
Towards Trusted Execution of Multi-Modal Continuous
Authentication Schemes

Carlton Shepherd
Royal Holloway,

University of London,
Egham, UK

carlton.shepherd.2014
@rhul.ac.uk

Raja Naeem Akram
Royal Holloway,

University of London,
Egham, UK

r.n.akram@rhul.ac.uk

Konstantinos
Markantonakis
Royal Holloway,

University of London,
Egham, UK

k.markantonakis@rhul.ac.uk

ABSTRACT
The emergence of powerful, sensor-rich devices has spawned
the development of continuous authentication (CA) schemes
on commodity hardware, where user behaviour is compared
to past experience to produce an authentication decision,
with the aim of addressing challenges with traditional au-
thentication schemes. Current CA proposals, however, have
largely neglected adversaries present in real-world deploy-
ments, namely the ubiquity of malware and arbitrary soft-
ware attacks. This has particular importance when a device
cannot be trusted by a third-party, e.g. a corporation, that
controls access to assets based on CA decisions. A software
compromise, either on the platform or scheme implementa-
tion, may enable the modification of authentication scores,
gain insights into user behavioural patterns, or gain unau-
thorised access to restricted assets. For the first time, we
examine two standardised constructs that offer isolated and
trusted execution – Secure Elements (SEs) and Trusted Ex-
ecution Environments (TEEs) – even when an adversary has
root-level privileges for protecting CA schemes while retain-
ing deployability. Based on these, we implement the first
system for evaluating TEE-based CA on a consumer mobile
device using Intel SGX – providing confidentiality, integrity
and trust assurances over untrusted world implementations.
We present an evaluation of TEE- and non-TEE perfor-
mance using methods proposed in related work. The results
indicate that trusted CA can be performed in an efficient
fashion while removing the main platform from the TCB.

CCS Concepts
•Security and privacy → Authentication; Trusted
computing; Mobile platform security;

Keywords
Continuous Authentication; Trusted Execution Environments;
Trusted Computing; Mobile Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2017, April 03–07, 2017, Marrakech, Morocco
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4486-9/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3019612.3019652

1. INTRODUCTION
Modern mobile devices are often used to store sensitive

user data, such as contact, financial and social media in-
formation. The physical nature of mobile devices, however,
introduces a range of attack vectors typically avoided with
desktop workstations. Small form-factor devices can be mis-
placed, dropped or pickpocketed relatively easily, such as in
restaurants and on public transport. Despite this, past stud-
ies [8, 19] suggest that as many as 40% of smartphone users
do not use a secure, secret-based locking mechanisms. Ad-
ditionally, Hayashi et al. [10] show that the ‘all-or-nothing’
nature of mobile authentication, where access to all device
functionality is granted/denied upon the completion/failure
of a secret, is a ‘remarkably poor fit’ to user preferences.
Rather, users have shown preference towards explicitly un-
locking for certain applications – those holding sensitive
data, such as banking – while avoiding this for relatively
benign ones, like navigation. Similarly, users favour setting
different authentication challenges in locations of varying
perceived safety [9]. These factors have inspired the explo-
ration of continuous authentication1 (CA) schemes by re-
searchers, where the device state is influenced by contextual
information gathered primarily from mobile sensors. How-
ever, while numerous schemes have been proposed in the
literature, little attention has been paid towards secure and
trusted on-device execution of CA schemes in practice. If
any element is modified – the sensor data, underlying user
model or the decision itself – access could be granted to
sensitive assets and services maliciously.

For the first time, we explore candidates for providing
trusted execution of CA schemes using a Secure Element
(SE) and Trusted Execution Environment (TEE) to offer
stronger confidentiality, integrity and trust assurances. Af-
ter introducing CA and proposed schemes (Section 2), we
examine these candidates for trusted CA (Section 3). Next,
we use the Intel SGX TEE to implement a test-bed for per-
forming trusted CA using three learning algorithms (Section
4), and evaluate their performance using a publicly-available
dataset from real-world users (Section 5). Finally, we dis-
cuss related work, the conclusions of our results and identify
avenues for future research (Sections 6 and 7).

This paper provides the following contributions:

• The design and implementation of a test-bed for per-
forming trusted execution of multi-modal CA using the

1Also known as ‘implicit’, ‘on-going’ and ‘transparent’ au-
thentication in related literature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Intel SGX architecture, and a discussion of any poten-
tial issues at each stage. To our knowledge, this is the
first foray in assessing TEE-based CA.

• An assessment of various architectures for executing
continuous authentication schemes, along with their
associated benefits and drawbacks relating to security,
performance and deployability.

• Performance statistics and source code are released for
further research by the community2. We hope that
our SGX-compatible machine learning primitives will
allow CA developers to implement trusted schemes.

2. CONTINUOUS AUTHENTICATION
In this section, CA and its motivation is described, along

with the methods used in proposed schemes. We formalise
the problem statement and expand the existing threat model.

