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Abstract 

 

As the stocks of fossil fuels are rapidly depleting the world has turned to other 

forms or electricity generation including nuclear power. The production of 

electricity via nuclear power already supplies a large amount of the world’s 

population and is becoming increasing more viable as the concern of global 

warming also becoming progressively more apparent. Thorium dioxide fuel has 

been widely researched and investigated as a potential replacement to uranium 

dioxide for many years as it has many advantages over the current uranium 

dioxide fuel. Due to the hazards of working with radioactive materials in the 

laboratory, computational work has become a popular method to complete initial 

predictions of the properties and characteristics of the fuel.  

A new potential model was developed for both the Th-O and the Gd-O 

interactions using two different derivation methods. In both cases the potential 

model included the shell model rather than the previously used rigid ion model; 

the shell model has been proven to be superior in modelling defects and defect 

interactions. Potential validation using bulk properties confirmed the robustness 

of the potentials and allowed confidence in taking them forward to investigate 

defects such as the introduction of fission products, surface simulations and 

molecular dynamic simulations.  

 Within this work the pure and mixed oxide fuels have been examined using 

various atomistic modelling codes including GULP, METADISE and DL_POLY to 

allow a robust understanding of the properties and features of the fuel.  
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1.1 Introduction 

The use of nuclear power to fulfil the world’s energy needs is becoming an 

increasingly viable option as the stocks of fossil fuels are rapidly depleting. The 

Hurst report [1] outlines a predicted timeframe for the dates of peak oil production 

and its expected terminal decline being much sooner than initially expected.  

Whilst the imminent depletion of fossil fuels is a major concern, the current most 

pressing issues are that of global emmissions produced in the generation of 

energy from the burning of these fossil fuels. Whilst the current oil and natural 

gas supplies are utilised, the production of CO2 emissions will continue to be a 

problem with the burden of global warming growing profoundly. The climate 

change act [2] published in 2008 establised the worlds first climate change target 

with the aim to reduce the UK’s greenhouse gas emissions by at least 80% by 

2050.  Therefore, alternative methods of fuel production must be investiagted. 

Many renewable sources of energy production have been explored such as solar, 

tidal and wind energy but their reliability upon uncontrollable variables makes 

them impractical and unreliable as a primary energy source [3]. Hydrogen fuel 

has posed many promising solutions including its decreased greenhouse gas 

production [4]. Unfortunately, hydrogen fuel continues to pose issues with storage 

and safety in addition to requiring energy to produce it by the hydrolysis of water. 

 

Nuclear power is considered to be a cleaner alternative to burning fossil fuels as 

no greenhouse gases are emitted directly from the fuel burning process. In 

addition, Sovacool et al. [5] investigated the release of greenhouse emissions 
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throughout the whole life cycle, including fuel uranium ore mining, fuel fabrication, 

isotopic enrichment, construction and operation of the fuel plant. The study found 

that even though there was a release of CO2 throughout the process, it was still 

considerably less than that released from burning fossil fuels. In fact, the only 

other process that produces less CO2 emissions than nuclear power is offshore 

wind farms.  

This leaves nuclear power as an extremely promising alternative to the world’s 

energy crisis with research into the nuclear power industry being plentiful since 

the 1950’s.  The nuclear energy institute [6] recorded 30 countries worldwide that 

are operating 444 nuclear reactors, with an additional 63 plants under 

construction. Figure 1 shows the percentage breakdown of the UK’s energy 

supply by different energy sources. 
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Figure 1: Breakdown of the UK’s electricity mix [7] 

 

 

Whilst nuclear power is already fully utilized in reactors around the world 

investigations into alternative nuclear fuels is ongoing.  This chapter summarises 

the basic principles of nuclear energy, the types of nuclear fuel including 

advantages and disadvantages of each and the production of fission materials 

within the fuel cycle itself.  
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1.2 Basic Principles of Nuclear Energy  

The splitting of atoms during nuclear fission releases large amounts of energy 

that nuclear reactors can then utilize in the generation of electricity. In fact, the 

current nuclear process for uranium produces 3.7 million times as much energy 

as burning the same amount of coal [8]. The basic principles of a nuclear reactor 

are that the energy released from the fission process is used to heat water in 

order to generate steam, which can then drive turbines and generate electrical 

power. A standard nuclear reactor will consist of the reactor core in which the 

fission process takes place. The core holds the nuclear fuel in tubes called fuel 

rods; each fuel rod contains around 400 ceramic fuel pellets surrounded by a 

metallic zircaloy cladding. These fuel rods are then arranged in an ordered 

assembly within the core. The process of fission is a rapid chain reaction that 

must be controlled at all times. In nuclear reactors this process is controlled by a 

number of procedures including control rods and a moderating material within the 

core. Control rods are made with a neutron absorbing material and can be 

inserted or withdrawn from the core as required. In some reactors, neutron 

absorbing materials such as gadolinium can be directly incorporated into the fuel 

pellets as a moderator to slow down neutrons and ensure fission. The energy 

released during the fission process can be transferred to a coolant material as 

heat energy. This coolant material, usually water, is circulated throughout the 

core. The reactor core is contained within a pressurised vessel separate to the 

rest of the reactor and the steam generator processes. The whole reactor is then 

held within a containment vessel that prevents contamination and protects the 
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outside world from any of the radiation released in any of the nuclear processes 

within the reactor.  

Thoria can be used in many different types of reactors and has been tried and 

tested in many existing reactors as well as newer prototypes. The type of fuel 

used varies between reactors; generation IV reactors such as the gas-cooled 

reactor (GCR), very high temperature reactor (VHTR) and molten salt reactors 

(MSR) can use a variety of fuel types such as molten thorium fluoride salts or 

solid thorium dioxide, whereas some reactors, such as pebble bed reactor, a type 

of VHTR, are only designed for the oxide of the fuel. The molten salt reactor offers 

many benefits compared to other reactor types; it can run at much higher 

temperatures, lower pressures and has high thermal to electrical conversion 

efficiency [9]. Molten salt reactors fuelled by thorium dioxide also produce less 

plutonium than with any other nuclear fuel. 

 

1.3 Introduction to Nuclear Fuels  

A nuclear fuel is a material that is able to sustain a fission chain reaction and 

therefore act as a source of nuclear energy. Commercial power plants that are in 

operation today rely on uranium and/or plutonium-uranium mixed fuel with U235 

being the principal fissile material. The uranium fuel does not only consist of U235, 

as U238 makes up the bulk of the material. It is this U238 that undergoes neutron 

capture to produce plutonium. Multiple isotopes of plutonium are produced in this 

neutron capture process, but it is Pu239 which contributes most heavily to the 

process and increases the amount of energy produced by the fuel. The 
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production of plutonium within the fuel seems to be a beneficial factor until the 

end of the fuel cycle when the spent nuclear fuel still contains a significant amount 

of plutonium and other actinides that are highly radioactive and difficult to store. 

The waste produced from the uranium fuel cycle is of growing concern as some 

of the waste materials, especially plutonium, can remain radioactive for 100,000 

years and can contribute significantly to weapon proliferation. 

Thorium dioxide, mixed plutonium-thorium and uranium-thorium nuclear fuels are 

an alternative to current uranium based fuels and have many beneficial factors 

over uranium, including percentage abundance and safety. Thorium has been 

investigated as an alternative nuclear fuel for many years [10, 11] with research 

being conducted since the late 1950s [12, 13]. India has been particularly 

interested in thorium fuel as it has around 25% of the world’s thorium reserves 

and in the three stage nuclear power programme [15] has already been 

researched and used extensively [13- 17]. 

As a fuel, thorium itself is not fissile; it requires a neutron source such as uranium 

or plutonium to begin the fuel cycle.  Once the naturally occurring Th232 has 

absorbed a neutron it forms Th233. This isotope of thorium then undergoes beta 

decay to eventually form U233. The isotopic uranium formed then undergoes 

fission itself to produce the heat energy required to generate electricity. Figure 

1.1 shows the full transmutation process described above.  
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Figure 1.1: Illustration of the thorium fuel cycle 

 

1.4 Benefits of the Thorium Fuel Cycle  

The thorium fuel cycle has received a vast amount of interest as it is considered 

to be much safer than that of the uranium cycle, specifically as it produces less 

waste actinides such as plutonium [17]. The natural thorium used is Th232 requires 

neutrons to begin the breeding process. Therefore, the natural thorium is 

combined with either uranium or plutonium to provide the initial neutrons needed. 

As discussed in section 1.2 the thorium isotope is converted to U233 upon capture 

of a neutron (shown in figure 3) and it is this U233 that is used as the energy 

generating fuel and as U233 is the main fuel , not U238, there is not as much Pu239 

produced. This significantly reduces storage issues and proliferation risks. The 
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presence of U233 produced within the cycle has also been thought to cause 

difficulty in the manufacture of weapons as it produces a significant gamma dose 

field.  

Apart from the production of less waste plutonium and other actinides, the thorium 

fuel cycle also has many other potential benefits in comparison with uranium. 

Naturally, thorium is four times more abundant in the Earth’s crust than uranium 

which means in many countries it can come as an easily exploitable resource. It 

also promises the long term sustainability of thorium fuelled nuclear power. 

Thorium dioxide is also more chemically stable than uranium dioxide and does 

not oxidise as easily. This means that any of the storage issues associated with 

the oxidation of uranium dioxide can be eliminated for the thorium dioxide fuel. 

The most important characteristic of a nuclear fuel is the amount of energy it 

releases; a fuel must release enough energy throughout the cycle for the whole 

make up to be economically viable. A way of measuring how much energy can 

potentially be generated is by measuring the emission of fission neutrons, Eta 

(η). The more fission neutrons produced per absorption of a thermal neutron the 

more heat energy released throughout the fuel cycle. In fact, the number of fission 

neutrons emitted per thermal neutron absorbed must be greater than one for a 

critical reactor and above two for a breeder reactor [18]. Table 1 shows the 

spectrum-averaged values for eta for the principle fuel types against temperature.  
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Temperature ( °c) U233 U235 Pu239 

20 2.284 2.065 2.035 

100 2.288 2.063 1.998 

200 2.291 2.060 1.947 

400 2.292 2.050 1.860 

600 2.292 2.042 1.811 

1000 2.292 2.033 1.770 

 

Table 1: Spectrum-averaged values of Eta (η) against temperature [18]. 

 

U233 is the principle fuel produced within the thorium fuel cycle and as table 1 

shows it is the best fuel for both critical and breeder reactors. 

Many of the advantages and disadvantages of uranium and uranium mixed fuels 

along with thorium and thorium mixed fuels have been discussed within a report 

published by the National Nuclear Laboratory [19]. The discussion includes 

resource availability, economics, radiotoxicity and reprocessing of the materials 

with conclusions that thorium has many more beneficial properties than uranium 

in the nuclear industry. 
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1.5 Waste Materials  

According to the world nuclear association [19], waste materials produced within 

a fuel cycle can be categorised as high, medium or low-level depending upon 

how much radiation they emit. Low-level waste products can be produced 

throughout all of the stages of the fuel cycle from fuel mining to fuel reprocessing. 

Medium-level waste products are produced during operation of the nuclear 

reactor and during fuel processing. The higher-level waste products however are 

those that cause the most concern and are contained within the spent fuel. These 

high-level materials emit alpha, beta and gamma radiation and include Pu238, 

U234, Np237 and Am241. The main issues with these waste materials is the long 

half-life making them difficult to store due to some of the elements having half 

lives of thousands of years. 

