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Abstract. Kriging is a spatial interpolation algorithm which provides the best unbiased
linear prediction of an observed phenomena by taking a weighted average of samples within
a neighbourhood. It is widely used in areas such as geo-statistics where, for example, it may
be used to predict the quality of mineral deposits in a location based on previous sample
measurements. Kriging has been identified as a good candidate process to be outsourced
to a cloud service provider, though outsourcing presents an issue since measurements and
predictions may be highly sensitive. We present a method for the private outsourcing of
Kriging interpolation using a tailored modification of the Kriging algorithm in combination
with homomorphic encryption, allowing crucial information relating to measurement values
to be hidden from the cloud service provider.

1 Introduction

Cost-effective third-party (cloud) service providers facilitate the outsourcing of large, potentially
sensitive, datasets for both storage and processing. In this paper, we discuss approaches to out-
sourcing a particular computational process known as Kriging in an efficient and secure fashion.

Kriging [6,7,9,14] is a well-recognized form of linear interpolation that predicts the value z∗0
of some phenomena at an unobserved location (x0, y0) in a two-dimensional region. The quality
of a Kriging prediction relies on some variogram parameters, which reflect the assumption that
measurements taken at nearby locations are more likely to be ‘similar’ than measurements taken
far apart. Such parameters must be carefully selected prior to interpolation. The prediction is then
formed as a weighted sum of prior measurements, where measurements taken close to (x0, y0) are
given a greater weight than those far away. Kriging was designed with geo-statistical applications
in mind (e.g. to predict the best location to mine based on the mineral deposits found at previous
boreholes within a region), but has also found applications in a variety of settings including remote
sensing, real-estate appraisal and computer simulations.

Kriging has been identified as a good candidate process to be outsourced, based on the practical
and legislative requirements of industrial users (for instance, [1,2]). Many users may need access to
a Kriging prediction service (indeed legal frameworks may require such data to be shared amongst
relevant authorities [8]). A secured storage server may be preferable to distributing copies of the
entire dataset to each authorised user, especially when datasets are large and/or user devices are
constrained. Further, Kriging might need to be performed over data owned by multiple organi-
zations, with an independent cloud service provider performing processing duties on behalf of all
concerned parties. Centralized outsourcing also makes sense when remote sensors take frequent
measurements and push the results to a central database.

Consider a client C that owns a Kriging dataset (a set of measurements taken at various lo-
cations) which it wishes to outsource to an honest-but-curious cloud service provider S. Client C
would like to make use of both the storage and computational power of S to make a Kriging service
on its dataset available to multiple users. Further, other data generating nodes may be authorised
by C to add/remove data (measurements) to/from the outsourced dataset.

A trivial solution consists of encrypting all data using a symmetric encryption scheme and
using the server only for Storage-as-a-Service. To compute a Kriging prediction, all relevant data
is retrieved, decrypted and computed on locally. Unfortunately, this solution may not be efficient,
particularly if client devices have limited computational power or storage capacity, and require
a high bandwidth during queries. This may be an issue if, for example, a surveyor in the field
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requires an on-line Kriging prediction service; mobile data services may be expensive, intermittently
available or slow.

An alternative is to compute the entire Kriging process on encrypted data by encrypting all
data using Fully Homomorphic Encryption (FHE)3. Unfortunately, Kriging involves several com-
putations that are currently challenging when using FHE, including computing square roots and
natural exponentiations. It is possible to outsource the Kriging process and protect all information
using FHE. However this results in prohibitively high encryption and decryption costs, as well as
a large amount of interactivity and local computation, which may diminish the benefits of cloud
computing. Preliminary experiments using the SEAL library [4] (admittedly without optimization
of code or parameter choices) did not yield promising results when computing a Kriging predic-
tion using a dataset of more than three measurements. Whilst the use of FHE schemes should be
explored further in future work, particularly to reflect advances in FHE schemes, we show in this
work that such schemes are not strictly required in this setting.

Our proposed solution uses additive homomorphic encryption to outsource Kriging interpolation
efficiently. We make a trade-off by protecting only the most sensitive parameters. That is, we protect
the prior measurement values in the dataset, the generated Kriging predictions and the variogram
parameters chosen by the client. We do not hide locations (of prior measurements or queries),
noting that prior measurement locations may well be externally observable (e.g. if measurements
come from previous mining operations).

Our main contribution is to show that the Kriging process can be adapted such that the
sensitive variogram parameters may be ‘factored out’ from the online computation by S whilst
the remainder of the Kriging computation may be performed on encrypted measurement values
using an additively homomorphic encryption scheme. We thus gain a practical, efficient and secure
solution to outsourced, private Kriging. An outline of our protocol is as follows:

1. C uploads an encrypted dataset, comprising n measurements, to S. The cost of this step is
O(n) due to encryption of the measurement values.