2.1 Background and Motivation
Traditional user authentication has relied on what one

knows, e.g. passcodes and PINs; has, e.g. tokens and smart
cards; or is, e.g. behavioural and physical biometrics. Pass-
word and pattern schemes, however, suffer from well-studied
issues relating to rememborability and shoulder-surfing at-
tacks [28]. Has methods, such as tokens, are generally seen
to be more secure, but are considered burdensome when
managing multiple items [3]. Biometrics comprise phys-
iological and behavioural measures, and recent work [10]
shows that users are receptive to these due to their con-
venience. Physiological systems such as fingerprint recogni-
tion, however, suffer from inherent reliability issues due to
injury or the environment, and replacement – the problem of
‘revoking’ or ‘replacing’ a fingerprint after divulgence. With
behavioural biometrics, achieving acceptable error rates re-
mains an open problem [3]. CA aims to address the short-
comings of traditional schemes by transparently monitoring
the user’s environment and context via device sensors. Var-
ious schemes have been proposed that rely upon keystroke-
[22], motion- [4], environmental- [14] and touch-based [5]
features. Recent research – discussed in the following sub-
section – has tended to focus upon a multi-modal approach,
where multiple data sources are used to authenticate users
with improved error rates. Generally, CA aims to address
the following areas:

• Reducing the number of unnecessary login attempts
through modulating the lock-screen strength [9, 23].

• A primary or second line of defence for detecting unau-
thorised users who have bypassed the initial lock-screen,
e.g. via shoulder-surfing [13, 16, 27].

• Adjusting access control policies based on context [21].

A typical approach involves training a supervised learn-
ing classifier using labelled sensor data, and classifying sub-
sequent data according to these labels. Classes may corre-
spond to locations, e.g. adjusting access control policies in
safe/unsafe locations as per [21], or inferring the accept/re-
ject status directly [16, 23, 27]. Certain work does not focus
on classifying data, but produces a real-valued probability
that is thresholded for purposes decided by the operator [13,
15]. CA schemes typically follow two phases (Figure 1):
2Available at: https://bitbucket.org/carltonshepherd/trustedca

Figure 1: Generalised State Flow of CA Schemes.

Table 1: Summary of Multi-modal CA Schemes.

Paper Method Sensors

Hayashi et al. [9] NB GPS†

Micallef et al. [19] DT
Acc., WiFi, Light,

Sound, Mag.

Shi et al. [27] NB
GPS, Cell ID, Acc.,

Sound, Touch
Mittenen et al. [21] RF, kNN, NB GPS, WiFi

Riva et al. [23] SVM
Light, Temp., Hum.,
BT, Touch, Logins

Li et al. [16] SVM Touch, Acc., Ori., Mag.
† Only GPS evaluated, but approach is generalisable to N inputs.
* Acc.: Accelerometer; BT: Bluetooth; DT: Decision Tree; Hum.: Hu-
midity; Mag.: Magnetometer; NB: Naive Bayes; Ori.: Orientation; RF:
Random Forest; Temp.: Temperature.

1. Enrollment – sensor data is collected over a period of
N days, usually with user prompts to ascertain labelled
data, and training a classifier to model user behaviour.

2. Authentication – occurs after the model is gener-
ated. Sensor data is collected over a time window –
hours, minutes or per sample – and used as input to
the classifier to produce the corresponding label.

In both stages, data is collected at predetermined intervals
of M samples at a rate of T milliseconds. Data is classified
directly or after a feature extraction stage. A model, pro-
duced from a classifier, may be retrained/reproducing after
certain intervals, i.e. transitioning periodically between the
authentication to enrollment stage, in order to address grad-
ual shifts in user behaviour over time, e.g. every 1-2 weeks
[16] or after each sample in real-time [15]. We summarise
the key attributes of related schemes in Table 1.

2.2 Problem Statement
The question of executing a CA scheme in a secure and

trustworthy fashion has not been addressed directly in re-
lated work. While attention has duly been given to scheme
accuracy, it has yet to be directed to the extended threats
faced ‘in the wild’, where operating systems, user applica-
tions and hardware vary significantly between users. A CA
scheme operator, such as a corporation altering access to re-
mote resources based on context, would be unwise to place
unreserved trust in users’ devices given the potential value
of assets at stake. The presence of mobile malware, along
with the prevalence of rooted/jailbroken devices, potential
application, OS and kernel bugs/exploits, provide a plethora
of attack vectors on a CA scheme in reality. The information

stored and used by such a scheme during execution may pro-
vide privacy-intrusive insights into users’ behavioural pat-
terns. As such, a secure architecture for CA schemes is nec-
essary that offers protection against these adversaries while
minimising deployment costs. Moreover, the high volume
of sensor data and the maintenance of a behavioural model
provide unique challenges over traditional biometric schemes
(discussed further in Section 3).

2.3 Threat Model
Current CA schemes aim generally to protect against the

following: a) a primary or second-line of defence against
a device thief who bypasses the initial lock-screen through
shoulder-surfing, successful guessing, or where no mecha-
nism is present, with the aim of accessing sensitive data; b) a
curious adversary, e.g. a co-worker, who accesses the device
to browse private content. In our work, this threat model is
expanded to incorporate adversaries present in a practical
deployment, and we specifically consider general software
threats that aim to influence or subvert the operation of the
scheme on the device. This can be the result of malicious
software (malware) installed accidentally or intentionally on
the device, or a software exploit at the application, platform
or kernel layers where a CA scheme might reside.

Explicitly, we aim to address a strong adversary with the
capability to perform one or more of the following: 1), the
CA code under execution may be modified arbitrarily, as
may the user model and authentication decisions, and 2),
model data may be eavesdropped during execution or ob-
served in storage. It follows that this model considers all
software components of a monolithic OS, such as Windows
or Android – the kernel, platform and application layers – to
be potentially compromised, i.e. the Rich Execution Envi-
ronment (REE) or Rich OS. We do, however, trust in a TEE
or SE (discussed next) that relies upon trusted hardware [7].