Figure 1.3 shows the yield of each fission product produced in the thorium fuel 

cycle by atomic weight. Fission products with the highest yield have an atomic 

number in the range of around 30-40 and 50-60. Elements in this range include 

strontium, barium, xenon and caesium. 

As well as emitting damaging radiation, some actinides produced within the fuel 

cycle such as gadolinium and xenon can act as fuel poisoners. Due to their high 

neutron absorption capacity, they can absorb neutrons within the fuel that are 

needed for the chain reaction to continue. This is of particular concern for thorium 

as it requires neutrons to form the U-233 fuel that is required. Although these 

materials are initially undesirable, they can also be inserted into the fuel as control 
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rods to help control the reaction; they can be used to slow down or stop the chain 

reaction. 

 

 

 

 

 

  Figure 1.2: Yields of various fission products produced in the thorium fuel 

cycle [20]. 
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1.6 Thesis summary  

The work within this thesis concentrates on the study of pure thorium and 

uranium/plutonium doped thorium for potential use as a nuclear fuel. Benefits and 

drawbacks of the thorium fuel cycle have been discussed throughout with the aid 

of multiple simulated studies of many of the properties of the pure and mixed fuel. 

I hope that the work carried out in this study will contribute to further fuel 

simulations and aid in the progress of thorium dioxide as a potential nuclear fuel. 

Chapter 1 presents an introduction to the theory of the thorium fuel cycle along.  

Chapter 2 explains the methodology used throughout the calculations including 

the programmes GULP, METADISE and DLPOLY. In chapter 3, I discuss any 

existing potentials that have been derived and their uses in modelling the 

materials along with a description of the potential derivation processes used 

within my research. Chapters 4, 5 and 6 are results chapters in which I have used 

the potentials derived to investigate properties of the fuel including defect 

properties, surface properties and physical and mechanical properties. 
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2.1 Introduction  

Computational chemistry is extremely versatile and has been proven to be 

successful in modelling a range of materials from biological pathways to the 

engineering of buildings [21, 22, 23] with studies of current and next generation 

nuclear fuels being plentiful [24-27]. One of the main benefits of computational 

simulations is the ease of use when considering safety; many of the materials 

studied using computational simulations are either radioactive or incredibly hard 

to handle in the laboratory due to the protective measures that must be taken. 

Computational simulations can also be used, for example, to predict properties 

of materials with half lives of thousands of years which cannot be done 

experimentally within a realistic timescale. Computational findings can also be 

used alongside experimental work to validate or enhance our understanding of 

experimental findings.  

Three different simulation codes are employed throughout this work; the general 

utility lattice program, GULP [28], is used for static lattice calculations including 

defect calculations. The surface code, METADISE [29], is used to simulate the 

surface of the material including the perfect and defective system. The molecular 

dynamics code, DL_POLY [30], is used to study the dynamics of the system in 

real time. The methodology for each of these codes is described, in turn, in this 

chapter.  

To be able to describe a model accurately all of the interactions between the ions 

within the crystal must be considered. The simulations carried out within this work 

are based on the Born model [31] of ionic crystals in which each crystal consists 
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of discrete ions. These ions will interact with each other via electrostatic 

attractions and it is these interactions that determine the energetics of the system; 

for example, the lattice energy (UL) of an ionic crystal is defined to be the energy 

required to form the ionic lattice from its gaseous ions from an infinite separation. 

 

2.2 Potential model  

The lattice energy of a system can be split into two interactions; the long range 

and short range interactions, shown in figure 2. 

 

𝑈𝐿∑=  ФSR  +   ФLR 

Figure 2: Lattice energy equation as a sum of the long and short range 

interaction. 

 

The interaction between the ions using this pair potential can be represented 

graphically (figure 2.5)  showing the potential energy of the system as the ions 

are at long distances (~6Ǻ) and as they approach each other until they are at very 

short distances (~1-2 Ǻ). 
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2.2.1 The long range interaction 

The long range interaction is the more dominant of the two interactions; in most 

ionic crystals it accounts for around 80% of the interactions. In simple terms it is 

the electrostatic interaction between two oppositely charged ions (i and j). The 

interaction will be attractive for two oppositely charged ions and repulsive for two 

ions of the same charge. This interaction can be represented by the equation 

shown in figure 2.1 which shows the charges of the ions qi and qj at a separation 

of rij. 

 

                              Ф𝐿𝑅(𝑟𝑖𝑗) =   
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
                     

Figure 2.1: Equation to represent the long range interaction between ions. 

 

The direct summation of the long range interaction gives slow convergence and 

is computationally expensive due to the reciprocal distance term 1
𝑟𝑖𝑗

. The Ewald 

approach [32] can be used to estimate the Columbic interactions in order to solve 

these issues by using reciprocal space to speed up convergence and therefore 

enhance simulation times.  

 

   



27 
 

2.2.2 The short range interaction 

The short range interactions combine a number of components such as the more 

important non-bonded interactions including that of electron cloud overlap, Van 

der Waals and Pauli repulsions. Electron polarisability is also considered within 

the short range interaction. A number of interatomic potentials describe the 

different forms of potential energy of a particular ionic or molecular system. The 

interatomic potentials are therefore categorized into how many particles are 

interacting within that system. Two body potentials include only the forces acting 

between two molecules or ions and can take many forms such as the Morse 

potential [33], the Lennard-Jones potential [34], Buckingham type [35] and the 

Born-Mayer potential [31]. The Buckingham and Born-Mayer type potentials are 

the most commonly used for ionic solids and are those used throughout this work. 

There are also three-body and mulit-body potentials but they are more suited to 

covalently bonded systems or systems that show strong covalent characteristics.  

 

∅𝑩𝒖𝒄𝒌𝒊𝒏𝒈𝒉𝒂𝒎(𝑟𝑖𝑗) =  𝐴𝑖𝑗 exp (−
𝑟𝑖𝑗

𝜌𝑖𝑗
) − 𝐶𝑖𝑗𝑟𝑖𝑗

−6 

Figure 2.2: An equation describing the short range interaction of ions where A, 

p and C are known as the potential parameters and they represent the 

interactions between the atoms.  
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The atomistic model combines these two expressions as shown in figure 2 and 

expressed in more detail in equation 2.3. 

 

 

 

Figure 2.3: The Buckingham potential. 

 

The Buckingham-4 potential, employed by Jackson et al [25], can also be used 

to describe ionic oxides as it can partition the analytical expression to avoid the 

unphysical attractive forces at very short distances by only applying the most 

appropriate terms over the relative distances. 

 

∅𝐵𝑢𝑐𝑘4(𝑟𝑖𝑗) =  

{
 
 

 
 𝐴𝑖𝑗𝑒𝑥𝑝 (−

𝑟𝑖𝑗

𝜌𝑖𝑗
)                  𝑖𝑓 𝑟𝑚𝑖𝑛 < 𝑟𝑖𝑗  ≤  𝑐𝑢𝑡1,

∑ 𝑎𝑚𝑟𝑖𝑗
𝑚5

𝑚=0                   𝑖𝑓 𝑐𝑢𝑡1  <  𝑟𝑖𝑗  ≤  𝑟𝑚𝑖𝑛𝑖𝑚𝑢𝑛,

∑ 𝑏𝑛𝑟𝑖𝑗
𝑛                        𝑖𝑓 𝑟𝑚𝑖𝑛𝑖𝑚𝑢𝑚  <  𝑟𝑖𝑗  ≤  𝑐𝑢𝑡2,

3
𝑛=𝑜

−
𝑐𝑖𝑗

𝑟𝑖𝑗
6                                         𝑖𝑓 𝑐𝑢𝑡2  <  𝑟𝑖𝑗  ≤  𝑟𝑚𝑎𝑥.

        

 

Figure 2.4: the Buckingham four-range potential. 
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The interactions embodied within the Buckingham four-range potential are 

illustrated in figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Plot showing the ranges in which the Buckingham four-range 

potential is applied. 

 

The short range and long range interactions can be illustrated graphically (shown 

in figure 2.6). The plot shows how the potential energy changes with atomic 
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distance for the short range and long range interactions. The two interactions can 

also be combined to form an overall sum which is defined as the lattice energy. 

 

 

 

Figure 2.6: A plot illustrating the short range repulsion, coulombic interaction 

and the total energy of the interactions combined.  
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2.3 The shell model 

In order to model the perfect and defected system correctly we must consider the 

polarizability of the atoms involved is considered. This is especially important 

when considering the effects of charged defects on the system.  

Previously the rigid ion model has been used which does not account for the 

polarizability of the system. Although the rigid ion model has been successful in 

modelling some properties of the material it has not been able to sufficiently 

model other important properties such as dielectric constants, defect properties 

and phonon frequencies.  

The shell model, derived by Dick and Overhauser [36], has been consistently 

successful in modelling the polarisability of many systems. The model considers 

the atom to consist of a massive charged core surrounded by a massless shell. 

The charge on the core is represented by X and the charge on the shell, Y. The 

shell and core are coupled together by a harmonic spring that has a force 

constant, k. Therefor the overall formal charge on the atom is represented by the 

charged on the core and the shell added together, X+Y.  

 

 

 

 

Figure 2.7: Representation of the shell model. 
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2.4 Static calculations  

The term ‘static’ is used to describe the conditions under which the simulations 

are carried out; the Collins dictionary defines the term static as something that 

does not move or change. In computational simulations static calculations do not 

account for lattice vibrations or most forms of lattice entropy. This is beneficial as 

the ions are then stationary so are able to represent unique lattice positions within 

the structure. 

 

2.4.1 Introduction to GULP 

The methodology applied within this investigation is the same as that used by 

Read and Jackson [25] and all of the calculations used were embodied within the 

GULP code. Previously discussed lattice energy minimisation methods were 

used throughout to obtain information about the structure and energy of the 

material when the atomic coordinates and lattice parameters are relaxed. This 

will represent the interactions with the total internal energy at zero Kelvin.  

The General Utility Lattice Programme (GULP) is a computational programme 

that was originally designed to derive interatomic potentials for various chemical 

systems. Today GULP is still widely used to derive interatomic potentials but has 

expanded significantly in its capabilities. The programme now has many 

applications including energy minimisation, structure manipulation and defect 

calculations. GULP has been widely used to investigate properties of a wide 
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range of materials from fuel cells and battery materials [37- 39] to nuclear 

materials [40]. 

 

2.4.2 Energy minimisation  

When simulating any material the structural parameters must be adjusted in the 

initial stages to give the lowest energy configuration.  This provides the most 

stable arrangement of the ions within the crystal and therefore the most stable 

structure. If calculations were not performed at this minimum the structure would 

be of higher energy and therefore much less stable. A number of minimisation 

algorithms are available but the most widely used ones are based on a gradient 

technique [41] in which the first derivatives of the energy functions of the 

structural parameters are used. The conjugant gradient method is a first-order 

algorithm that gradually changes the ionic coordinates of the system until a 

minimum is reached. This method takes a step approach towards the minimum 

point and can show oscillatory behaviour within the steepest descents but not 

within more narrow wells and therefore may not be able to find the lowest energy 

configuration. A more time consuming but more specific method is the Newton-

Raphson method. This is a second-order method in which the first and second 

derivative of the energy function is used which can provide more information 

about the shape and curvature of the function itself. In order to find the minimum 

energy configuration within the least computational time, a combination of both 

of these methods is used with the conjugant gradient method being first followed 

by the Newton-Raphson method. 
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2.4.3 Defect calculations  

Defects within any system will cause the surrounding system of the crystal to be 

disturbed. The disturbance is mainly due to coulombic interactions between the 

lattice ions and the defect. When investigating the effects of defects within a 

structure we must not only consider the defect itself but also the atoms that 

surround the defect. These surrounding atoms must be considered as they are 

included when the lattice relaxes around the defect. The Mott-Littleton method 

[42] employs the two region approach in which the material is separated into two 

parts; the inner region (region1) and the outer region (region 21 and 2b).  A 

schematic of this approach is shown in figure 2.8. 