2. S prepares the Kriging dataset for future queries. This process comprises plaintext operations
that are also necessary in an unprotected outsourced Kriging scheme.

3. C makes a query to S requesting a Kriging prediction at a location (x0, y0); this is done in
plaintext with virtually no cost.

4. S computes the interpolation on encrypted measurements. The cost with respect to an un-
protected outsourced Kriging scheme is increased by O(n), due to operations over encrypted
data.

5. C decrypts the result.

Cryptographically-secured Kriging was previously studied in a different setting, where a server
owns a dataset and clients may query the dataset at a previously unsampled location [12]: the
queried location and resulting prediction should be private from the server, whilst the dataset
held by the server should be private from the client. Two solutions are proposed in [12] which,
unlike our solution, support only one variogram model and require high communication complexity,
interactivity and local computation. The first is based on creating random ‘dummy’ queries to
hide the queried location, and using an oblivious transfer protocol to hide predictions for all
but the legitimate query location. The second solution uses the Paillier encryption scheme in an
interactive protocol requiring multiple round-trips between client and server. In [13] collaborative
private Kriging was investigated, where users combine their datasets to gain more accurate Kriging
predictions.

The remainder of this paper is structured as follows. In Section 2 we describe the Kriging
interpolation process (additional details may be found in Appendix A). In Section 3 we define our
system model and analyse the required security properties of each piece of data in our setting.
In Section 4 we introduce the idea of a canonical variogram, which we use in our construction to
allow the server to compute a Kriging prediction without relying on the sensitive parameters. Our
construction is given in Section 5 and we discuss its performance in Section 6. Finally in Section 7
we conclude the article with some final remarks and outline some potential directions for future
work.

3 In fact, it suffices to consider Somewhat Homomorphic Encryption rather than FHE as the functionality
is fixed and has a reasonably low multiplicative depth.
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2 Kriging Interpolation

This section outlines the background theory of Kriging Interpolation. For more detail, see Ap-
pendix A and [6,7,9,14]. There are many variants of Kriging, but we focus on the widely used
Ordinary Kriging variant.

The Kriging process starts with a set of measurements taken at some locations in a spatial
region, and produces predicted measurements at unsampled locations. We denote this spatial region
by R ⊂ R2 and denote the locations of prior measurements by P = (r1, r2, . . . , rn), where each
ri = (xi, yi) ∈ R. The Euclidean distance between two locations ri, rj ∈ R is denoted by d(ri, rj).
We refer to the set of taken measurements by S = (z1, z2, . . . , zn), where zi is measured at the
location ri ∈ P . The Kriging dataset then is the tuple (P, S).

The Kriging process allows a client to query an arbitrary location r0 ∈ R in order to receive
a prediction z∗0 of the true value z0 that would be measured at r0. Informally, Kriging consists of
three phases:

1. Computing the experimental variogram: one of the underlying assumptions of the Kriging pro-
cess is that two measurements of a phenomenon will be similar if measured in nearby locations.
Using the sampled dataset, one can plot the experimental variogram to show the dependence
between measurements sampled at locations at certain distances h.

2. Fitting a variogram model : unfortunately, the experimental variogram is not usually sufficient
to use in the Kriging prediction directly, since there may not be sampled data at every required
distance. Therefore, one chooses a parametric variogram model and empirically chooses model
parameters to fit a curve to the points of the experimental variogram.

3. Computing the prediction: using the variogram, one can determine appropriate weights for each
measurement (based on the distance between each measurement and the queried location). The
Kriging prediction is then computed as a weighted sum of the measured samples.

Let N(h) = {(zi, zj) : d(ri, rj) ∈ (h−∆,h+∆)} be the set of all pairs of measurements taken
approximately distance h apart4. The experimental variogram γ∗ plots, for every distance h such
that N(h) 6= ∅:

γ∗(h) =
1

2N(h)

∑
(zi,zj)∈N(h)

(zi − zj)2.

A suitable variogram function γ : R≥0 → R, in phase 2, must satisfy a set of conditions [6,7];
the most commonly used models require that γ(0) = 0, that γ(h) is positive and bounded, and
the existence of the limits limh→0+ γ(h) and limh→∞ γ(h). These models are parametrized by the
following three variables:

– The nugget effect η: The limit of γ(h) as h→ 0+.
– The sill ν: The limit of γ(h) as h→∞.
– The range ρ: Controls how fast γ(h) approaches ν as h increases.

Typically, one chooses a variogram model from a set of standard parametric variogram models,
and then fits the model to the experimental variogram by empirically adjusting the nugget effect,
sill and range parameters. A selection of the most common choices of bounded variogram models
are, for h > 0:

– The bounded linear model : γ(h) = ν − (ν − η)
(

1− h
ρ

)
1(0,ρ)(h).