3. ARCHITECTURAL DESIGN
In accordance with the extended threat model, we explore

candidate architectures that offer the following properties:

• Integrity: a), Prohibits unauthorised modification of
authentication decisions and behavioural model, and
b), provides protection to unauthorised tampering of
CA scheme code, during and prior to execution.

• Confidentiality: a), Provides cryptographic protec-
tion against plaintext disclosure of the user model, e.g.
through secure storage; and b), prevents eavesdrop-
ping of sensor data during processing.

• Trust: a), A third-party should be able to attest the
authenticity of authentication decisions, thus provid-
ing confidence that they were produced in an integral
environment correctly. b) Cryptographic operations,
e.g. signing and verification, and key storage ought to
be performed by tamper-resistant hardware.

Moreover, candidates should also require little or, ideally,
no hardware changes to the device, while minimising soft-
ware modifications in order to maximise deployability.

3.1 Candidate Architectures
Secure execution is the ability to maintain confidentiality

and integrity of run-time states during code execution. Con-
ventionally, this leverages software isolation, e.g. through

hypervisors and virtualisation, and/or tamper-resistant hard-
ware, such as smart cards. Trusted execution includes exten-
sions for attesting to the state of executed code. A trusted
hardware entity, a Root of Trust (RoT), is typically used to
measure the state of the executing environment to determine
whether it is executing to expectations, as well as responding
to third-party requests for such data (remote attestation).
Some technologies, such as Intel’s Trusted eXecution Tech-
nology (TXT), rely on a Trusted Platform Module (TPM)
as the RoT, while ARM’s TrustZone uses secure ROM on
the SoC. We focus on candidates that offer trusted execu-
tion in order to protect the sensitive assets of a CA scheme –
authentication decisions, user model and sensor data – and
the code under execution. Two primitives are explored that
have received widespread attention and seen deployment on
consumer devices: Secure Elements (SEs) and Trusted Exe-
cution Environments (TEEs). The reliance on standardised
constructs minimises potential deployment overhead com-
mercially.

3.1.1 Secure Elements (SEs)
GlobalPlatform defines an SE as a “tamper-resistant com-

ponent which is used to provide the security, confidential-
ity and multiple application environment required to support
various business models” [6]. SEs exist in various forms –
SIMs, smartSDs, UICCs and discrete embedded SEs – and
offer hardware tamper-resistance for security-sensitive appli-
cations. A typical SE contains a cryptographic co-processor
and on-board storage (EEPROM) capable of hosting appli-
cations and data, such as payment credentials and finger-
print matching algorithms (used previously by Apple iOS
[1]). The storage and processing capabilities of SEs, how-
ever, are significantly restricted relative to TEEs and rich
OSs: modern commercial mobile SEs normally offer approxi-
mately 300MHz clock speeds and 1.5MB persistent storage3.

3.1.2 Trusted Execution Environments (TEEs)
According to GlobalPlatform, a TEE is an “execution en-

vironment that runs alongside but isolated from an REE...it
protects assets from general software attacks, defines rigid
safeguards as to data and functions that a program can ac-
cess, and resists a set of defined threats” [6]. Its precise
capabilities have been the subject of much debate [24], but
is generally considered to offer isolated execution enforced
by trusted hardware, and maintains strong resistance to
REE software attacks through the use of restricted APIs
and memory accesses. Example TEEs include ARM Trust-
Zone and Intel TXT and SGX. Unlike SEs, TEEs share ex-
ecution hardware, i.e. CPU and RAM, with the REE, and
its performance is considered to significantly exceed SEs [7].
The GlobalPlatform TEE specification, which governs many
TrustZone TEEs, stipulates a trusted OS and an arbitrary
number of Trusted Applications (TAs) that contain sensitive
data and logic, e.g. for payments and DRM, and commu-
nicates with the REE via a restricted monitor. The ‘right’
TEE architecture, however, is yet to reach consensus: SGX
spawns independent execution environments (‘enclaves’) on-
demand per application, while GP/TrustZone maintains a
single trusted world for all TAs. Regardless, all TEEs aim
to protect against general software attacks, but do not nec-
essarily offer strong protection against hardware attacks.

3See the Infineon SL97 and ST ST33J2M0.

Figure 2: Comparison of Rich OS, TEE and SE at-
tributes using GlobalPlatform definitions [7].

3.2 Discussion
The principle behind separating a CA scheme from the

Rich OS is to minimise the Trusted Computing Base (TCB)
– the set of hardware, software and firmware components
critical to maintaining the security of a system. Moreover,
monolithic OSs, such as Windows and Android, are gener-
ally too large in size to formally verify their security prop-
erties; TEEs and SEs, meanwhile, are significantly smaller
and more suitable for such analysis [24]. By relocating CA
schemes to a TEE or SE, the TCB is reduced largely to
that of the TEE/SE and the CA scheme’s application logic,
thus reducing the attack surface significantly. A TEE’s pre-
cise TCB depends primarily on the chosen platform, but for
widespread TEEs, such as TrustZone and SGX, the hard-
ware TCB generally comprises a trusted CPU chipset or
SoC. The software TCB of a TEE comprises the trusted
world containing a trusted OS, firmware and applications
(for GlobalPlatform and TrustZone), or a run-time module
and enclave logic for SGX [2]. Figure 3.2 compares a Rich
OS, TEE and SE in terms of cost, performance and security.

