction protocol and by varying clock speed as well
as divider parameters the full range would be closer to 9600 -
38400 bits/s. For example the contact rates in Table VIII are
computed in accordance with standards, as a clock frequency
(5 MHz) f c divided by factorD (372, 512 and 512 respectively)
and multiplied by a factorF (1, 8 and 32 respectively).

The speed range is very wide especially in the contact case,
as the default rates maintain compatibility with very old cards
and POS terminals. The command processing and transmission
can be considered as separate activities; and whichever takes
longer is considered the bottleneck limit. Recalling the MUL-
TOS platform performance (Table III) we have a processing
limited solution. There are some message/mode combinations

that are communications limited, but only when running at
the lowest default speed, which is impractically slow. If we
now recall the raw native mode results (Table VII), then
in practice we have a communications limited solution. At
the fastest interface speeds this may not be quite the case,
however we would not normally assume that the fastest rates
would be available from cards and POS terminals; and so
the 78,125 bps and 106,000 bps for contact and contactless
interfaces respectively would be more reasonable expectations.
The future outlook is that the communication rates will get
faster and the contact interface will eventually be displaced by
contactless, which suggests that transactions will be processing
limited. EMV implementations in mobile phones will of course
have access to much faster wireless technologies such as
802.11ac that can run at 1.3 Gbits/s, however the scope of
this study is restricted to conventional smart card devices.

VIII. C ONCLUSIONS

The study investigated AE modes on existing available
smart chips/platforms using conventional crypto-coprocessors.
GCM was not analysed in detail as themultH function (or
parts of it) would need to be implemented within more spe-
cialist crypto-coprocessor hardware. All the other AE modes
considered, were feasible both in terms of speed and memory
usage. The native mode implementation was much faster than
the MULTOS platform and in the final tests all the modes for
all single APDU test message sizes took no more than 2.14ms.

The new results differ markedly from previous comparisons
that have focussed on general processors, larger message sizes
and the inclusion of Associated Data. The native ETM/CCM
modes were quicker than OCB for the single APDU test
messages although OCB modes would be expected to claw
back the advantage for multi-APDU messages. In our native
implementation, and for a single APDU, ETM was always
slightly ahead of CCM and OCB2 led OCB3.

At first glance the results may seem counter-intuitive due
to the extra encryptions required in ETM/CCM compared
to OCB2/OCB3, however they arise because the chip has
significant crypto-coprocessor gain. The native measurements
show that the core DES encryption time is comparable with
a 16 byte block XOR executed by the CPU. We suggested a
new benchmark, the Technology Independent Gain Assessment
(TIGA) for CPUs with crypto-coprocessors; as the percentage
of the block encryption that can be completed by the crypto-
coprocessor in the time it would take the CPU to compute
a block XOR. We estimated that the MULTOS platform and
native chip had TIGAs of 22% and 100% (33% for TDES)
respectively. The new TIGA measure could be valuable when
comparing algorithm implementations on various platform
types, as may increasingly be the case in Internet of Things
implementations.

The performance gain from the crypto-coprocessor can be
eroded if more time is spent conditioning the data into and out
of it. Such processing may be required for security protection,
(to mask data and/or to reduce leakage), although it should be
noted that any part of an algorithm running in the CPU may
also require similar protection.

The processing time comparison was independent of the
communications interface speed, however both affect the over-
all protocol performance. The MULTOS platform is primarily

processing limited, whereas the simple native implementa-
tion is mainly communications limited. If we degrade the
native performance by an order of magnitude in anticipation
of overheads to reduce side-channel leakage (e.g., repeated
operations or hamming weight equalisation in software) then
we approach the optimum around the 78,125bps rate; any
lower than this and the protocol performance will degrade due
to communication delays.

The crypto-coprocessor gain, coupled with small message
sizes, means that there is not much to choose between OCB2,
OCB3, ETM and CCM performance. It might be argued that
ETM could be chosen for speed and efficiency of small-
/medium messages or OCB if medium/large messages are the
norm. It is also possible for GCM to be usable in future if
supported by a specialist co-processor, however it is unlikely
to be much quicker than the other modes. As performance is
unlikely to be a great differentiator for the AE modes, an option
could be to standardise an AE framework around a default
mode and define a negotiation process for a card and POS
terminal to agree alternative AE modes. This would provide
a useful mechanism if vulnerabilities were discovered in any
particular AE mode, as well as a means for interworking and
migration of smart cards and POS terminals having different
capabilities.

