
Characterising a CPU Fault Attack Model via
Run-Time Data Analysis

Martin S. Kelly
Information Security Group

Smart Card Centre
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom.

Email: Martin.Kelly.2014@live.rhul.ac.uk

Keith Mayes
Information Security Group

Smart Card Centre
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom.

Email: Keith.Mayes@rhul.ac.uk

John F. Walker
DNV GL Ltd.

Crescent House
46 Priestgate

Peterborough, PE1 1LF
United Kingdom.

Email: john.walker@dnvgl.com

Abstract—Effective software defences against errors created by
fault attacks need to anticipate the probable error response of the
target micro-controller. The range of errors and their probability
of occurrence is referred to as the Fault Model. Software defences
are necessarily a compromise between the impact of an error, its
likelihood of occurrence, and the cost of the defence in terms
of code size and execution time. In this work we first create a
fault insertion system and then use it to demonstrate a technique
for precisely triggering and capturing individual error responses
within a running micro-controller. This enables a more realistic
calibration of a micro-controller’s fault model. We apply the
system to a representative micro-controller and the results show
that error insertion is far more predictable than anticipated, and
is consistent over a wide range of experimental tolerances. This
observation undermines some widely deployed software defences
recommended for fault attack protection.

I. INTRODUCTION

Fault injection is a semi-invasive attack technique used to
induce behavioural errors in semi-conductor integrated circuits
and the risks posed by such errors in both execution and cal-
culation have been known for a considerable time. The classic
Bellcore Attack [5] against RSA, and its logical extension [4]
to general cryptographic calculations, highlighted the vulner-
ability of cryptographic algorithms to fault analysis. Likewise
fault tolerant computing is highly relevant within safety critical
systems and interest here predates cryptographers’ concerns
[13].

Faults may be injected into an executing micro-controller
(µP ) through a variety of mechanisms. Perturbations in a
chip’s power and clock supply [2], Photo-electric effects from
lasers or white light [17] and localised intense EM fields
[12]. Manufacturers of secured µP s have integrated various
hardware defences into their devices such as physical shields
and light sensitive detection circuitry [11] & [18] in order to
make attacks difficult to perform. Duplicate circuitry can be
added to detect errors within individual logic paths [3] and
even duplicate processors [8] can be used. These features are
very effective, but techniques are evolving to circumvent these
physical defences [20]. Furthermore, while these hardware
defences are widely utilised in the current generation of smart
card µP s they have yet to make their way into devices aimed at

the cost-sensitive consumer electronics market and the rapidly
growing Internet of Things market.

Software defences are therefore an unavoidable requirement
for systems that need to resist attack. To complement the
hardware defences, or lack thereof, programmers add redun-
dant code to their algorithms to verify critical operations.
Double checking of calculations [14] and monitoring of flow
control [7] are typical of the techniques employed. The whole
spectrum of defensive techniques applicable to µP s has been
analysed [19], drawing conclusions on the relative effective-
ness and overheads of the various methods.

Appropriate defensive code depends on the accuracy of the
fault model, which by necessity makes assumptions about the
nature of injected errors. To improve the accuracy of fault
models we need to examine real faults from physical silicon
while it executes under normal conditions: i.e. not single
stepping via JTAG or similar debug hardware. The inherent
difficulty in trying to categorise the nature of such faults
has been highlighted by [6]. Namely that the test program is
equally vulnerable to the induced errors and it is difficult to tell
whether the program failed, data was corrupted or reference
data was corrupted.