– The exponential variogram model : γ(h) = ν − (ν − η)e−h/ρ.

– The spherical variogram model : γ(h) = ν − (ν − η)
(

1− 3h
2ρ + h3

2ρ3

)
1(0,ρ)(h).

– The Gaussian variogram model : γ(h) = ν − (ν − η)e−h
2/ρ2 .

where 1I(x) = 1 if x ∈ I, and 1I(x) = 0 otherwise.
Let γ be one of the above variogram models instantiated with empirically chosen parameters.

To construct the best unbiased linear predictor of the phenomenon at a queried location r0 =
(x0, y0) ∈ R, we first form the Kriging matrix K ∈ R(n+1)×(n+1) with elements:

4 The approximation tolerance ∆ can be increased when the Kriging dataset does not include enough
sample points at a close enough distance.
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– Ki,j = γ(d(ri, rj)) for 1 ≤ i, j ≤ n,
– Kn+1,i = Ki,n+1 = 1 for i 6= n+ 1, and
– Kn+1,n+1 = 0.

Next, define a real vector v ∈ Rn+1 with vi = γ(d(r0, ri)) for 1 ≤ i ≤ n, and vn+1 = 1. Let
λ = (λi)

n+1
i=1 satisfy Kλ = v. The (Ordinary) Kriging prediction z∗0 of the measured phenomena at

the location r0 is computed as the weighted sum of the sampled measurements, with the weights
defined by λ. That is,

z∗0 =

n∑
i=1

λizi.

The set of linear equations defined by K and v are known as the Normal Equations. They
are derived by imposing that the induced linear predictor is unbiased (by ensuring that the first
n weights sum to one; that is

∑n
i=1 λi = 1) while minimizing the variance of the induced linear

predictor [14].
The resulting minimized variance σ∗20 is called the (Ordinary) Kriging variance, and it is de-

scribed by the following expression

σ∗20 = λn+1 +

n∑
i=1

λiγ(d(r0, ri)).

The Kriging variance allows the construction of confidence intervals for each prediction and thus
describes the error associated to the prediction. For a reference on the computation of confidence
intervals in this context, see [7].

We define a variogram function to be non-degenerate if η 6= ν i.e. if γ is non-constant for h > 0.
We restrict our attention to non-degenerate variogram functions. It is easy to see that using the
degenerate variogram (also called the nugget effect variogram [14]) results in the average Kriging
predictor z∗0 =

∑n
i=1 zi/n at all unsampled locations r0 /∈ P , with Kriging variance σ∗20 = n+ 1.

3 Private Outsourced Kriging Interpolation

Consider a system comprising a client C that owns a Kriging dataset (P, S) along with a choice of
variogram γ, a server S that is willing to perform outsourced Kriging on behalf of the client, and
additional users U that are authorised by C to make Kriging queries to S. Furthermore, there may
be additional data generating nodes (e.g other users or remote sensors etc.) that may update the
outsourced dataset by producing additional measurement data or removing prior (e.g outdated)
measurements. The requirements of each entity are as follows:

– The data owner must choose the variogram to be used and upload a Kriging dataset, and
should be able to update data and request Kriging predictions.

– Data users may request Kriging predictions and update data.
– Data generating nodes should only be able to update data.
– The server should only be able to perform Kriging predictions, and should do so without

learning the data used in the computation. We assume that the server S is honest-but-curious,
i.e. it follows the Kriging protocol (indeed, its business model may depend on doing so) but
may attempt to learn information about the outsourced data.

Informally, the protocol runs as follows. The data owner C chooses the variogram to be used
and runs the Outsource algorithm to generate the (protected) dataset to be sent to the server, as
well as ‘keys’ that are issued to authorise entities to update the outsourced dataset or to perform
Kriging queries respectively. Upon receipt of the protected data, the server may run the Setup
algorithm to process the data and perform any necessary precomputation. After this step, the
system is ready to accept queries. The data owner or an authorised data user (in possession of the
query key) may request a Kriging prediction at a specified location by running the Query algorithm
to generate a query token Q. This is sent to the server who runs the Interpolate algorithm using the
processed database to generate an encrypted prediction and an encoding of the Kriging variance
(the estimation of the error in the prediction). An entity authorised to perform queries may learn the
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prediction and variance by running the Decrypt algorithm. To dynamically update the outsourced
dataset, an authorised entity (in possession of the update key) may run the AddRequest algorithm
on a specified location r′ and measurement z′, or the DeleteRequest algorithm on a specified location
r. These algorithms produce an addition token αr′,z′ or deletion token δr respectively that is sent
to the server. Upon receipt of such a token, the server may run the Add or Delete algorithm
respectively to update the database accordingly.