 

Figure 2.8: Illustration of the Mott-Littleton method of modelling defects. 

Sourced from M.S.D.Read [25] 

Region 2a 

Region 2a 

Region 1 

Region 1 
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In the inner region (region 1) the atoms are strongly affected by the presence of 

a defect. The interactions between the ion pairs within region 1 are calculated 

using the specific interatomic potentials. It is important that the atoms within this 

region are relaxed until all of the atoms are at zero force; this causes the 

interactions between the atoms to become equal. 

The outer region is split into two sections; region 2a and region 2b. The affects in 

the outer region are relatively weak as it is a further distance from the defect; the 

atoms in section 2b are considered to interact with any net charge on the defect 

and are treated as a dielectric continuum. The atoms within region 2a are weakly 

affected by the defect, more than region 2b but less than those in region 1. The 

Mott-Littleton approximation can describe the polarisation that occurs within the 

outer region from the effects caused on the inner region.  

 

2.4.4 Mean field and supercell approach  

Performing simulations using a repeated single unit cell allows us to use the 

symmetry of the cell, space group and therefore the perfect crystal structure of 

the cell which will allow an in depth look at many properties of the system. 

However, the mean field approach can also prevent difficulties such as partial 

occupancy of lattice sites upon doping of the material. This may be advantageous 

for producing an average energy for different defects but is not suitable when 

calculating small percentages such as 1% doping. A way to overcome this is to 

generate a supercell; a supercell is a periodic repetition of unit cells.    
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The generation of a supercell will allow a single point defect to be modelled more 

accurately as each ion is treated as a single ion and there is no partial occupancy.  

 

 

                      Mean field                                                       Supercell 

 

 

 

 

 

 

 

 

 

Figure 2.9: Illustration of 25% plutonium doping in the ThO2 unit cell and 

supercell. 
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2.4.5 Free energy  

The GULP code allows free energy calculations to be made in which the free 

energy of the system is minimised at given temperatures. The free energy is 

calculated from a combination of properties including the lattice energy and the 

entropy, in combination to form the equation for Gibbs free energy.  This method 

is beneficial to use complimentary to MD simulations as it includes Gibbs free 

energy minimisation methods and takes into account factors that occur at lower 

temperatures such as zero point motions. These are factors that are ignored in 

high temperature MD simulations. Free energy calculations performed using the 

GULP code are viable to use as a starting point but must be treated with caution 

as the calculations can be sensitive to a number of factors; for example potentials 

with a short cut off distance can cause difficulties within the calculations due to 

the physical changes in structure or configuration that are produced by short cut 

off distances. The methods used within GULP to simulate free energy apply a 

quasi-harmonic-approximation [53] which assumes that the atoms within the 

system are vibrating purely harmonically.  
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2.5 Surface simulations 

2.5.1 Introduction  

The surface of a material is vital and essential area to study in order to gain an in 

depth look at the behaviour and characteristics of the material itself. Many of the 

reactions that take place happen on the surface and it is these reactions that 

account for many of the properties of the material itself. 

Previous bulk simulations carried out throughout this work can be utilised within 

surface calculations but only to a certain extent as there will be many differences. 

In reality surfaces are not perfectly uniform; they may contain ledges or steps and 

in order to get a more realistic idea of the characteristics of the surface we must 

study them as they truly exist.  

One of the first publications investigating surfaces was by Tasker et al in 1979 

[43] who studied the stability of some ionic crystal surfaces including rock salt 

and fluorite crystals. Over the years the simulations involving surfaces have 

become more advanced with some of the later studies detailing the effects of 

temperature, pressure and the introduction of defects on the surface and the 

resulting effects on structure as a whole. There are few codes available to 

simulate surfaces including METADISE and MARVIN [44]. 

All of the surface simulations within this study were carried out using METADISE. 

This code was originally published by Watson et al in 1996 [45] and has since 

then been used in many surface simulations for many different applications [46, 

47].  
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 The interatomic potential sets used within the atomistic simulations performed in 

GULP can be transferred to METADISE without the need for adaption.  

 

2.5.2 Perfect surfaces 

In order to obtain an in depth understanding of the surface of a material we must 

first study the perfect surface; that without defects due to foreign atoms, 

temperature or pressure. Modelling the surface of a material involves cutting the 

unit cell at the miller index of interest for the space group of the system. The cuts 

are then investigated further to find the valid repeating units of the specified index. 

Valid cuts are cuts that do not produce a polar surface, these are the most real 

life surfaces as they are the lowest energy and therefor most valid surfaces. Polar 

surfaces can also be studied using METADISE but for the purpose of this study 

only the non-polar surfaces were investigated.  

The surface unit is considered to be a stack of planes parallel to the surface that 

is periodic in two dimensions. This unit is then split into two regions. This 

approach is similar to the Mott-Littleton approach used in GULP in that the region 

surrounding the surface is split into two; region 1 and region 2. Region 2 is then 

split further into region 2a and 2b (see figure 2.10). Region 1 is the closest to the 

surface and is therefore relaxed explicitly. The sizes of the regions are modelled 

in such a way that none of the atoms in region 1 are affected by the atoms in 

region 2.  
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Block 1, region 1                                                                                    Surface 

 

Block 1, region 2 

  

 

 

 

Figure 2.10: Figure showing the surface unit with regions 1 and region 2. 

Region 2 is split further into region 2a and 2b. 

 

 

A surface is created when a cut is made at this surface that splits two blocks apart 

at an interface (shown in figure 2.11). 

 

 

 

Region 2 split further into                      

region 2a and 2b 
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Block 2, region 1 

 

Block 2, region 2 

 

Block 1, region 1 Interface 

 

Block 1, region 2  

 

 

 

Figure 2.11: Figure showing how a surface is formed when a block is cut at the 

interface at the end the second block region 2. 

 

Tasker et al [43] concluded that there are three types of surfaces (figure 2.12) 

that can be produced from making the cuts; each surface is considered as a stack 

of planes but it is the arrangement of the planes that determines the types of 

surface. Type I surface has planes that have alternating anions and cations and 

therefore no overall charge on the plane. The type II surface has stacked planes 

that are made up of the same charged particle and therefore each plane carries 
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a charge. The repeating unit of the planes overall, though, has no charge as the 

planes are stacked in a repeating symmetrical unit. Type I and II surfaces have 

no dipole perpendicular to the plane. Type III surface is the only surface that has 

a dipole perpendicular to the plane. The surface is arranged as alternating stacks 

of charged planes which cause an overall dipole at the surface. 

 

       Type I                                                                                 Type II 

 

 

 

 

                                                                     Type III 

Figure 2.12: the three types of surfaces determined by Tasker et al. Type I and 

II have an overall neutral charge and no dipole moment perpendicular to the 

surface. Type III has an arrangement that causes a dipole perpendicular to the 

surface. 
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Once a valid cut has been determined the surface is then relaxed using energy 

minimisation methods to obtain a variety of information including surface energies 

and attachment energies. This provides a suitable starting structure for further 

defect calculations. 

 

2.5.3 Surface energies 

Surface energy is the most vital component required when modelling a surface; 

the surface energy tells us the energy per unit area needed to transform a bulk 

region into a surface region.  The surface energy can be represented as the 

difference in energy between the bulk and the surface over the area of the surface 

as shown in figure 2.13. 

 

                     𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =  
Esurf   −    

1

2
Ebulk

A
                     

 

Figure 2.13: Equation to show the surface energy where A is the area of the 

surface area in question and Esurf and Ebulk are the energies of the regions. 
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The energy of the bulk is considered to be half that of the surface due to the 

number of atoms in the bulk being twice that of the surface. 

Surface energy is a kinetic quantity and can be calculated directly through 

METADISE calculations in the perfect surface.  A small, positive value indicates 

a stable and therefore favourable surface. One a surface energy is obtained it 

can be used to model a number of things including the morphology of the 

material.  

 

2.5.4 Attachment energy 

The attachment energy is defined as the energy released when a new layer of 

thickness is added to the surface. This method assumes bulk termination of the 

surface and is therefore not as reliable as the surface energy. The attachment 

energies can also be used to predict morphologies of the material that, although 

not entirely satisfactory, can back up the model when comparing to experimental 

values.  

 

2.5.5 Crystal morphology 

The morphology of a system is one of the surface simulations that can be 

compared to experimental work. It predicts the structure of the material in terms 

of surface coverage with the lowest energy indexes dominating the structure. The 

morphology can be simulated using the calculated surface energies or the 
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attachment energies. The surface energies will provide a structure with the 

highest percentage of coverage coming from that of the lowest energy index. The 

attachment energies will predict a structure with the highest percentage coverage 

with the index with the lowest attachment energy and therefore easiest surface 

to add to. 

Wulf  [48] and Gibbs [49] also worked on the theory that the morphology of a 

system was directly related to the lowest energy surfaces and this theory has 

been used successfully in predicting the morphology of many materials for many 

applications [50-52].  

 

2.5.6 Defective systems 

The method of the incorporation of defects into a crystal surface is similar to the 

two-region approach taken when simulating bulk properties (see section 2.4.3). 

The defects must first be introduced into the surface of the material and defect 

energies calculated. Segregation of the defect to the surface of the bulk can then 

be determined by comparing the defect energy at the surface to that of the bulk.  
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2.6 Molecular dynamics simulations 

 

2.6.1 Introduction  

The simulations described so far have been sufficient in modelling the materials 

at zero Kelvin but have not yet been able to accurately model any significant 

temperature effects. Modelling the effects on the material under high 

temperatures is essential when looking at what goes on within the reactor core; 

the fuel will be exposed to temperatures above 1000°c and we must understand 

how this will affect the characteristics of the material. The molecular dynamics 

technique embodies within the DL_POLY code calculates the forces between the 

ions within the crystal and allows the computational progression of the motion of 

these ions to be simulated. Molecular dynamics simulations can provide a 

detailed illustration of the how the system evolves over time under a variety of 

different conditions. 

 

2.6.2 Molecular dynamics methodology  

Molecular dynamics techniques rely upon a robust potential model that is able to 

be taken forward into more complex mechanical calculations. This will allow 

details of the thermodynamics of the system to be modelled when exclusive 

temperature affects are applied. The molecular dynamics technique introduces a 

kinetic term as well as a potential term which allows the simulation of ion motion 

and temperature effects. Within the programme Newton’s equations of motion 
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are essentially integrated to provide successive configurations of the system. The 

resulting positions and velocities of the system can then be identified at various 

time intervals.  

At the start of any calculation a time step, ΔT, is specified, This time step must 

be smaller than any time step of an important process within the system for 

example, a femtosecond (10-15 seconds). The interatomic potentials are then 

used to calculate the force F1, acting on a particle of mass m1, in order to generate 

a value for the position X1 and velocity V1 at each time step thereafter. Figure 

2.14 show how these values are calculated. 