The performance benefits of TEEs make it attractive in
pursuit of our design goals, namely for computationally-
intensive applications like those requiring machine learning.
Our initial investigations using the GCU dataset [15] found
that, on average, sensor data surpassed 0.5MB per day per
user – far exceeding the memory capacity of commercial SEs
at the time of writing when over 3 days of data is used,
as per related work [9, 20]. TEEs are supported directly
by underlying device CPU/SoC, RAM and storage, offering
greater speed and capacity over SEs. Many TEEs, such as
Intel SGX, also offer native remote attestation, where third-
parties may attest to the integrity of the enclave application.
This property allows CA scheme operators to verify the state
of the application with a greater degree of trust.

A further consideration of SEs is that other application-
s/data, such as payment credentials and fingerprint images,
would reside simultaneously on one unit. While SEs are sig-
nificantly less powerful than TEEs, their primary benefit is
strong hardware tamper-resistance, thus making it an at-
tractive solution for key storage and auxiliary data small in
size. Note that TEEs and SEs are not mutually exclusive; it
is possible for a TEE to rely upon an SE, or indeed a TPM,
for certain operations such as cryptographic operations and
key storage, as noted in GlobalPlatform guidelines [7]. We
summarise the key properties of each architecture in Table
2, and compare this to a regular application running in user-
mode in the Rich OS (implicit in existing proposals).

4. IMPLEMENTATION
In light of the above discussion, we describe our test-bed

Table 2: Summary of Candidate Features.

Feature REE SE TEE

Isolated Execution 7 3 3
Performance Best Poor Good

HW Tamper-Resistance 7 3 3

Remote Attestation 7 7 3
Hardware TCB All SE MCU† CPU/SoC*
Software TCB Large Smallest Small

3 Limited and TEE-dependent.
† Microcontroller unit.
* Applicable for TrustZone and SGX.

Figure 3: Key CA attack surfaces; we propose using
a TEE to isolate and protect those areas in red.

implementation for evaluating TEE-based CA. Our system
uses the Intel SGX TEE along with implementations of three
learning algorithms for performing trusted CA on consumer
Intel CPUs, and we present the details and challenges of
implementing this on a commercial device.

4.1 Intel SGX
Intel SGX [12] is an extension to the x86-64 instruction

set that allows the establishment of isolated and protected
execution environments known as ‘enclaves’, while reducing
the hardware TCB to the CPU. Simply, SGX aims to de-
fend sensitive assets against general software attacks from
a compromised platform. The CPU strictly manages mem-
ory accesses to protected enclave code and data, stored in
the Enclave Page Cache (EPC) and managed by the En-
clave Page Cache Monitor (EPCM); this data may only be
accessed by code in enclave memory space. Enclaves may
read/write to memory in the Rich OS, but accessing en-
clave data from the Rich OS or other enclaves is forbidden
irrespective of CPU mode, i.e. kernel (ring 0), hypervisor
(-1), SMM (-2) or user mode (3). The CPU protects the
confidentiality, integrity and freshness of CPU-DRAM traf-
fic through the use of a proprietary hardware Memory En-
cryption Engine (MEE) using a CPU-bound key generated
at boot-time. Enclaves are inaccessible via regular stack
calls and jump instructions; switching between the environ-
ments is conducted via designated CPU-level instructions:
ECALLs are responsible for invoking enclave functions, while
OCALLs are used for calling untrusted world functions from
enclaves. During linking and compilation, an enclave and
its contents are measured and signed using a key known to
the developer(s), which is used to verify the structure and
content of the enclave. If altered maliciously, the resulting
mismatch is detected remote attestation using the Enhanced
Privacy ID (EPID) protocol – a Direct Anonymous Attes-
tation (DAA) scheme that uses a group signature scheme in

conjunction with a CPU-bound attestation key. SGX, how-
ever, like the GlobalPlatform TEE, does not defend against
logical flaws; design errors may expose an enclave-based ap-
plication to manipulation by an attacker. Unlike TrustZone
and the GlobalPlatform TEE (see Section 3.1.2), trusted
enclaves are spawned on-demand by applications wishing to
protect sensitive information; broadly, multiple TEEs are
maintained by the SGX run-time when required by host ap-
plications.

We implement three SGX-compatible learning algorithms:
Naive Bayes (NB), k-Nearest Neighbour (kNN) and Logistic
Regression (LR). This selection stems from related work and
the challenges described in Section 4.3, which necessitated
the development of bespoke algorithms, rather than employ-
ing incompatible third-party libraries. Subsequently, sim-
pler (but not necessarily less powerful) learning algorithms
were favoured to assure correctness. The nature of our im-
plementation guarantees that only two context switches be-
tween SGX and the Rich OS will occur: 1), to transfer raw
sensor data from the Rich OS to SGX; and 2), transferring
an acknowledgement message (after training) or an authen-
tication score (testing) from SGX to the Rich OS.

