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1 Introduction

Extensive form games are the key tool to analyze multi-person sequential deci-
sion making by rational agents. The ingredients for this basic representation of
a game are a tree that describes an omniscient observer’s view of the interac-
tion and a specification of what players may do and under which informational
restrictions. The formalizations of these vary, but invariably an additional as-
sumption is imposed, which ensures that the player’s informational restrictions
are consistent with rationality: perfect recall.

This condition was introduced by Kuhn (1953), who explained it as a
memory requirement. Subsequently alternative definitions of the same concept
were proposed, e.g., by Selten (1975) and by Osborne and Rubinstein (1994).
Somewhat surprisingly, little effort has gone into showing that these definitions
are indeed equivalent. The present note fills this gap by showing that they are.

Additionally, a further equivalent definition of perfect recall is proposed.
The latter is of interest, because it characterizes perfect recall by a tree-
property of the players’ choices and/or information sets. In particular, if a
play (maximal path) passes through two choices and/or information sets of
the same player, then all plays passing trough one of those must also pass
through the other. This is analogous to a basic property satisfied by any game
tree: If a play passes through two nodes of the tree, then every play passing
through one must also pass through the other. We refer to this property as
“Trivial Intersection.” Hence, the new characterization boils down to the con-
dition that each player’s choices and/or information sets “look like” a tree,
though possibly one without a root.

The original definition of perfect recall (Kuhn, 1953) was stated for finite
games only. In this paper we also extend all three definitions to games with
a potentially infinite horizon and possibly large action sets. That is, in the
present framework an extensive form game may not end, and players may at
times choose from a continuum, or from even larger sets. This extension is
important for applications, as those often work with large games.

The paper concludes with a discussion of the weaker condition of “no-
absent-mindedness,” which was part of the seminal definitions of (finite) ex-
tensive forms by Kuhn (1953) and Selten (1975) and is known to be implied by
perfect recall. It requires that each play passes through a choice, or an infor-
mation set, at most once. In the present framework, though, such an additional
requirement is not needed—it holds automatically.

The reason is that we work with the generalization of the formalization of
extensive form games by von Neumann and Morgenstern (1944), as proposed
by Alós-Ferrer and Ritzberger (2005, 2008, 2013). In that formalization the
relevant objects, choices or nodes in the tree, are sets of plays, hence events in
the sense of statistics—if one thinks of the set of all plays as the state space.
At an information set the nodes contained in it count as the events that the
decision maker regards as possible. Hence, the plays passing through some node
in the information set are the states that the player regards as possible. If a
play would pass through two distinct choices that are simultaneously available
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at the same information set, then the decision maker could—by not taking one
of the choices—rule out a state that she regards as possible. But why should
I regard a state as possible if I can prevent it from materializing?

The paper proceeds as follows. Section 2 lays out definitions and notation.
Section 3 states the equivalence of the known definitions of perfect recall,
and Section 4 gives the novel characterization. Section 5 discusses no-absent-
mindedness and shows that even without perfect recall mixed strategies are
at least as powerful as behavior strategies. Section 6 concludes.

2 Large Games: Discrete Extensive Forms

Extensive form games are defined on a tree capturing the order of players’
decisions. Alós-Ferrer and Ritzberger (2005, 2008, 2013) have developed the
concept of game trees and shown how to define arbitrarily large extensive
game forms on the resulting objects (see also Alós-Ferrer and Ritzberger 2016,
forthcoming-a, forthcoming-b). We rely on this research and directly present
here the appropriate concepts.

The basic approach, originally advocated by von Neumann and Morgen-
stern (1944, Section 8), relies on the idea that nodes in a tree are subsets of
a given set of possible ultimate outcomes, i.e., a node is the set of outcomes
that may still occur conditional on the node having been reached. Hence a
tree is a collection of nodes partially ordered by set inclusion, that is, a node
x precedes a node y if x ⊇ y. A simple way to think about this approach is
to start with the set of all potential outcomes that might occur (which is the
space on which eventually players’ preferences should be defined). The root
is identified with the whole set. As the game proceeds, some outcomes are
excluded, and each node is the set of outcomes which have not been discarded
yet, and which might still be the ultimate outcome of play when the game
proceeds through that node.

The relation to the traditional “graph-approach” of Kuhn (1953) and Selten
(1975) is intuitive. In that approach, a node is an abstract decision point. One
can simply consider the set of all “plays”, that is, maximal chains of nodes
from the root to the end of the game (if there is an end). Each such play
corresponds to one and only one ultimate outcome. Identify then each node
with the set of plays which pass through the node, i.e., the set of plays which
have not been discarded yet. The resulting object is a set representation which
corresponds to a tree viewed as a set of sets, as given above.

Our previous work has synthesized the approach of von Neumann and
Morgenstern (1944, Section 8) with the graph-approach of Kuhn (1953) and
Selten (1975). In particular Alós-Ferrer and Ritzberger (2005, Theorem 3) for-
mally demonstrate the equivalence between game trees, which take outcomes
as primitives, and trees as partially ordered sets, like graphs, which take nodes
as primitives. Further, due to this equivalence, it is always possible to identify
outcomes with plays.
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Formally, we work with discrete game trees as introduced in Alós-Ferrer and
Ritzberger (2013) (and used in Alós-Ferrer and Ritzberger 2016, forthcoming-
a, forthcoming-b), and present a condensed definition here. Recall that in a
partially ordered set a chain is defined as a subset that is completely ordered.
Henceforth, maximum, minimum, and infimum of a chain are with respect to
set inclusion. The symbol ⊆ denotes weak set inclusion and ⊂ denotes proper
inclusion.

Definition 1 A discrete (rooted and complete) game tree (N,⊇) is a col-
lection of nonempty subsets x ∈ N (the nodes) of a given set W (of outcomes)
partially ordered by set inclusion such that W ∈ N , {w} ∈ N for all w ∈ W ,
and the following two additional conditions hold
(GT1) h ⊆ N is a chain if and only if there is w ∈ W such that w ∈ ∩x∈hx,
(GT2) every chain in the set X = N \{{w}}w∈W (of moves) has a maximum,
and it either has an infimum in the set E = {{w}}w∈W (of terminal nodes) or
it has a minimum.