 

                   𝑥1(𝑡 +  𝛥𝑡) = 𝑥1(𝑡) +  𝑣1(𝑡)𝛥𝑡 

𝑣1(𝑡 +   𝛥𝑡
′) =  𝑣1(𝑡) + 

𝐹1
𝑚1

(𝑡)𝛥𝑡 

 

Figure 2.14: Equations used to calculate the velocity of a particle in molecular 

dynamics simulations. 

 

Initial ion positions, X1, are those used in the static simulations formulated from 

the crystal data. The initial ion velocities are obtained by random selection from 

a Maxwell-Boltzmann distribution at the temperature required. The Maxwell-



48 
 

Boltzmann distribution will provide a probability of an ion having a certain velocity 

in the direction X at a temperature T. 

Equilibration time is the time needed at the start of any MD simulation for the 

system to reach a thermodynamic equilibrium state. It is vital that the system 

reaches this equilibrium before any calculations begin. The equilibrium stage is 

normally assigned a time step of up to 10 picoseconds depending up on the 

individual simulation. Following the equilibrium stage the simulation can take 

place, usually in time periods of 1 nanosecond. As the simulation proceeds the 

positions and velocities of the ions are updated for each time step where the 

interactions of the ions with each other can be integrated to provide the total force 

upon that ion. The accelerations of the ions are then calculated from these force 

values and combined with the position and velocity of that ion at each time step.  

 

2.6.3 Periodic boundary conditions 

Employing the correct boundary conditions allows us to investigate the 

macroscopic properties of a material only using a small number of ions. This has 

many benefits with the main one being computational time. The application of 

periodic boundary conditions to a supercell creates an unbound system and 

eliminates any surface effects. It also ensures that the number of ions within the 

simulation box stays constant by replacing any ions that leave the box with an 

identical ion with the same trajectory. An illustration of the period boundary 

conditions applied is shown in figure 2.15. 
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Figure 2.15: Illustration of the periodic boundary conditions within an MD 

simulation. 

 

Molecular dynamics simulations can be carried out under a number of ensembles 

[54-57]. Ensembles state the conditions of the simulation and tend to consist of 

three components. The most commonly or traditional is the NVE ensemble in 

which the number of ion, N, the volume of the system, V, and the energy of the 

system are all constant. If the energy of the system is not kept constant then there 

can be an exchange of energy between the system and its surroundings which 

may or may not be beneficial depending upon the calculation. There are a number 

of other ensembles that can be used including NPT [55], NVT, NST ensembles 

where T represents temperature, S represents entropy and P represents 

pressure. 
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2.6.4 Shell model molecular dynamics  

Incorporation of polarisability into molecular dynamics simulations is done 

through the dynamic shell model, a method originally derived by Fincham et al 

[58]. The abiabatic shell model is encoded within the DL-POLY code and works 

on the principles of assigning a fraction of the atomic mass (x) to the shell in order 

to permit a dynamical description of the overall ion. In a similar way to the shell 

model mentioned in section 2.3, the ion consists of a core and shell that are 

connected by a harmonic spring. However, in this method careful consideration 

must be made with regards to the partitioning of the core and shell; the frequency 

of the harmonic spring must be above that of the frequency of vibration of the 

whole ion. This is essential for the core-shell unit to maintain a constant state of 

net polarisation.  

 

2.6.5 Information from molecular dynamics  

A vast amount of useful information about a material can be obtained from a 

molecular dynamics simulation as it allows the generation of detailed 

configurations and dynamics of a system to be connected with time. Two of the 

most valuable properties however are radial distribution function (RDF) and mean 

square displacements (MSD). The radial distribution function describes how 

atoms or ions within a system are packed around each other; the probability of 

finding the centre of a particle a given distance away from the centre of another 

particle is calculated and a radial average is generated. For a perfect crystalline 

solid, the RDF plot will have sharp well defined peaks as the atoms are fixed in 
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their lattice positions. Liquids do no have this ordered fixation of lattice positions 

and therefore the RDF has more broad undefined peaks. As the structure of the 

material changes through various conditions such as high temperatures or doping 

for example, the RDF plots will also change. Mean square displacement is a 

measure of how the position of a particle deviates from a reference position over 

time. In a perfect lattice a particle will oscillate about its lattice position allowing a 

mean MSD value to be found. Defective systems however can show the 

movement of particles away from the reference positon; sometimes particles may 

migrate throughout the lattice resulting in the value of the MSD increasing over 

time.  
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3.1 Thorium Dioxide Interatomic Potentials 

3.1.1 Introduction  

Within this section, two potential derivation methods are described. Method 1 is 

that derived and previously used by Read et al. to derive potentials for both UO2 

[25] and PuO2 [59]. The method uses available experimental data do derive an 

initial solution set that fits to crystal data. The solution set is then taken forward 

and fit to elastic constants and then dielectric properties. This method will be used 

to developed a Th-O potential. Method 2 is a Monte-Carlo type python code that 

was derived by the Read group. It also fits to available experimental data but uses 

a weighting least square fit to different factors that can be specified by the user. 

These factors can include crystal data such as lattice constants or bulk properties 

such as bulk modulus or elastic constants. This method will be used to derive a 

Gd-O potential.  

 

3.1.2 Literature review  

Computational and experimental studies of thorium dioxide have been plentiful 

since the 1950s with studies including crystal properties such as lattice 

parameters and lattice energies, elastic properties including bulk modulus and 

elastic constants and also studies as to how the material will react under 

pressure, temperature and radiation using XRD, neutron diffraction and many 

other techniques. 
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Within this section, literature that has simulated the ThO2 structure 

computationally has been considered. Interatomic potential parameters 

describing the Th-O interaction that have been derived from the literature are 

listed in Table 1.2 and potentials derived from existing UO2 potentials are listed 

in Table 1.3. 

One of the first papers to evaluate the interatomic potentials of the ThO2 model 

was by Benson et al. [60], where the rigid ion model was used to derive a set of 

interatomic potentials to calculate properties including elastic, cohesive and 

surface energies. As is the case with Mackrodt et al. [61] and Colbourn at al. [62], 

who also studied ThO2 computationally, derived interatomic potentials but no 

potentials were published within the literature. Mackrodt et al. also used the rigid 

ion model to derive potentials for a number of crystals including ThO2, MnO and 

NaCl, which were then used to investigate the lattice constants, cohesive 

energies and also energies for the given materials. Colbourn et al. used their 

derived potentials to study the defect structures within thorium dioxide 

extensively, providing useful figures including lattice energies, defect energies 

and elastic constants. They also doped the ThO2 crystal with different ions such 

as magnesium and barium to look at how these defects effect ion conductivity.  

Many authors used the shell model to represent their materials including Clausen 

et al. [63] and Nadeem at al. [64]. Clausen used elastic neutron scattering to 

determine phonon energy dispersions of both ThO2 and CeO2 and then used this 

experimental data to construct a set of potential parameters for each of the 

materials. Both the shell model and the rigid ion models were used to simulate 

the crystal.  The parameters were published within the paper in the form of 
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Elcombe and Pryor [65]. The authors found that for ThO2, the rigid ion model gave 

only a reasonable fit for the parameters and the best fit was obtained using the 

shell model. Nadeem et al. aimed to derive interatomic potential’s for binary 

oxides including ThO2, SnO2 and ZrO2, and test the reliability of the potentials by 

comparing calculated defect energies and crystal properties with experimental 

data.  

Other methods have also been used to study the interatomic potentials of ThO2 

including molecular dynamics; Osaka et al. [66] investigated gadolinium-doped 

thoria using MD simulations. The authors derived their own interatomic potentials 

for the thorium and gadolinium that included a set of Morse potentials. Changes 

in the lattice parameter of the crystal were considered with changes in gadolinium 

concentration and various temperature ranges. Oxygen diffusion coefficients 

were also investigated within the doped material. 

H. Y. Xiao et al. [67] studied ThO2 along with CeO2 and ZrO2 from an ab initio 

molecular dynamic perspective. This research studied the behaviour of the 

materials under low energy recoil events and determined a number of properties 

including threshold displacement energies and defect configurations. 

 The most recent paper to investigate ThO2 potentials using molecular dynamics 

is by Martin et al. [68], where Th-O and O-O Buckingham potentials from Catlow 

et al. [69] were used to investigate pure thoria and uranium doped thoria. They 

investigated properties such as thermal expansion and heat capacity. Cywinski 

et al. also studied thorium using molecular dynamics to investigate the rate of 

conversion of fertile thorium to fissile uranium in different fuel rod geometries [70].  
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One of the most informative papers related to derived Th-O potentials is the 

review paper by Bahera et al. [71] which discusses two sets of existing thoria 

potentials [14, 66] and potentials derived from a number of UO2 oxygen 

potentials, including those determined by Tharmalingham [72] and Walker [73]. 

The authors develop and discuss potentials they derived using the rigid ion 

model. The review paper aims to compare the potentials by comparing them 

directly with each other, as well as experimental data. Potentials are listed within 

the literature along with properties such as bulk modulus, elastic constants and 

defect energies. Literature that has provided some information about calculations 

from their own potentials may not have listed all the properties required for the in 

depth comparison of this paper, such as defect energies of elastic properties for 

example, so the authors have calculated them using the potentials given. The 

experimental papers used as a comparison range significantly in their year of 

publication; the literature used for the cell parameters is from 1956 (S.M. Lang 

[74]) when there are many other papers that have published cell parameters more 

recently such as Idiri et al [75]. Experimental literature used as comparisons for 

this paper and also other computational papers have been considered within this 

review. 
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Potentials Nadeem [15] Osaka [66] Martin [68] 

Charge 

Th core 4.64 2.4 4 

Th shel -0.64 / / 

O core 0.513 -1.2 -2 

O shell -2.513 0.0 0.0 

O-O Buckingham 

A /eV 25.41 2346.1488 22764.0 

Ρ /Å 0.6937 0.32 0.149 

C /eV Å6 32.32 17.33936 27.88 

D /eV Å8 0.0 0.0 0.0 

Th-O Buckingham 

A /eV 8638.5 61.4295 1144.6 

Ρ /Å 0.2856 0.57 0.3949 

C /eV Å6 70.0 0.0 0.0 

D /eV Å8 0.0 0.0 0.0 

Th-Th Buckingham 

A /eV 0.0 17.0261 0.0 

Ρ /Å 0.0 0.82 0.0 

C /eV Å6 0.0 0.0 0.0 

D /eV Å8 0.0 0.0 0.0 

Th-O Morse 

D /eV 0.0 1.215 0.0 

Bij /Å-1 0.0 1.9 0.0 

r*ij /Å 0.0 2.36 0.0 

 

Table 1.2: Interatomic potentials derived for ThO2. 

 

It must be noted that within the above table of potentials the cation-cation 

interactions are only predicted for use in molecular dynamics simulations. They 

are not needed for static calculations as there is no chance of an interaction 
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between neighbouring cations.  This implies that the authors intend to use the 

potentials for more detailed calculations; only Osaka [66] and Basak [76] quote 

Morse potentials and both of these papers are molecular dynamic simulations. 

They both study semi-ionic systems and describe the terms within the Morse 

potential as a way of identifying the shape and depth of the potential.   