4.2 Test-bed Construction
The test-bed implements SGX-compatible versions of the

above algorithms and a simple API is exposed through which
application developers can train and test data in the TEE
from the Rich OS. All functions use purely ECALLs; no CA-
specific data is divulged to the Rich OS other than: 1), a
value indicating successful training, and 2), the authentica-
tion decision. The test-bed spawns a single enclave to test
each algorithm at a time and was implemented in C++ using
Microsoft Visual Studio and the Intel SGX SDK – we pro-
vide the source code freely (see Section 1). The Intel SGX
SDK allows the development of applications that instanti-
ate enclaves natively; we implement the training and testing
phases inside the enclave environment, which are managed
through a restricted API from the host application.

4.3 Challenges
Initially, we intended to use a smartphone which most CA

schemes have been evaluated upon, using ARM TrustZone as
our chosen TEE. Unfortunately, TrustZone trusted applica-
tions (TAs) require manufacturer certification – prompting
researchers to use development kits [17]. It is our opinion
that development boards do not truly reflect consumer de-
vices and system environments and, as such, we opt for Intel
SGX, available on most new Intel Skylake CPUs, which al-
lows us to evaluate on a commercially-available laptop: a
Lenovo Thinkpad T460s. Another motivation for SGX was
its close integration with Microsoft’s Visual Studio IDE and
its publicly-available documentation for developing enclaves.

Intel SGX, however, supports only a subset of C/C++
libraries. We found, for example, that includes such as
<regex>, <sstream> and <iostream> were either partially
or wholly unavailable. Intra-enclave thread creation is also
unsupported, along with rand and srand PRNGs, forcing
calls to the CPU’s hardware RNG via sgx_read_rand. Fun-
damental functions like printf also had to be redefined:
printing from enclaves involved a context switch to the Rich
OS through an OCALL. We planned originally to use a pop-
ular C++ machine learning library, such as Shark4, to pro-

4Shark Machine Learning: http//image.diku.dk/shark/

Table 3: Training Phase: Average Time Per User
(in milliseconds; S.D. given in brackets).
Method 1-Day 5-Days 14-Days 21-Days

NB 80.45 (16.07) 1040 (278.0) 3650 (606.6) 3534 (1362)
kNN, k = 3 64.50 (16.50) 655.2 (95.84) 2218 (227.2) 1978 (429.3)
kNN, k = 5 66.57 (15.09) 660.4 (76.80) 2278 (304.9) 1868 (315.9)
LR 2027 (26.11) 8843 (101.3) 12114 (421.8) 13018 (843.5)
SGX NB 3.652 (0.557) 20.29 (2.479) 55.49 (7.027) 57.19 (13.95)
SGX kNN, k = 3 2.005 (0.189) 11.46 (1.619) 30.74 (3.129) 25.97 (9.17)
SGX kNN, k = 5 1.938 (0.347) 11.74 (1.339) 31.13 (4.053) 30.21 (1.828)
SGX LR 15.68 (3.73) 90.30 (5.77) 139.65 (15.90) 120.12 (14.11)

vide algorithm implementations. Such tools, however, rely
heavily upon unavailable libraries, meaning bespoke, SGX-
compatible algorithms had to be developed for use within
enclaves. For complex learning algorithms, such as SVMs,
this is difficult while retaining correctness without expert
oversight. Popular SVM libraries typically have non-trivial
code bases (>5K lines of code for LibSVM). This issue was
less problematic for kNN, LR and NB – all relatively simpler
in nature – and we freely offer these in our test-bed for use
by the community.

5. EVALUATION
Our initial concern with TEE-based CA was the addi-

tional overhead incurred via the use and maintenance of a
TEE application, such as the additional memory checks, any
context switches (between enclave and non-enclave environ-
ments) and memory encryption performed by SGX. In this
section, we describe and present the results of TEE versus
non-TEE CA by performing an empirical comparison of key
functionality implemented in Section 4.

We employ the GCU dataset by Kayacik et al. [15], which
provides mobile sensor data collected from 7 users (staff and
students at a UK university) over a period of 2–14 weeks.
This data is sampled at a rate of 5 minutes, comprising
nearby WiFi access points, cell tower IDs and current ap-
plications running on the device. Optimal sampling rates
and window sizes depend entirely upon scheme and the per-
formance/security requirements of the scheme operator (this
trade-off is analysed in [20]). To avoid ambiguity, we use the
GCU dataset without re-sampling. Training set size also de-
pends on the requirements of the operator: more data/large
training sets will invariably imposes greater computational
demand on hardware, but has been shown to improve scheme
accuracy [16]. As such, we evaluate a set of training periods
discussed in related work, ranging from 1 day to 3 weeks [9,
20]. The following components are evaluated:

• Training: the performance of training each algorithm
using sets lasting 1, 5, 14 and 21 days, reflecting related
work and beyond. KNN is unique in having no dedi-
cated training phase, so we measure the time to load
necessary sensor data into internal data structures in
preparation for testing (implicit for NB and LR).

• Testing: the overhead of producing the authentica-
tion decision from a vector of sensor data. We measure
the time taken to classify one hour of sensor data using
all three of our implemented algorithms.