For the purposes of this paper, we assume that any user authorised to generate a Kriging
query is also permitted to update the dataset. If this should not be the case, then the proposed
construction can be easily modified to include a digital signature computed on any addition or
deletion token, where the signing key is contained in the update key (and not the query key). The
server should be trusted to reject any tokens that do not have a valid signature. Then, only users
in possession of the private signature key would be able to update the dataset.

Definition 1. A private outsourced Kriging interpolation scheme comprises the following algo-
rithms:

– (C,UK,QK)
$←− Outsource(1λ, P, S, γ): A probabilistic algorithm run by C which takes as input

a security parameter λ, the Kriging dataset comprising measurement locations P and measure-
ment values S, and the chosen variogram γ. It produces an outsourceable data set C that may
be transmitted to the server, an update key UK that may used to update the outsourced dataset,
and a query key QK which may be used to form Kriging queries.

– DB ← Setup(C): A deterministic algorithm run by S which takes as input the outsourceable
dataset C. This algorithm enables S to perform any necessary processing that will enable it to
compute Kriging predictions, and produces a processed outsourced dataset DB.

– Q
$←− Query(r0, QK): A probabilistic algorithm run by C or a data user in U which takes as

input a location r0 = (x0, y0) ∈ R for which a Kriging prediction should be computed, and the
query key QK. It produces a query token Q which is sent to S.

– (Z̃0, σ̃0
∗2) ← Interpolate(Q,DB): A deterministic algorithm run by S that, given a query to-

ken Q and the database DB, returns an encrypted Kriging interpolation Z̃0 and the partially
computed Kriging variance σ̃0

∗2.
– (z∗0 , σ

∗2
0 ) ← Decrypt(Z̃0, σ̃0

∗2, QK): A deterministic algorithm run by C or a user in U that
takes the Kriging results Z̃0 and σ̃0

∗2 from the server and the query key QK, and outputs the
Kriging prediction z∗0 and the Kriging variance σ∗20 at the queried location.

– αr′,z′ ← AddRequest(r′, z′, UK): A deterministic algorithm run by C, a data user in U or a
data generating node, which takes a location r′, a measurement value z′ and the update key
UK, and outputs an addition token αr′,z′ .

– DB′ ← Add(DB, αr′,z′,): A deterministic algorithm run by S which takes the current outsourced
database DB and an addition token αr′,z′, and outputs an updated database DB′ representing
the Kriging dataset (P ∪ {r′}, S ∪ {z′}).

– δr ← DeleteRequest(r, UK): A deterministic algorithm run by C, a data user in U or a data
generating node. The algorithm takes as input a location r ∈ P and the update key UK and
outputs a deletion token δr.

– DB′ ← Delete(DB, δr): A deterministic algorithm by the server which takes as input the current
database DB and a deletion token δr and outputs an updated database DB′ representing the
Kriging dataset (P \ {r}, S \ {zr}) where zr ∈ S is the measurement corresponding to location
r ∈ P in DB.

We now analyse the security requirements of each component within a Kriging system; Table 1
summarizes the analysis:

– The measurement values zi ∈ S are highly sensitive and business-critical and must be protected
at all times.

– In the current work, we consider the coordinates ri ∈ P of previous measurements to not be
sensitive. This is reasonable, since in some applications they may be externally observable, for
instance if they are the locations of previous mining activity.

– The queried location r0 at which a new prediction should be computed may reveal areas of
particular interest to the user. The sensitivity of this relies on the setting and individual user
requirements. However, in practice, Kriging queries are often made at every location within a
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Data ri zi (x0, y0) z∗0 γ model ρ ν η

Protection 7 3 7 3 7 7 3 3

Table 1: Data protection offered by our private outsourced Kriging scheme.

region to produce a heat map of a phenomenon, which may limit the sensitivity of individual
query locations. Further, the basic assumption of Kriging is that the quality of prediction
degrades with distance; thus, the best Kriging results will be obtained when the queried location
is broadly within the region of prior (observed) measurements.

– The computed prediction z∗0 is highly sensitive as it may form the basis of future decisions and
may be business-critical, and must be protected.

– The choice of variogram model (without the variogram parameters) may reveal something
about the overall trend of the spatial dependencies of the measurements. We assume that this
is not particularly sensitive information.