This paper first describes how we overcame the reported
difficulties. First by creating a laser fault insertion calibration
system and then using it to precisely trigger and capture indi-
vidual error responses within a running micro-controller. By
controlling the fault stimulus, both spatially and temporally,
we have analysed the behaviour of individual µP instructions,
identified their modes of failure, and gained additional insight
into the efficacy of defensive code. The experimental system
was used to precisely characterise dynamic fault behaviour,
which led to surprisingly consistent and predictable results
that have an impact on defensive coding techniques

Section II provides a brief overview of the background and
motivation for the work which led to development of the test
rig. A narrative of experimental methods and results forms
Section III while the implications of the results are evaluated
in Section IV. Conclusions are summarised in Section V, along
with suggestions for future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. BACKGROUND

The initial stimulus for this investigation was contradic-
tory advice received from two different penetration testing
laboratories, during the code-review of several payment card
applications. The contradiction arose from the recommended
approach to double checking a security variable before per-
forming a protected action. One lab recommended that state
variables should be tested both positively and negatively, as
illustrated by Method A in figure 1, whereas the other was
equally assertive in arguing that a state be tested twice before
an action was taken, see Method B in figure 1. The conflicting
advice was driven by reviewers’ respective fault models,
which were themselves based on experience or instinct. The
proponent of Method A considered the risk of influencing a
jump; insisting on both positive and negative confirmation to
ensure the program flow to the sensitive function involved both
taken and not taken branches. The proponent of Method B
perceived the main risk as being data corruption during the
variable read; by insisting that the variable be read twice its
value is re-confirmed before a sensitive action was taken. No
published literature could be found to favour either view and
we were concerned that that code could satisfy a formal review
yet still be vulnerable. To investigate this issue we created and
used a practical test system that was sufficiently precise and
controllable to profile the behaviour of individual instructions
whilst under laser attack.

C source Compiled output
volatile signed char bState; bState: .byte 1

// -- Method A --
// Test and test not.

void MethodA(void) {
if (bState == STRUE) {
if (bState != STRUE) {

Trap();
}
DoSecretStuff();
return;

}
}

MethodA:
lds r24,bState
cpi r24,STRUE
brne L4
lds r24,bState
cpi r24,STRUE
breq L3
rcall Trap
rjmp L4

L3: rcall DoSecretStuff
L4:

// -- Method B --
// Test and test again.

void MethodB(void) {
if (bState == STRUE) {
if (bState == STRUE) {

DoSecretStuff();
return;

}
Trap();

}
}

MethodB:
lds r24,bState
cpi r24,STRUE
brne L2
lds r24,bState
cpi r24,STRUE
brne L1
rcall DoSecretStuff
rjmp L2

L1: rcall Trap
L2:

Fig. 1: Protected Method Code

III. EXPERIMENTAL METHOD

In our test rig we use a hardware interrupt synchronised
with, but delayed from, the fault stimulus. By making the
interrupt service routine responsible for delivering results off
the card for analysis, the attacked features are no longer part
of the detection or reporting system. While the process is slow
it is easily automated.

The first step in the experimental approach was to define
the steps in a test method that would generate the results we
were interested in. These steps are summarised below, and
they were used to define the requirements for the test rig and
the µP under test.

1) Reset the µP and preset all registers and memory with
known values.

2) Setup the required state for the chosen experiment.
3) Start a timer that will initiate two actions.

a) Trigger the laser at a precise time in the future.
b) Cause a system interrupt shortly after the laser

pulse.
4) Execute our test program while timing the laser to strike

the instruction under investigation.
5) In the interrupt service routine, dump the µP state to the

host workstation for off chip analysis.
6) Wait for a reset and start again.
For practical testing, we needed a µP typical of those used

in smart-cards but without the additional hardware defences
associated with smart cards that would complicate the in-
vestigation. Techniques for bypassing defences exist [9] &
[20], demonstrating that choosing a defenceless chip does not
invalidate the resulting data. It was also desirable to have a
µP that was representative of a smart-card, so we selected the
Atmel ATtiny841 [1] for this study. The AVR core is widely
used in smart cards and is being actively marketed as an IoT
component. Other CPUs could have been considered, but the
high quality of the documentation and unrestricted access to
both development samples and tools made the AVR an ideal
candidate.

A. Test Rig

The chip was first removed from its packaging, washed,
attached to a new carrier and its electrical connections re-
bonded. A small circuit board was built to support the re-
mounted chip. Besides providing the power, clock and com-
munications required to program and run the chip this board
generates the trigger signals for the laser and facilitates the
collection of experimental results. The timer circuit runs at
40MHz and is divided by four to provide the µP ’s clock.
This provides precise and repeatable laser triggering at quarter
cycle intervals during µP execution.