The round-trip time is measured between issuing the request
from the untrusted world and receiving the corresponding
result: an acknowledgement and authentication decision for

Table 4: Testing Phase: Average Time Per User (in
microseconds).
Method 1-Day 5-Days 14-Days 21-Days

NB 125.7 (5.936) 142.7 (8.712) 158.3 (40.33) 153.3 (35.64)
kNN, k = 3 458.4 (64.23) 2539 (319.0) 6554 (972.0) 5976 (1623)
kNN, k = 5 464.1 (55.69) 2481 (258.5) 6634 (998.9) 5949 (1803)
LR 95.2 (8.838) 102.8 (30.39) 112.9 (36.90) 113.5 (40.01)
SGX NB 14.28 (2.498) 14.17 (0.951) 12.86 (1.864) 14.67 (9.333)
SGX kNN, k = 3 100.4 (20.02) 584.7 (63.30) 1598 (231.6) 1481 (468.5)
SGX kNN, k = 5 100.8 (16.79) 590.6 (63.90) 1593 (197.8) 1452 (431.0)
SGX LR 8.876 (1.002) 9.405 (2.803) 9.384 (0.776) 9.523 (1.249)

training and testing respectively. We measure this using
the <chrono> library from C++11, which provides a high-
resolution clock with nanosecond precision. The anonymised
GCU data was converted to discrete integers and separated
into the training and test sets for each user using a Python
script. The training set represents the first 1, 5, 14 and
21 days of sensor data from each user, thus simulating an
enrollment period after purchasing the device. We measured
this for each user where possible: in total, all 7 users had
training data available for up to 14 days, while only 3 users
had over 21 days of data.

For training, we follow Li et al. [16] and randomly pair
each user with another to construct negative/positive valued
training sets. Here, the test user’s readings are considered
as legitimate (positive) values, while the paired user’s val-
ues are considered illegitimate (negative). Ideally, a classifier
should positively classify all data belonging to a legitimate
user, and negatively classify that from an illegitimate user.
For the testing/authentication phase, we measure the av-
erage time taken to classify a single feature vector. The
training sets comprise of all the readings after the authen-
tication date until the end of the file for each user, and the
average time is computed to classify each line/individual fea-
ture vector across all users. The evaluation was performed
using a consumer laptop – a Lenovo Thinkpad T460s with
an SGX-enabled Intel i5-6200U CPU (2.8GHz clock speed,
3MB cache) and 8GB DDR4 RAM (2133MHz) – using Mi-
crosoft Windows 10 as the deployment platform.

5.1 Results Discussion
We present our findings in Tables 3 and 4. As expected,

training times for Logistic Regression, Naive Bayes far ex-
ceed kNN, which requires no formal training procedure; NB
involves the computation of all prior and conditional proba-
bilities for the occurrence of feature vectors given their class
label, while LR minimises the least-squares cost function us-
ing gradient descent. We also expected kNN testing to far
exceed that of NB and LR, as it iterates all training set mem-
bers to find the closest k neighbours to the test vector. This
is compared with NB where, once priors and conditionals are
computed, computing the class is a series of multiplications,
which performs in near-constant time; LR simply computes
the logit function (Equation 1) for a given feature vector,
x, and learned parameters, θ. These trends are consistent
across all days worth of data.

The results of training and testing drop slightly between
14 and 21 days, which we found was due to the usage vari-
ance between users: while the dataset is sampled at 5-minute
intervals, this does not account for periods when the device
is disabled. Thusly, Figure 4 depicts the mean number of
samples captured per day for each participant. Only three

Figure 4: Mean samples per day per participant.

users had data lasting 21-days – users 1, 2 and 5 – consti-
tuting 198 samples per day per user on average, while, for
14 days, this rises to 245 samples per day. The differences in
sample ‘density’, due to the usage variance between users, is
arguably the cause for similar timings between 14-day and
21-day training and testing, and thus biased heavily by the
low size of User 1. Evidently, device usage is a significant
influence in determining CA training and testing times.

LRθ(x) =
1

1 + e−θT x
(1)

The surprising factor is the significant difference between
SGX and non-SGX performance. At first, we believed SGX
would incur some overhead, with the additional memory en-
forcement and context switching; yet, it exceeds the REE by
3–85 times depending on method. After investigation, while
SGX and non-SGX implementations were identical, enclave
applications are linked with Intel’s own C (sgx_tstdc.lib)
and C++ standard libraries (sgx_tstdcxx.lib), which, for
C, must be compulsorily linked to any SGX enclave appli-
cation. These libraries utilise optimised functions from Intel
Integrated Performance Primitives (IPP) [11]. This suite
offers parallelised, multi-threaded optimisations of standard
routines based on the most recent AVX and SSE instruction
sets, which “significantly increases performance”. Compara-
tively, the non-SGX portion uses the Microsoft Visual C++
standard library, with no such enhancements; we illustrate
this comparison in Figure 5.

Interestingly, training times benefit most, due likely to the
computationally intensive methods involved, e.g. prior and
conditional probabilities for NB. Further investigations re-
vealed that IPP does favour such arithmetical5 and string-
based6 operations strongly. The observed performance of
SGX, however, raises security concerns in itself: there is a
clear incentive for developers to move non-critical compo-
nents to enclaves if some perceived security benefits can be
gained with little performance overhead. This would dan-
gerously increase the TCB of the trusted application, which
may expose security-critical components to logical flaws or
programming bugs from non-security related code sections.
The essence of a secure application in any TEE is to min-
imise its TCB to that which is functionally necessary, and
the incentive to increase the TCB for performance gains may
undermine the application’s overall security in reality.