– The range parameter ρ of the variogram is a constant scaling of the region R denoting the inter-
measurement distance h at which the spatial dependency becomes negligible. For distances
h > ρ, the variogram approaches the variance of the measurements [14], which is represented
by the sill ν.
The nugget effect η reveals the spatial dependency at very small distances.
In this work, we assume that the range is not sensitive (as it merely scales the region R), but
that information revealed by the nugget and sill may be sensitive. Even in applications where
this direct information on the variance and spatial dependency of measurements is deemed non-
sensitive, it may be the case that the variogram parameters are commercially sensitive. These
parameters must be chosen empirically to best fit the experimental data, a process which may
be time-consuming, and the quality of predictions depends on how well the variogram matches
the experimental variogram.

4 Our Techniques

In this section we introduce the main concept used in our construction, namely the canonical
variogram. We then show how to factor out the variogram parameters in the Normal equations
which, ultimately, allows us to remove these parameters from the outsourced dataset and use them
only to recover the final prediction on the client side.

The crux of our solution for the private outsourcing of Kriging interpolation is to observe how
the Kriging solution varies according to the variogram nugget effect η, the sill ν, and range ρ in
the non-degenerate case. We define a canonical variogram for each variogram model by arbitrarily
fixing the parameters η = ρ = 1 and ν = 0, although our results clearly translate to other choices.

Since the Kriging process is inherently linear, we show how to ‘factor out’ the sensitive param-
eters η and ν from the variogram to leave just the canonical variogram. Using this result and an
additively homomorphic scheme, an untrusted server can compute a related Kriging prediction and
variance without any knowledge of η, ν and the actual measurements. The variogram parameters
can then be efficiently re-added by the client locally to compute the final prediction.

Definition 2 (Canonical variogram). Let γ(h) be a non-degenerate variogram function with
nugget effect η, sill ν and range ρ. We define its associated canonical variogram as the function
γ̃ : R≥0 → R satisfying γ̃(0) = 0 and

γ̃(h) = − 1

ν − η
γ(ρh) +

ν

ν − η
for h > 0. (1)

Note that for any non-degenerate variogram function coming from the parametric variogram
models defined in Section 2, the canonical variogram depends only on the considered model itself
and not on any parameters.

Now, given a Kriging dataset (P, S) of n measurements, a query position r0 /∈ P and a variogram
function γ with nugget effect η, sill ν and range ρ, let Kλ = v be the corresponding Normal
equations as defined in Section 2. Our main result in this stage is that it suffices to consider a
canonical version of the Normal equations that depends only on the chosen variogram model, as
well as P and the range parameter ρ of γ.
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Definition 3. We define the canonical Normal equations as the linear system obtained from the
Normal equations Kλ = v by replacing

– every ri ∈ P by ri/ρ,
– the query position r0 by r0/ρ,
– the variogram γ(h) by the canonical variogram γ̃(h),

and we denote the canonical Normal equations by K̃λ̃ = ṽ.

Note that, since the canonical variogram is parameterless, the canonical Normal equations
involve only the variogram model and the locations in P scaled by the inverse of the range parameter
ρ. We make extensive use of this observation in our construction. Indeed, this observation allows
us to take advantage of the linearity of the Kriging predictor, in order to protect the measurements
and interpolation value, while hiding the sill and nugget parameters ν, η from the server by storing
them locally.

The solution to the canonical Normal equations can be described as follows:

Proposition 1. Let K,K ′ ∈ R(n+1)×(n+1) be real matrices, and let v, v′ ∈ Rn+1 be real vectors
such that:

– there exist a, b ∈ R such that K ′i,j = aKi,j + b and v′i = avi + b for all 1 ≤ i, j ≤ n,
– Ki,n+1 = Kn+1,i = K ′i,n+1 = K ′n+1,i = vn+1 = v′n+1 = 1 for all 1 ≤ i ≤ n,
– Kn+1,n+1 = K ′n+1,n+1 = 0.

Then, if λ ∈ Rn+1 satisfies Kλ = v, the vector λ′ ∈ Rn+1 defined by

λ′i = λi for all 1 ≤ i ≤ n,
λ′n+1 = aλn+1

satisfies K ′λ′ = v′.

Proof. Note that (K ′λ′)i = avi + b
∑n
i=1 λi for 1 ≤ i ≤ n, and (K ′λ′)n+1 = 1. Since

∑n
i=1 λi = 1

(by the last equation of the system Kλ = v), the result follows. ut

This result extends an observation by [7], which states that summing a constant to the vari-
ogram does not alter the solutions of the Normal equations, and that such a transformation of the
variogram may sometimes be necessary in order to obtain a numerically stable Kriging prediction.

We apply this proposition to the Normal equations with a = −1/(ν − η) and b = ν/(ν − η),
and consider the canonical Normal equations. By the definitions of the Kriging prediction and the
Kriging variance in Section 2, we directly obtain the following Corollary.