A simple experiment confirmed the correct operation of
test circuit. This was achieved by programming the target to
initialise and then repeatedly increment a register. The last
instruction executed before the interrupt was identified from
within the interrupt service routine. Working back from this
point, we could identify the instruction that was executing
when the laser fired (See the annotations in figure 5) Four
runs of this experiment with increasing delays confirmed the
phase relationship of the timer quarter-cycles against the the
µP clock. This process calibrated the zero of the timer and en-
abled accurate synchronisation in the main set of experiments.

The circuit board was mounted on a computer controlled
X-Y axis microscope stage and a workstation application was



written to exercise the tests. The test rig could be programmed
to move to any position on the surface of the µP and execute a
test script. Scripts specific to each µP instruction were created.

B. Initial Probing

For the initial set of experiments we divided the chip
surface into a 100 × 100 squares, corresponding to a 20 µm
grid. The laser exposure footprint was set to match this grid
separation, corresponding to approximately 12 track widths as
observed on the chip’s surface. The size of the laser spot being
comparable to [20]’s observations.

It is already understood that with very finely focussed lasers
it is possible control individual transistors and to fully control
the state of a one bit memory cell [16]. Here, by using a wider
laser spot we demonstrate a more practical attack scenario as
many of the individual points of interest are obscured by the
metal tracks in the top layers of the chip. Each experiment was
repeated with laser pulses at differing quarter cycle intervals
from one quarter before the observed instruction up until the
start of the following instruction, giving 6 samples for a single
cycle instruction or 10 samples for a 2 cycle instruction. Each
experiment was executed 4 times to look for consistency in
the observed effect. This results in either 240, 000 or 400, 000
samples per instruction studied. The typical time needed for
an experimental test run was roughly 48 hours.

The tests were grouped to simplify the comparison of
similar behaviour.

1) No Operation Tests: provide an opportunity to observe
changes to the µP relating solely to instruction fetch with
none of the additional complications relating to register trans-
fers or arithmetic calculations. Multiple tests were performed
with flags in the status register initialized to differing states
before the target NOP instruction was executed.

2) Single Register Update Tests: are characterised by a
Read-Modify-Write cycle affecting only one register and a
subset of the status flags. Here the R0 register was initialized
to different values before INC and DEC instructions were were
targeted. The initialization values were chosen so that the
expected result generated all possible combinations of flag
states.

3) Arithmetic Tests: are binary operations taking input from
two sources and sometimes overwriting the first with an
updated value. Here the ADD, SUB and CP instructions were
tested with registers initialized to generates all possible flag
states.

4) Memory Access Tests: carried out simple data transfers
between registers and memory. LD and ST instructions were
tested while they transferred positive, negative and zero values
between memory and registers.

5) Branching Tests: aimed to test the vulnerability of
branch decision logic. All possible variations of Carry and
Zero flag states were initialized and the BRCC, BRCS, BRNE
and BREQ conditional branches tested whilst under attack.

Table I shows a summary of the results of these experiments.
The nature of the errors is discussed below.

TABLE I
LASER INDUCED ERRORS

Test Set Samples Errors Unique Repeata

No Operation 480000 4175 1589 61.9%
Single Register 1920000 14320 6175 56.9%
Arithmetic 3360000 28923 12562 56.6%
Memory 2400000 12873 5368 58.3%
Branching 3200000 22845 8683 62.0%

11360000 83136 34377 58.6%
a Repeat = (Errors− Unique)/Errors.

Fig. 2: Error Locations

Figure 2 is a compos-
ite map showing all areas
on the chip where errors
were induced during the
NOP tests.

Through analysis of
the retrieved data we
have identified four cat-
egories of error.

