
You Can’t Touch This: Consumer-Centric Android
Application Repackaging Detection

Iakovos Gurulian∗, Konstantinos Markantonakis, Lorenzo Cavallaro, Keith
Mayes

Information Security Group, Royal Holloway, University of London, Egham Hill, Egham,
Surrey TW20 0EX, United Kingdom

Abstract

Application repackaging is a widely used method for malware distribution,
revenue stealing and piracy. Repackaged applications are modified versions
of original applications, that can potentially target large audiences based on
the original application’s popularity. In this paper, we propose an approach
for detecting repackaged applications. Our approach takes advantage of the
attacker’s reluctance to significantly alter the elements that characterise an
application without notably impacting the application’s distribution. These
elements include the application’s name and icon. The detection is initiated
from the client side, prior to an application’s installation, making it applica-
tion store agnostic. Our experimental results show that detection based on
our algorithm is effective and efficient.

Keywords:
Android, application repackaging, user-centric security, user privacy,
effectiveness analysis, electronic fraud

1. Introduction

One of the major challenges for a malicious user is to get a malicious
application distributed to a substantial population of genuine users. On the
Android platform, 86% of all malware distribution relies on repackaged appli-
cations [22]. In the context of this paper, we define repackaged applications

∗Corresponding author
Email address: Iakovos.Gurulian.2014@live.rhul.ac.uk (Iakovos Gurulian)

Preprint submitted to Future Generation Computer Systems June 12, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/83926461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


as applications that impersonate a genuine application, by slight modifica-
tions/variations to the genuine application’s artwork and/or changes to its
source code in a way that the repackaged application looks and/or feels like
the genuine application. The main objective of a repackaged application
is to mimic a genuine application so it can target novice users that grav-
itate towards the popularity/functionality of the genuine application. In
this definition, we do not include applications that infringe the potential
intellectual property of the original application and present themselves as
unique/different applications.

Repackaged applications are a serious threat and are part of the OWASP’s
Top Ten Mobile Risks for 2014 [13], posing the first and only threat in the
list related to malware distribution. Many different methods for detection of
repackaged applications have been proposed, but most of them rely on the
application stores to perform the detection [8, 5, 21, 9, 19, 18, 6, 15] (Section
2.2).

In this paper we propose a method for detecting repackaged applications,
initiated on the client side, prior to an application’s installation. The target
application is being checked against a database of legitimate applications,
hosted by a trusted third party (TTP). If it does not exist in the database,
string and image similarity algorithms are used to detect original applications
with similar name and icon pairs (Section 3). These two elements characterise
an application prior to its installation. An attacker who wants to increase
the spreading rate of a repackaged application by taking advantage of the
already established popularity of an original application might not be likely
to alter these elements.

Our experimental results have shown that the proposed mechanism is
both effective and efficient in detecting repackaged applications (Section 5).
Furthermore, in comparison to existing methods, our proposal scored high
on a set of predefined criteria (Section 5.3).

The main contributions of this work are:

• Amethod for detecting repackaged applications, based on elements that
an attacker cannot significantly alter without substantially minimising
the attack potential. The method was designed to be fast and applica-
tion store agnostic, so that the detection process can be initiated from
the client side, prior to an installation.

• We were capable of detecting applications that only copy the name
and the icon of an original application in order to trick the users into

2



installing them. This is a known technique that attackers use [4], but to
our knowledge, we are the first to effectively detect such applications.

2. Application Repackaging

Android applications come in .apk containers (basically .zip files). These
containers include the application’s bytecode, resources and libraries, as well
as a folder (named META-INF) that holds the signature(s), generated by the
developer, on different elements of the respective application. An attacker
that repackages an application can modify its bytecode, alter its resources
and libraries, and then remove the META-INF folder and sign the application
with his/her own key.

Each Android application has a package name that is used by the operat-
ing system as the differentiator factor between applications. If an application
that is about to be installed shares the same package name with an already
installed one, Android will perceive it as an update attempt on the last. The
update process cannot continue, unless the signatures of the two applications
match.

2.1. Threats to the Android Ecosystem
The threats posed by application repackaging can be separated into those

concerning the application developer and those concerning the user.

2.1.1. Threats to the developer.
Developers are given the opportunity to gain financial profit through their

applications. Repackaged applications pose a threat to them in various ways.

• Unauthorised redistribution: An attacker can redistribute an applica-
tion, signed with his/her own signature and possibly sell it in an appli-
cation store, without the original developer’s permission.

• Advertisements: Potential revenue from an application might be redi-
rected to the attacker, as he/she might have altered the developer’s
account with his/her account, thus receiving the advertisement rev-
enue.

• Cracking (Piracy): Application repackaging might distribute pirated
copies of a genuine paid application, by bypassing any implemented
verification and validation mechanisms.

3



2.1.2. Threats to the user.
Repackaged applications that aim to harm the user can achieve their goal

in two different ways.

• Trojan horse: A repackaged application could act as a Trojan horse.
Malicious code can be implanted in the original application, capable of
intruding the platform’s security and the user’s privacy. For example,
repackaging an application that requires permissions to access the In-
ternet and the device’s storage can allow an attacker to steal the user’s
images.