Quantum mechanical methods such as density functional theory are also a very 

popular way of predicting mechanical properties of materials but their results must 

be approached with caution; they do not rely on the derivation of interatomic 

potentials and this, in turn, has consequences on the reliability of the results 

especially when concerning larger atoms with 5f electrons. Research that has 

used DFT to study thoria includes Y. Lu et al. [78], Kanchana et al. [79], P.J Kelly 

et al. [80], H.Y. Xiao [81] and Boudjemline [82]. 

P.J. Kelly (1987) used DFT to calculate a range of properties including bulk 

modulus and cohesive energies for a collection of actinide dioxides including 

ThO2.  H. Y. Xiao studied ThO2 in terms of the diffusion of elements including 

bromine and caesium into the ThO2 and CeO2 structures.   

DFT methods have also been frequently used to investigate thermodynamic 

properties of ThO2 and doped derivatives of ThO2. Y. Lu et al. [78] used DFT to 

study the thermodynamic and structural properties of thoria including defect 

formations and diffusion of helium into the structure. They calculated such 

properties as the bulk modulus, specific heat capacity and thermal expansion 

coefficients. This paper has been used as a comparison paper in literature from  
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Martin et al. [68] for values of thermal expansion coefficients.  Lu et al. used the 

work of Boudjemline et al. as a reference for comparison of values for elastic and 

optical properties calculated within the research; Boudjemline uses DFT to study 

the dependence of pressure on various properties of the CeO2 and ThO2 crystals. 

The importance of comparing calculated results with experimental values is 

essential as it gives an idea as to whether the computational findings are reliable 

or not; the potentials must be able to model the crystal structure and bulk 

properties accurately. Many of the computational papers have used experimental 

data to either fit the parameters or to check if the parameters are reproducing 

adequate values for crystal properties, defect properties and so on. The 

experimental papers considered in this have been used as references within any 

of the discussed literature and have been compared to the values calculated 

within this work in table 1.7.  

When considering potential parameters Behera at al. [71] is a very important 

paper to consider as it provides an assessment of the calculated potentials by 

comparing them to a number of experimental papers including Iridi et al. [75] and 

Olsen et al. [84] Idiri et al. investigated ThO2 and UO2 under pressure using x-ray 

diffraction and were therefore able to give experimental results for compressibility 

factors, bulk moduli and changes in structural parameters. Olsen et al. also 

studied ThO2 using XRD but specifically focused on the bulk modulus of the 

material. Other experimental papers that use XRD to investigate crystal 

properties of ThO2 include Momin et al. [85] and Baghat et al. [86] 
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Table 1.3: table of interatomic potentials from the Bahera et al. review paper 

Potentials Tharmalingham1[72] Tharmalingham2[72] Walker [73] Lewis [69] Karakisidis [83] Basak [76] Arima1 [77] Arima2 [77] 

Charge 

Th core 4.0 4.0 4 4 4 2.4 4 2.7 

O core -2.0 -2.0 -2 -2 -2 -1.2 -2 -1.35 

O-O Buckingham 

A /eV -93.3 36.1 5029.34 22764.3 11272.6 1633.6666 22517.53 919.17 

Ρ /Å 0.398 0.382 0.15285 0.149 0.1363 0.32702 0.149 0.332 

C /eV Å6  16.85 72.65339 112.2 134 3.95063 27.59 17.36 

D /eV Å8  11.86 0 0 0 0 0 0 

Th-O Buckingham 

A /eV 2207.565 1896.302 1379.866 1978.75 1042.528 1081.0004 1594.996 27166.11 

Ρ /Å 0.369615 0.37396 0.398673 0.38774 0.408121 0.33059 0.393955 0.224857 

C /eV Å6 36.715 0.31 49.22 244.941  0 73.96 12.8 

D /eV Å8 257.96 42.63 0 0 1042.528 0 0 0 

Th-Th Buckingham 

A /eV 0 0 8.5215 / / 11464.0507 9.815 / 

Ρ /Å 0.398 0.382 0.16666 / / 0.15984 0.315062 / 

C /eV Å6 170 244.18 1530.173 / / 0 2593.118 / 

D /eV Å8 20370.45 31974.16 0 / / 0 0 / 

Th-O Morse 

D /eV / / / / / 1.00879 / / 

Bij /Å-1 / / / / / 1.60473 / / 

r*ij /Å / / / / / 2.369 / / 
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Maceado et al. [87] specifically studied the elastic constants of single crystal 

thoria at 25°C. This is a very valuable paper as it is the only experimental paper 

that lists results for the elastic constants. 

J. D. Axe et al. [88] was used as a reference paper by the ThO2 review paper by 

Bahera et al. specifically using the values created for the static dielectric constant 

and the high frequency dielectric constant. Infra-red spectroscopy was used to 

study the infrared dielectric dispersion of uranium dioxide and thorium dioxide. 

There are not many values predicted for the static dielectric constant as you need 

the shell model to predict it and most of the literature uses the rigid ion model to 

obtain the parameters.  

 

M. Ishigame [89] also used spectroscopy to study ThO2 but they used Raman 

spectroscopy to obtain values for phonon energies of the material. This paper 

has also been used as a reference paper in the review paper by Bahera et al. M. 

Sarsfield et al. [90] also studied ThO2 using Raman spectroscopy. R. Agarwal et 

al. [91] also studied ThO2 experimentally but using high temperature calorimeters 

to investigate the heat capacity, enthalpy increment and thermal conductivity of 

pure ThO2 and uranium doped ThO2. S. Dash et al. [92] also used high 

temperature calorimeters to study the thermodynamics of the pure and uranium 

doped ThO2 system using three temperature ranges: 127-305K for the pure 

system, and 305-845K and 891-1698K for the uranium doped system.  

 

K. Bakker et al. [93] produced a critical evaluation of available thermodynamic 

data for ThO2 and its mixed fuel derivatives by comparing the results produced 
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for heat capacity measurements, oxygen potentials, thermal conductivity and 

linear thermal expansion. In this review, the work of Springer et al. was found to 

be in disagreement with the other literature compared.  

 

3.1.3 The anion-anion potential  

The anion-anion potential used throughout this work is that of Catlow and 

Jackson et al. [94] This potential has previously been used successfully in 

modelling some binary oxides [69], UO2 [25] and ThO2 [83]. It can be used for the 

ThO2 system as the thorium dioxide crystal is isostructural to UO2. The atoms also 

have the same coordinate positions so can be considered to be in the same 

environment. The potentials are shown in table 1.4. 

 

Interaction A /eV p/Å C /eVÅ-6 Y |e| K2 /eVÅ-2 

 

O- O 

11,272.6 0.1363 134.0 -4.4 296.2 

rmin /Å Cut 1 /Å rmin /Å Cut 2 /Å rmax /Å 

0.0 1.2 2.1 2.6 15.0 

 

Table 1.4: Buckingham four range potential set for the anion-anion interaction, 

Y is the charge on the ion, K2 is the spring constant and rmax is the cut-off point. 
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3.1.4 Methodology  

As the Buckingham four-range potential cannot be applied to the cation-anion 

potential due to the absence of a stationary point within the function, the C term 

must be set to zero so that the unphysical attractive forces at short distances can 

be avoided. This provides a Born-Mayer form of the potential in which only the A 

and p terms are used to describe the material. 

The derivation process assumes no prior starting values and begins with the 

screening of a set of A and p parameter values against lattice parameter. The 

solution set will show the combinations of the potentials A and p that will give the 

lattice constant closest to the observed value. Figure 3.0 shows the plot of lattice 

constant against A with the solution set shown in red. 
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Figure 3.0: Surface plot representing the difference between the A and ρ and 

the observed Th-O lattice constant. 

 

 

This method will produce a number of combinations that exactly reproduce the 

crystal structure. This set of is then screened once again to fit to bulk properties; 

elastic constants are used as they describe the response of the lattice with 

respect to deformation of the material. As the material is cubic symmetry reduces 

the unique elastic constants to C11, C12 and C44. Figure 3.1 shows a plot of the 

elastic constant value against the A parameter.  
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Figure 3.1: Predicted and experimental elastic constants plotted against the 

potential parameter (A). 

 

Three initial sets of potentials were produced, each with different fits to the elastic 

constants. Set 1 was fitted using a least squares difference to all three of the 

elastic constants, set 2 was fit to just C11 and C12 and set 3 used an unweight 

mean approach to fit to all three of the constants. The three initial sets are shown 

in table 1.5. 
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 A /eV p /Å C /eVÅ-6 Y |e| K2 /eVÅ-2 

Set 1 1394.4724 0.3861 0.00 -2.54 91.9415 

Set 2 1047.7387 0.4078 0.00 -2.54 129.5660 

Set 3 1193.9986 0.3975 0.00 -2.54 105.7408 

 

Table 1.5: Three sets of Buckingham potentials for the thorium cation-anion 

interaction. 

 

In order to select a set of parameters to carry forward a least squares approach 

was used to fit across the range of elastic constants. The next step involved 

adjusting the spring constant to fit the dielectric properties of the material. This is 

so that the potentials will simulate the material and its polarisability accurately 

when calculating defect properties within the structure. This is shown in figure 

3.2, which also shows the available experimental values. 

This procedure provided a potential set that accurately described the lattice 

parameters (Δ0.0%) bulk properties, and dielectric properties (Δ 4.5—6%) of the 

material. The potential set is shown in table 1.6 and has then been taken forward 

for validation and used in simulation of defect properties and free energy 

calculations in chapter 4. 
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Interaction A (eV) P (Å) C (eVÅ-6) Y (|e|) K2 (eVÅ-2) 

Th-O 1193.9986 0.3975 0.0 6.54 105.7408 

 

Table 1.6: The derived potential for the Th-O interaction where Y is the shell 

charge and K2 is the spring constant. 

 

 

 

Figure 3.2: Dielectric constants as a function of the spring constant, K2. 
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3.1.5 Validation of interatomic potentials  

Thorium dioxide has the cubic fluorite structure with the thorium atoms occupying 

the face centred position and oxygens at the tetrahedral sites.  

 

 

Figure 3.3: ThO2 unit cell at atom coordinates [75] 

 

The bulk properties of the material calculated using the potential derived was 

compared with experimental values (shown in table 1.7). There is excellent 

agreement over the range of properties shown. This proves that the potentials 

are robust and can be used with confidence for further calculations. 

 

 

 

Atom Oxidation 
state 

X Y Z 

Thorium +4 0.0000 0.0000 0.0000 
Oxygen -2 0.2500 0.2500 0.2500 
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Property Observed Calculated % Difference 

Lattice constant (Å) 5.6001  5.6001 0 

Lattice energy (eV) -104.64  -100.33 4.11 

Elastic constants /Gpa 

C11 367 ± 4.0  373.23 -1.69 

C12 106 ± 2.0  114.36 -7.92 

C44 79.7 ±0.8  65.82 17.44 

Moduli 

Bulk 193  200.65 -3.96 

Shear 95.6-100.6  81.93 14.30 

Youngs 256,270  319.58 -24.84 

Poissons Ratio 0.22  0.23 -6.64 

Dielectric constants 

Static 18.9  18.1 4.23 

High frequency 4.4  4.7 -6.82 

Phonons at 298K 

L mode 269.2/279  271.37 -0.81 

T mode 569.8/567  425.48 25.33 

 

Table 1.7: Comparison of calculated and experimental bulk properties. 
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3.2 Gadolinium oxide interatomic potentials  

3.2.1 Introduction 

Gadolinium has been of interest for many years as it has the highest neutron 

cross section of any other natural element. This intriguing property has caused it 

to become of interest in many areas including cancer research [95] and nuclear 

technology [66].  