Property (GT1) requires that if two nodes have a nonempty intersection then
one contains the other (“Trivial Intersection”), and that all chains have a
nonempty intersection (“Boundedness”). Property (GT2) is discreteness. Its
first part, “up-discreteness,” is necessary for every pure strategy combination
to induce a unique play/outcome (Alós-Ferrer and Ritzberger, 2008, Theo-
rems 3 and 6). Its second part, “down-discreteness,” excludes e.g. continuous
time but still allows large action spaces and infinite horizon (Alós-Ferrer and
Ritzberger, 2013, Definition 5).1

For each node x ∈ N define the up-set (“the past”) ↑x and the down-set
(“the future”) ↓x by

↑x = {y ∈ N |y ⊇ x} and ↓x = {y ∈ N |x ⊇ y } . (1)

By the if-part of (GT1) ↑x is a chain for all x ∈ N . A play is a chain of nodes
h ⊆ N that is maximal in N , i.e., there is no x ∈ N \ h such that h ∪ {x} is
a chain. Intuitively, a play is a complete history of all events along the tree,
from the beginning (the root W ∈ N) to the “end”—if there is an end: Since
infinite histories are allowed, plays need not be finite.

The advantage of game trees is that the set of plays can be one-to-one iden-
tified with the underlying set W (Alós-Ferrer and Ritzberger, 2005, Theorem
3(c)). A node then consists of the plays passing through it, and the underlying
set W represents all plays. An element w ∈ W can thus be seen either as a pos-
sible outcome (element of some node) or as a play (maximal chain of nodes).
If h is a play, there exists a unique outcome w ∈ W such that ∩x∈hx = {w},
or, equivalently, ↑ {w} = h. Henceforth we will not distinguish between plays
and outcomes.

1 Definition 1 is equivalent to the concept of discrete game tree in Definition 5 of Alós-
Ferrer and Ritzberger (2013) plus the property that {w} ∈ N for all w ∈ W , which is called
completeness in that work and can be assumed without loss of generality (Alós-Ferrer and
Ritzberger, 2013, Proposition 4).
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For a discrete game tree (N,⊇) a node x ∈ N is terminal if ↓ x = {x}.
Players in an extensive form game, however, decide at non-terminal nodes,
called moves. It can be shown (see Alós-Ferrer and Ritzberger, 2008, Lemma
1, and Alós-Ferrer and Ritzberger, 2013, Lemma 3(b)) that a node x ∈ N in a
discrete game tree is terminal if and only if there is w ∈ W such that x = {w}.
Hence the set E = {{w}}w∈W introduced in (GT2) coincides with the set of
terminal nodes. Likewise, the set X = N \ E is the set of moves.

The possibility of infinite horizon yields a further classification of nodes.
A node x ∈ N \ {W} is finite if ↑ x \ {x} has a minimum and infinite if
x = inf ↑x \ {x}. In a discrete game tree every node is either finite or infinite,
and every move is a finite node, X ⊆ F (N) or, in other words, every infinite
node is terminal (Alós-Ferrer and Ritzberger, 2013, Proposition 3 and Theorem
1(c)). Denote by F (N) the set of finite nodes together with the root W ∈ N .
On this set a function p : F (N) → X can be defined that assigns to every
finite node its immediate predecessor. Namely, for each x ∈ F (N) \ {W} let

p (x) = min ↑x \ {x} (2)

and p (W ) = W by convention. Hence, x ⊂ p (x) = ∩{y |y ∈↑x \ {x}} for all
x ∈ F (N) \ {W}.

For a discrete game tree (N,⊇) let (by a slight abuse of notation) W :
N ։ W denote the correspondence2 that assigns to every node, viewed as
an element of the tree, the set of its constituent plays, that is, the node itself
viewed as a set of plays, i.e. W (x) = x for all x ∈ N . For a set Y ⊆ N of
nodes write W (Y ) = ∪x∈Y x ⊆ W (x) for the union, and refer to W (Y ) as the
plays passing through Y .

At each move, one or more players will choose certain sets of plays. In
order to model such decisions, one needs a notion of which sets of plays are
available at which moves. For a set a ⊆ W of plays let ↓ a = {x ∈ N |x ⊆ a}
be its down-set and define the set of immediate predecessors of a as

P (a) = {x ∈ N |∃y ∈↓a :↑x =↑y\ ↓a} , (3)

Say that a set a of plays is available at the move x ∈ X if x ∈ P (a).
The idea behind the definition is as follows. Nodes are sets of plays, and the

objects that are chosen at nodes are also certain sets of plays (to be specified
below). Let x be a node and a a set of plays which intersects x. The node x is
a predecessor of a (and hence a is available at x) whenever there exists some
other node y, a successor of x contained in a, such that x is the minimum
among those predecessors of y that are not contained in a. That is, there is
a chain of nodes containing x whose members are eventually contained in the
set of plays a, but the node x is the “last” one along the chain which is not
contained in a. Intuitively, the set of plays a “leads towards” a certain chain
of successors of x. Clearly, if x ∈ P (a), then there is a play w ∈ x ∩ a that

2 Even though the same symbol serves for the map and its codomain, no confusion can
arise, because the argument will always be specified.
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passes through x and a and another w′ ∈ x \ a that passes through x but not
through a, hence a represents some “choice”.

Effectively, P (a) is the collection of nodes that are minimal with respect
to a nontrivial intersection with a ⊆ W . For, if x∩a 6= ∅ 6= x \ a and y ⊆ a for
all y ∈↓x\{x}, then for any y ∈↓x\{x} it holds that y ∈↓a and ↑x =↑y\ ↓a,
hence x ∈ P (a). Conversely, if x ∈ P (a), then for any y ∈↓ x \ {x} it holds
that y ⊆ a, hence x ∩ a 6= ∅, and x /∈↓a implies x \ a 6= ∅.