• Denial of upgrade: A repackaged application will not be updated by a
genuine application’s update. Therefore, the user will not be able to
upgrade, once a repackaged application has been installed.

2.2. Related works
AndroGuard was proposed by Desnos and Gueguen [8]. Their proposal

is based on Control Flow Graphs, used to measure the similarity between
applications.

Crussell et al. proposedDNADroid that uses Program Dependency Graphs
to detect similar applications [5]. The authors claim that their system pro-
duces a low false positive rate. However, they accept that advanced obfus-
cation techniques can go undetected. To increase the system’s performance,
they only compare the application in question against applications with sim-
ilar names.

Zhou et al. used Fuzzy Hashing for repackaging detection [21]. This
method is based on generating a hash of the application by breaking it
down into small chunks and combining their hashes. They also remove string
operands that can easily be altered from the instructions prior to hashing,
in order to prevent common obfuscation techniques. They have created an
application called DroidMOSS. They state that although their system is very
robust, detection may fail if big chunks of code have been added to the orig-
inal application.

Another solution, proposed by Hanna et al., introduces the idea of Feature
Hashing for the detection of similar applications [9]. For this purpose, a tool
called Juxtapp was created, that according to the authors is resilient to some
amount of obfuscation.

Zhauniarovich et al. [19] proposed detection of repackaged applications
based on the contents of the .apk file. Their method showed results similar to

4



those of techniques that involve code analysis. SHA1 is used for the compar-
ison of all the files between different applications. A repackaged application
with slight changes on many files might go undetected. The authors propose
a combination of their method with code analysis in order to overcome this
issue.

A framework capable of measuring the obfuscation resilience of algorithms
used in repackaging detection programs was also proposed in 2013 by Huang
et al. [10]. Other researchers have also proposed methods for detection of
repackaged applications as well, or have investigated the subject [18, 6, 15].

Due to the computational complexity of the methods discussed above,
they are only meaningful on an application store level. For this reason,
Zhou et al. [20] proposed client side initiated repackaging detection, with
AppInk. Their method uses application watermarking in order to confirm
the authenticity of an application. In order to achieve that, a few additional
steps have to be taken by the developer in order to embed the watermark.

3. Proposed Solution

We propose a repackaging detection technique that takes advantage of
the attacker’s reluctance to significantly alter elements that characterise an
application, without substantially minimising the attack vector. The data
that characterises an application prior to its installation are its name and
icon. Since there is a high probability that little or no modification is likely
to have taken place on these elements of a repackaged application, image and
string comparison algorithms can be used in order to determine the poten-
tial original application by comparing them against a database of authentic
applications.

This technique is initiated from the client side, prior to the installation
of an application. Related data from the application is transferred to the
TTP’s server that maintains a database of original and trusted applications,
as well as a blacklist of malware and repackaged applications. Based on the
analysis, the TTP will either verify that the application in question is genuine,
or return a list of genuine applications it may be trying to masquerade.

In this work we assume that applications kept in the TTP’s database have
been sanitised and do not contain malicious code. We assume that developer-
application pairs in the database have been confirmed and no repackaged
applications exist. We are using applications from the Google Play Store
for the population of the trusted database. Studies have found that 1.2% of

5



all applications of the Play Store are repackaged [2], so it is reasonable to
consider it as relatively trusted for the purposes of this work. However, in a
real world scenario, building the TTP’s database is a challenging task, but
the construction methodology is out of the scope of this work.

3.1. Threat Model
The capabilities of an attacker for the scope of this paper are as follows:

• An attacker can access any legitimate Android application. This in-
cludes being able to decompile, modify, recompile, or copy and use
elements (including, but not limited to media files) of applications.

• An attacker cannot alter the name and the icon that characterise an
application to an extent, without going unnoticed by potential victims.

• An attacker can distribute applications from any channel, except the
Google Play Store. In the scope of this paper we consider the Google
Play Store as the trusted entity.

• An attacker cannot sign applications using the original developer’s sign-
ing key.

• An attacker cannot influence the TTP’s database.

• An attacker cannot forcefully install an application or have access to a
victim’s device.

3.2. Assumptions
• We assume that applications kept in the trusted party’s database have

gone through thorough analysis and do not contain malicious code.

• We assume that developer-application pairs in the database have been
confirmed and no repackaged applications exist.

The Google Play Store contains only a small amount of repackaged ap-
plications (1.2%) [2] and is considered as trusted for the purposes of this
research. Although detection details are not publicly available, the use of
repackaging detection mechanisms in combination with users being able to
report applications, aid towards building a safer ecosystem. This does not
degrade the importance of our proposed solution, since Android users are not
restricted to downloading applications from the Google Play Store, and the
solution is application store agnostic.

6



3.3. Requirements
The requirements that should be met in order to ensure the feasibility of

the proposed solution are the following:

• The process should be fast. A user who is installing an application is
not likely to wait for more than a few extra seconds for the process to
finish.

• Using a remote server to assist the detection process should use as little
bandwidth as possible.

• The detection process should not have a noticeable impact on the user
device’s performance. The method should be integrated to the package
installer and run prior to an application’s installation.