If a material has a high neutron cross section it means that the interaction 

between the target nucleus and an incoming neutron is favourable and it relies 

on many factors including the energy of the incident neutron and the type of target 

atom. Gadolinium is well known as a ‘fuel poisoner’ due to this high neutron cross 

section. Free within a nuclear fuel, it will absorb the neutrons needed for the 

fission reaction to occur and ultimately stop the reaction. Usually this would be 

highly unfavourable but if used correctly the waste gadolinium fuel produced in 

the nuclear process can be used to control the speed of a fission reaction in the 

form of a control rod. Control rods can be inserted or removed from the reactor 

accordingly.   

Incorporating gadolinium into the pure ThO2 and mixed Thoria fuels will allow 

simulations of real conditions within a reactor core when gadolinium impurities 

are present.  
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3.2.2 Literature review 

There are four sets of interatomic potentials (shown in table 1.8) currently 

published that describe the interactions between gadolinium and oxygen atoms 

within the Gd2O3 system. Catlow et al. [69] derived sets of potential models for a 

number of ionic oxides including Gd, Hf and Th. They use three different 

derivation methods within their work with the Gd-O potential being derived by 

fitting the structural information to the parameters. They assume that the cation-

anion interaction is in the Born-Mayer form, which is in agreement with our work, 

but the potential set that they derive is in the rigid ion form. 

Bush et al. [96] again derived a number of potential sets for some binary and 

ternary oxides including Gd2O3. They fit the potentials to available experimental 

lattice properties using a least squares method in which the difference in crystal 

structure, relative permeabilitys and elastic constants are considered. The 

potentials are derived using the shell model with a good fit to the lattice parameter 

(0.29%) and lattice energy (0.0%). 

Grimes at al. [40] also derived a set of potentials that described the Gd-O system 

[97] but the most advanced investigations using a derived set of potentials are by 

Osaka et al. [66]. They investigate the molecular dynamics of gadolinium doped 

thoria using a range of temperatures from 298 to 1200K. The defect structures of 

the doped material and their effects upon the lattice parameter are considered 

along with diffusion coefficients of the oxygen ions within the material. 
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Potentials Catlow [69] Bush [96] Grimes [40] Osaka [66] 

Charge 

Gd core 3.00 -0.973 3.00 1.8 

Gd shel - 3.973 - - 

O core -2.00 0.04 0.513 -1.2 

O shell  - -2.04 -2.513 - 

Gd-O Buckingham  

A /eV 1336.8 866.339 1885.75 9218.1595 

Ρ /Å 0.3551 0.3770 0.3300 0.08 

C /eV Å6 0.0 0.0 20.34 0.0 

D /eV Å8 0.0 0.0 0.0 0.0 

Spring constant  

K2 /eV Å-2 - 299.96 - - 

 

Table 1.8: Interatomic potentials derived for Gd2O3. 

S. Yamanouchi et al [99] studied the material experimentally investigating the 

effects on melting temperature of UO2 fuel pellets when doped with gadolinium. 

They found that at less than 2% gadolinium there was no change in melting 

temperature. F. X. Zhang [102] also studied Gd2O3 experimentally determining 

the phase transitions of the material at high pressures using X-ray diffraction. 

There have already been many studies of the effects of doping nuclear fuels with 

gadolinium including that of Matthews et al [100] and those already mentioned 

[66, 68]. Matthews et al used various experimental methods to investigate the 
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phase relations and linear thermal expansion of cubic solutions of Th1-x Mx O2-x/2 

in which M = Eu, Gd and Dy. 

 

3.2.3 Methodology  

Using a Monte-Carlo type python code developed by the Read group a set of Gd-

O potentials were derived  through fitting to the available experimental data 

which, unfortunately due to limited experimental work, only includes the lattice 

parameter reported by Pires et al [101] and the Bulk modulus from Zhang et al 

[102]. The bond distances were also generated from Gulp using the available 

experimental data and then used in the fitting procedure. The shell charge and 

spring constant were that used by Bush et al [96] and they remained constant 

throughout the derivation process. 

An initial starting potential was required to begin the scan, the ThO2 potential 

described within this work was used and the scan started from there. A range of 

A parameter from 500 to 4000eV and p parameter from 0.1 to 0.5Å were used. 

The code used a weighted least squares method in which the percentage 

differences of the properties to the experimental data are weighted differently to 

each property. This was specified by the user at the time; for the Gd2O3 potential 

the weighting factor was highest for the lattice constants with a weighting factor 

of 50. A weighting factor of 6 was used for the bulk modulus along with a 

weighting factor of 2 for the bond lengths. The number of runs and cycles per run 

was also specified by the user, in this case there were 10 runs with 2000 cycles 
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per run. This means that for each run 2000 moves were made resulting in 2000 

areas being sampled. 

 

𝐿𝑆𝑞𝑤 = 𝛼∑(𝑦𝑙 𝑐𝑎𝑙𝑐 −𝑦𝑙 𝑒𝑥𝑝)
2 +∑𝛽𝑗∑

1

𝑦𝑗 𝑒𝑥𝑝
(𝑦𝑗 𝑐𝑎𝑙𝑐 − 𝑦𝑗 𝑒𝑥𝑝)

2
      

𝑗

 

 

Figure 3.4: equation used to describe the least squares method within the 

Monte-Carlo potential fitting code. α and β are the weighting factors for the 

lattice parameters and other experimental data respectively. 

 

There was also an exception factor included within the code. The exception factor 

used in this case was 0.1 which means 10% of the unfavourable moves are 

accepted and become the new reference state.   

This method produced a set of Gd-O potentials that fit well to the lattice constants 

(0.047%), bond lengths and bulk modulus (1.52%). The potentials were then 

taken forward for further validation and used in bulk, defect and free energy 

simulations. The interatomic potential derived are shown in table 1.9.  
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Interaction A (eV) P (Å) C (eVÅ-6) Y (|e|) K2 (eVÅ-2) 

Gd-O 2962.90599 0.31441 0.0 3.973 299.96 

 

Table 1.9: Interatomic potential for the Gd-O interaction where Y is the shell 

charge and K2 is the spring constant. 

 

3.2.4 Validation of interatomic potentials  

Pires et al [101] used XRD and Rietveld refinement methods to determine the 

crystal structure of Gd2O3. They quote a lattice constant of 10.722 Å and 

coordinate positions for two gadolinium atoms and one oxygen position shown in 

figure 3.5. 

 

 

 

 

 

 

 

 

Figure 3.5: Gd2O3 unit cell with the body centred cubic arrangement. Space 

group Ia-3 (206) and the corresponding atom coordinates. 

Atom Oxidation 
state 

 
X 

 
Y 

 
Z 

Gadolinium 1 +3 0.0000 0.0000 0.0000 
Gadolinium 2 +3 0.2824 0.0000 0.2500 

Oxygen -2 0.0982 0.3590 0.1255 
 

Gadolinium  

Oxygen  
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The bulk properties of the material calculated using the potential derived were 

compared with literature and experimental values where possible (shown in table 

2.0). There is excellent agreement over the range of properties shown. This 

proves that the potentials are robust and can be used with confidence for further 

calculations. 
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Property Observed Calculated % Difference 

Lattice constant (a0) /Å 10.722 [71] 10.727 0.047 

Lattice energy / - 1087.144 - 

Elastic constants /GPa 

C11 - 260.225 - 

C12 - 156.193 - 

C44 - 90.925 - 

Moduli 

Bulk 188.0 [70] 190.871 1.52 

Shear - 72.673 - 

Youngs - 143.05221 - 

Poissons Ratio - 0.37509 - 

Dielectric constants 

Static - 4.779 - 

High frequency - 1.776 - 

Bond lengths /Å 

Gd1 – Gd2 3.553 3.528 -0.712 

Gd2 –Gd2 3.570 3.544 -0.737 

Gd1 –O 2.279 2.285 0.2589 

Gd2 – O 2.320 2.283 -1.608 

O-O 3.221 3.199 -0.686 

 

Table 2.0: Calculated and literature bulk properties for Gd2O3. 
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3.3 Chapter summary  

This chapter has described two interatomic potential techniques that have been 

used to derive potentials for ThO2 and Gd2O3. The potentials have then been 

validated using the crystal structure of the material along with the bulk properties.  

Both methods have been successful in deriving a set of potentials that correctly 

fit the bulk properties of the material and have therefore been taken forward to 

simulate other properties including thermophysical and defect properties. 
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4.1 Introduction  

In order to model the pure and defected thoria system a robust set of potentials 

is required. The derivation method for the interatomic Th-O potentials used within 

this work is outline in chapter 3 along with the validation of the potentials using 

bulk properties. Within this chapter the pure thorium dioxide system is analysed 

in more depth with regards to the crystal structure and bulk properties. Fission 

products produced within the fuel cycle are then doped into the thorium dioxide 

structure and various bulk properties investigated. Thermodynamic properties of 

the pure and doped materials are also predicted with increasing temperature 

effects. Finally, the pure system is then doped to create a MOX fuel containing 

either plutonium or uranium. Once doped, bulk properties were then investigated 

with increasing dopant percentage. 

 

4.2 The pure system 

In order to carry out any defect or thermodynamic simulations the correct crystal 

structure must first be generated. The original crystal structure atomic 

coordinates were taken from the studies of Idiri et al [75] and combined with the 

potentials shown in table (1.6) to reproduce the crystal structure shown in figure 

4.0.  
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Thorium  

Oxygen  

 

 

 

Figure 4.0: ThO2 unit cell. 

 

4.2.1 Crystal structure and bulk properties 

Thorium dioxide has the cubic fluorite structure and belongs to the Fm3m space 

group. The thorium ions are arranged in a face centred cubic structure whereas 

the oxygen atoms have a simple cubic structure.  

As previously mentioned the thorium fuel requires a neutron source and in 

industry this is supplied by either uranium or plutonium. The percentage of doped 

uranium or plutonium within the thorium fuel varies from 5-15%. One unit cell of 

thorium dioxide contains a total of fourteen thorium atoms and eight oxygen 

atoms. Therefore it is impossible to model such small concentrations of dopant 

ions and obtain any reliable results. It is therefore vital that a supercell is 

generated containing enough atoms for the small concentrations of dopant ions 

to be investigated and robust results produced. A supercell can be grown in either 
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direction e.g 1x1x2 but for this study all supercells were grown at equal distances 

in all directions.  

  

 

 

 

 

 

(a)                                                                              (b) 

 

  

 

 

 

 

 

                     (c)  (d) 

Figure 4.1: Various supercell sizes for the ThO2 cell. (a) 2x2x2 (b) 3x3x3 (c) 

4x4x4 (d) 5x5x5 
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All of the supercell sizes mentioned above except the 5x5x5 cell were able to 

reproduce the bulk properties and crystal structures accurately. The 4x4x4 

supercell was used throughout the following investigations as it allowed the 

simulation of many ions with a relatively low computational time. Table 2.1 shows 

the values for the bulk properties with varying supercell size. 

 

 

 

 

 

 

 

 

 

 



85 
 

 

Table 2.1: Comparison of bulk properties for varying supercell sizes for the ThO2 cell. 