Corollary 1. Let z∗0 and z̃0
∗ be the Kriging predictions computed from the Normal and the canon-

ical Normal equations described above, respectively. Denote by σ∗20 and σ̃0
∗2 the Kriging variance

associated to each of the predictors. Then

z̃0
∗ = z∗0 and σ̃0

∗2 = − 1

ν − η
σ∗20 +

ν

ν − η
.

Therefore, in case that the employed variogram is non-degenerate, the Kriging prediction is
independent of the sill ν and nugget η parameters of the variogram, whilst the range parameter
ρ scales positions. We also see that, when applying a linear transformation to the variogram, the
Kriging variance of the obtained Kriging predictor varies according to the same transformation.

5 Our Construction

We now outline the operation of each of the algorithms in Definition 1. LetH = (H.Gen,H.Enc,H.Dec)
be an IND-CPA-secure additive homomorphic encryption scheme, such as the Paillier encryption
scheme [11]. Then:
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– (C,UK,QK)
$←− Outsource(1λ, P, S, γ): If γ is a degenerate variogram function, halt and return

⊥; in this case, our protocol fails. However, if γ is degenerate, the variogram is constant (the so-
called ‘nugget effect model’) and models a purely random variable with no spatial correlation.
Hence it is particularly easy to compute predictions in this case: the prediction is z∗0 =

∑
zi/n

for r0 6∈ P and the variance is σ∗20 = n+ 1.
Otherwise, generate a key-pair for the homomorphic encryption scheme:

(pk, sk)
$←− H.Gen(1λ).

Recall that P ⊆ R2 is the ordered set of locations (ri)
n
i=1 and that S ⊆ R is the ordered set of

measurements (zi)
n
i=1. Recall also that the variogram γ comprises three parameters: the nugget

η, the sill ν and the range ρ. Let γ̃ be the canonical variogram associated to γ, as defined in
Section 4. Define

UK = (pk, ρ) and QK = (sk, η, ν, ρ).

To account for the factor of ρ in the input to γ in equation 1, compute

P̃ = ((xi/ρ, yi/ρ))ni=1.

Finally, encrypt each measurement in S and define the ordered set

Z = (H.Encpk(zi))
n
i=1.

Output C = (P̃ ,Z, γ̃), along with UK and QK.
– DB← Setup(C): Instantiate the matrix K̃ from the canonical Normal equations using positions

in r′i ∈ P̃ and the canonical variogram function γ̃:
• K̃i,j = γ̃(d(r′i, r

′
j)) for 1 ≤ i, j ≤ n,

• K̃n+1,i = K̃i,n+1 = 1 for i 6= n+ 1, and

• K̃n+1,n+1 = 0.
Return DB = (K̃, C).

– Q
$←− Query(r0, QK): Let r0 = (x0, y0) and, recalling that ρ is contained within QK, return

Q = (x0/ρ, y0/ρ).
– (Z̃0, σ̃0

∗2)← Interpolate(Q,DB): Recall that C = (P̃ ,Z, γ̃). If Q ∈ P̃ , then the exact measure-
ment is contained in the outsourced dataset and no prediction is required. Let j be the index
such that Q = rj , and return (Zj ,⊥), where ⊥ is a distinguished symbol denoting that the
prediction is exact.
Otherwise, compute the vector ṽ from the canonical Normal equations using the locations
r′i ∈ P̃ , the query position Q and the canonical variogram γ̃:
• vi = γ̃(d(Q, r′i)) for 1 ≤ i ≤ n, and
• vn+1 = 1.

Compute the solution λ̃ to the canonical Normal equation K̃λ̃ = ṽ; this step essentially com-
putes the Kriging coefficients λ using the canonical variogram and the scaled locations without
requiring the parameters of the variogram. Then, using the homomorphic property of the en-
cryption, compute:

Z̃0 =

n∑
i=1

λ̃iZi and σ̃0
∗2 = λ̃n+1 +

n∑
i=1

λ̃iγ̃(Q, r′i).

Return the encrypted prediction Z̃0 and the partially computed Kriging variance (error esti-
mation) σ̃0

∗2.
– (z∗0 , σ

∗2
0 )← Decrypt(Z̃0, σ̃0

∗2, QK): First decrypt the Kriging prediction:

z̃0
∗ = H.Decsk(Z̃0),

where sk is contained within QK. Then, if σ̃0
∗2 =⊥, set σ∗20 = 0. Else, compute the Kriging

variance
σ∗20 = ν − (ν − η)σ̃0

∗2.

This final step essentially adds back in the parameters of the variogram, which were removed
for outsourcing, using the result from Corollary 1.
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– αr′,z′ ← AddRequest(r′, z′, UK): Let ra = r′

ρ and compute the ciphertext

Za = H.Encpk(z′),

where ρ and pk are contained within UK. Output the addition token

αr′,z′ = (ra, Za).