3.4. Proposed solution’s overview
A high level overview of the proposed solution would be as follows:

1. On the client side, when the user has selected to install an application,
prior to the initiation of the installation, data required for the detection
process is extracted from the .apk file and transferred to the TTP’s
server through a secure channel (using SSL).

2. The TTP’s server, after receiving the data from the device, processes
it and takes a decision whether the target application is safe, unknown
to its database, potentially repackaged, or repackaged/malicious. The
decision is then returned to the client.

3. According to the returned result, the client device will either continue
by installing the application without any warnings (in case it is classi-
fied as safe), or warn the user that it is unknown, or potentially mali-
cious. In case it is classified as potentially repackaged, a list of possible
original applications is also presented to the user, with links to safe
ways of obtaining them.

7



3.5. The detection process
The TTP’s server requires five elements for the detection process. These

elements are extracted from the target .apk file, on the client side, prior to
installation, and are transmitted to the server over a secure channel. The
five elements are:

1. The hash of the .apk container (referred as “signed .apk”). It is used to
speed up the process, in case the application being tested is legitimate
(exists in the trusted applications database).

2. The hash of the .apk container, excluding the META-INF folder (referred
as “unsigned .apk”). It is used to detect blacklisted applications, re-
gardless of the developer’s signature, or applications that are legitimate,
but have been signed with a different developer signature.

3. The hash of the developer’s signature. It is used to determine whether
a potentially repackaged application could be a version of a legitimate
application that is not maintained in the TTP’s database. In such case,
the application being tested and the potentially legitimate application
should be sharing the same developer signature.

4. The application’s name.

5. The application’s icon. In case the application being tested does not
exist in the trusted application database, the application name and
icon are used for detection of visually similar applications.

A pre-computed list of these elements for all trusted applications is stored
in the TTP’s database, against which the received data is checked. The
names and icons of older versions of an application are also kept, in case
they have changed.

Algorithm 1 explains the process followed by the server in order to check
the originality of an application. In the algorithm, the function blacklis-
ted(String unsignedHash) queries the blacklist database and returns true if
the input unsigned hash exists. This first step increases the overall per-
formance of the system by quickly detecting known malicious applications.
signedHashExists(String signedHash) and unsignedHashExists(String unsign-
edHash) query the trusted database for matches and return true if the signed
or unsigned application’s hash exist, respectively. The function getOriginal-
App(unsignedHash) returns the original application that is linked to that

8



Algorithm 1: Repackaged application check
Input: String signedHash, String unsignedHash, String appName, Image appIcon
/* Check the blacklist database for an unsigned hash match */

1 if blacklisted(unsignedHash) then
2 return getOriginalApp(unsignedHash)

/* Check the applications database for a signed hash match */
3 else if signedHashExists(signedHash) then
4 return applicationSafe()

/* Check the applications database for an unsigned hash match */
5 else if unsignedHashExists(unsignedHash) then
6 return getOriginalApp(unsignedHash)

/* Find similar applications based on their name and icon */
7 else
8 return getSimilarApps(appName, appIcon, devSignature)

hash, if such exists. applicationSafe() returns a code that denotes that the
application is legitimate. However, if no trusted application is found, getSim-
ilarApps(String name, Image icon, String devSignature) returns an array of
trusted applications that are similar to the input, based on their name and
icon. The detection process is described in Section 3.6. In case an applica-
tion does not exist in the database, but is found to be similar to another, it
may be an updated (or older) version. For this reason, the hashes of the de-
veloper signatures of the tested application are compared and if they match,
the server notifies that it may be a different version of a certain legitimate
application. A developer should use the same signatures for different versions
of an application, otherwise the operating system will refuse to complete the
update process.

The result is finally returned to the user’s device. If the application does
not exist in the database, but similar applications are detected, a list of
these is presented to the user. If the application is found to be legitimate,
the installation process will continue without any further warnings. If the
application is found to be blacklisted, signed with a different signature than
the original, or not found in the trusted database, the user is warned.

Many users might still choose to install pirated applications. Usually
no code modifications are required for an application to be pirated and can
be distributed without modifications, including modifications on the signa-
ture. Any application with signature or code modifications is treated as
non-trusted by the proposed solution. Threats from such applications have
been discussed in Section 2.1.

9



Table 1. Jaro-Winkler and Levenshtein distance top 10 results based on input “googl app
stoy”

Jaro-Winkler Levenshtein
Results Rank Similarity Rank Similarity

Google Play Store 1 0.904008 1 7
Google Earth 2 0.873016 3 8
Google Classroom 3 0.86756 2 8
Google Fit 4 0.866667 5 8
Google Sheets 5 0.864469 6 8
Google Docs 6 0.862284 4 8
Google Apps Device Policy 7 0.855801 - -
Google Translate 8 0.839782 - -
Google Slides 9 0.839744 - -
Google Goggles 10 0.83631 8 9
GoPro App - - 7 8
Google Finance - - 9 9
Hack App Data - - 10 9
Average query execution time∗ 3.1 seconds 6.8 seconds

∗Based on 50 executions of the query

3.6. Similarity detection
During the course of this work, well-known string and image similarity

methods were evaluated. For completion reasons we provide a comparison
and rationale behind the choice of the selected methods for our solution.