With the appropriate concept of a tree at hand the definition of an extensive
form is fairly direct compared with other approaches in the literature (see
Alós-Ferrer and Ritzberger, 2013, for further details).

Definition 2 A discrete extensive form (DEF) with player set I is a pair
(T,C), where T = (N,⊇) is a (rooted, complete) discrete game tree with set
of plays W and C = (Ci)i∈I a system consisting of collections Ci (the sets
of players’ choices) of nonempty unions of nodes (hence, sets of plays) for all
i ∈ I, such that

(DEF1) if P (c) ∩ P (c′) 6= ∅ and c 6= c′, then P (c) = P (c′) and c ∩ c′ = ∅,
for all c, c′ ∈ Ci for all i ∈ I;

(DEF2) p−1 (x) =
{

x ∩
(

∩i∈J(x)ci
)

∣

∣

∣
(ci)i∈J(x) ∈ A (x)

}

, for all x ∈ X ;

where A (x) = ×i∈J(x)Ai (x), Ai (x) = {c ∈ Ci |x ∈ P (c)} are the choices
available to i ∈ I at x ∈ X , and J (x) = {i ∈ I |Ai (x) 6= ∅} is the set of
decision makers at x, which is required to be nonempty for all x ∈ X .

(DEF1) is the “information set property” that players cannot deduce from
the available choices at which move in the information set they are. Note
that information sets are not primitive objects in this formulation but rather
derived from choices: they correspond to the sets P (c). Formally, the collection
of information sets of player i ∈ I is given by {P (c) ⊆ X |c ∈ Ci}. That is,
an information set is the set of nodes P (c) where c is a choice. The role of
information sets is the same as in the framework of Kuhn (1953) and Selten
(1975): If a move in an information set h is reached, the player controlling
it is asked to choose among the available choices (those choices c such that
P (c) = h)—no other information than the menu of available choices is released
to her.

The second property is also fairly intuitive. (DEF2) says that, at any given
move, the combined decisions of the relevant players lead to a new node, and
that any (immediate) successor of the move can be selected by an appropriate
combination of the players’ decisions. (The intersection with the move x ∈ X
is needed because of potentially large information sets.)

As shown in Alós-Ferrer and Ritzberger (2013), the definition of discrete
extensive form corresponds to the general definition of extensive decision prob-
lem when discreteness is assumed. That definition (Alós-Ferrer and Ritzberger,
2013, Definition 3 or Alós-Ferrer and Ritzberger, 2005, Definition 7) employs
four properties, (EDP.i-iv). (EDP.i) is identical to (DEF1). Under (GT2), how-
ever, the three independent conditions (EDP.ii-iv) collapse to (DEF2), in the
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sense that (DEF2) holds if and only if those three conditions hold simultane-
ously. One of the three conditions summarized by (DEF2), namely (EDP.iv),
excludes absent-mindedness (see Alós-Ferrer and Ritzberger, 2005, Proposition
13), i.e. that a play intersects an information set more than once.

A detailed translation between a DEF and the graph-based approach by
Kuhn (1953) and Selten (1975) has been provided in Alós-Ferrer and Ritzberger
(2013, Section 4). There it is shown that one can go back and forth between a
DEF and a “simple extensive form” that takes nodes as primitives (Alós-Ferrer
and Ritzberger, 2013, Proposition 6).3

Remark 1 Choices essentially partition the set of plays passing through the
corresponding information set. Hence, without loss of generality it can be
assumed that c ⊆ W (P (c)) for all c ∈ Ci and all i ∈ I. This assumption
will be maintained throughout. There is a subtle (though inconsequential)
point regarding this assumption. If it is not made, a choice could include an
infinite terminal node corresponding to a play that does not pass through
the information set at which the choice is available. In fact, there is w ∈
c \W (P (c)) if and only if {w} ∈ E is an infinite terminal node. It is easy to
see that the DEF is not affected at all by removing such irrelevant plays from
choices.

Henceforth the set I of players’ names is fixed and treated as a finite set
I = {1, ..., n} for some n ∈ N. If chance is present, it will be treated as one of
the players in I.

Associated with any DEF there are two derived objects: Pure strategies
for the players and a surjection from pure strategy combinations into plays.

Definition 3 For a DEF (T,C) and a player i ∈ I the set Si of pure strate-
gies for player i is the set of all functions si : Xi ≡ {x ∈ X |i ∈ J (x)} → Ci

that satisfy

s−1
i (c) = P (c) for all c ∈ si (Xi) ≡ {si (x) |x ∈ Xi } . (4)

That is, the function si assigns to every move x ∈ Xi a choice c ∈ Ci such
that (a) choice c is available at x, i.e. si (x) = c ⇒ x ∈ P (c) or s−1

i (c) ⊆ P (c),
and (b) to every move x in an information set P (c) the same choice gets
assigned, i.e. x ∈ P (c) ⇒ si (x) = c or P (c) ⊆ s−1

i (c), for all c ∈ Ci that are
chosen somewhere, viz. c ∈ si (Xi). Let Si denote the set of all pure strategies
for player i ∈ I. A pure strategy combination is an element s = (si)i∈I of the
set S ≡ ×i∈ISi of all pure strategy combinations.

Furthermore, for every DEF there is a surjection φ : S → W that assigns
to every pure strategy combination the play that it induces (Alós-Ferrer and
Ritzberger, 2013, Theorems 4 and 6). Given a pure strategy combination s,
the outcome φ(s) is defined as the unique fixed point of the map

Rs (w) = ∩{si (x) |w ∈ x ∈ Xi } . (5)

3 Example 10 in Alós-Ferrer and Ritzberger (2013) shows that the sequence-based defi-
nition by Osborne and Rubinstein (1994) is also captured.
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Lemma 1 φ (s) = w if and only if w ∈ x ∈ Xi ⇒ w ∈ si (x) for all i ∈ I.