5https://software.intel.com/en-us/node/502094
6https://software.intel.com/en-us/node/501987

Figure 5: Non-SGX versus SGX speed-up averaged
across all training/testing times.

5.2 Limitations
Currently, our test-bed does not support CA approaches

using similarity or unsupervised learning, as per [15, 13].
Rather, we support multi-class supervised learning with ded-
icated enrollment and testing phases, as in [9, 21, 23], due
to the paradigm’s popularity. It is yet to be seen which
CA approach will emerge as the most usable and reliable,
but a logical progression would be to investigate similarity-
based approaches. Further, only three algorithms were im-
plemented as part of our test-bed – Naive Bayes, LR and
kNN – due to the difficulty of porting more intricate meth-
ods correctly, such as SVMs and Random Forests, without
expert oversight. Given the widespread deployment of SGX,
it is hoped that correct SGX implementations of complex
learning algorithms will emerge over time. We also focus on
only three modalities available to us in the GCU dataset:
acquiring data for CA is a non-trivial task, often requir-
ing users to carry devices for many weeks (or months) for
a realistic evaluation. Additional modalities would allow a
comparison for how trusted CA scales with input sources.
Lastly, our work is evaluated only on Intel SGX for x86-64;
testing other TEE architectures, such as ARM TrustZone,
would provide greater context for our work.

6. RELATED WORK
While trusted CA has not been addressed in the litera-

ture to our knowledge, work has been conducted in protect-
ing sensor values and computing authentication decisions
remotely. Liu et al. [18] propose an architecture offer-
ing confidential, integral and trusted sensor values using a
TPM-backed hypervisor for x86 platforms, and TrustZone
for ARM systems. In this work, trusted I/O is provided be-
tween sensors and the execution environments, and a trusted
GPS sensor is implemented that provides attestation of val-
ues and sealing (that is, protecting a secret by binding it to
a policy based on sensor readings).

Safa et al. [25] propose a scheme for computing authen-
tication decisions remotely from encrypted feature vectors
using homomorphic encryption. Here, an encrypted be-
havioural model is stored on a remote server and a decision
is computed from incoming feature vectors (also encrypted)
without revealing either to a potentially intrusive server. A
security proof is provided; the scheme is not implemented
or evaluated, however. This method of cloud-based authen-
tication also requires constant online connectivity between
the device and remote server, and does not consider device-

centric security issues, which we aim to tackle in this work.
Sedenka et al. [26] propose protocols for secure outsourc-

ing of biometrics using garbled circuits and homomorphic
encryption, which enables remote computation of decisions
under the honest-but-curious server and malicious client mod-
els. A security analysis is provided and the schemes are eval-
uated using a consumer laptop and smartphone. The results
suggest that outsourcing is possible, but not without a com-
munication and time penalty, ranging from 4–174MB and
0.85s–45.9s under varying conditions. As with the preced-
ing work, we consider security issues relating to on-device
execution, rather than outsourcing this to a remote party.

6.1 Future Research
As part of our ongoing work, we aim to investigate the

following avenues of research:

• Expanding our test-bed to other TEEs, such as AMD
PSP and ARM TrustZone, and providing a compara-
tive performance analysis of various environments.

• Evaluating trusted CA on varying device types, such
as wearables, and the associated performance penalty,
alongside any potential security limitations.

• Investigating the performance of further learning algo-
rithms, such as neural networks and Random Forests.

• Lastly, we plan to collect datasets from new users and
explore how trusted CA performance scales with more
input sources using additional sensor modalities.

7. CONCLUSION
In this work, we introduced the need for trusted execution

CA and broadened the existing threat model to incorporate
adversaries encountered in a real-world deployment. To this
end, we examined two standardised constructs for offering
greater trust and security provisions without compromis-
ing deployability – Secure Elements and Trusted Execution
Environments – and their suitability was analysed, along
with their features, advantages and disadvantages. Follow-
ing this, we proposed using a TEE to encapsulate sensi-
tive aspects of a CA scheme in order to address the ex-
tended threat model. We implemented and evaluated our
proposal in a test-bed environment using a commercially-
available TEE (Intel SGX) on an off-the-shelf consumer de-
vice. Three SGX-compatible learning algorithms – Naive
Bayes, Logistic Regression and k-Nearest Neighbour – were
implemented, and the performance of each was evaluated
using a publicly-available dataset comprising sensor data
from real-world users. Our results indicate that CA can
be performed in a commercially-deployed TEE (SGX) with-
out performance penalty, thus reducing the TCB to that
of the TEE, rather than trusting the Rich OS as implied
previously. Lastly, we ended with a results discussion, the
limitations of our research and future work directions.

8. ACKNOWLEDGMENTS
Carlton Shepherd is supported by the EPSRC and the

UK government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London
(KP/K035584/1). The authors also thank the reviewers for
their valuable comments in improving the paper.

9. REFERENCES
[1] Apple, Inc. iOS 9.3 Security Guide, 2016.

https://www.apple.com/business/docs/iOS Security
Guide.pdf.

[2] V. Costan and S. Devadas. Intel SGX Explained.
Technical report, Cryptology ePrint Archive, Report
2016/086, IACR, 2016.

[3] A. De Luca and J. Lindqvist. Is secure and usable
smartphone authentication asking too much?
Computer, 48(5):64–68, 2015.

