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ABSTRACT
Traditional countermeasures to relay attacks are difficult to
implement on mobile devices due to hardware limitations.
Establishing proximity of a payment device and terminal
is the central notion of most relay attack countermeasures,
and mobile devices offer new and exciting possibilities in this
area of research. One such possibility is the use of on-board
sensors to measure ambient data at both the payment device
and terminal, with a comparison made to ascertain whether
the device and terminal are in close proximity. This project
focuses on the iPhone, specifically the iPhone 6S, and the
potential use of its sensors to both establish proximity to
a payment terminal and protect Apple Pay against relay
attacks. The iPhone contains 12 sensors in total, but con-
straints introduced by payment schemes mean only 5 were
deemed suitable to be used for this study. A series of mock
transactions and relay attack attempts are enacted using an
iOS application written specifically for this study. Sensor
data is recorded, and then analysed to ascertain its accu-
racy and suitability for both proximity detection and relay
attack countermeasures.
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1. INTRODUCTION
Contactless smart cards are now used extensively in trans-

portation and banking systems, evidenced by the increase
of contactless transactions. The technology was first intro-
duced by UK banks in 2007 [1] and for the first half of 2015
£2.5bn worth of transactions were made using a contactless
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card, prompting authorities to increase the maximum spend
for a single transaction from £20 to £30 [2]. This growth in
contactless card transactions, especially over the last year,
seems to indicate that such systems will continue to grow as
awareness increases and fears over security issues wane.

Communication between contactless smart cards and read-
ers is facilitated with Radio Frequency IDentification (RFID)
technology, which uses radio waves to encode information.
RFID systems contain two components, a transponder, found
on the object to be identified, and the interrogator, which is
able to interpret signals from the transponder [3].

ISO 14443 is a standard detailing technical parameters for
RFID systems used in contactless smart cards. EMV con-
tactless payment cards are therefore RFID systems which
comply with the ISO 14443 standard. Near Field Commu-
nication (NFC) is another wireless data interface which com-
plies with this standard.

NFC is a wireless communication technology that achieves
data transmission using high frequency alternating magnetic
fields operating at 13.56 MHz [3], meaning NFC interfaces
can communicate with ISO/IEC 14443 compliant readers
and transponders [3]. NFC can be viewed as a variant of
High Frequency RFID which operates in the RFID High
Frequency range of 13.56 MHz. Android and iOS both utilise
NFC for contactless payment schemes. The devices run in
Card Emulation Mode to emulate Debit/Credit cards which
can be used with appropriate RFID readers to pay for goods,
in exactly the same way as contactless payment cards.

Whilst NFC enables mobile devices to interact with RFID
readers there must also exist some mechanism which pro-
vides the functionality and security afforded by the chip on
contactless cards. In the iPhone 6S this functionality is pro-
vided by the Secure Element, which is defined by [4] to be “a
tamper-resistant platform (typically a one chip secure micro-
controller) capable of securely hosting applications and their
confidential and cryptographic data (e.g. key management)
in accordance with the rules and security requirements set
forth by a set of well-identified trusted authorities”.

The particular variant present in Apple devices is defined
by [5] as an industry-standard, certified chip running the
Java Card platform, that is compliant with financial indus-
try requirements for electronic payments. In the case of iOS
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devices it takes the form of a dedicated chip [6] designed
to store payment information securely. The NFC chip and
Secure Element (SE) enable the payment device to emulate
a payment card, conforming to the EMV standards [7].

This paper begins with a discussion of current theoretical
attacks against EMV contactless transactions, including the
relay attack and its potential threat to Apple Pay. Existing
relay attack countermeasures are then discussed with rea-
sons why they are unsuitable for mobile devices. Ambient
sensors are then suggested as a means for establishing prox-
imity and a full investigation is conducted into the sensors
available on the iPhone 6S, with an evaluation of their suit-
ability for deployment in an EMV contactless environment.
One of the main considerations here is whether the sensor
records enough data within the 500 ms limit imposed by the
EMV contactless standards [8]. Transportation is another
key area in which contactless technology has been adopted,
where limits as low as 300 ms are imposed [9]. Consequently
the 500 ms limit for this study is based on the upper limit
from two key industries utilising contactless technology. The
sensors chosen for further study are then discussed, along
with test cases and how data will be processed to evalu-
ate the sensor as a potential relay attack countermeasure.
Results are then considered, followed by an evaluation, con-
clusion and areas for further work.

The objectives of this paper are:

• The creation of a test bed able to collect sensor data
for both legitimate and illegitimate transactions. The
question of legitimacy is discussed in 6.4

• Ascertain the suitability of the iPhone’s ambient sen-
sors to provide data which might be used in a proxim-
ity detection mechanism. Suitability is calculated on
the refresh rate of the sensors and whether this allows
accurate data to be recorded within the 500 ms limit
imposed on EMV contactless transactions.

• Use the data recorded to calculate the effectiveness of
an ambient sensor in detecting a relay attack whilst
allowing genuine transactions to complete without is-
sue.

2. ATTACKS TARGETING EMV CONTACT-
LESS TRANSACTIONS

This section examines some previous work that has been
conducted around vulnerabilities with EMV contactless trans-
actions and how these might be exploited.

2.1 Potential Attacks
A simple attack against contactless payment cards is theft

of the card. No PIN is required during a contactless trans-
action so if an attacker steals a card they are able to use it
for contactless payments without any verification [10].

Another attack reads data off the card just by passing a
suitable reader within range, the read data is what would
have been embossed on the old magstripe cards [11, 12, 13].

The attack outlined in [14] targets devices which are com-
pliant with the EMV Kernel 2 specification [15], specifically
its magstripe mode. The paper identified a weakness which
meant a Unpredictable Number used to generate the cryp-
togram was limited to a value in the range 0 to 999. Through
skimming and cloning a victims contactless card, with pre-

computed values for all potential Unpredictable Numbers,
transactions could be fraudulently enacted.

2.2 Relay Attack
A relay attack is a variation on the man in the middle

attack, it is conceptualised with the assistance of a Chess
analogy in the Grand Master Chess problem [16], which uses
a game of postal Chess to illustrate the process.