– DB′ ← Add(DB, αr′,z′): Recall that αr′,z′ = (ra, Za). Compute the updated dataset: if ra ∈ P̃
then let j be the index such that rj = ra and modify Zj ∈ Z to be Za. Otherwise, set

C ′ = (P̃ ∪ {ra},Z ∪ {Za}, γ̃). Return the output of Setup(C ′).
– δr ← DeleteRequest(r, UK): Return δr = r/ρ.
– DB′ ← Delete(DB, δr): If δr /∈ P̃ , return DB as there is nothing to remove. Otherwise, let j

be the index such that r = rj in P̃ . Compute the updated dataset C ′ = (P̃ \ {rj},Z \ {Zj}, γ̃)
and return the output of Setup(C ′).

6 Discussion

The correctness of the scheme is immediate from Corollary 1 as well as the correctness and homo-
morphic properties of the encryption scheme H. These homomorphic properties enable addition
and scalar multiplication of ciphertexts, whilst ensuring that the results decrypt appropriately.
Corollary 1 shows that the Kriging prediction, as well as the Kriging variance, can be computed
by applying a linear transformation to the result computed using the canonical (parameterless)
variogram. Correctness of the updates is apparent because the addition and deletion tokens for-
mat the data in the same way as the original dataset. Since the server is trusted to act honestly
(but curiously), it shall modify the dataset correctly; the remainder of the update algorithms then
simulate a new setup procedure running Setup on a new Kriging dataset from Outsource.

In terms of security, it is easy to see that the measurement values are always in encrypted
form whilst outsourced, and that the leakage is bounded by the variogram model as well as both
the queried and observed locations (scaled by the inverse of range parameter ρ). Thus, assuming
no collusion between the server and users, the data is confidential from the server. Furthermore,
the homomorphic and security properties of the encryption scheme permit the computation to
be performed on the measurements whilst they are encrypted; at no point during the computa-
tion is the data revealed. The security of the encryption scheme requires each ciphertext to be
indistinguishable from a random number, whilst the final prediction Z̃0 computed by the server
comprises a weighted sum of such pseudorandom numbers. Thus, Z̃0 is a valid ciphertext and is
indistinguishable from random, and hence the server cannot learn the prediction from this value.

It is also clear that neither the variogram parameters η and ν, nor any values computed from
them, are ever revealed to the server. The final parameter of the variogram, the range ρ, is never
explicitly given to the server. However, the server does learn the coordinates of measurements scaled
by ρ. Hence, the range could be revealed if the server has existing knowledge of the measurement
locations. Of the three variogram parameters, we believe that the range is the least sensitive —
it reveals how quickly the variogram approaches the sill (i.e the distance at which the spatial
correlation between measurements becomes negligible) but does not reveal anything relating to
the measurement values themselves.

Whilst the queried location is revealed in the plain to the server, we note that the mechanism
of Tugrul and Polat [12] may easily be used to gain a weak form of secrecy: during the Query
algorithm, the party carrying out the query may choose q− 1 additional locations from the region,
and scale each by ρ. The query token then comprises q scaled locations, randomly permuted. The
server must perform Interpolate for each location, and the client may discard all results except the
one it is interested in. Unlike [12], we do not require an oblivious transfer protocol since the querier
is authorised to learn as many queries on the dataset as it wishes. However, as in [12], the server
may guess the location of interest with probability 1/q (but cannot learn the prediction at this
location).

Data generating nodes cannot learn Kriging predictions as they do not have the decryption key
and H is assumed to be IND-CPA secure.
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Fig. 1: Graphs showing the timing costs of each algorithm.

Regarding the performance evaluation of our scheme, we have implemented our scheme in
Python 3.4.3 using the PHE library [3] to provide the Paillier encryption scheme. The implemen-
tation is intended as a proof of concept to evaluate the efficiency of the proposed solution. The
encryption scheme has not been further optimised beyond that provided by default in the PHE
library, and does not use the provided countermeasures to avoid leaking the exponent of floating
point numbers. We remark that implementations of Paillier typically manage issues related to
fixed-point arithmetic and overflows in a transparent manner; it is not the aim of this article to
discuss such issues. All code is executed locally on a t2.micro Amazon EC2 instance with a 2.5GHz
Intel Xeon processor and 1GB memory running Ubuntu 14.04.4; in practice, one would expect the
server to have a better specification. All timings are averaged over 30 iterations, each on a new
randomly generated dataset.