3.6.1. Name similarity.
For the name similarity detection, the Jaro-Winkler [16] method was

used. Previous work has shown that it is more accurate than other string
distance metrics for short strings, like names [3].

It was compared against the popular Levenshtein distance metric. The
results are presented in Table 1. The input string was checked against the
whole set of data stored in our trusted database. More information regarding
the construction of the database and the data sets that were used is provided
in Section 4.2. In the table, the Rank column demonstrates the order, while
the Similarity column contains the similarity between the input string and
the returned string, as calculated by the algorithms. The results that Jaro-
Winkler returned are perceptually more accurate and the performance of the
algorithm significantly better.

10



Original Added
line

Double
logo

Rotated Distort Noise Other
logo 1

Other
logo 2

Figure 1. Test set

Table 2. Image comparison methods

Haar Wavelet Histogram Binarised Icon’s Histogram
Original 100 100 100
Added line 57.49 61.55 100.00
Double logo 46.97 71.98 94.33
Rotated 15.72 88.84 99.99
Distort 89.70 53.48 99.97
Noise 47.15 38.81 91.68
Other logo 1 4.01 7.67 52.87
Other logo 2 8.52 0.70 99.81

3.6.2. Icon similarity.
Various methods for the icon similarity detection were tested. In contrast

with string similarity, image similarity detection algorithms are more com-
plicated and the accuracy of their results is highly dependent on the given
image set.

The state of the art in image recognition are training algorithms [7].
Since application icons in most occasions are drawings that do not frequently
change, training an algorithm can be extremely challenging, because the lack
of input data that is required. Therefore, a more applicable method for
tackling this problem had to be used.

Comparing the histograms of two images produced promising results dur-
ing our experiments. Colour similarity between the images and pHashes
(perceptual hashing) were also tested, but gave significantly worse results.
Finally, a method introduced by Jacobs et al. [11] was tested. Their method
uses Haar wavelet decomposition techniques in order to determine how many
significant wavelet coefficients the input image has in common with a target
image and therefore determine the amount of similarity.

The results of the image comparison between the original image and the
rest of the images shown in Figure 1, using the Haar wavelet and histogram

11



comparison methods are presented in Table 2. More experiments were con-
ducted, using different sets of images, that produced similar results in terms
of accuracy.

The histogram comparison was tested for binarised versions of the images
as well. The OpenCV1 library was used for the histogram comparison and
the Correlation Algorithm was used to calculate the distance between two
histograms. The Correlation Algorithm was chosen because it produced sig-
nificantly better results than the other histogram comparison algorithms that
OpenCV provides (Chi-Square, Intersection and Bhattacharyya distance).

The Haar Wavelet method was noticed to be more resistant to images
with added noise or distortion, while the histogram method could detect
rotated images better. Histogram comparison is also more likely to return
high similarity in cases where the target image has similar colours as the
original one, but a different pattern is depicted. This could possibly lead to
many false positives. Moreover, since application icons are relatively small,
it is more likely that added noise or distortion will go unnoticed, than ro-
tation. Therefore, the Haar Wavelet method was chosen to be used. More
efficient algorithms for image and string similarity that will further improve
our results may exist, but this is not the main focus of this work.

3.6.3. Application similarity metrics.
A user is more likely to trust (and consequently install) an application

in which he/she can recognise symbols that are familiar to him/her [14].
Therefore, the higher the resemblance, the more likely it is for an application
to get installed.

In our technique we used two similarity detection algorithms; name sim-
ilarity and icon similarity. These algorithms return their similarity score,
X and Y for the name and icon similarity respectively. To combine these
similarity scores and compute the overall similarity we used Equation 1.

Sima,b = 10
X × 10X + Y × 10Y

2
% (1)

where X is the similarity percentage between the name of application a and
b and Y is the similarity percentage between their icons, as returned from the
algorithms described in Sections 3.6.1 and 3.6.2, respectively. The proposed
equation weights the name and icon similarities in a way that high similarity

1OpenCV: http://opencv.org/

12

http://opencv.org/


in one of the two elements would have a significant impact on the overall
similarity. The same weight is given to the two similarity scores, which are
then averaged.

In order for two applications to be considered similar, the similarity score
returned by Equation 1 should exceed 40%. The threshold of 40% was chosen
because during our experimentation it was giving the most promising results
in terms of false-positive and false-negative rates.

4. Implementation

In order to test the effectiveness of the solution, two tools were built. An
Android application capable of extracting the required features from an .apk
file, and a server responsible for the repackaging detection process.

4.1. The Android application
The Android application takes as input an .apk file and extracts the re-

quired features, as described in Section 3.5. It first extracts the name, the
icon, the package name and calculates the hashes of the signatures that ex-
ist in the application. The name (since it may contain special characters)
and the icon are encoded using Base64 encoding in order to be transmitted
over the network. Finally, it decompresses the application to a new direc-
tory, removes the META-INF directory, compresses it again and calculates the
SHA256 of the signed and unsigned applications. The extracted data is being
sent to the detection server, using SSL in order to maintain the integrity and
confidentiality.

In our experiments, a mid-range Android smartphone was used, Samsung
Galaxy S5 mini (SM-G800F), running Android 4.4.2.