Proof By (5), φ (s) = w if and only if {w} = Rs (w). Hence, if w ∈ x ∈ Xi ⇒
w ∈ si (x) for all i ∈ I, then w = φ (s). To see the converse, assume that for
some i ∈ I there is x ∈ Xi ∩ ↑ {w} such that w /∈ si (x). Then w /∈ Rs (w),
hence, w 6= φ (s). ⊓⊔

3 Perfect Recall

A property of extensive forms that is crucial for applications yet is not implied
by the definition of a DEF is perfect recall. This property was introduced
by Kuhn and, according to him, “... is equivalent to the assertion that each
player is allowed by the rules of the game to remember everything he knew at
previous moves and all of his choices at those moves.” (Kuhn, 1953, p. 213)
As a matter of fact, perfect recall does a little more. It can be shown (see
Ritzberger, 1999) that it is equivalent to the simultaneous fulfillment of three
independent properties: Players never forget what they did; they never forget
what they knew; and (for a given player) past, present, and future have an
unambiguous meaning.

In a sense, an extensive form that fails perfect recall does not properly
capture rational behavior on the part of the players. Therefore, it appears
mandatory to include perfect recall among the assumptions.

Given a DEF (T,C) with tree T = (N,⊇) and a move x ∈ Xi of player
i ∈ I, say that x is possible under si ∈ Si for player i, denoted x ∈ Poss (si), if
there is s−i ∈ ×j 6=iSj ≡ S−i such that φ (si, s−i) ∈ x. Similarly, an information
set P (c) for c ∈ Ci for player i ∈ I is relevant under si ∈ Si for player i,
denoted P (c) ∈ Rel (si), if P (c) ∩ Poss (si) 6= ∅. The following definition is
from Kuhn (1953).

Definition 4 A DEF (T,C) satisfies perfect recall if, for each i ∈ I, each
si ∈ Si, and each c ∈ Ci, it holds that P (c) ∈ Rel (si) ⇒ P (c) ⊆ Poss (si).

Clearly, perfect recall could be defined for each player separately by drop-
ping the first quantifier. Furthermore, the definition may also be rewritten in
terms of the function φ as follows: A DEF satisfies perfect recall if, for each
i ∈ I, si ∈ Si, c ∈ Ci, and x ∈ P (c),

x ∩ φ (si, S−i) 6= ∅ ⇒ y ∩ φ (si, S−i) 6= ∅, ∀y ∈ P (c) , (6)

with φ (si, S−i) = {φ (si, s−i) |s−i ∈ S−i }. This follows from

Poss (si) = {x ∈ Xi |x ∩ φ (si, S−i) 6= ∅}

Rel (si) = {P (c) |c ∈ Ci, ∃x ∈ P (c) : x ∩ φ (si, S−i) 6= ∅}

for all si ∈ Si. The rewriting (6) is particularly useful when the normal form
is under scrutiny.
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A drawback of Definition 4 is that it refers to pure strategies, that is, to
derived objects, rather than primitives (the tree and choices). To develop a
characterization of perfect recall in terms of primitives an auxiliary result is
needed.

Lemma 2 For a DEF (T,C) and any player i ∈ I: If x ∈ P (c) for some
c ∈ Ci and x ⊆ c′ ∈ Ci, then there is x′ ∈ P (c′) with x ⊂ x′.

Proof Suppose that x ∈ P (c) for some c ∈ Ci and x ⊆ c′ ∈ Ci. The chain
↑x\ ↓c′ (where ↓c′ = {y ∈ N |y ⊆ c′ }) is contained in the set X of moves, the
move x does not belong to it, and x ⊂ z for all z ∈↑x\ ↓c′, that is, x provides
a lower bound for the chain. Therefore, the chain ↑ x\ ↓ c′ cannot have an
infimum in the set E of terminal nodes, as all terminal nodes are singletons
and a singleton cannot contain a move. It follows from (GT2) that it has a
minimum x′ = min ↑x\ ↓ c′. By (3) it follows that x′ ∈ P (c′) with x ⊂ x′, as
desired. ⊓⊔

The following result provides three characterizations of perfect recall for
a DEF. The first is based on the correspondence φi : Si ։ W defined by
φi (si) = φ (si, S−i) for all si ∈ Si and its lower (or weak) inverse φ−

i (V ) =
{si ∈ Si |V ∩ φi (si) 6= ∅} for any subset V ⊆ W . The second is the definition
of perfect recall proposed by Selten (1975) and the third the one proposed by
Osborne and Rubinstein (1994).

Theorem 1 For a DEF (T,C) each of the following statements is equivalent
to perfect recall: For all players i ∈ I and all choices c, c′ ∈ Ci of player i,4

(a) φ−
i (x) = φ−

i (y) for all x, y ∈ P (c);
(b) if there is x ∈ P (c) such that x ⊆ c′, then y ⊆ c′ for all y ∈ P (c);
(c) if there are x ∈ P (c) and x′ ∈ P (c′) with x ⊂ x′, then there is a unique
c′′ ∈ Ai (x

′) such that W (P (c)) ⊆ c′′.

Proof “Perfect recall implies (a):” If x ∈ P (c) for c ∈ Ci and si ∈ φ−
i (x), then

x ∩ φ (si, S−i) 6= ∅ by the definition of φ−
i . Perfect recall (6) then implies that

y∩φ (si, S−i) 6= ∅ for all y ∈ P (c) , hence, si ∈ φ−
i (y). Since x, y ∈ P (c) enter

symmetrically in this argument, the statement follows.
“(a) implies (b):” Suppose for c ∈ Ci there is x ∈ P (c) such that x ⊆

c′ ∈ Ci. By Theorem 4 of Alós-Ferrer and Ritzberger (2008) there is s ∈ S
such that φ (s) ∈ x. Then, first, si ∈ φ−

i (x) implies si ∈ φ−
i (y), that is,

y ∩ φ (si, S−i) 6= ∅, for all y ∈ P (c) by (a). Second, because x ⊆ c′ ∈ Ci by
hypothesis, there is x′ ∈ P (c′) with x ⊂ x′ by Lemma 2. Third, si (x

′) = c′,
because otherwise si (x

′) ∩ c′ = ∅ by (DEF1) would contradict φ (s) ∈ x by
Lemma 1.