1) Total Crash:
In some cases it was
impossible to recover the
µP state after the laser
pulse. Clearly corruption
had occurred and the
µP ’s interrupt mechanism failed to deliver the information
to the host workstation. These errors were rare but where
they occurred they were usually repeatable. This behaviour
was most frequently observed in the zones labelled A & B in
Figure 2.

2) Widespread non-fatal corruption: Multiple registers be-
came simultaneously corrupted; most frequently in zone B.
More registers are corrupted than could possibly be achieved
via program execution and we assume the register contents are
being simultaneously altered. The general behaviour was often
repeatable but the erroneous values assigned to the registers
had no obvious pattern.

3) Memory corruption: In some instances the memory
became corrupted, but with no corruption to the µP state. This
behaviour was associated with zone C and appears similar to
the effect studied in detail by [17] where RAM was modified
directly.

4) Status Register: Here the flags register was corrupted
without any other errors induced in the µP . These errors
occurred exclusively in Zone D. This was a surprising result,
given the stability of the general purpose registers and is
discussed further below.

Conspicuous by their absence were errors relating to the
current register being updated. These proved very rare under
our test conditions, which was surprising as modification
during update had been anticipated to be a significant threat.
Likewise corruption of data during transfer from memory to



register had been considered a potent threat. We see little
evidence here but acknowledge that more investigation is
needed here because the initial test set only considered transfer
to and from RAM.

The most significant result was the high degree of repeata-
bility of the errors. In many cases all erroneous results for a
test at a specific location and time were identical.

C. Error Repeatability

Zone D was re-scanned while varying the aperture and the
power of the laser. This zone was chosen because a high
proportion of all tests exhibited the same effect. Namely flag
corruption with no other side effect. For this set of tests we
targeted the CMPI instruction, with input variables to generate
all possible combinations of status flags. This time we took 10
samples at each location and time interval; the smaller scanned
area made this practical. In total 180, 000 sample were taken
for each power and aperture setting.

The laser pulse lasts approximately 4 ns. In low power
setting our laser emits up to 2mJ per pulse. We varied the
power from 10% through to 30% and the aperture from 20%
through to 60%. The microscope lens has 35% transmission
ratio at our chosen wavelength of 532 nm (green). The results
are shown in table II.

These results show that, while total error counts vary, the
likelihood of getting a repeat error is both high and remarkably
consistent across the full range of apertures and energy levels.
The results for flag corruption remained consistent too.

0 10 20 0
10

0

500

X-position. Y-pos.

E
rr

or
C

ou
nt

15-60x60 (Cycle 3 Phase 3)

Fig. 3: Errors counts Zone D.

For each power and
aperture setting we graphed
the error count, see figure 3
for a single example. From
this set of graphs, too nu-
merous to show here, we
have seen that, sensitive ar-
eas yield many errors while
adjacent areas show no er-
rors at all; resulting in dis-
tinct peaks in the graphs.
We also see that our erro-
neous flag result is strongly
correlated with the third quarter phase of the instruction cycle.

D. Testing the Observed Flag Vulnerability

As individual instructions, branches appeared to be resistent
to manipulation but the apparent ability to manipulate flags
implied it would be possible to influence branches. By hitting
the comparison operation with the laser we would expect flag
corruption and a subsequent branch to misbehave. The code
in figure 4 was executed with inputs of STRUE, SFALSE
and an illegal value of 00H. It was struck with the laser at
all possible timing intervals. This was repeated 10 times at all
locations in the previously identified Zone D.

Within the result data we expected to find examples of
branches erroneously taken and erroneously skipped. The
surprise result was we found numerous errors where a branch

had been skipped and none where a branch had been taken.
Furthermore we observed no flag corruption. Clearly the
branch instruction was misbehaving but it was not misdirected
by faulty flags as had been anticipated.