A. Future Work
It would be interesting to implement the AE modes in a

similar manner on other secured microcontrollers with crypto-
coprocessors (although this may be difficult due to publication
restrictions required by device vendors). In the first instance
this should help prove the generality of the results, but
also provide more evidence on the usefulness of the TIGA
benchmark, which is easily determined on any processor. It
is hoped that a secured smart card microcontroller chip could
become available (for academic research) offering native mode
programming and crypto-coprocessor support for GCM, so that
a full-set of AE mode results could be generated and published.
A Java Card platform has become available that would permit
direct comparison with the MULTOS platform, as both are
based on the SLE78 secured microcontroller.

REFERENCES

[1] D. Boneh, R. Demillo, and R. Lipton, “On the importance ofchecking
computations”, inAdvances in Cryptography - Eurocrypt 97, volume
1233, pp. 37-51, Springer Verlag, 2013.

[2] CC, ”Common criteria for information technology security evaluation
part1: Introduction and general model,” version 3.1 release 4, September
2012.

[3] EMV, “Books 1-4,” Version 4.3, 2011.

[4] EMVCo, http://www.emvco.com/ [retrieved: March, 2017].

[5] FIPS, “Federal information Processing Standards,
Data Encryption Standard (DES), publication 46-3”
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf [retrieved:
March, 2017].

[6] FIPS, “Federal Information Processing Standards, Announcing
the Advanced Encryption Standard (AES), Publication 197.”
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf [retrieved:
March, 2017].

[7] Infineon, ”SLE78CAFX4000P(M) short product overview,”v11.12,
2012.

[8] ISO/IEC, “7816 identification cards - integrated circuit(s) cards with
contacts,” parts 1-4, 1999.

[9] ISO/IEC, “14443 identification cards - contactless integrated circuit
cards - proximity cards,” parts 1-4, 2008.

[10] ISO/IEC, “19772 Information technology - Security techniques -
Authenticated encryption,” 2009.

[11] ISO/IEC, “9797 Information technology - Security techniques - Mes-
sage Authentication Codes (MACs),” parts 1-3, 2011.

[12] P. Kocher, “Timing attacks on implementations of diffie-hellman RSA
DSS and other systems,” inAdvances in Cryptology - CRYPTO ’96
Proceedings LNCS, volume 1109, pp. 104-113 Springer Verlag, 1996.

[13] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - Crypto 99 Proceedings LNCS, volume 1666,
pp. 388-397, Springer Verlag, 1999.

[14] T. Krovetz and P. Rogaway, “The software performance ofauthenticated
encryption modes, fast software encryption, RFC 7253,” inFSE 2011
Proceedings, pp. 306-327, Springer verlag, 2011.

[15] T. Krovetz and P. Rogaway, “The OCB authenticated-encryption
algorithm, IETF RFC 7253,” May 2014.

[16] D. McGrew and J. Viega, “The galois/counter
mode of operation (GCM),” parts 1-3, May 2005,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
gcm/gcm-spec.pdf [retrieved: March, 2017].

[17] MULTOS, http://www.multos.com/ [retrieved: March, 2017].

[18] MULTOS, “The MULTOS developer’s reference manual,” MAO-DOC-
TEC-006 v1.49, 2013.

[19] NIST, “Recommendation for block cipher modes of operation: The
CCM mode for authentication and confidentiality, SP800-38C,” May
2004.

[20] NIST, “Recommendation for block cipher modes of operation: Galois/-
counter mode (GCM) and GMAC, SP800-38D,” November 2007.

[21] P. Rogaway, “OCB mode,” http://web.cs.ucdavis.edu/˜rogaway/ocb/
[retrieved: March, 2017].

[22] J. Salowey, A. Choudhury, and D. McGrew, ”AES galois counter mode
(GCM) cipher suites for TLS, IETF RFC 5288,” August 2008.

[23] Samsung, “S3CC9E4/8: 16-bit CMOS microcontroller forsmart card
user’s manual,” rev 0, 2004.

[24] D. Whiting, R. Housley, and N. Ferguson, ”Counter with CBC-MAC
(CCM), IETF RFC 3610,” September 2003.