Consider any y ∈ P (c), and suppose y \ c′ 6= ∅. By Theorem 4 of Alós-
Ferrer and Ritzberger (2008) there is s′ ∈ S such that φ (s′) ∈ y \ c′. There
are two possibilities.

4 If perfect recall were defined as a property of player i’s choice set alone, as it is possible,
the first quantifier could be dropped.
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First, if there were y′ ∈ P (c′) with φ (s′) ∈ y′, then φ (s′) ∈ s′i (y
′) by

Lemma 1. On the other hand, by the definition of a pure strategy, (4), s′i (y
′) =

s′i (x
′) 6= c′, because φ (s′) /∈ c′. This yields s′i (x

′) ∩ c′ = ∅ by (DEF1), which
implies from x ⊆ c′ that x ∩ φ (s′i, S−i) = ∅, that is, s′i /∈ φ−

i (x), even though
φ (s′) ∈ y ∈ P (c), in contradiction to (a).

This leaves the second possibility, that P (c′)∩ ↑{φ (s′)} = ∅. In this case
let s′′i ∈ Si be such that s′′i (z) = s′i (z) for all z ∈ Xi \P (c′) but s′′i (z) 6= c′ for
all z ∈ P (c′). From P (c′)∩ ↑{φ (s′)} = ∅ it follows that φ

(

s′′i , s
′
−i

)

= φ (s′) ∈

y ∈ P (c), hence, s′′i ∈ φ−
i (y). But x ∩ φ (s′′i , S−i) = ∅, because s′′i (x

′) ∩ c′ = ∅
by (DEF1) and x ⊆ c′, which once again contradicts (a).

Therefore, y \ c′ = ∅ or, equivalently, y ⊆ c′. Since y ∈ P (c) was arbitrary,
statement (b) follows.

“(b) implies (c):” Suppose there are x ∈ P (c) and x′ ∈ P (c′) with x ⊂ x′.
By (GT2) the chain ↑x\ ↑x′ has a maximum z = max ↑x\ ↑x′ ∈ X . Since z ∈
p−1 (x′), by (DEF2) there is c′′ ∈ Ai (x

′) such that z = x′∩c′′∩
[

∩j∈J(x′)\{i}cj
]

for some choice combination (cj)j∈J(x′)\{i} ∈ ×j∈J(x′)\{i}Aj (x
′). It follows

from x ⊆ z ⊂ x′ and z ⊆ c′′ that x ⊆ c′′. By (b) this implies that y ⊆ c′′

for all y ∈ P (c), hence, W (P (c)) ⊆ c′′. That c′′ ∈ Ai (x
′) is unique follows

from (DEF1), because any ĉ ∈ Ai (x
′) \ {c′′} is disjoint from c′′ and, therefore,

cannot cover x ∈ P (c).

“(c) implies perfect recall:” Suppose for si ∈ Si there is s−i ∈ S−i such
that φ (si, s−i) ∈ x ∈ P (c) for some c ∈ Ci, that is, P (c) ∈ Rel (si). There
are two cases to consider. Either player i has a decision point that properly
contains x or not.

Suppose first that there is x′ ∈↑x \ {x} with x′ ∈ P (c′) for some c′ ∈ Ci.
Then by (c) there is a unique c′′ ∈ Ai (x

′) such that W (P (c)) ⊆ c′′. It follows
from Lemma 1 and the definition of a pure strategy that si (y

′) = c′′ for all
y′ ∈ P (c′) and, therefore, y ∩ φ (si, S−i) 6= ∅. Since this argument holds for
all nodes in Xi ∩ (↑x \ {x}), it follows that y ∈ Poss (si) for all y ∈ P (c), as
required by perfect recall.

Otherwise, if Xi∩(↑x \ {x}) = ∅, then Xi∩(↑y \ {y}) = ∅ for all y ∈ P (c).
For, if there were y ∈ P (c) and y′ ∈ Xi with y ⊂ y′, then by (c) there would
by a unique c′′ ∈ Ai (y

′) such that W (P (c)) ⊆ c′′, in particular, x ⊆ c′′. By
Lemma 2 there would be x′ ∈ P (c′′) with x ⊂ x′, in contradiction to the
hypothesis. Hence, indeed Xi ∩ (↑y \ {y}) = ∅ for all y ∈ P (c). But then
y ∩ φ (si, S−i) 6= ∅ for all y ∈ P (c), that is, P (c) ⊆ Poss (si), as required by
perfect recall (Definition 4). ⊓⊔

It follows that any one of the three definitions of perfect recall from the lit-
erature can be used in applications. This also holds if the game under scrutiny
has an infinite horizon and/or large action sets.

Perea (2001, Definition 2.1.2) gives a very intuitive definition of perfect
recall for the case of finite games which also extends to the infinite case in a
straightforward way.
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Corollary 1 A DEF (T,C) satisfies perfect recall if and only if for each i ∈ I,
each c ∈ Ci, and each x, y ∈ P (c), the path from the root to x implies the same
collection of player i choices as the path from the root to y.

Proof The collection of choices implied by a path of play from the root to x is

Ch(x) = {c′ ∈ Ci | c′ ⊇ x and ∃y ∈ Xi with x ⊂ y, y ∈ P (c′)} .