4.1.1. Challenges.
Ideally this mechanism should be built in the package manager process

or automatically run when an application is about to be installed. Due
to Android limitations, the previous is not possible without further system
modifications. A customised version of Android can integrate both, since
the package manager is part of the Android Open Source Project. Since
the integration of the solution to the operating system would not have any
impact on proving its robustness, a proof of concept application that takes
an .apk file as input and performs the whole process was built instead.

13



4.2. The server application
The server application was mainly written in Java, running on top of a

Tomcat server, version 7.0.57. The host machine was a laptop with 8GB of
RAM and an Intel Core i7-2620M CPU, running at 2.7GHz. The operating
system was Ubuntu 14.10, Desktop edition. The database software used in
the experiments was MySQL, version 5.5.41. It consisted of 3 tables.

A set of 2676 free applications were crawled from the Google Play Store
(referred to as ST ) and were added in our database, considered as authentic
and non-repackaged.

4.2.1. Application similarity
• Name similarity: The name similarity was performed in the database,

using an implementation of Jaro-Winkler written in SQL2, in order to
increase the performance. No further actions were taken in order to
optimise the code for performance.

• Icon similarity: It was developed in Perl, using the Image::Seek mod-
ule, which is capable of calculating image similarity based on the Haar
wavelet decomposition method. Coefficients of the decomposition of
the application icon in question are compared with pre-computed co-
efficients of trusted applications in the database.

5. Results and Evaluation

After the population of the trusted server with legitimate applications,
as described in Section 4.2, three experimental phases were conducted in
order to prove the robustness of the proposed solution. In the first two,
applications from the Drebin malicious dataset3 (SM) were used as input on
the client device. During the third phase, legitimate applications that exist
in the trusted database were used, in order to measure the performance of
the solution in this scenario.

In the first phase of the experiment, the accuracy of the proposed so-
lution was tested against applications with very high probability of being
repackaged. According to previous research [12], altering the package name

2Jaro-Winkler code: https://androidaddicted.wordpress.com/2010/06/01/
jaro-winkler-sql-code/

3Drebin dataset: http://user.informatik.uni-goettingen.de/~darp/drebin/

14

https://androidaddicted.wordpress.com/2010/06/01/jaro-winkler-sql-code/
https://androidaddicted.wordpress.com/2010/06/01/jaro-winkler-sql-code/
http://user.informatik.uni-goettingen.de/~darp/drebin/


Table 3. Experimental results

Set size True
positive

True
negative

False
positive

False
negative

Average
time/check

Phase 1 SF (227 apps) 203 3 2 19 3.42 seconds
Phase 2 SR(100 apps) 11 88 1 0 3.9 seconds
Phase 3 SL(50 apps) 50 0 0 0 0.6 seconds

of an application would lower its visibility in markets. Therefore, a set of
such applications can be generated by extracting applications from the set
SM , with package names that exist in the Play Store. 227 free (non-paid)
applications (SF ) were extracted and used in our experimentation.

In the second phase, 100 random applications (SR) were chosen from SM ,
excluding SF (SR ⊆ SM \ SF ), in order to further investigate the accuracy
of the solution with applications that are most likely not repackaged (false
positive). The main goal of this test was to measure the amount of non-
repackaged applications that would be detected as repackaged.

In the last phase, 50 representative legitimate applications (SL, where
SL ⊆ ST ) were randomly selected and tested in order to measure the perfor-
mance of the system when legitimate applications are being tested.

The first two phases of the experiments were analysed in terms of accuracy
and performance. Manual inspection of the applications in the sets was finally
performed in order to assess the quality of our results.

5.1. Results
Table 3 presents the results from the three experimental phases described

in the previous section. Average time/check refers to the average time re-
quired from the moment the device initiated the process, until it displayed the
results on the screen. Cases in which the original version of the repackaged
application being checked was included in the returned results were marked
as true positives. Returned results that did not include the original applica-
tion were marked as false positives. True negatives were considered cases in
which no results were returned from the server and no corresponding origi-
nal application existed. Finally, we marked as false negatives cases in which
no similar applications were returned and our trusted database included the
original application.

During the first phase of the experiment, 189 applications (83.3%) re-
turned exactly one result. 15 applications (6.6%) returned two results. One
application (0.4%) returned three results and the 22 remaining (9.7%) did

15



not return any result. The time required for the extraction of the features
from the .apk file on the device was approximately 0.18 seconds. Approx-
imately 2.6 seconds were spent on the application name comparison on the
server side. The time required for the image similarity detection was negli-
gible. The average application size was 2.1MB. A slight time overhead will
be added on the client side in case of larger applications, since the decom-
pression phase, as well as the computation of the hashes will take longer to
complete. This process only takes place once, prior to the applications instal-
lation though, causing a negligible impact on the overall operating system’s
performance.

During the second phase, 9 applications returned exactly one result. Two
returned two results and one returned four results. 3.5 seconds were required
for the server to take a decision, 3.2 of which were required for the string
similarity comparison. 0.14 seconds were required for the Android device in
order to extract the required data from the .apk file. The average application
size was 1.5MB.