; Timing
40 nop ; 1.0-1.1
41 nop ; 1.2-2.1
42 cpi r25,SFALSE ; 2.2-3.1
43 breq L_False ; 3.2-4.1/5.1
44 cpi r25,STRUE ; 4.2-5.1
45 breq L_True ; 5.2-6.1/7.1
46 rjmp L_Trap ; 6.2-8.1
...
50 L_Weird: ; Note: mov
50 mov r0,r25 ; used here
51 mov r1,r25 ; because it
52 mov r2,r25 ; does not
53 mov r3,r25 ; update any
54 rjmp L_Weird ; flags.
...
60 L_True:
60 mov r10,r25 ; 7.2-8.1
61 mov r11,r25
62 mov r12,r25
63 mov r13,r25
64 rjmp L_True
..
70 L_False:
70 mov r16,r25 ; 5.2-6.1
71 mov r17,r25
72 mov r18,r25
73 mov r19,r25
74 rjmp L_False
...
80 L_Trap:
80 mov r4,r25 ; 9.2-10.2
82 mov r5,r25
83 mov r6,r25
84 mov r7,r25
85 rjmp L_Trap

Fig. 4: Branch Test Code

Closer observation
of the results showed
some of the MOV
instructions had been
skipped. Timing of the
laser pulse associated
to skipped branches
and MOVs was such
that it had occurred
during the execution
of the proceeding
instruction. This
strongly suggests that
instructions are not
misexecuting but that
the prefetch of the
next instruction is
being corrupted.

Similar results have
observed by [15] on
an ARM µP where
the cache failed to
update, resulting in
the re-execution of
the previous cache
contents. We repeated
our test with a series
of increment register
instructions and
observed missing updates as expected but no examples of the
additional updates that would be expected if the previously
fetched instruction was being re-executed. This also indicates
that our initial extensive scanning of the chip surface,
instructions and injection times was flawed. All instructions
were examined while they pre-fetched a NOP and this result
suggest many of the errors we previously observed were due
to the misbehaviour of the subsequent misfetched NOP rather
than that of the instruction under test.

Figure 5 shows the probable scenario where a single in-
struction is skipped.

IV. IMPLICATION

We have shown that the effects of injected errors are far
from random and are in fact frequently and consistently repeat-
able. We have shown that this effect remains consistent across
a wide rage of laser apertures and intensities. In particular,
wide apertures and low power offer effective and practical
attacks that could be mounted using low cost equipment. This
brings into question the assertion that "performing two faults
on two instructions separated by a few clock cycles is hardly
feasible." [10].



TABLE II
ERRORS BY POWER AND APERTURE.

Aperturea

20% 30% 40% 50% 60%

Powerb µJc Nd Re µJ N R µJ N R µJ N R µJ N R

10% 2.8 0 0% 6.3 101 85% 11.2 1842 93% 17.5 8142 97% 25.2 9020 95%
15% 4.2 2642 95% 9.5 3729 95% 16.8 6934 96% 26.3 7848 96% 37.8 10219 95%
20% 5.6 3640 96% 12.6 4952 92% 22.4 6604 95% 35.0 5518 95% 50.4 8362 95%
25% 7.0 4127 95% 15.8 5803 96% 28.0 5676 95% 43.8 8208 96% 63.0 10773 96%
30% 8.4 4543 96% 18.9 5899 96% 33.6 4797 94% 52.5 8738 96% 75.6 9690 97%

a Aperture diameter as a percentage of 40 µm b Laser power setting as a percentage of 2mJ per pulse. c Energy delivered to the chip surface after
masking by the aperture and losses in the microscope optics. d Total count of errors from 180, 000 samples taken within Zone D. e Percentage of errors
that are duplicates for a single location and stimulus timing. Where repeatability = (Errors− UniqueErrors)/Errors.

clk

Start count

End count

Laser Flash

Register values r0=1 r1=1 r2=1 r3=1 r4=1 r6=1

CPU Fetch stb inc r0 inc r1 inc r2 inc r3 inc r4 ??? inc r6 Vector rjmp clb

CPU Execute stb inc r0 inc r1 inc r2 inc r3 inc r4 ??? inc r6 Vector Fetch rjmp ISR clb

SYNC_LATCH

PCINT

pcint_syn

PCIF

IRQ Vector fetch ISR code

[Activate the timer]