It is then straightforward that Ch(x) = Ch(y) if and only if condition (a) in
Theorem 1 holds. ⊓⊔

4 A Characterization by Trivial Intersection of Choices

Theorem 1 essentially extends known definitions of perfect recall to potentially
large games and proves their equivalence. This section presents a qualitatively
new characterization that refers to a basic tree structure of the set of choices.
Recall that one of the components of (GT1) is “Trivial Intersection,” stating
that any two nodes are either disjoint or ordered by set inclusion. The natural
extrapolation of this property to the set of choices characterizes perfect recall.

Theorem 2 A DEF (T,C) has perfect recall if and only if the set of choices
Ci satisfies Trivial Intersection, i.e., for all i ∈ I and all c, c′ ∈ Ci,

if c ∩ c′ 6= ∅ then either c ⊂ c′ or c′ ⊆ c. (7)

Proof “if:” It suffices to demonstrate that statement (b) from Theorem 1 holds
under the hypothesis. Hence, suppose that, for c, c′ ∈ Ci and i ∈ I, there is
x ∈ P (c) such that x ⊆ c′. Since x ⊆ c′ and x \ c 6= ∅ by (3), there is
w′ ∈ c′ \ c. Therefore, c ⊂ c′ by ∅ 6= x∩ c ⊆ c′ ∩ c and the hypothesis of Trivial
Intersection for Ci. Hence, c

′ ∈ Ci cannot be available at moves in P (c) by
(DEF1). Since x′ ∩ c 6= ∅ for all x′ ∈ P (c) by (3), it follows that x′ ∩ c′ 6= ∅ for
all x′ ∈ P (c). Suppose there were x′ ∈ P (c) such that x′\c′ 6= ∅. Because there
is a node y′ ∈ p−1 (x′) with y′ ⊆ c by (DEF2) and by c ⊂ c′ this node would
satisfy y′ ∈↓ c′ and it would follow from (3) that x′ ∈ P (c′), a contradiction.
Therefore, x′ ⊆ c′ for all x′ ∈ P (c), as required.

“only if:” Assume perfect recall. Suppose c ∩ c′ 6= ∅ for c, c′ ∈ Ci with
c 6= c′. Then, the two choices must be available at different information sets
by (DEF1). Let w ∈ c∩ c′. Then, w ∈ W (P (c))∩W (P (c′)) by ĉ ⊆ W (P (ĉ))
for all ĉ ∈ Ci (as explained in Remark 1). Hence, there are moves x ∈ P (c)
and x′ ∈ P (c′) such that x, x′ ∈↑{w} (and x 6= x′). By (GT1), either x ⊂ x′

or x′ ⊂ x. Say x ⊂ x′. It follows from Theorem 1(c) that W (P (c)) ⊆ c′ and
from c ⊂ W (P (c)) that c ⊂ c′. ⊓⊔

The proof of the only-if part of this latter characterization in fact demon-
strates a stronger property than Trivial Intersection for choices: Perfect recall
implies that choices and information sets jointly satisfy Trivial Intersection,
that is, for all b, b′ ∈ Bi ≡ Ci ∪ {W (P (c)) |c ∈ Ci }

if b ∩ b′ 6= ∅ then either b ⊂ b′ or b′ ⊆ b (8)
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b bW

x = {w2, w3}
{w3}

{w1} {w2}

Fig. 1 The tree of the absent-minded driver example. A choice to stop must include both
w2 and w3. But a single choice to continue must contain x, and hence contain w2. Thus, it
is impossible to have just two choices to continue and stop in this game.

for all i ∈ I. Since the latter implies that choices alone satisfy Trivial Intersec-
tion, (7), it is again equivalent to perfect recall by the if part of Theorem 2.
Furthermore, under perfect recall information sets alone, {W (P (c)) |c ∈ Ci },
clearly also satisfy Trivial Intersection. Yet, the proof of the if part of Theorem
2 reveals that the equivalence of both (7) and (8) to perfect recall is due to
the tree structure.

Corollary 2 If (T,C) is a DEF with perfect recall, then for each choice c ∈ Ci

the set {c′ ∈ Ci |c ⊆ c′ } of i’s choices that come before c is a finite chain, for
all players i ∈ I.

Proof By the only-if part of Theorem 2 the set {c′ ∈ Ci |c ⊆ c′ } is a chain.
Since each x ∈ P (c) is a finite node by Theorem 1(b) of Alós-Ferrer and
Ritzberger (2013), x has only finitely many predecessors x′ ∈ P (c′)∩ ↑x with
c ⊆ c′ ∈ Ci. As these predecessors along a play w ∈ c correspond one-to-one
to choices c′ ∈ Ci, the latter also form a finite chain. ⊓⊔

5 Absent-Mindedness and Randomized Strategies

In the traditional definitions of (finite) extensive form games by Kuhn (1953)
and Selten (1975), an implication of perfect recall was explicitly incorporated:
that each play passes through an information set at most once. This has been
dubbed “no-absent-mindedness.” As shown by Piccione and Rubinstein (1997),
violations of no-absent-mindedness generate ill-behaved examples where, e.g.,
not all outcomes are reachable by pure strategy combinations.

In the present setting, unlike in Kuhn’s or Selten’s formalism, the exclusion
of absent-mindedness need not be assumed, but is an implication of the model.
Specifically in a DEF (and, actually, even in the non-discrete case covered
in Alós-Ferrer and Ritzberger, 2005, 2008), every play can pass through an
information set at most once (Alós-Ferrer and Ritzberger, 2005, Proposition
13). In other words, the issues related to absent-mindedness cannot occur in
the present framework, even if perfect recall is not assumed.

To understand why this is the case, consider the “absent-minded driver” of
Piccione and Rubinstein (1997), whose tree of this game is presented in Figure
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1. There are three possible outcomes, w1, w2, and w3. A single player decides
at the root, W = {w1, w2, w3} and at an intermediate node x = {w2, w3}. At
W , the player can either stop, leading to the terminal node {w1}, or continue,
leading to x. At x, the player can either stop or continue, leading to the
terminal nodes {w2} or {w3}, respectively.