2.2.1 Mafia fraud
One of the first documented applications of this concept

in an attack scenario was in [17] and was called the “Mafia
Fraud”. It involves 4 participants A, B, C and D. The at-
tackers are B and C, where B is a Mafia restaurant owner
and C is a collaborator who wishes to purchase an expen-
sive diamond from D, who is a jeweller; A is an innocent
customer in B’s restaurant. The attack is explained in [17].

2.2.2 Practical implementations
The theoretical relay attacks discussed in [17] are trans-

lated into a meaningful physical implementation in [18], this
demonstrated that relay attacks could be leveraged against
the UK’s Chip and Pin payment system. The practical
implementation developed in [18] proved that the “Mafia
Fraud” idea discussed in [17] could be realised, with modi-
fied hardware running custom software. The attack targeted
EMV chip and pin payment systems and demonstrated the
security of this system could be subverted using relay attack
techniques [18].

Another practical implementation of a relay attack is de-
tailed in [19], which targets contactless payment schemes. It
seeks to challenge the assertion that RFID credit cards offer
a higher level of security when measured against their mag-
netic stripe counterparts, a view offered by both [20] and
[21]. The paper also seeks to prove that custom hardware
and advanced skill is not required in order to implement an
effective practical relay attack, by considering mobile smart
phones as a cost effective attack platform. Modern mobile
phones have flexible execution environments and easy to use
application development kits allowing complex programs to
be written and executed on the device. This means one de-
vice can be programmed to act as a reader, which steals a
genuine token, and the other as a token which utilises the
stolen data. Advanced communication mediums found on
smartphone allow the two devices to communicate.

The major advantages of this implementation is summed
up by the quote “The attack implementation requires no
unlocking of devices or secure elements, no hardware or
software modification to the phone platform, and minimal
knowledge of the data that is to be relayed” [19]. The attack
is relevant as contactless payment schemes increase in pop-
ularity [2, 22, 23] and NFC enabled mobile phones are now
able to emulate these payment cards. Applying the princi-
ples of a relay attack to one of the mobile payment schemes
removes some of the obstacles identified in the chip and pin
attack. The main one being the need for modified hard-
ware and the use of wires to connect the malicious token to
the communication medium. All the necessary technology is
encapsulated in the smart phone and its usage raises no sus-
picion. The paper concludes by stating that the relay attack
implementation proved effective and easy to implement. It
also states that an attack of this sort could threaten various



mobile payment schemes and urges that action be taken to
protect such platforms against relay attack techniques[19].

2.2.3 Modes of Operation
Relay attacks can be executed in two distinct modes, pas-

sive and active [24]. When executing in passive mode pack-
ets of data are captured and transmitted to the genuine to-
ken so that a response can be calculated and relayed back to
the genuine reader. A passive attack is able to bypass any
application layer security protocols, even if they are based
on strong cryptographic principles [19]. It does this by re-
laying whole packets of data to the genuine token, where any
cryptographic protections are navigated and a response cal-
culated. The token may then re-apply cryptographic protec-
tions and transmit the response back to the reader, via the
apparatus used for the relay attack. Any cryptographic pro-
tections applied are then unpacked by the reader and the re-
sponse accepted. An active attack differs in that data is not
just relayed but can also be modified by exploiting known
vulnerabilities. Relay attacks are therefore very dangerous
with serious security implications [19]. Even in their most
basic form a relay attack can circumvent any cryptographic
protections applied to the data, in fact the attacker needs
no knowledge of the data as merely relaying it is enough to
circumvent RFID and NFC protection mechanisms.

3. APPLE PAY
Apple Pay is a mobile payment scheme [6] available on

compatible Apple devices to enact transactions, in a similar
way to contactless cards. The NFC [25] chip and Secure
Element (SE) [25, 26] enable the payment device to emulate
a payment card, conforming to the EMV standards [7].

3.1 Traditional Attacks and Apple Pay
Any attack that targets contactless cards lack of a veri-

fication method is generally defeated by Apple Pay. Touch
ID [25] is Apple’s proprietary fingerprint scanner, used for
verification during payments. It would therefore be highly
improbable for a thief to use Apple Pay if the device were
stolen. There have been some successful attacks against
Touch ID [27] but these are very specialist techniques and
not easily applicable.

The attack investigated by Channel 4 news [13] relied
on data being stolen from a contactless card, while still in
the victim’s pocket. This is another attack counteracted by
Touch ID, in fact any attack that relies on RFID skimming
is defeated by Touch ID. This includes relay attacks where
the victims card is in a place outside direct control of the
victim, such as a pocket.

One attack that Apple Pay fares no better protecting
against than a contactless card, is the Mafia fraud relay at-
tack. Touch ID has no effect here as the victim believes the
malicious terminal to be a genuine one, and as such verifies
using Touch ID.

3.2 Relay Attack against Apple Pay
We found no existing relay attacks which target Apple

Pay, however an Android Application called “Spot.me” [28],
provides insight into how probable such an attack is. This
application allows users to capture an Apple Pay transaction
token from a friend’s iPhone, and use this token at a later
date to purchase goods via a contactless terminal [29]. The
user transmitting the token must still authenticate using

Touch ID. This app has been removed from the Google Play
store in the UK, potentially for security reasons.

4. COUNTERMEASURES FOR RELAY AT-
TACKS

Verification mechanisms on smart phones, such as Touch
ID [30, 6], are used in mobile payment schemes to solve some
of the vulnerabilities discussed. These do not however pro-
tect against relay attacks as described in the Mafia Fraud,
so further countermeasures are required.

4.1 Distance Bounding Protocol
Relay attacks attempt to extend the distance between a

legitimate user and reader. Countermeasures therefore at-
tempt to verify the distance between the authorised token
and the reader [31], ascertaining whether the authorised to-
ken is in range of the reader. One such technique is called
distance bounding, and was first introduced by Brands and
Chaum [32] for the prevention of Mafia Fraud attacks on
Automated Teller Machine (ATM) cashpoints.

Distance bounding protocols for NFC exchanges are harder
to implement as the short communication distances require
high precision clocks and specialised hardware, which are ex-
pensive to implement [33]. In addition “conventional chan-
nels and, in particular the ISO/IEC 14443 communication
channel are too slow for accurate distance bounding” [34].