Finally, during the third phase, only applications that already existed in
our database were tested. This phase was performed in order to calculate
the system’s performance in this occasion. 0.04 seconds were required by the
server for the detection process. Data extraction on the client required 0.3
seconds to complete and the average apk file size was 4MB.

The database that holds the Haar transformation norms and gets popu-
lated when new icons are added to the set of application icons, requires an
average (after 5 runs of the population script) of 1 minute and 7 seconds, for
a total of 2676 images. Therefore, 0.025 seconds for each new added icon.

5.2. Evaluation
The results from the performed experiments were evaluated.

5.2.1. First phase.
After manual analysis, both false positives detected in this phase were

found not to be repackaged applications of the applications with the same
package names in the Google Play Store. Both the package names were
simple (com.hotel and com.acid) and the existence of applications with the
same package name was most probably due to a coincidence.

Nineteen false negatives were also detected. Fifteen of them shared similar
icons with the corresponding original applications. Their application names
were in Chinese, in contrast with the original applications whose names are in

16



English. The measurement of the name similarity returned 0 and the amount
of the icon similarity was not enough to compensate. Since the samples in
SM were collected between 2010 and 2012 and the original corresponding
applications may have been updated numerous times since then, it is unclear
whether the application names of the original applications were in Chinese at
the time of capture, or the names of the repackaged applications have been
altered. The original application developers in all cases seem to be Chinese,
based on Play Store data.

The remaining four false negative results were returned by applications
that had a completely different icon than the original application, and a
different name. Again, it was not clear whether the attacker who performed
the repackaging altered the name and icon, or these were the name and icon
of the original application at the time of repackaging.

(a) Original (b) Repackaged

Figure 2. Netflix app icons

The remaining three applications that did
not return any results were not repackaged
versions of applications that exist in the
Google Play Store. They only shared the same
package names with Play Store applications.
Therefore, correctly, no results were returned.

Forty applications that were correctly
recognised had similar, but different icons
than the original ones in our database. For
example, a repackaged version of Netflix con-
tained the old application logo, which com-
pared to the new one has reverse colours,
different fonts, shadows and rounded corners
(Figure 2). Applications with resized icons between the original and the
repackaged version were not counted, since all icons get resized to 128x128
prior to the similarity detection.

Moreover, it was observed that in all occasions, when the server would
suggest more than one potentially original applications, the one with the
highest similarity to the application being tested was the correct suggestion.

5.2.2. Second phase.
During this phase, no false negatives were detected. There was one false

positive and 11 true positives.
The true positive results were not detected as repackaged when only look-

ing at the package name, that suggests that it might be a common practice for

17



attackers to alter it. Four applications were also detected to have a slightly
different icon than the original applications.

Finally, the false positive was caused by an application that had the
default icon that Eclipse IDE adds on newly created Android projects. A
total of 4 applications with this particular icon existed in our database and
were returned. It is a common practice for developers to change the default
icon.

5.2.3. Observations.
The proposed solution demonstrated its effectiveness in detecting repack-

aged applications (91.5% detectability, according to the results of the first
experimental phase). During our experiments we detected repackaged appli-
cations that were not using the original application’s source code, but only
its name and icon. These applications would probably have gone undetected
by countermeasures based on other methods, discussed in Section 2.2.

An application that is known to use this repackaging technique, disguising
itself as theGoogle Play Store [17], but using the icon of an older version of the
application and “googl app stoy” as the name, was successfully detected. Only
one result was returned by the server; the original Play Store. Although this
type of attack is not new [4], to the best of our knowledge, there has been no
prior solution capable of effectively detecting this kind of applications. More
applications like the previous were detected during our experiments.

The best example is a fraudulent application with the package name
net.android.app. Four variants of the application were found in the set
SF , using this package name. After manual inspection of the disassembled
code, we concluded that all variants share the same source code, which is ca-
pable of sending text messages to premium-rate numbers, without the user’s
authorisation.

The first version of the sample (based on that it was found in the first
chronologically ordered directory of SM), uses “brauzer” (Russian for “browser”)
as a name and the logo of Internet Explorer as an icon. Since no similar ap-
plications were included on the server, correctly, no similar applications were
returned.

The later variants of the sample used different names and icons. The first
two used “Skype” as their name and the original Skype icon. The last used
“Opera Mini” as its name and the Opera Mini browser’s icon. We believe
that this was a well thought move from the attackers side towards increasing
the distribution vector of the application.

18



Table 4. Comparison with previous works

Criteria DNADroid DroidMOSS AppInk Proposed
1. App store centric 3 3 7 3*
2. Download source agnostic 7 7 3 3
3. Client notification 7 7 3 3
4. Detects stolen branding 7 7 7 3
5. Detects stolen source code 3 3 7 7
6. Resilient to code obfuscation 7 7 3 3
7. Requires trusted sample 3 3 3 3

*Although the current implementation focuses on the client side, there are no restrictions for scanning an appli-
cation store using the proposed solution

None of the existing application repackaging detection methods should
be capable of detecting this kind of repackaging. Our results suggest that
it is not a common practice for attackers to alter the names and icons of
repackaged applications.