Figures 1a and 1b give some simple timing results using our construction; Figure 1b shows
the per-algorithm costs (excluding the update algorithms). The cost of the Outsource algorithm
dominates all others (due to the cost of n encryptions); hence, for clarity, Figure 1a shows the same
results with the exclusion of the Outsource algorithm. It can be seen that, with the exception of
the (high) one-time cost of Outsource (which may be amortised over many queries), the remaining
client-side processes are very efficient. The server must perform quadratic work to perform Setup,
but this will be required relatively rarely — during initial setup and when the outsourced dataset
is updated. The online workload of the client is very low, whilst the server’s online work is linear
in the size of the dataset and greater than the client’s workload (making outsourcing worthwhile).
We believe that these experiments are sufficient to demonstrate the performance and scalability of
our solution; to our knowledge, the range of the number of measurements is reasonable compared
to what may be used in practice — for example, the well-known Meuse dataset [5] (often used to
illustrate the Kriging process) comprises 155 measurements.

7 Conclusion

The Kriging interpolation technique describes the best unbiased linear prediction of an observed
phenomena in a geographical region, based on a set of measurements, and it is widely used in
a wide range of applications. In this article we present a construction that allows for Kriging
interpolation to be securely outsourced to a cloud service provider, such that the measurement
values and sensitive variogram parameters are withheld from the server.

The proposed construction may be extended in several ways. For example, it would be interest-
ing to protect locations. This can be easily achieved if we increased interactivity, communication
complexity and client computation in the query process. However, if most computations should be
done by the server, it seems necessary to efficiently compute square roots and natural exponentials
over encrypted data which, to the best of our knowledge, remains an open problem. Finally, al-
though we have focused on Kriging due to its current practical applications, it would be interesting
to consider whether the techniques presented here could be applied in similar problems such as
outsourced polynomial curve fitting and regression techniques such as linear or generalized least
squares.
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A Additional Details on Kriging

In order to apply the Kriging interpolation technique, the observed phenomena is viewed as a real-
ization of a random field which satisfies certain properties related to the observed measurements.
A random field generalizes the notion of stochastic process, by allowing the underlying parameter
to take values other than real numbers. In the case of spatial interpolation, a random field Z is de-
fined as a collection of real-valued random variables {Z(r)}r∈R, all defined in the same probability
space, and indexed by locations r in a fixed region R ⊆ R2.

Given a set of n samples S taken at positions P , every sample zi ∈ S can be viewed as a
realization of the random variable Z(ri), indexed by the position ri ∈ P in a random field Z.
Given such realizations, a linear predictor Z∗ of the random field Z is defined as a random field of
the form

Z∗(r) = λ0 +

n∑
i=1

λiZ(ri), where λi ∈ R.

We say a linear predictor Z∗ is unbiased if the expectation E(Z(r) − Z∗(r)) = 0 for all r ∈ R.
Moreover, we say that a linear predictor Z∗ is best or optimal if, for every location r ∈ P , it
minimizes the prediction variance Var(Z(r)− Z∗(r)) among all unbiased linear predictors.
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The Kriging interpolation technique aims to find a best unbiased linear predictor for the random
field Z derived from a Kriging dataset (P, S). In this sense, note that Kriging deals with the same
problem as linear least squares in random fields. However, in order to derive such a predictor from
sampled values, additional assumptions are usually made on the stationarity of the random field.
The most widely applied Kriging process is Ordinary Kriging. This form of Kriging stems from
two stationarity assumptions. The second-order stationarity assumption states that the first and
second-order moments of the random variables in the random field are shift invariant:

Definition 4. A random field Z parametrized by elements of a region R ⊆ R2 is defined to be
second-order stationary if the following conditions are satisfied:

– The mean E(Z(r)) does not depend on r ∈ R, and
– The covariance Cov(Z(r), Z(r + h)) is a function of only the separating vector h for every
r, r + h ∈ R.

The intrinsic stationarity assumption considers variance of increments instead of covariance:

Definition 5. A random field Z parametrized by elements of a region R ⊆ R2 is defined to be
intrinsic stationary if the following conditions are satisfied:

– The mean E(Z(r)) does not depend on r ∈ R, and
– The variance of the increments Var(Z(r+h)−Z(r)) is a function of only the separating vector
h for every r, r + h ∈ R.

Second-order stationarity implies intrinsic stationarity [14] and thus we restrict our attention
to the more general intrinsic stationarity assumption. Our techniques are, however, applicable to
Ordinary Kriging in general.

The intrinsic stationarity assumption naturally leads to the notion of theoretical variogram [7,10]
which models the spatial dependency between the random variables Z(r). Given an intrinsic
stationary random field Z, the theoretical variogram γ̂ : R → R is defined as the function
γ̂(h) = Var(Z(r + h) − Z(r)). Under the intrinsic assumption, γ̂(h) depends only on the norm
of h [14]. Hence, we may view γ̂ as a function defined over positive real numbers.
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