Property 
(normalised)  

1x1x1 2x2x2 3x3x3 4x4x4 5x5x5 

Formula  Th4O8 Th32O64 Th108O216 Th256O512 Th500O1000 

Lattice parameter (Ǻ) 5.60 5.60 5.60 5.60  
 
 
 
 
 
 
 
 
 
 
 
 

Unable to optimise  
 

Lattice energy (eV) 100.33 100.33 100.33 100.33 

C11 (Gpa) 373.24 373.23 373.23 373.23 

C12 (Gpa) 114.38 114.37 114.36 114.36 

C44 (Gpa) 65.83 65.82 65.82 65.82 

Bulk modulus (Gpa) 200.66 200.65 200.65 200.65 

Shear modulus (Gpa) 81.93 81.93 81.93 81.93 

Youngs modulus (Gpa) 319.58 319.58 319.58 319.58 

Poisson ratio 0.24 024 0.24 0.24 

Static dielectric constant  18.08 18.07 18.07 18.07 

High frequency dielectric 
constant 

4.67 4.67 4.67 4.67 

Phonons at 298K 
L mode (cm-1) 271.37 271.37 271.37 271.37  

T mode (cm-1) 425.8 425.8 425.8 425.8 
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4.2.2 Thermophysical properties 

An understanding of the temperature dependant properties of a fuel during irradiation 

through experimental and computation simulations allows us to predict its behaviour 

with confidence, which is of vital importance when designing a nuclear reactor and its 

components. The properties of the fuel including melting point, thermal expansion and 

thermal conductivity must be accurately known in order to ensure the correct reactor 

design e.g fuel rods and fuel cladding [103]. Fuel performance and safety analysis can 

also be determined. 

Thorium dioxide has been reported to be more chemically stable than uranium dioxide; 

it has higher thermochemical conductivity and lower co-efficient of thermal expansion 

[104]. This coupled to the favourable thermochemical and thermophysical properties 

of thorium dioxide leads to a better in-pile performance than that of uranium dioxide. 

Many properties of the fuel will change upon heating and may change significantly with 

the introduction of defects. Therefore, it is vital that the thermophysical and 

thermochemical properties of the fuel are determined for a range of temperatures and 

defects. Initial thermodynamic simulations of pure and defected system including 

thermal expansion and heat capacity were run using GULP using the free energy 

methods mention in chapter 2. The simulations were run within the temperature range 

of 0-4000K in order to model the fuel under conditions within the reactor core and also 

conditions just above the fuels melting temperature.  

The thermal expansion of the fuel is of the most importance as it leads to many safety 

issues with respect to fuel swelling and pressure build up. It also allows us to gain an 

initial idea of the melting point of the material. The melting point of a fuel plays a vital 

role in determining the operating temperatures of the reactor core and it also limits the 
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energy that can be extracted from the fuel. Bohler et al [105] studied the melting and 

solidification behaviour of thorium and its mixed uranium/plutonium fuels using laser 

heating and found that the addition of thorium to uranium fuel would cause the melting 

point to increase. These findings are beneficial when we consider the mixed fuel as 

higher operating temperatures can be used which will increase the fuel performance. 

The first steps taken within this research to investigate the thermophysical properties 

of the fuel included predicting changes to the lattice parameter with temperature 

change. This also allowed us to determine a preliminary melting point. Figure 4.2 

demonstrates the change in lattice parameter with temperature. The lattice parameter 

shows slight expansion (0.035%) from 1500K to 3750K and then a sudden increase 

(0.07%). This would suggest that the material has reached its melting temperature and 

that the lattice has become distorted.  
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Figure 4.2: Change in lattice parameter against temperature for the pure ThO2 

system. 

 

The melting point calculated within this work for the pure thoria system is in agreement 

with the value reported by Bohler et al. Table 2.2 compares the melting point for pure 

thoria calculated in this work with a number of other experimental values. 

 

Melting temperature 
(K) 

This work Bohler et al 
[105] 

Ronchi et al 
[106] 

Benz et al 
[107] 

Pure ThO2 3750 3624 +/- 86 3651 +/- 17 3663 +/- 100 

 

Table 2.2: Melting temperature for pure ThO2 calculated in this work compared to 

literature. 
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Figure 4.3 shows the changes in lattice parameter with temperature for this work 

compared to a number of literature values. There is a good agreement between the 

values calculated in this work and the literature values.   

 

 

 

Figure 4.3: Plot of lattice parameter against temperature for this work and a number 

of computational literature papers. 

 

The thermal expansion of a material is defined as the change in shape, area and 

volume of that material in response to a change in temperature through heat transfer 

[8]. Thermal expansion is caused by the increased kinetic energy of the atoms or ions 
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within the material when they are exposed to an increase in temperature. The ions will 

vibrate more causing them to have a larger average separation. A property later 

investigated in more detail using radial distribution function (chapter 6). 

The volume of the system at each time step was used to calculate the thermal 

expansion of the system (shown in figure 4.4). 

 

 

 

Figure 4.4: Plot of the temperature dependence of the thermal expansion of the pure 

ThO2 cell.  

 

The values of the thermal expansion calculated within this work (shown in figure 4.4) 

also show a melting temperature of 3750K.   
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The coefficient of thermal expansion calculated within this work is 1.96x10-5 at 300K. 

Experimental values for the coefficient of thermal expansion include Marples et al [109] 

who reported a value of 7.3 X 10-6 K-1 and Yamashita et al [110] who reported a value 

of 8.43 x 10-6 K-1. The Coefficient of thermal expansion as a function of temperature is 

shown in figure 4.5.  

 

 

 

Figure 4.5: Coefficient of thermal expansion for pure ThO2 as a function of 

temperature.  
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Changes in lattice parameter and thermal expansion calculated within this work are in 

agreement with the available computational and experimental values reported. These 

initial calculations of the pure system have been able to provide some information 

about the properties of the system but in order to get a more realistic look at the 

thermal properties of the system we need to include defects as above 0K the structure 

is no longer a perfect crystal.  

 

4.3 Defective system 

All solids at temperatures above 0K will contain intrinsic defects and as temperature 

increases more defects are formed. Therefore, it is vital that simulations are carried 

out on the defected structure where possible.  

During all defect calculations, the ions surrounding the defect were allowed to relax in 

the energy minimisation procedures outlined in the methodology section. 

 

4.3.1 Intrinsic defects  

Isolated point defects were the first intrinsic defect calculations performed on the 

thorium dioxide crystal structure. The formation energy calculated for a vacancy defect 

relates to the removal of an ion from its lattice position within a perfect crystal to infinity. 

Formation values calculated for interstitial defects correspond to the addition of an ion 

into the lattice from infinity.  
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Defect 

Literature 

Formation energy 

(eV per defect)  [62] 

 

Coordinate 
position 

Calculated 
Formation energy 

(eV per defect) 

Th4+ vacancy 84.66 (0,0,0) 78.05 

O2- vacancy 15.83 (0.25,0.25,0.25) 16.15 

Th4+ Interstitial -64.86 (0.5,0.5,0.5) -59.13 

O2- Interstitial -9.82 (0.5,0.5,0.5) -11.06 

 

Table 2.3: Vacancy and interstitial formation energies compared to experimental 

energies. 

 

Initial simulations suggest that the thorium vacancy is the most energetically 

unfavourable defect with the largest positive formation energy and the thorium 

interstitial is the most energetically favourable defect with the largest negative 

formation energy. However, isolated defects do not tend to form as they are often 

combined into cluster defects. Therefore, Frenkel and schottky defects have also been 

calculated later on in this chapter. 
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(a) (b) 

 

Figure 4.6: Illustration of (a) oxygen interstitial (b) oxygen vacancy 

 

Once simple point defects have been calculated then more complex cluster type 

calculations can be made. These calculations include Frenkel and Schottky defects. 

Frenkel defects involve the formation of a vacancy and an interstitial; an ion will move 

from its lattice position and migrate to an interstitial position. Schottky defects arise 

when a formula unit of the material, in this case ThO2, is removed with each ion coming 

from their fixed lattice position to infinity. Both of these defects maintain charge 

neutrality within the lattice. The Kroger-Vink notation [111] for the intrinsic Frenkel and 

Schottky defects is shown in figure 4.7.  
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𝑇ℎ𝑇ℎ 
𝑥 ⇌  𝑉𝑇ℎ

′′′′ +  𝑇ℎ𝑖
….            

                                                       

𝑂𝑂
𝑥  ⇌  𝑉𝑂

.. +  𝑂𝑖
′′         

 

𝑇ℎ𝑇ℎ
𝑥 + 2𝑂𝑂

𝑥  ⇌  𝑉𝑇ℎ
′′′′ + 2 𝑉𝑂

.. + 𝑇ℎ𝑂2       

 

Figure 4.7: Kroger-Vink notation for Frenkel and Schottky defects in the ThO2 

system.                                      

 

The values for the Schottky and Frenkel defects can be calculated in two ways; the 

individual point defects can be combined using the equations shown in figure 4.3 which 

assumes infinite dilution or a cluster can be simulated. Table 2.4 shows the values 

calculated using the point defects compared with literature values.  
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Defect Literature formation  

energy  

(eV per defect) [62] 

Calculated formation energy 

Infinite dilution  

 (eV per defect) 

Th Frenkel 19.80 18.92 

O Frenkel 6.01 5.09 

Schottky trio 11.93 10.02 

 

Table 2.4: Frenkel and Schottky defects compared with experimental values. 

. 

This method does not specify lattice positions with relation to each other; the distance 

between the ions is not defined. The distance between the defecting ions will have an 

effect on the value of the formation energy so must be considered. For simulations 

carried out in this way a cluster is created and specific defect positions are defined for 

a number of different configurations. The defect formation energy and binding energy 

are then calculated.  The binding energy is the difference in energy between the 

unbound defects at infinite dilution and the bound defects in a cluster. Table 2.5 

displays the results of the oxygen Frenkel pair formation with specific coordinates for 

each vacancy and interstitial shown. 
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Defect Vacancy position Interstitial 

position 

Formation energy 

(eV per defect) 

Binding 

energy (eV per 

defect) 

OFP1 (-0.25,-0.25,-0.25) (0.5,0.5,0.5) 3.73 1.22 

OFP2 (-0.25,-0.25,0.25) (0.5,0.5,0.5) 4.00 0.95 

 

Table 2.5: Defect formation energy and binding energy for oxygen frenkel pair 

defect. 

 

Initial results predict that the OFP1 defect would be the most energetically favourable 

with the smallest formation energy. 

Thorium Frenkel defect energies were also investigated and the binding energies 

calculated. The thorium vacancy remained the same but the position of the interstitial 

varied. Table 2.6 shows the formation and binding energies of the thorium Frenkel 

defects along with vacancy and interstitial positions. 

Defect Vacancy 

position 

Interstitial 

position 

Formation energy 

(eV per defect) 

Binding 

energy (eV per 

defect) 

THF1 (1.0, 1.0, 0.0) (1.0, 1.0, 0.375) 19.22 0.33 

THF2 (1.0, 1.0, 0.0) (1.0, 1.0, 0.675) 18.99 0.07 
 

Table 2.6: Defect formation energy and binding energy for thorium Frenkel pair 

defect. 
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Initial calculations show that the THF2 configuration would be the most energetically 

favourable with the smallest defect formation energy and the smallest binding energy. 

A number of configurations for Schottky defects were also considered with the thorium 

and 1st oxygen vacancy position remaining the same but the position of the 2nd oxygen 

vacancy changing. The resulting formation and binding energies are shown in table 

2.7. 