4.2 Proximity Detection
Further countermeasures are discussed in [19] with only

those not degrading user experience considered. One sug-
gestion involves restricting the allowed time for a response,
which was deemed unsuitable as it requires dedicated mon-
itoring of the RF channel, adding overhead. Other sugges-
tions centred on establishing the location of the two devices,
thus establishing proximity [19]. Global Positioning Sys-
tem (GPS) readings are considered but hard to implement
indoors. Other methods for establishing location are dis-
cussed in [19], with the aim being to establish proximity of
the token in respect to the reader.

Mobile phones possess an array of sensors [35, 36, 37] al-
lowing them to measure data from their environment. One
concept involves leveraging these ambient sensors to estab-
lish a mobile payment device’s position, in relation to a
reader. Both devices record data, a comparison made and,
if within some tolerance, proximity established.

4.3 Related Work
A solution to the Mafia Fraud is proposed in [38], which

uses captured audio and ambient light as a basis for compar-
ison. Audio yielded better results but the 30 second mea-
surement time is far longer than the limit of 500 ms imposed
on EMV transactions [8]. Paper [39] investigates whether
a shared radio environment could be used for proximity de-
tection. The paper demonstrates that measuring radio envi-
ronments could be an effective way of establishing proximity,
but collection times are above the 500 ms limit. Accelerome-
ter readings are considered in [40] as a basis for comparison.
Users tap the payment device against the reader twice, and
accelerometers measure the vibrations generated. If they
match then proximity is established. One problem we fore-
see is persuading users to tap their £700 smart phone against
a reader. Saxena et al [41] discuss the use of GPS to provide



location information with which to calculate proximity. This
method took around 10 seconds to collect data, which is too
long, and does not function well inside. The final piece of
related work, Akram et al [36], is directly related to the con-
cept of using ambient sensors for proximity detection. The
study involves two android devices which measure ambient
data for a 500 ms period [8]. The paper found ambient sen-
sors on Android devices were not suitable as an anti-relay
mechanism, with the limited collection time of 500 ms [8] be-
ing an issue. This limit did not allow enough accurate data
to be measured in order that a valid comparison could be
made. All these pieces have focused on Android as the mo-
bile platform, and hence the sensors available on Android
devices. For these reasons this paper will focus on Apple
Pay and the sensors available on Apple devices, specifically
whether they are suitable for the implementation of a prox-
imity detection and anti-relay mechanism.

5. AMBIENT SENSORS
With the growth in usage of Apple Pay, its potential sus-

ceptibility to relay attacks and a lack of suitable countermea-
sures for mobile devices, the investigation into whether am-
bient sensors can provide a countermeasure are valid. There
also exists no current work into iPhone sensors in particular
and as such they will be the focus of this paper.

5.1 Sensors in Mobile Devices
Mobile devices and mobile payment schemes provide new

opportunities for attackers and security professionals alike.
The plethora of on-board sensors found in most smart phones
[35, 36, 37] could be utilised to measure ambient conditions,
with the data captured used in a comparison mechanism to
help establish proximity.

5.2 iPhone Sensors
The iPhone used in this study is the iPhone 6S running

iOS 9.3.2, the software used to write the test application
was xCode 7.3. Choosing the sensors to test involved an-
swering two questions; does the sensor return adequate data
in under 500 ms, and does it measure appropriate data whilst
the device is static. Some of the sensors only measure data
when the phone is in motion, such as the Gyroscope dis-
cussed below. Given the nature of contactless transactions
any method which required either payment terminal or de-
vice to be in motion could seriously degrade user experience.
Appropriate data here is defined as data that measures ei-
ther ambient surroundings, location or orientation of the
device. A third party iOS app [42] and various research
sources were used to answer these questions.

5.2.1 iOS Frameworks
In iOS a framework is a dynamic library linked to at

compile time, they are either public or private [43]. Pub-
lic frameworks are permitted in iOS apps seeking inclusion
in the app store, they are well documented and easy to ac-
cess [43]. Private Frameworks are not permitted for use in
apps for the app store. They are not documented or easy to
access, and are unstable against firmware changes [43].

5.2.2 Accelerometer
The accelerometer measures changes in velocity along a

linear path. The device has three accelerometers, one for
each axis meaning device movement can be measured in any

direction, giving device orientation. The update rate can
be set to 100 Hz [44], which was tested using a third party
app [42]. Data collected shows that substantial volumes of
sensor data are recorded within 500 ms.

5.2.3 Attitude
The Attitude sensor measures the Roll, Pitch and Yaw of

the device. Use of [42] proved this measurement indicated
orientation with an acceptable update rate of 30 Hz.

5.2.4 Bluetooth
Because the NFC chip in Apple devices can only operate

in card emulation mode, and no developer access is allowed
to the chip [45], building card reader functionality into the
app is not possible. This means the use of NFC for com-
munication between the two test devices is not possible and
bluetooth was selected in its place. Bluetooth was not used
as a sensor in the study itself as previous work in this field
has indicated Bluetooth is not capable of returning sufficient
data within the 500 ms limit [36].

5.2.5 Gyroscope
Use of [42] proved that this sensor only captures data

whilst the device is in motion, and as such the sensor was
not considered any further.

5.2.6 Light
The iPhone ambient light sensor is not easily accessible. It

can be accessed through the public IOKit.framework, how-
ever this is discouraged by Apple 1 and as such the header
file, IOKit.h, is not provided. There are various Github
repositories which provide private iOS header files [46, 47],
however neither repository has an entry for IOKit.h, mak-
ing it difficult to access the ambient light sensor directly.
Other techniques suggested involve using both the camera
and screen brightness to establish ambient lighting. Both of
these techniques have their own complications [48, 49]

5.2.7 Location
The iPhone 6S uses a combination of GPS and network

statistics to establish location. Experiments with the update
rate shows its about 1 Hz after the first second, however four
readings are recorded in the first 300 ms and is therefore
considered acceptable.

5.2.8 Magnetometer
The magnetometer in the iPhone 6S measures the mag-

netic field of the earth. It can be used to give device orien-
tation as proven by experiments using [42]. The update rate
of 40 Hz is also within the bounds required for this study.