[4] M. O. Derawi, C. Nickel, P. Bours, and C. Busch.
Unobtrusive user-authentication on mobile phones
using biometric gait recognition. In Proceedings of the
6th International Conference on Intelligent
Information Hiding and Multimedia Signal Processing,
pages 306–311. IEEE, 2010.

[5] M. Frank, R. Biedert, E.-D. Ma, I. Martinovic, and
D. Song. Touchalytics: On the applicability of
touchscreen input as a behavioral biometric for
continuous authentication. IEEE Transactions on
Information Forensics and Security, 8(1):136–148,
2013.

[6] GlobalPlatform. TEE Secure Element API v1.1, 2015.

[7] GlobalPlatform. Trusted Execution Environment
(TEE) Guide, 2016.

[8] M. Harbach, E. von Zezschwitz, A. Fichtner, A. D.
Luca, and M. Smith. It’s a Hard Lock Life: A Field
Study of Smartphone (Un)Locking Behavior and Risk
Perception. In Proceedings of the 10th Symposium On
Usable Privacy and Security, pages 213–230, Menlo
Park, CA, July 2014. USENIX Association.

[9] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley.
CASA: Context-aware Scalable Authentication. In
Proceedings of the 9th Symposium on Usable Privacy
and Security, pages 3:1–3:10, NY, USA, 2013. ACM.

[10] E. Hayashi, O. Riva, K. Strauss, A. Brush, and
S. Schechter. Goldilocks and the two mobile devices:
going beyond all-or-nothing access to a device’s
applications. In Proceedings of the 8th Symposium on
Usable Privacy and Security, page 2. ACM, 2012.

[11] Intel Inc. Integrated Performance Primitives, 2016.
https://software.intel.com/en-us/intel-ipp.

[12] Intel, Inc. Software Guard Extensions Evaluation SDK
for Windows OS, 2016. https://software.intel.com/en-
us/sgx-sdk/documentation.

[13] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit
authentication for mobile devices. In Proceedings of
the 4th USENIX conference on Hot Topics in Security,
pages 9–9. USENIX Association, 2009.

[14] N. Karapanos, C. Marforio, C. Soriente, and
S. Capkun. Sound-proof: usable two-factor
authentication based on ambient sound. In Proceedings
of the 24th USENIX Security Symposium, pages
483–498, 2015.

[15] H. G. Kayacik, M. Just, L. Baillie, D. Aspinall, and
N. Micallef. Data driven authentication: On the
effectiveness of user behaviour modelling with mobile
device sensors. arXiv preprint arXiv:1410.7743, 2014.

[16] L. Li, X. Zhao, and G. Xue. Unobservable
re-authentication for smartphones. In Proceedings of
the 20th Network and Distributed System Security
Symposium, 2013.

[17] W. Li, H. Li, H. Chen, and Y. Xia. AdAttester:
Secure Online Mobile Advertisement Attestation
Using TrustZone. In Proceedings of the 13th Annual
International Conference on Mobile Systems,
Applications, and Services, pages 75–88, USA, 2015.
ACM.

[18] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
abstractions for trusted sensors. In Proceedings of the
10th International Conference on Mobile Systems,
Applications and Services, pages 365–378, NY, USA,
2012. ACM.

[19] N. Micallef, M. Just, L. Baillie, M. Halvey, and H. G.
Kayacik. Why Aren’t Users Using Protection?
Investigating the Usability of Smartphone Locking. In
Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and
Services, pages 284–294, NY, USA, 2015. ACM.

[20] N. Micallef, H. G. Kayacik, M. Just, L. Baillie, and
D. Aspinall. Sensor use and usefulness: Trade-offs for
data-driven authentication on mobile devices. In IEEE
International Conference on Pervasive Computing and
Communications, pages 189–197. IEEE, 2015.

[21] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and
N. Asokan. ConXsense: Automated Context
Classification for Context-aware Access Control. In
Proceedings of the 9th Symposium on Information,
Computer and Communications Security, pages
293–304. ACM, 2014.

[22] F. Monrose and A. D. Rubin. Keystroke dynamics as
a biometric for authentication. Future Generation
Computer Systems, 16(4):351–359, 2000.

[23] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos.
Progressive authentication: deciding when to
authenticate on mobile phones. In Proceedings of the
21st USENIX Security Symposium, pages 301–316,
2012.

[24] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted
execution environment: What it is, and what it is not.
In Proceedings of the 14th IEEE International
Conference on Trust, Security and Privacy in
Computing and Communications, volume 1, pages
57–64. IEEE, 2015.

[25] N. A. Safa, R. Safavi-Naini, and S. F. Shahandashti.
Privacy-preserving implicit authentication. In ICT
Systems Security and Privacy Protection, pages
471–484. Springer Berlin Heidelberg, 2014.

[26] J. Sedenka, S. Govindarajan, P. Gasti, and K. S.
Balagani. Secure outsourced biometric authentication
with performance evaluation on smartphones. IEEE
Transactions on Information Forensics and Security,
10(2):384–396, 2015.

[27] W. Shi, F. Yang, Y. Jiang, F. Yang, and Y. Xiong.
Senguard: Passive user identification on smartphones
using multiple sensors. In Proceedings of the 7th
International Conference on Wireless and Mobile
Computing, Networking and Communications, pages
141–148. IEEE, 2011.

[28] F. Stajano. Pico: No more passwords! In Security
Protocols XIX, pages 49–81. Springer, 2011.