[Programmed delay]

[Trigger IRQ]

[Laser latency]

[Causes misread]

[no update]

[Confirm ISR entry delay]

b j

c

e

h

f

a g i

d

M
ea

su
re

m
en

ts

4.
6

10
.2

.4
 9

.2
.1

 4
.7

.1

 D
at

as
he

et

Fig. 5: Signal Timing

In the light of the above we have reevaluated the initial
advice that prompted this study. Figure 1 shows the two
code samples and their corresponding assembler output. Our
results here suggest that the original Method A provides a
better defence than its replacement. In principle the strongest
approach is to place critical processing at the destination of
branches, making it unreachable when branches are skipped.
Additionally, placing the defended code at low addresses and
the tests that invoke it at higher addresses will reduce the
risk of repeated instruction skips from falling through in to
it. This is a simple practical approach that can be achieved
through source-code and control of the compiler’s optimisation
settings. This technique will also be robust on a CPU with
an instruction cache or pipeline, where [15] & [21] have
demonstrated that consecutive instructions may be skipped or
misinterpreted after a single error.

A. Reevaluation of Historic Code

We were fortunate to have access to defensive code that
had been re-used within certified EMV cards, a National ID
card scheme, and a Java Card OS implementation. Looking
only at the software implemented defences, and hypothetically

considering the implications of the same source code being
targeted at the µP studied here, we noted three common areas
of vulnerability.

1) State variable: double testing as described above is used
in all of the applications. The Global Platform card manager
implemented within the JavaCard OS shows many examples
of this sub-optimal defensive code; for example card life-
cycle state and secure session state influence the availability of
commands and in all cases the restricted code will be reached
by skipping the branch.

2) Waymarkers or Sentinel values: are used in the three
most recent projects to record execution of subroutines and to
detect skipped or misexecuted code. In all cases where a test
is performed the code branches to a trap function when the
state is not as expected. It would be significantly stronger if
execution branched when the state was as expected and falling
through to the trap by default. This of course would have the
disadvantage of making the source code untidy to the verge
of being unreadable.

3) Variable redundancy: widely used in the JavaCard
project. Here, for example, multiple loop counters and ter-
mination conditions are used to control loops, ensuring either



the correct number of repetitions or detection and trapping
for inconsistent states. In the compiler generated code used
for sanity checking of loop termination we repeatedly see
conditional branches to the trap condition.

V. CONCLUSIONS

The test rig and error state recovery mechanism has proved
itself to be a flexible and effective tool, providing insights
and information not available from simulations. Here we have
demonstrated its effectiveness in characterizing the risk of
skipped instructions and in particular branch operations. It
can be used to quickly identify vulnerable areas of a chip
and quantify the likelihood of generating reproducible, and
therefore exploitable, errors. Generating a more complete,
realistic and accurate fault model for a chip will simplify the
task of application development and testing.

We can confidently dispel the myth that error effects are
random. If an error can be induced then it can probably be
reproduced. Therefore repeating tests offers limited advantages
and defences that rely on the combinatorial effects of low
probabilities are therefore flawed.

We have confirmed long held suspicions that instruction
skipping is a significant threat. By demonstrating that equally
reproducible results can be obtained from low power and wide
aperture, we challenge suggestions that double fault injection
is prohibitively expensive or difficult [10]. In fact it appears
to be practical with low budget equipment; an observation we
intend to demonstrate next. Paradoxically our expensive laser
equipment cannot generate pulses at short intervals whereas
readily available low-cost solid state diodes can do this.

More work is required to characterise the failures observed
in other parts of the chip and to confirm the observation that
register and RAM access is harder to adversely influence.
Similarly the ease of corruption of the instruction pre-fetch
suggests that other aspects of memory access may be vulnera-
ble and our test examples did not cover these. We also intend
to confirm our initial assumption that the technique is equally
applicable when using an infra-red laser from the rear side of
the chip. The low-power and wide aperture results suggest this
was a safe initial assumption.