5.2.9 Pressure
This sensor was not available on [42] and so a tailored

application was written to test its suitability. The pressure
sensor was deemed unsuitable due to its very slow update
rate of 0.33 Hz.

5.2.10 Proximity
The proximity sensor is also unavailable on [42] and an-

other tailored application was written to test it. Unfortu-
nately the proximity sensor only returns a Boolean value
indicating whether there is something in proximity of the

1http://iphonedevwiki.net/index.php/IOKit.framework



screen or not. This behavior was witnessed whilst running
the app and corroborated with developer references [50].

5.2.11 Sound
A tailored app was written to investigate the recording

and storage of sound. Both are straightforward and an in-
terval for the recording can be specified. The sample rate for
sound can be set to 44.1 kHz and the granularity of record-
ing time can be set to 0.5 seconds so the sensor captures
data in an acceptable time frame and format for this study.

5.2.12 WiFi
Obtaining a list of SSIDs in range of an iPhone 6S is not

possible using standard frameworks in iOS 9. The only ex-
isting capability is the measuring of signal strength for the
connected SSID. There is a private framework that can ac-
cess WiFi strengths and data 2, and although not encour-
aged, access to Private frameworks was still possible prior to
iOS 9. Unfortunately since the release of Xcode 7.3 the pri-
vate frameworks have been removed entirely [51]. Given the
complexity of capturing WiFi data, and average read times
of 3873.5 ms [36], I have decided to consider it no further.

6. EXPERIMENTAL SETUP
Using the data for sensor read frequency gathered in Sec-

tion 5, and considering the requirements discussed, five sen-
sors were chosen for this study. Each one will be tested as
to whether the data they collect is accurate enough to be
used as the basis for a proximity detection system. These
five sensors are now discussed below.

6.1 Sensors Chosen
The sensors were organised into two groups, those that

measured ambient data and those that measured device ori-
entation. Each one is now considered separately.

6.1.1 Accelerometer
Accelerometer data can be obtained from three locations

within the same framework. The Core Motion framework’s
CMotionManager class includes a callback function that ex-
ecutes every time a new accelerometer reading has been
recorded. This function includes a CMAccelerometerData
instance as a parameter, which can be interrogated for the
accelerometer readings. The readings are recorded in CMAc-
celeration objects, which each have three properties of type
double, representing the readings along the X, Y and Z axes.
The measurements are in units of gravity (G), with 1 G be-
ing equal to 9.806 65 m s−2.

The second method for reading accelerometer data within
the Core Motion framework is the deviceMotion property of
the CMotionManager class. This property is of type CDe-
viceMotion and contains a property called userAcceleration
which is of type CMAcceleration.

The third method of reading accelerometer data is the
gravity property of CDeviceMotion. This operates in ex-
actly the same way as the userAcceleration property but the
data recorded is the total acceleration of the device, which
is equal to gravity plus the acceleration the user imparts on
the device [52]. All three of these methods will be used to
gather accelerometer readings

2http://iphonedevwiki.net/index.php/MobileWiFi.
framework

6.1.2 Attitude
The CDeviceMotion object is also the source for all data

related to the attitude of the device. The attitude prop-
erty of CDeviceMotion is of type CMAttitude, and this class
contains three properties of type double for Roll, Pitch and
Yaw readings. There are also two other representations of
attitude data encapsulated in the CMAttitude class, these
are attitude data as a rotation matrix and attitude data as
a quarternion [52]. A rotation matrix in linear algebra de-
scribes the rotation of a body in three-dimensional Euclidean
space [52]. It is represented by a CMRotationMatrix object
which contains nine properties, each of type double, giv-
ing a 3 x 3 matrix. The data contained within the matrix
can be used to calculate Euler angles [53], which describe
the orientation of a body in three dimensional space. The
Quaternion is represented by a CMQuarternion object which
has four properties of type double. These values can also be
resolved to Euler angles [54]. All three representations will
be collected and used as part of the analysis, further details
on how they will be used will be presented in Section 7.

6.1.3 Location
Location data is delivered via the CLLocationManager ob-

ject and the didUpdateLocation delegate callback function
of that object. This object has a desiredAccuracy property,
which for these tests has been set to kCLLocationAccura-
cyBestForNavigation, this is the highest level of accuracy
the iPhone can deliver and is ordinarily used for navigation.
One of the parameters to this callback function is an array
of CLLocation object, the last item being the latest location
data. From this object latitude and longitude data can be
obtained and this is the data which is recorded.

6.1.4 Magnetometer
There are three ways to measure magnetic fields in iOS9

on an iPhone 6S. The first two are part of the Core Mo-
tion Framework and utilise the CMMotionManager class of
that framework. CMMotionManager has a property named
magnetometerData of type CMMagnetometerData, which in
turn has a property named magneticField of type CMMag-
neticField. This class has three properties of type double,
which hold measurements for the X, Y and Z axes in µT.
The values stored here represent raw magnetic field data,
which is in contrast to the calibrated value of the magnetic-
Field property of the CDeviceMotion class [52].

The CDeviceMotion class is the second source of magnetic
field data in the Core Motion framework. The CMotionMan-
ager class has a property called deviceMotion of type CMDe-
viceMotion. This in turn has a property called magnetic-
Field which is of type CMCalibratedMagneticField. This
class also has three properties of type double which measure
magnetic fields along the X, Y and Z axes, again in µT. The
difference with these values is that they have been adjusted
for any bias the device itself may have introduced.

The third method of measuring magnetic field data in-
volves the Core Location framework and the CLLocation-
Manager of that framework. The CLLocationManager con-
tains a property named heading, which is of type CLHead-
ing. The magnetic field values are stored in three double
properties as for the other two examples. Each measure-
ment represents an axis and is the deviation from the mag-
netic field lines of the device along that axis, measured in
µT [52].