Piccione and Rubinstein (1997) posed the example where both decisions
to stop were identified into a single choice, and analogously for both decisions
to continue. Such a violation of perfect recall is simply not feasible in the
current setting. Identifying both decisions to stop requires a choice c such that
w1, w2 ∈ c. Identifying both decisions to continue requires a different choice
c′ such that x ⊆ c′ and w3 ∈ c′. But x ⊆ c′ implies that w2 ∈ c′. Since c
and c′ are available at the same nodes (formally, P (c) = P (c′) = {W,x}), this
contradicts (DEF1).

The reason why the absent-minded driver problem cannot arise in the
present framework is that our approach, as developed in Alós-Ferrer and
Ritzberger (2005, 2008, 2013), is built on the concept of play (or outcome)
as a primitive. Nodes and choices are sets of plays capturing the possibilities
still available before and after a decision, respectively. When the decision to
continue is made at the root, the choice allows both w2 and w3 as ultimate
outcomes. The textbook approach would implicitly rely on a “choice” which
has two elements, the play w3, and the node x. Hence, the node x would be
taken as a mere intermediate step which can however only lead to the ultimate
outcome w3, in spite of the fact that w2 ∈ x. In a sense, such an approach
would not clearly distinguish between nodes and outcomes.5

Under different formalizations of games it is known that for finite games no-
absent-mindedness is characterized by the statement that, for every behavior
strategy, there is an equivalent mixed strategy (Ritzberger, 2001, Theorem
3.2, p. 122). Hence, we proceed to show that this property also holds in our
setting without additional assumptions. This requires discussing how to model
randomizations in large games.

To obtain mixed strategies one may want to define probability measures on
pure strategies. Yet, pure strategies are functions, so the set of all pure strate-
gies of a player is a function space, hence potentially large. Still, one would
want that every mixed strategy profile induces a well-defined probability mea-
sure on plays, that is, on the set W endowed with a σ-algebra W . A minimal
requirement on the measurable space (W,W ) is, of course, that W contains at
least all nodes x ∈ N . Such a construction may fail, though. Aumann (1964)
observed that, if the set of pure strategies is “too large,” it is by no means
true that a randomization among an arbitrary subset of pure strategies does
induce a well-defined probability distribution on outcomes (plays w ∈ W ).
Indeed, Aumann (1961) provides a characterization showing that probability
measures on large enough spaces of strategies will not induce measures on
outcomes. The following example illustrates some of the difficulties.

5 Not all violations of no-absent-mindedness contradict the basic idea of choice, i.e. con-
dition (DEF1). Example 15 of Alós-Ferrer and Ritzberger (2005) gives a two-player game
violating no-absent-mindedness which fulfills (DEF1) and fails (DEF2) instead.
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Example 1 There are two players, 1 and 2, engaged in ultimatum bargaining.
Player 1 can propose a split of a surplus, which is any number from the interval
S1 = [0, 1]. The set S1 hence coincides with the set of pure strategies of player
1. Player 2 observes the proposal and responds by either accepting (1) or
rejecting (0) the proposed split. Thus, the set of pure strategies of player 2
is the set S2 of all functions of the form s2 : [0, 1] → {0, 1}. The set of plays
is W = [0, 1] × {0, 1} . The requirement on the σ-algebra W on W is that
singletons and sets of the form {r} × {0, 1} are measurable. This is fulfilled
if one takes, for instance, the product of the Borel σ-algebra on [0, 1] and the
discrete σ-algebra on {0, 1}. The outcome function φ is explicitly given by
φ(s1, s2) = (s1, s2(s1)).

Take a non-Borel set A of [0, 1] and consider the indicator function 1A ∈ S2.
This is a pure strategy for player 2. Thus, for a pure decision theorist, no
restriction can rule it out. Now suppose player 1 randomizes uniformly over
S1 = [0, 1]. What is the induced distribution over outcomes? Clearly, the set
[0, 1]× {1} should be measurable for any reasonable model of the game. But
φ−1
1 ([0, 1]× {1}) = A, which is by construction not measurable. Thus the

uniform randomization of player 1 (which is a well-defined random variable)
does not induce a distribution over the set of outcomes.

Aumann (1964) proposes to bypass this problem by working with an ex-
traneous probability space and viewing randomized strategies as random vari-
ables, rather than as distributions. Following this approach, fix a “standard”
probability space (Ω,Σ, λ), i.e., such that Ω is either finite or countable with
the discrete σ-algebra or isomorphic to the unit interval. Endow the product
space S of pure strategy profiles with a σ-algebra S such that the outcome
function φ : S → W is (S ,W )-measurable. Finally, for each player i ∈ I
endow the space Si of pure strategies with the σ-algebra Si given by the
projection σ-algebra onto Si.

A mixed strategy for player i ∈ I then is a (Σ,Si)-measurable function
σi : Ω → Si. Denote by Mi the set of all mixed strategies of player i ∈ I and
by M = ×i∈IMi the space of all mixed strategy profiles. The interpretation
of a mixed strategy of player i ∈ I is that i picks the set ϑ ∈ Si of pure
strategies with probability λ

(

σ−1
i (ϑ)

)

. By varying the function σi the player
chooses this probability. Of course, the same caveat as before applies. If Si is
too large as compared to Ω, only “few” pure strategies can be chosen with
positive probability.