5.3. Comparison with previous works

Table 4 presents a comparison between our proposed solution and pop-
ular previous solutions, described in Section 2.2. A short description and
explanation is provided below:

Most of the previous works rely on the detection being performed on the
application store side (criterion 1). It has been noticed that many third-
party markets do not remove malicious applications, and in many occasions
the distribution of malicious applications and adware is being done inten-
tionally [12]. Since anyone with technical knowledge can potentially create
an application market, it is unsafe to rely on them for the detection and
removal of potentially harmful applications. Many are likely not to scan for
repackaged applications due to the computational cost and the lack of tech-
nical skills. Finally, there are dedicated websites and forums that distribute
Android applications. Scanning application market servers for malicious and
repackaged applications does not protect against applications that have been
downloaded from such sources. Our proposed solution was designed to be
able to initiate the detection process from the client side, making it applica-
tion download source agnostic (criterion 2), and notifying the user in order
to prevent the installation of a potentially repackaged application (criterion
3).

Another shortcoming of the previous techniques is that they are mostly
based on code analysis, or use features that are strongly linked with the

19



application’s code. Therefore, they would not be capable of detecting appli-
cations that claim to be legitimate applications by just imitating their name
and application icon, but using a completely different codebase (criterion
4), or when advanced obfuscation techniques have been applied. Solely in
2014, at least two samples were detected claiming to be the Google Play Store
application, none of which was using the original application’s source code
[1, 17]. Such solutions though may be able to detect whether an application
has stolen parts of the source code of another application (criterion 5).

Finally, all proposed solutions have to maintain samples of trusted appli-
cations (or some other trusted derivative), against which a tested application
is compared (criterion 6). A repackaged application cannot be detected by
any method, unless that method maintains the necessary information of the
authentic corresponding application.
6. Conclusion and Future Work

In this paper, we proposed a repackaging detection method that takes
advantage of the attacker’s inability to significantly modify the application’s
name and icon, while maintaining the attack vector. Therefore, an attacker
is not likely to perform such modifications. Our experimental results showed
that our initial argument was valid. We were capable of detecting the original
applications, given a repackaged application as an input.

Compared to previous work, our solution was found to be about as accu-
rate as application market level detection techniques, but capable of initialis-
ing the detection process from the client side, allowing for source independent
detection. Only a few kilobytes of data is required for the detection, which
adds a slight overhead only on the application installation process. More-
over, no special actions are required from the developer’s side. Finally, it is
capable of detecting a variation of repackaged applications that only share
the same name and icon with the original. As far as we know, it is the first
one of its kind.

Our solution can be expanded by further investigating string and im-
age similarity algorithms and techniques. A more in depth study can assist
towards the better selection of the threshold over which two applications
are considered similar, leading to even lower false-positive and false-negative
rates. Finally, code optimisations can further improve our solution’s perfor-
mance.

20



References

[1] Android FakeMarket Analysis. http://tinyurl.com/pwvam9w, 2014.
[accessed 24-March-2015].

[2] Loredana Botezatu. 1.2 Percent of Google Play Store is Thief-Ware,
Study Shows. http://tinyurl.com/kvf7xvc, 2013. [accessed 10-June-
2015].

[3] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg.
A Comparison of String Distance Metrics for Name-Matching Tasks.
In IJCAI-03 Workshop on Information Integration on the Web, pages
73–78, 2003.

[4] Peter Coogan. More fraudware headaches for the Android Marketplace.
http://tinyurl.com/o58dryj, 2012. [accessed 10-June-2015].

[5] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the Clones:
Detecting Cloned Applications on Android Markets. In Computer Se-
curity - ESORICS 2012, volume 7459 of LNCS, pages 37–54. Springer,
2012.

[6] Jonathan Crussell, Clint Gibler, and Hao Chen. AnDarwin: Scalable De-
tection of Semantically Similar Android Applications. In Computer Se-
curity - ESORICS 2013, volume 8134 of LNCS, pages 182–199. Springer,
2013.

[7] Ritendra Datta, Jia Li, and James Z. Wang. Content-based Image
Retrieval: Approaches and Trends of the New Age. In the 7th ACM
SIGMM International Workshop on Multimedia Information Retrieval,
pages 253–262, USA, 2005. ACM.

[8] Anthony Desnos and Geoffroy Gueguen. New "open source" step in
Android application analysis. PacSec Conference 2012, 2012.

[9] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: A Scalable System for Detecting Code Reuse
Among Android Applications. In the 9th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
DIMVA’12, pages 62–81, Berlin, Heidelberg, 2013. Springer.

21

http://tinyurl.com/pwvam9w
http://tinyurl.com/kvf7xvc
http://tinyurl.com/o58dryj


[10] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. A Frame-
work for Evaluating Mobile App Repackaging Detection Algorithms. In
Trust and Trustworthy Computing, volume 7904 of LNCS, pages 169–
186. Springer, 2013.

[11] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin. Fast Mul-
tiresolution Image Querying. In the 22nd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’95, pages 277–
286, USA, 1995. ACM.

[12] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Christian
Platzer, Stefano Zanero, and Sotiris Ioannidis. AndRadar: Fast Dis-
covery of Android Applications in Alternative Markets. In Detection
of Intrusions and Malware, and Vulnerability Assessment, LNCS, pages
51–71. Springer, 2014.