6.1.5 Sound
Sound recording is delivered using the AVAudio Recorder

class. This can be initialised using an array of recordSetting
objects to configure the quality and format of the recording.
For these tests the quality of the audio has been set to the
highest level and the format chosen is the .wav file format.
This format was chosen as it does not compress the audio
and has a good level of compatibility with python libraries
used in the analysis phase in Section 7. Other formats, such
as Apple’s Lossless format, recorded more data for the given
time period, but were much harder to analyse using standard
scientific libraries, such as the python module SciPy.

6.2 iOS Test Application
There is only one use case for the test application, which is

to record sensor data and store it in an appropriate format.
Two devices running the application will need to ensure sen-
sor data collection is synchronised. This gives the following
requirements:

• Application should coordinate sensor data collection.

• Application should sensor data to be stored on the
device in an appropriate format.

• Data should be easy to extract from the device.

• Application should allow two copies of the application
on different devices, to synchronise with each other.

One major design problem was achieveing synchronisation
across the two devices. NFC could not be used as Apple does
not allow developers full access to the NFC chip architecture
[45], so Bluetooth was chosen in its place. It is not thought
this will have any negative impacts on the study as the aim
is to compare sensor readings from two devices in close prox-
imity, the choice of communication medium is not thought
to be integral to this.

The collection of sensor data is achieved through the app,
and stored in the form of comma seperated value files in
the documents directory of the application. A directory will
be created with the name of the test input by the user,
and then saved to the documents directory. This directory
is accessible from iTunes if the correct entries are set in
the applications plist. This means once all the tests are
complete, the device can be synced with iTunes and all the
files downloaded. All the App’s Objective C source code3

and python analysis code4 is available on github.

6.3 Test Design
The iOS application will be installed on two iPhone 6S

devices, for tests at close range one will act as a payment
Device and the other as the Terminal. Once paired, push-
ing start on the payment Device (Bluetooth master) exe-
cutes the sensor measuring routine on both devices simul-
taneously. If non-Bluetooth mode is selected then tests are
started on the two devices independently, with manual syn-
chronisation between the people in command of the devices.

Once the tests have been started each sensor is tested se-
quentially for a period of time, these are discussed in Section
7 and changed a few times during development to accommo-
date some of the analysis features introduced. For each sen-
sor, data is collected at the maximum rate allowed by iOS,
3https://github.com/CPSSAP/BLTE Transfer Clean
4https://github.com/CPSSAP/Python-Analysis-Code

except the microphone which collects samples continuously.
All data is saved in comma seperated value file format with
an epoch time stamp for each entry, again the microphone
is an exception to this as sound files are saved individually
in the .wav file format.

6.4 Test Cases and Environments
For both the Orientation and Ambient sensor groups a se-

ries of test cases were designed to allow for large quantities of
sensor data to be recorded. For both sensor groups 400 legit-
imate and 400 illegitimate transactions were enacted, this is
40 runs of the test software which records 10 transactions for
each run. Legitimate transactions are those that represent
a genuine contactless transaction, illegitimate transactions
represent simulated relay attack attempts. For Orientation
sensors the device and terminal have the same orientation for
legitimate transactions and different orientations of a gradu-
ally increasing magnitude, for illegitimate transactions. Am-
bient sensor transaction test cases are simpler to describe as
the demarcation between legitimate and illegitimate trans-
actions is the distance apart of the Device and Terminal.
The ranges for illegitimate transactions are ≈ 10m, ≈ 25m,
≈ 50m, ≈ 100m and > 1000m. At each of these ranges
eight tests are carried out, giving 80 transactions in total,
and with 5 distinct ranges this gives a total of 400 illegiti-
mate transactions. All transactions are conducted with the
Device and Terminal inside a building as this is where most
real world transactions will take place.

7. PERFORMANCE ANALYSIS
Each series of transactions were analysed in a certain way

with different mathematical formulae used to illicit a valid
comparison metric and subsequently a value for Equal Er-
ror Rate (EER). Each process is discussed in the coming
sections.

7.1 Transaction Analysis
At this point in the study we have a series of comma

seperated value files representing sensor readings and times
at which they were taken. Each transaction consists of sen-
sor readings from a Device and Terminal at roughly the
same time. Some of these transactions are legitimate and
some illegitimate, as described in the previous section. The
400 transactions were reduced to 380 once corrupted results
and user error had been taken into account. The corrupted
results were caused mainly by the device being moved acci-
dentally whilst recording sensor data and a strict time frame
meant these transactions could not be repeated.

The basic premise of transaction analysis was to iterate
through all the transactions, and compare readings by calcu-
lating a similarity metric. This is then used to calculate the
False Positive Rate (FPR) and False Negative Rate (FNR)
for a series of thresholds, and subsequently the EER which
is the point at which the plots intercept. A series of Python
scripts were written to achieve this using various mathemat-
ical formulae which are detailed in Section 7.2 below.

7.1.1 Basic Overview of Analytical Process
Two comma seperated value files representing a transac-

tion for a particular sensor are loaded and the timestamp of
the first sensor reading for each is extracted. Whichever of
the times is later is then used to synchronise the two data
streams, as described in Section 7.3 below. The Device file



is then processed so that sensor readings for each entry are
reduced to one value and all those values then collected and
interpolated, this is done to assist in calculating the simi-
larity metric. The same is done with the Terminal file and
allows a common 500 ms period between the two samples to
be found, values at 10 ms intervals can then be extracted,
up to the 500 ms maximum. The two sets of interpolated
sensor readings from both sides of the transaction are then
used to calculate a single value representing the similarity
of the two samples. For most sensors the similarity met-
rics calculated were the Mean Absolute Error (MAE) and
Correlation Coefficient, but some sensors calculated other
variants of these and are discussed individually below, with
the relevant equations.