While we have concentrated on branch operations the failure
mechanism affects all instructions. It is therefore obvious that,
on this chip, all calculations are vulnerable to skipped instruc-
tion errors and that any answers, particularly cryptographic
results, must be verified before being disclosed or acted upon.

The work here has been exclusively performed on one ver-
sion of the AVR micro-controller. We believe the techniques
described are equally applicable to other µP architectures,
which we intend to verify in future work.

REFERENCES

[1] Atmel Corporation. ATtiny841 Datasheet – 8-bit AVR Microcontroller
with 4/8K Bytes In-System Programmable Flash, 05 2014. Rev. 8495H.

[2] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault
attacks on rsa with crt: Concrete results and practical countermeasures.
In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 260–275. Springer, 2002.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

[4] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, volume 1294 of
Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume
1233 of Lecture Notes in Computer Science, pages 37–51. Springer,
1997.

[6] L. Dureuil, M.-L. Potet, P. de Choudens, C. Dumas, and J. Clédière.
From code review to fault injection attacks: Filling the gap using fault
model inference. In International Conference on Smart Card Research
and Advanced Applications, pages 107–124. Springer, 2015.

[7] O. Goloubeva, M. Rebaudengo, M. Reorda, and M. Violante. Soft-error
detection using control flow assertions. In Defect and Fault Tolerance in
VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium
on, pages 581–588, Nov 2003.

[8] Infineon Technologies AG. Whitepaper. Integrity Guard — The newest
generation of digital security technology., 09 2012. Rev. 4.12.

[9] O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant
smartcard processors. In Proceedings of the USENIX Workshop on
Smartcard Technology on USENIX Workshop on Smartcard Technology,
WOST’99, pages 2–2, Berkeley, CA, USA, 1999. USENIX Association.

[10] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal ver-
ification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering, 4(3):145–156, 2014.

[11] NXP Semiconductors N.V. Shortform Datasheet. SmartMX2 P40 family
P40C012/040/072 — Product short data sheet, Company Public, 04
2015. Rev. 3.0, 262830.

[12] R. Omarouayache, J. Raoult, S. Jarrix, L. Chusseau, and P. Maurine.
Magnetic microprobe design for em fault attack. In Electromagnetic
Compatibility (EMC EUROPE), 2013 International Symposium on,
pages 949–954. IEEE, 2013.

[13] D. L. Palumbo and R. W. Butler. A performance evaluation of the
software-implemented fault-tolerancecomputer. Journal of Guidance,
Control, and Dynamics, 9(2):175–180, 1986.

[14] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift:
software implemented fault tolerance. In Code Generation and Opti-
mization, 2005. CGO 2005. International Symposium on, pages 243–
254, March 2005.

[15] L. Riviere, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage.
High precision fault injections on the instruction cache of armv7-m
architectures. In Hardware Oriented Security and Trust (HOST), 2015
IEEE International Symposium on, pages 62–67. IEEE, 2015.

[16] C. Roscian, A. Sarafianos, J.-M. Dutertre, and A. Tria. Fault model
analysis of laser-induced faults in sram memory cells. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2013 Workshop on, pages 89–
98. IEEE, 2013.

[17] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks.
In B. S. K. Jr., Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2523 of Lecture Notes in Computer Science, pages 2–12. Springer, 2002.

[18] STMicroelectronics N.V. Shortform Datasheet. ST23ZC08 — Secure
microcontroller with enhanced security., 03 2012. ID 019021 Rev 2.

[19] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl. Compre-
hensive analysis of software countermeasures against fault attacks. In
E. Macii, editor, Design, Automation and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013, pages 404–409. EDA Consortium
San Jose, CA, USA / ACM DL, 2013.

[20] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini. Practical
optical fault injection on secure microcontrollers. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2011 Workshop on, pages 91–
99. IEEE, 2011.

[21] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont. Software fault resistance is futile: Effective single-glitch
attacks. In Fault Diagnosis and Tolerance in Cryptography (FDTC),
2016 Workshop on, pages 47–58. IEEE, 2016.