Another, piecemeal approach to randomized strategies is to allow players
to randomize among available choices, independently, at each information set.
Formally, for each player i ∈ I endow the set Ci of choices with a σ-algebra
Ci and let Bi denote the set of all (Σ,Ci)-measurable functions b : Ω → Ci.
A behavior strategy for player i ∈ I is a function βi : Xi → Bi, whose values
are denoted bix = βi (x) : Ω → Ci for all x ∈ Xi, such that, for all x, y ∈ Xi,
(a) bix (Ω) ⊆ Ai (x), (b) if y ∈ P (bix (ω)) for some ω ∈ Ω, then biy = bix,
and (c) if there is no c ∈ Ci with x, y ∈ P (c), then λ

(

b−1
ix (ϑ) ∩ b−1

iy (ϑ′)
)

=

λ
(

b−1
ix (ϑ)

)

λ
(

b−1
iy (ϑ′)

)

for all ϑ, ϑ′ ∈ Ci.
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Condition (a) states that if c ∈ bix (Ω) = {bix (ω) ∈ Ci |ω ∈ Ω }, then c ∈
Ai (x) = {c ∈ Ci |x ∈ P (c)}, i.e. x ∈ P (c), for all x ∈ Xi; that is, it ensures
that the random variable bix is supported on choices that are available at x ∈
Xi. Condition (b) demands that the same random variable bix is assigned to
all moves y in the information set that contains x; hence, the behavior strategy
ρi does not use more information than what the player has. Finally, condition
(c) imposes independence on decisions at distinct information sets. Denote by
Bi the set of all behavior strategies of player i ∈ I, and by B = ×i∈IBi the
space of all behavior strategy profiles.

The interpretation of the probability λ
(

b−1
ix (ϑ)

)

is as the conditional prob-
ability that player i takes a choice in the set ϑ ∈ Ci given that move x ∈ Xi

has materialized. Player i decides on this conditional probability by choosing
the function (random variable) bix ∈ Bi. By condition (b) these decisions are
perfectly correlated across all moves in the information set that contains x, but
independent across different information sets by condition (c). Hence, while
mixed strategies pick functions from decision points to choices potentially at
random, behavior strategies pick choices at each decision point (again poten-
tially at random), independently across different information sets. Because of
the independence inherent in behavior strategies, they are, in general, less
powerful than mixed strategies are.

Proposition 1 Let (T,C) be a DEF. If the behavior strategy profile β ∈ B
induces the probability measure µ : W → [0, 1] on the measurable space (W,W ),
then there exists a mixed strategy combination σ ∈ M that also induces µ.

Proof Given the behavior strategy profile β ∈ B define for each player i ∈ I
the function fi : Xi × Ω → Ci by fi (x, ω) = bix (ω) = βi (x) (ω) for all
(x, ω) ∈ Xi × Ω, and let f = (fi)i∈I denote the associated profile. Let φ :
S → W be the surjection that assigns to each pure strategy combination
s ∈ S the play that it induces, as in (5). This function exists by Theorems
4 and 6 of Alós-Ferrer and Ritzberger (2008). Observe that for each fixed
ω ∈ Ω the function fi (·, ω) : Xi → Ci is a pure strategy of player i, i.e.

f (·, ω) = (fi (·, ω)) ∈ S. For, (a) guarantees that fi (·, ω)
−1

(c) ⊆ P (c) and (b)

ensures that fi (·, ω)
−1 (c) ⊇ P (c) for all c ∈ Ci and all i ∈ I. Hence, β induces

µ if µ (V ) = λ ({ω ∈ Ω |φ (f (·, ω)) ∈ V }) for all V ∈ W . For fixed ω ∈ Ω a
mixed strategy profile σ ∈ M is a pure strategy combination, σ (ω) ∈ S. Hence,
σ induces µ if µ (V ) = λ ({ω ∈ Ω |φ (σ (ω)) ∈ V }) for all V ∈ W .

Given the behavior strategy profile β ∈ B, construct a mixed strategy
profile σ ∈ M by setting σ (ω) = f (·, ω) ∈ S for each ω ∈ Ω. By construction,
if β induces µ, then σ ∈ M also does, and the statement is verified. ⊓⊔

This result is made possible by the fact that no-absent-mindedness is an
integral part of the approach at hand. Specifically, the proof of Proposition
1 implicitly relies on the fact that in a DEF every play can pass through an
information set at most once, viz. no-absent-mindedness.

Proposition 1 is the generalization to large games of one of the implications
contained in Kuhn’s theorem (Kuhn, 1953), which in its most general form
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states that behavior strategies and mixed strategies are equivalent if and only
if the game satisfies perfect recall (for an alternative approach to the proof of
Kuhn’s theorem, see von Stengel, 2002, Corollary 4.2). Without perfect recall,
the converse of Proposition 1 (i.e., that behavior strategies are as powerful as
mixed strategies), does not hold, because of the independence (condition (c)) in
the definition of behavior strategies. This can lead to problems in applications,
where one often determines optimal choices locally, at each information set
separately, and pastes together a solution to the overall game from these local
solutions. For instance, an “equilibrium in behavior strategies” may not be an
equilibrium at all due to a profitable deviation in mixed strategies, or there
may be equilibria in mixed strategies which cannot be reproduced in behavior
strategies (see, e.g., the remarkable example by Wichardt, 2008).

This explains the importance of the characterization embodied in Kuhn’s
theorem. Kuhn (1953) established this result for the finite case only. This was
because the general case poses the technical difficulties sketched above. It took
over ten years until Aumann (1964) proved a weaker version of Kuhn’s theorem
for the case of games with perfect recall and an infinite horizon, but restricting
the action sets to be homeomorphic to the unit interval. This version states
only the sufficiency part of Kuhn’s theorem, and it does so only for a given
strategy of the opponents. The latter appears acceptable for practical purposes.
The former, the necessity of perfect recall, was proved another ten years later
by Schwarz (1974) under some additional (mild) measurability assumptions.

6 Conclusions

This paper provides five characterizations of perfect recall. First, it is shown
that the known definitions, by Kuhn (1953), Selten (1975), Osborne and Ru-
binstein (1994), and Perea (2001) are equivalent irrespective of how large the
extensive form game is. Second, a new characterization of perfect recall is ob-
tained that relates it to a basic tree-property, called “Trivial Intersection.”
Finally, we show that even without perfect recall mixed strategies always do
at least as well as behavior strategies. This is because in the present set-up,
that follows von Neumann and Morgenstern (1944), the weaker condition of
“no-absent-mindedness” always holds.
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