7.2 Sensor Specific Analysis Process

7.2.1 Accelerometer
The Accelerometer sensor delivers data in three distinct

ways. Each one of these results in a vector, with components
representing acceleration along the X, Y and Z axes. Before
further analysis these values were reduced to one single value
using Eq.1

M =
√
x2 + y2 + z2 (1)

These values are then synchronised and interpolated, as de-
scribed in Section 7.3, and used to calculate a measure of
similarity between the two samples of a transaction. The
first measure calculated is the MAE using Eq.2

MAE(D,T ) =
1

N

N∑
i=0

| Di − Ti | (2)

Where D and T represent sets of sensor readings taken from
the Device and Terminal respectively, and which taken to-
gether make up a single transaction. The sets D & T must
be of equal size in order for the calculation to be successful.
The MAE represents the mean of all the absolute differ-
ences between the corresponding sensor reading pairs, for a
specific time. The second measure of similarity used is the
Pearson Correlation Coefficient and is given by Eq.3 below.
As for the MAE D & T Represent sets of sensor readings
from a single transaction.

a =

(
N∑
i=0

DiTi

)
−

(
N∑
i=0

Di

)(
N∑
i=0

Ti

)

b =

 N∑
i=0

D2
i −

(
N∑
i=0

Di

)2


c =

 N∑
i=0

T 2
i −

(
N∑
i=0

Ti

)2


PCC(D,T ) =
a√
bc

(3)

This measure returns a value in the range -1 to 1, with
1 indicating a very strong positive correlation, -1 a very
strong negative correlation and 0 no correlation. There are
different equations for calculating this measure so another
implementation, Eq.4, was used to corroborate the values
returned from Eq.3. A further implementation can be found
in the scipy python library, this function was also used to

corroborate results.

COR(D,T ) =
cov(D,T )

σD · σT
(4)

Where cov(D, T) is given in Eq.5 and the standard deviation
equation is at Eq.6

cov(D,T ) =
1

N − 1

N∑
i=0

(Di − µD)(Ti − µT ) (5)

Where µD & µT are the the mean values of D and T respec-
tively

σx =

√∑N
i=0(xi − µx)2

N − 1
(6)

Where µx is the mean value for the set x.

7.2.2 Attitude
The attitude sensor also records data in three different

ways but, unlike the accelerometer, the vectors returned are
of varying sizes. The first is a vector of size three which can
be processed using the equations and methods detailed in the
accelerometer section above. The second vector is known as
a Quaternion and, as the name suggests, is a vector with
four components. This vector can be converted into Euler
angles using the python function below, which is a python
conversion of Java code from [54]

from __future__ import division

import math

def quaternionToEuler(q1):

x, y, z, w = q1[0:4]

test = (x * y) + (z * w)

heading = 2 * math.atan2(x, w)

attitude = math.pi/2

bank = 0

if (test < -0.499):

heading = -2 * math.atan2(x, w)

attitude = math.pi/2

bank = 0

return

sqx, sqy, sqz = x * x, y * y, z * z

heading = math.atan2((2 * y * w) -

(2 * x * z), 1 - (2 * sqy) - (2 * sqz))

headingDeg = heading * (180/math.pi)

attitude = math.asin(2 * test)

attitudeDeg = attitude * (180/math.pi)

bank = math.atan2(2 * x * w - 2 * y * z,

1 - 2 * sqx - 2 * sqz)

bankDeg = bank * (180/math.pi)

return (headingDeg, attitudeDeg, bankDeg)

The convenient thing about this conversion is that there are
now three values and they can be processed and analysed in
the same way as those collected by the accelerometer. For
this and further equations using Quaternions to be success-
ful the Quaternions must be Unit Quaternions, which those
collected by Apple devices are [52].



Another way of processing pairs of Quaternions involves
obtaining the dot product. This measure gives a value in the
range -1 to 1, similar to the Correlation Coefficient above,
but for pairs of quaternions rather than whole sets. Subse-
quently the mean value is then calculated from the set of
dot products to get a single value for similarity. The dot
product is calculated using Eq.7, where Dq & Tq represent a
pair of Quaternions recorded at the same time by the Device
and Terminal respectively.

DOT (Dq, Tq) = (Dqx ∗ Tqx) + (Dqy ∗ Tqy)

+ (Dqz ∗ Tqz) + (Dqw ∗ Tqw)
(7)

One further method for processing quaternions was used and
it involves calculating the difference in angles between two
Quaternions, it involves using the dot product as described
in Eq.7 and is calculated using Eq.8 below

θ = acos((2 ∗ dot(q1, q2)2)− 1) (8)

The mean was then taken of all the angles for each trans-
action, to give a single measurement of similarity. One final
data structure used to record attitude data is a 3 x 3 Rota-
tion Matrix. This was reduced to three Euler Angles which
can then be processed using the equations and methods de-
tailed in the accelerometer section above. The reduction to
three Euler Angles is achieved using the method described
in [53].

7.2.3 Magnetometer
The Magnetometer sensor is similar to the Accelerometer

in that it returns sensor readings in vectors of size three,
and can subsequently be processed in the same way as the
Accelerometer.

7.2.4 Location
The location sensor returns data in the form of Latitude

and Longitude measurements, which are processed using the
Haversine Formula. This formula is able to calculate a dis-
tance between two points on a sphere given its radius. The
sphere in this case is the Earth, the radius of which is differ-
ent depending on where you measure but for this project the
value 6372.8 km was chosen5. The equation, which is Eq.9
below, was implemented in python5. The formula gives D
which is an approximate distance between the two pairs of
lat lons, in km.

a =sin((φ2 − φ1)/2)2

b =sin((λ2 − λ1)/2)2

D =R ∗
(

2sin
(√

a+ cos(φ1) ∗ cos(φ1) ∗ b
)) (9)

7.2.5 Sound
Sound was recorded in the .wav format as this was eas-

ier to manipulate using the scipy python library, and in
mono as the microphone on the iPhone 6S is not stereo.
Both sound files were opened using the read function of
the scipy.io.wavfile module6, which reads the recorded data
into Numpy.Array data structures7. The two files can then

5https://rosettacode.org/wiki/Haversine formula
6http://docs.scipy.org/doc/scipy/reference/io.html\
#module-scipy.io.wavfile
7http://docs.scipy.org/doc/numpy/reference/generated/
numpy.array.html

be synchronised, which is discussed below, and a common
500 ms period identified. This results in two array struc-
tures of equal length and containing recording data from
the two .wav files. These arrays are used as parameters
to the Numpy.corrcoef function8, which returns the Pear-
son product-moment correlation coefficient, this is similar
to that used for other sensors above, giving a number in the
range -1 to 1.