[13] OWASP. Projects/OWASP Mobile Security Project - Top Ten Mobile
Risks. http://tinyurl.com/pytw57n, 2014. [accessed 18-March-2015].

[14] Jens Riegelsberger. Trust in Mediated Interactions. PhD thesis, Univer-
sity College London, July 2005.

[15] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang.
Towards a Scalable Resource-driven Approach for Detecting Repackaged
Android Applications. In the 30th Annual Computer Security Applica-
tions Conference, USA, 2014. ACM.

[16] William E. Winkler. String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage. In the Section on
Survey Research, pages 354–359, 1990.

[17] Jinjian Zhai and Jimmy Su. What are you doing? - DSEncrypt Malware.
http://tinyurl.com/o2fuzzm, 2014. [accessed 24-March-2015].

[18] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng
Liu. ViewDroid: Towards Obfuscation-resilient Mobile Application
Repackaging Detection. In the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks, USA, 2014. ACM.

22

http://tinyurl.com/pytw57n
http://tinyurl.com/o2fuzzm


[19] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco
La Spina, and Ermanno Moser. FSquaDRA: Fast Detection of Repack-
aged Applications. In Data and Applications Security and Privacy
XXVIII, LNCS, pages 130–145. Springer, 2014.

[20] W Zhou, X Zhang, and Xuxian Jiang. AppInk: Watermarking Android
Apps for Repackaging Deterrence. Proceedings of the 8th ACM SIGSAC,
pages 1–12, 2013.

[21] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repack-
aged Smartphone Applications in Third-Party Android Marketplaces. In
the second ACM conference on Data and Application Security and Pri-
vacy - CODASPY ’12, pages 317–326, 2012.

[22] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Character-
ization and Evolution. In Security and Privacy, 2012 IEEE Symposium
on, pages 95–109, May 2012.

23



Iakovos Gurulian (BSc, MSc) received his BSc (Hons)
in Computer Science from University of Surrey in 2011
and his MSc in Information Security from University Col-
lege London in 2012. He is currently an Informa-
tion Security researcher at Royal Holloway, University
of London. His main research interests include smart-
device security, network security and user-centric secu-
rity.

Dr Konstantinos Markantonakis (B.Sc, M.Sc, MBA,
Ph.D) received his BSc (Hons) in Computer Science from Lan-
caster University in 1995, his MSc in Information Security in
1996, his PhD in 2000 and his MBA in International Manage-
ment in 2005 from Royal Holloway, University of London. He is
currently a Reader (Associate Professor) in the Information Se-
curity Group. His main research interests include smart card
security and applications, secure cryptographic protocol de-
sign, Public Key Infrastructures (PKI) and key management,

embedded system security, mobile phone operating systems/platform secu-
rity, NFC/RFID security, grouping proofs, electronic voting protocols. He
has published more than 130 papers in international conferences and journals.

Dr Lorenzo Cavallaro is a Senior Lecturer (roughly
equivalent to Associate Professor in the USA) of Information
Security in the Information Security Group (ISG) at Royal
Holloway University of London. His research focuses largely on
systems security. To this end, he has founded and is leading the
recently-established Systems Security Research Lab (S2Lab)
within the ISG, which focuses on devising novel techniques to
protect systems from a broad range of threats, including those
perpetrated by malicious software. In particular, Lorenzo’s lab

aims ultimately at building practical tools and provide security services to
the community at large.

24



Prof Keith Mayes B.Sc. Ph.D. (Bath) CEng FIET re-
ceived his BSc (Hons) in Electronic Engineering in 1983 and
a PhD degree in Digital Image Processing in 1987. He spent
much of his career working in industry for Pye TVT, Honey-
well, Racal and Vodafone, and today is the Director of the
Information Security Group and Smart Card Centre at Royal
Holloway University of London, as well as the Director of Crisp
Telecom Limited. He is an active researcher with 100+ pub-

lications and current interests include the design of secure protocols, mo-
bile/fixed communications systems and security tokens/NFC/RFID as well
as associated attacks/countermeasures. Keith is a Fellow of the Institution
of Engineering and Technology, a Founder Associate Member of the Institute
of Information Security Professionals, a Member of the Licensing Executives
Society and a member of the editorial board of the Journal of Theoretical
and Applied Electronic Commerce Research (JTAER). He has had director
experience with a London stock market listed company and an American
communications company. He led the expert team that carried out counter-
expertise work on the Ov-Chipkaart for the Dutch transport ministry, (fol-
lowing attacks on MIFARE Classic); and was recently the ESORICS2013
General Chair.

25


	Introduction
	Application Repackaging
	Threats to the Android Ecosystem
	Threats to the developer.
	Threats to the user.

	Related works

	Proposed Solution
	Threat Model
	Assumptions
	Requirements
	Proposed solution's overview
	The detection process
	Similarity detection
	Name similarity.
	Icon similarity.
	Application similarity metrics.


	Implementation
	The Android application
	Challenges.

	The server application
	Application similarity


	Results and Evaluation
	Results
	Evaluation
	First phase.
	Second phase.
	Observations.

	Comparison with previous works

	Conclusion and Future Work