7.3 Data Collection Challenges

7.3.1 Time Taken to Collect Samples
To make detailed analyses vast amounts of transactions

were recorded. To expedite this process every run of the
iOS app resulted in 10 transactions being enacted. This in-
troduced a problem with drift and it was observed that by
the tenth transaction the drift had reached approximately
150 ms, which introduced problems with identifying a com-
mon 500 ms window. To solve this problem the period for
sensor data collection was raised from 500 ms to 1 s, this al-
lowed for a drift of up to 500 ms on legitimate transactions.
For illegitimate transactions the collection period was set to
2 s to take into account both drift and any delay introduced
by human operators.

7.3.2 Data Synchronisation
It was observed that Bluetooth communication introduced

a 15ms delay on average, which grows to about 150 ms by the
tenth transaction. To counteract this, the start time of both
data streams was compared, the larger taken (known as time
X) and then subtracted from the start time of both streams.
This resulted in one stream having a time of zero and the
other having a minus value. Time X is then subtracted from
the time of the next item in the data streams, until both
streams have a positive value for time. Whichever of the
streams had the minus time values now has these records
removed, and the remaining entries are shifted up to fill any
gaps left.

7.3.3 Data Synchronisation Sound
Sound was harder to synchronise because it did not have

any time recorded for each sensor reading. It did have a sam-
pling rate which remained consistently 44 100 Hz through-
out. Using the start time of two recordings the difference
could be calculated (later time - earlier time) in seconds,
and then multiplied by 44100 to get a figure for how many
samples were taken in that period. The earlier recording can
then have that number of samples subtracted from its start
to bring it in line with the later recording. Both samples
then have the first 22050 samples extracted, which repre-
sents 500 ms, with 44100/2 = 22050.

7.3.4 Consistent Analytical Period
The limit on time for sensor data collection was 500 ms,

as discussed previously. To implement this in the iOS app a
timer was used in the Objective C code to stop each sensor
after this time. Whilst the timer was very accurate there
were varying numbers of sensor readings taken in this time,
and sometimes at irregular intervals. A further problem was
introduced by the time synchronisation method described
above in that some records were removed in order to achieve

8http://docs.scipy.org/doc/numpy/reference/generated/
numpy.corrcoef.html



synchronisation. A further problem was introduced by the
multiple transactions for each execution of the software. To
overcome these issues interpolation and longer sensor record-
ing times were used. Following synchronisation the sensor
readings for each time entry are reduced to one value, the
method for which varies from sensor to sensor and is de-
scribed above. This results in two data streams, each with a
time and single value representing the sensor readings. Each
separate data stream is then interpolated and values for 0
- 500 ms, at 10 ms intervals, are recorded. This results in
two data streams with sensor readings taken over a 500 ms
period at 10 ms intervals. Both data stream arrays are now
of the same length and contain data from both Device and
Terminal sampled at the same time.

The synchronisation method does introduce a new prob-
lem in that it removes some entries. If readings are taken
over 500 ms this means one of the two data streams will be
shorter. This problem was easy to solve as it just meant
sampling over a slightly longer period, 600 ms was chosen
for legitimate transactions and then increased to 1 s follow-
ing addition of the multiple transactions feature, 2 s was
chosen for illegitimate transactions as described above.

7.3.5 Zero Readings
The Magnetometer sensor in its Device Motion variant

measures data at around a 10 Hz frequency. Whilst this is
more than fast enough for effective data collection the first
100 - 150 ms returns zeros. Because of the shifting mecha-
nism used to synchronise collection timings there can exist
a large number of zeros on one side of the transaction and
none on the other, which could skew the analysis. To negate
this both sides of the transaction are analysed and all zeros
on one side are changed to zeros on the other.

7.4 Calculating Equal Error Rate
As discussed above the EER is the point on a graph of

FPR and FNR values for various thresholds, where the two
lines intercept. At this point the rate for False Negatives
and False Positives is equal. In the context of this analysis
a False Positive is any illegitimate transaction which pro-
duces an MAE, Correlation Coefficient, or other similarity
metric, which falls under the threshold value. In contrast
a False negative is any legitimate transaction producing an
MAE .etc which falls over the threshold value. One hundred
threshold values are created, and range from the smallest to
the largest MAE or correlation coefficient observed for each
sensor. An ideal threshold value would have a very low rate
of False Positives and Negatives, with all legitimate transac-
tions falling beneath it and illegitimate transactions above
it.

The True Positive Rate and True Negative Rate are then
calculated using the equations Eq.10 and Eq.11. These val-
ues are then used to calculate the FPR and FNR using Eq.12
and Eq.13.

TruePositiveRate =
TruePositives

TruePositives+ FalseNegatives
(10)

TrueNegativeRate =
TrueNegatives

TrueNegatives+ FalsePositives
(11)

FPR = 1− TrueNegativeRate (12)

FNR = 1− TruePositiveRate (13)

The FPR and FNR are calculated for each threshold and
then plotted against each other to calculate the EER. In
addition to using MAE to calculate the FPR and FNR, the
correlation coefficient is also used, with thresholds ranging
from -1 to 1.

7.5 Results
To summarise the results the tables below contain the

EER and the threshold at which the EER occurs. As a gen-
eral analysis any sensor with a low EER might be deemed a
suitable sensor for establishing proximity and the threshold
at which this EER sits would be the value used to differenti-
ate between legitimate and illegitimate transactions. Table
1 below displays data for the orientation group of sensors,
and Table 2 the data from the ambient group of sensors.

Table 1: Table showing optimal threshold (T) and Equal
Error Rate for Orientation Sensor data

Sensor
MAE Correlation

T EER T EER
Acc1 0.0093 0.4539 -0.0022 0.4934
Acc2 0.0036 0.5316 0.0099 0.5184
Acc3 2.7× 10−6 0.4803 0.0249 0.4947
Att1 0.0214 0.0487 0.1091 0.5184
Att2 1.2103 0.0487 0.0967 0.5079
Att3 1.7120 0.025 0.0574 0.5105
Att4 (DIFF) (DOT)

0.0645 0.0 0.9975 0.9632
Mag1 670.69 0.5 0.0078 0.4816
Mag2 9.2719 0.3224 0.0967 0.6079
Mag3 119.50 0.5526 0.0197 0.5145

Table 2: Table showing optimal threshold (T) and Equal
Error Rate for Ambient Sensor data

Sensor
MAE Correlation

T EER T EER
Location (HAV)

- - 0.00214 0.54737
Sound - - 0.10764 0.49079
Mag1 649.269 0.631579 0.01830 0.49605
Mag2 8.48862 0.440789 0.98324 0.47763
Mag3 79.4930 0.468421 -0.01657 0.5

7.6 Analyses

7.6.1 Accelerometer
Each sensor variant was tested for similarity using the

Mean Absolute Error and Correlation Coefficient, which leads
to 6 different EERs. The best EER observed was 45%, this
was from the Core Motion’s CoreMotion Manager object us-
ing the MAE as a similarity comparator. For such a high
risk environment as contactless payment infrastructures this
would not be an acceptable EER as it would mean 45% of
illegitimate transactions getting through and the same num-
ber of legitimate transactions being refused. This would



have a major impact on the usability and security of the
system.

7.6.2 Attitude
The attitude sensors in their different variants delivered

some very low EERs when using MAE as a comparison met-
ric. Values of 4% were observed for both the attitude prop-
erty of the Core Device Motion Manager and the Quaternion
property when converted to Euler angles. A value of 2% was
also observed for Rotation Matrices converted to Euler An-
gles. All these sets of readings only registered two positive
values for FPR with the rest of the values for each threshold
being 0. This could be down to the fact only gradients at 9
degree intervals were tested which may have some bearing on
the EERs observed and consequently skewed the results. For
the difference between Euler angles using Quaternions, as
described in Eq.8 above, the EER observed was 0%. There
were only four values observed for FPR though and this may
have skewed results, as above. The Dot Product of Quater-
nions, as described in Eq.7, gave very unusual results in that
the FPR was 1 for every threshold tested, except one. This
led to a very high EER of 96%. One point of note for the var-
ious representations of attitude data is that they all produce
very similar results, except for the Dot product calculations
for Quaternions.

7.6.3 Magnetometer - Orientation
Magnetometer data can also be generated and recorded

in three distinct ways, leading to three values for the MAE
and three for the Correlation Coefficient. The best EER
observed was from the deviceMotion property of the Core
Motion Manager object, using the MAE as a similarity met-
ric. The value observed was 32%, which for such a high risk
environment as contactless payment infrastructures would
still not be an acceptable level of false positives and nega-
tives.

7.6.4 Location
The iPhone 6S does has a GPS chip but also uses other

sensors to aggregate data from other sources and uses this
to ascertain location. This means the iPhone is not solely
reliant on GPS for location and this explains why it was
able to deliver location readings whilst indoors and within
the 500 ms constraint. Although data was obtained within
the parameters required this data was not accurate enough
to be used for both proximity detection and subsequently as
a relay attack countermeasure. The EER observed for this
sensor was 54% and not suitable for the purposes of relay
attack detection. Given the specific formula used to process
locastion data, the haversine formula as discussed, only one
EER was calculated. This is in the Correlation column of
table 2 but does not represent the Correlation value as this
was not used as a comparison metric. Neither was Mean
Absolute Error which accounts for the lack of data in this
column.

7.6.5 Magnetometer - Ambient
This was the only sensor that was tested in both the ori-

entation and the ambient groups and it fared better in the
ambient data tests. As described above magnetic field data
can be ascertained in one of three ways and the best EER
reading observed came from the deviceMotion property of
the Core Motion Manager object. This reading was 47%

however and was was also deemed unsuitable for relay at-
tack detection.

7.6.6 Sound
Ambient noise provided an EER of 49% and as such was

also deemed unsuitable. Similar to location the data from
this sensor was processed using a specific formula which only
gave a value for correlation and not MAE, hence the lack of
data in that column.

8. CONCLUSIONS AND FUTURE WORK
The aim of this project was to ascertain whether sensors

found on the iPhone 6S could be used to establish proximity
as a countermeasure to relay attacks directed against Apple
Pay. The iPhone 6S carries 12 sensors of varying types, these
include sensors which measure ambient data and orientation
of the device. Any sensor used as a relay attack countermea-
sure must collect enough data within 500 ms, which is the
maximum allowable time for contactless transactions. Be-
cause of this constraint these sensors were screened to cre-
ate a shortlist of those that were capable of collecting data
within this time frame. There were 5 sensors deemed suit-
able for analysis, the location sensor, accelerometer sensor,
microphone, magnetometer sensor and attitude sensor.

For sensor readings to be a reliable countermeasure to re-
lay attacks the EERs produced must be sufficiently low so
that the amounts of false positives (relay attack attempt)
and false negatives (genuine transactions denied) are kept
to an absolute minimum. From the EERs calculated there
were some down at 4% and even zero, this would indicate
these sensors would be suitable for relay attack countermea-
sures. The underlying data for these sensors however, re-
vealed very few values for the FPR which could have skewed
the data towards a low EER. These low error rates do how-
ever mean that using the orientation of the device might
have some potential for an effective relay attack counter-
measure, although further work would be needed at finer
granularity to prove this assertion. The remaining sensors
all gave EERs at around the 50% mark and as such none of
those tested would be suitable as a relay attack countermea-
sure. All source code from both the iPhone App and python
test scripts is publicly available for scrutiny as described in
Section 6.2.

A further interesting area of research is the use of Wi-Fi
to create indoor GPS systems capable of locating devices
to within 65 cm of each other, the concept was developed
by Massachusetts Institute of Technology (MIT) and is ex-
plained at [55]. One problem with using GPS for proximity
detection indoors is the lack of both a valid signal and the
accuracy it offers, and as most contactless transactions take
place inside this is a serious weakness. If devices are able
to be located accurately within 65 cm of each other whilst
inside, this would make an effective relay attack countermea-
sure as any attempted relay attack within this range should
be easily detected by the legitimate actors in the transaction.
If this location could be ascertained within a 500 ms window
then this would potentially make an ideal method for both
establishing proximity, and in turn detecting potential relay
attacks. Should this technique be developed further then
using it to implement relay attack countermeasures would
be a worthy area of future research.
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