 

 

Defect 

Position of 

thorium 

vacancy 

Position of 

oxygen 1 

vacancy 

Position of 

oxygen 2   

vacancy 

Formation 

energy 

(eV per 

defect) 

Binding 

energy 

(eV per 

defect) 

Sch1 (0.0, 0.0, 

0.0) 

(0.25, 0.25, 

0.25) 

(-0.25,-0.25,-0.25) 5.64 -1.46 

Sch2 (0.0, 0.0, 

0.0) 

 
(0.25, 0.25, 
0.25) 

(-0.25,0.25,-0.25) 5.57 -1.48 

Sch3 (0.0, 0.0, 

0.0) 

 
(0.25, 0.25, 
0.25) 

(-0.25,0.25,0.25) 5.99 -1.34 

 

Table 2.7: Defect formation and binding energy for three Schottky 

configurations. 
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In summary, for the unbound defects, the oxygen Frenkel was predicted to have the 

lowest energy of formation of 5.09 eV which is half the Schottky formation energy 

(10.02 eV) which itself is much lower than the thorium Frenkel of 18.92 eV. Thus for 

any given temperature the equilibrium concentration of defects is predicted to be 

predominantly oxygen Frenkels. The cluster calculations show that there is little 

difference in energy for the bound thoria Frenkel (18.99 eV), the oxygen Frenkel 

reduces slightly to 3.73 eV but the bound Schottky has roughly half the value of the 

unbound defect (5.57 eV) predicting the equilibrium concentration of defects to have 

a significant proportion of Schottky cluster vacancies in addition to oxygen Frenkels.  

 

4.3.2 Extrinsic defects and fission products  

Extrinsic doping of different substances into the thorium dioxide crystal can change its 

properties and characteristics. Doping thorium dioxide with uranium or plutonium 

(discussed in section 4.4) creates a mixed oxide fuel that can be used within the 

reactor as the main fuel. Doping with fission materials or materials introduced to the 

fuel such as components of a fuel rod will ensure a more realistic simulation of the fuel 

contents during the fuel cycle. Some of the most common fission products and 

products of most concern were considered within this research but unfortunately, 

some of the fission products such as xenon and caesium do not have any consistent 

potentials available. Two fission products including barium [69] and strontium [112] 

have published potentials available in the literature. A potential set for gadolinium was 

derived within the group (see chapter 3). All of the potentials used in this section are 

shown in table 2.8. 
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Interaction A (eV) P (Å) C (eVÅ-6) Y (|e|) K2 (eVÅ-2) 

Gd-O 2962.90599 0.31441 0.0 3.973 299.96 

Sr-O 959.1 0.3721 0.0 3.251 71.7 

Ba-O 905.7 0.3976 0.0 9.203 459.2 

 

Table 2.8: Interatomic potentials for fission products. 

 

A single ion was first placed into the lattice as an interstitial defect at the 0.5, 0.5, 0.5 

position and the defect energy calculated (shown in table 2.9). 

The solution energy for the interstitial defects were also calculated using the equations 

shown in figure 4.8. 

 

𝐸𝑠𝑜𝑙𝑛 = 𝐸(𝑀𝑇ℎ
′′ ) +   𝐸(𝑉𝑂

••) +  𝑈𝑙𝑎𝑡𝑡(𝑇ℎ𝑂2) − 𝑈𝑙𝑎𝑡𝑡(𝑀𝑂)     

Where M = Sr or Ba  

 

𝐸𝑠𝑜𝑙𝑛 = 2𝐸(𝑀𝑇ℎ
′ ) +   𝐸(𝑉𝑂

••) +  2𝑈𝑙𝑎𝑡𝑡(𝑇ℎ𝑂2) − 𝑈𝑙𝑎𝑡𝑡(𝑀2𝑂3)     

Where M = Gd 

 

Figure 4.8: Kroger-Vink notations for the solution energies of doping various fission 

products into the ThO2 unit. 
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Defect Charge on 
system 

Formation defect 
energy     

(eV per defect) 

Solution energy  

(eV per defect) 

Strontium 

substitution 

-2 -12.37 0.98 

Barium 

substitution 

-2 -7.69 4.15 

Gadolinium 

substitution 

-1 -38.34 2.15 

 

Table 2.9: Formation defect energy and solution energy values for various fission 

product substitutions. 

 

The initial calculations show that gadolinium has the most negative substitutional 

formation energy, implying that it is the most energetically favourable defect to form. 

However, the value for the solution energy for gadolinium is a little higher than that of 

strontium. The solution energy depends upon a number of aspects including charge 

on the ions within the lattice and the dissociation energy required to break apart the 

dopant lattice. Figure 4.9 shows a plot of solution energy as a function of ionic radius 

for each of the three dopant ions. 
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Figure 4.9: Plot of solution energy as a function of ionic radius for strontium, barium 

and gadolinium 

 

Gadolinium is of particular interest as it has the highest neutron cross section of any 

other natural element which makes it useful within the control rods to control the 

nuclear cycle within the reactor core. Gadolinium is also produced as a fission product 

in the fuel cycle and due to its neutron absorbing properties can affect the fuel cycle 

significantly more than any of the other products by absorbing many of the neutrons 

needed for the fission process to occur. Previous research in this area on gadolinium 

has been described in section 3.2.1 of chapter 3.  

One of the most informative research papers is that of Osaka et al [66] who 

investigated the molecular dynamics of gadolinia-doped thoria.  The research 

conducted within this paper focussed on the defect positions of the gadolinium and 
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how they affected properties of the fuel including lattice parameter, thermal expansion 

and diffusion coefficients.  Defects investigated include the simple gadolinium 

interstitial and the double gadolinium interstitial oxygen vacancy charge neutral defect 

(shown in figure 4.10). 

                                                           𝐺𝑑𝑇ℎ
′  

             {𝐺𝑑𝑇ℎ
′  𝑉𝑂

••𝐺𝑑𝑇ℎ
′ } 

Figure 4.10: Kroger-Vink notation of gadolinium defects simulated in the work of 

Osaka et al. and in this work. 

 

Some of the defect calculations carried out by Osaka et al. were repeated and adapted  

using the 4x4x4 super cell in this work, and where possible, compared to the literature. 

The results are shown in table 3.0. 

  Gadolinium  

Figure 4.11: Gadolinium interstitial within the ThO2 crystal 
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Defect 

 

 

Configuration 

 

Defect formation 

energy (eV per 

defect) 

 

Binding energy (eV 

per defect) 

𝐺𝑑𝑇ℎ
′  / 24.89 / 

 

{𝐺𝑑𝑇ℎ
′  𝑉𝑂

••𝐺𝑑𝑇ℎ
′ } 

1 65.30 0.63 

2 63.32 2.61 

3 63.12 2.81 

4 64.91 1.02 

 

 

Table 3.0: Defect formation and binding energy of various gadolinium defects within 

the ThO2 crystal. 

 

Fission products have been found to form clusters when produced within a crystal 

[113-115] structure and it is the formation of these clusters that can cause significant 

physical changes within the material. The cluster formation of four gadolinium 

interstitials at positions within the plane and out of the plane were investigated 

(illustration shown in figure 4.12). The results are shown in table 3.1. 
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                           (a)                                                                (b)  

Figure 4.12: Relaxed structure of gadolinium cluster formation in ThO2 (a) in the 

plane and (b) out of plane. 

 

Defect Defect formation energy 

(eV per defect) 

Binding energy (eV per 

defect) 

Gadolinium cluster (a) -144.83 8.55 

Gadolinium cluster (b) -147.35 6.02 

 

Table 3.1: Defect formation energy and binding energy of two gadolinium clusters in 

ThO2. 

 

The results shown in table 3.1 suggest that the more energetically favourable cluster 

is configuration b as it has the most negative defect formation energy and the smallest 

value for the binding energy. 
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In order to investigate the structural effects of gadolinium doping, a number of different 

percentage compositions of gadolinium were investigated with relation to changes in 

the lattice parameter of the unit cell (shown in table 3.2). The gadolinium ions were 

placed on thorium vacancy positions leaving behind a single positive charge per ion.  

 

Percentage 

gadolinium  

Overall 

charge on 

crystal 

Lattice 

energy (eV) 

Lattice constant (Å) 

a b c 

0 0 -100.330 5.600 5.600 5.600 

25 -8 -3018.981 5.553 5.553 5.553 

50 -16 -2838.999 5.486 5.504 5.504 

75 -24 -2784.326 5.415 5.419 5.419 

 

Table 3.2: Change in lattice parameter and lattice energy with percentage 

gadolinium. 

 



107 
 

 

Figure 4.13: Lattice parameter and lattice energy against percentage dopant 

gadolinium. 

 

Increased gadolinium concentration causes a decrease in lattice parameter and lattice 

energy. This implies that the fuel pellets may shrink upon prolonged gadolinium 

exposure. Further simulations could be carried out as to the segregation of gadolinium 

defects and their movement within the structure and how this affects the 

thermophysical properties of the fuel. 
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4.4 The mixed oxide fuel   

4.4.1 Introduction  

As thoria is fertile rather than fissile there must be a neutron source added to the fuel 

to begin the nuclear process. This neutron source is commonly uranium or plutonium. 

Creating a mixed fuel with uranium or plutonium has added benefits; the uranium or 

plutonium can be that produced as waste from another nuclear cycle and would 

therefore be recycled in the process. This will help to eliminate any uranium or 

plutonium waste storage issues. According to the world nuclear association [62] mixed 

oxide fuel already currently provides almost 5% of the world’s energy implying that 

thorium mixed fuels would be a viable future option. 

There has already been a considerable amount of research conducted using mixed 

thorium fuels and the thermodynamics of the newly formed system including the 

previously mentioned computational studies of Martin et al [68]. Experimental studies 

of thorium mixed fuels have also already been discussed in chapter 4 with research 

from Agarwal et al., Dash et al. and the review provided by Bakker et al. [59]. 

S. Liu et al [116] and Guangwen et al [117] have both studied the design of a mixed 

thorium fuel reactor with Guangwen also investigating the spent fuel characteristics 

and concluding that a uranium/thorium mixed fuel would prove to be beneficial in many 

ways including conservation of current uranium stores. All of these have only studied 

the mixed UO2/ThO2 fuels. Unfortunately, there is very little literature data available for 

PuO2/ThO2, with most of the available experimental data being compared in the review 

paper by Bakker. Hubert et al. [118] completed experimental XRD work on doped 

thoria investigating a number of properties including an in depth study of the changes 

in bond lengths between atoms upon doping. 
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Throughout this section the mixed oxide fuels ThO2-PuO2 and ThO2-UO2 have been 

investigated individually as to their changes in bulk properties and defect energies with 

dopant ion concentration. The interatomic potentials used throughout this investigation 

are those published by Read et al [25, 59] and are shown in table 3.3. 

 

Interaction A (eV) P (Å) C (eVÅ-6) Y (|e|) K2 (eVÅ-2) 

Pu-O 1116.3317 0.3926 0.0 6.54 206.77 

U-O 1027.5967 0.402616 0.0 6.54 110.75343 

 

Table 3.3: Interatomic potential for the plutonium oxygen and uranium oxygen 

interactions. 

 

In order to simulate the mixed fuel the dopant ion was doped into the thorium interstitial 

sites at a number of different percentages and the defect formation energy and 

solution energy calculated (results shown in table 3.4). The equations used to 

calculate the solution energy are shown in figure 4.14. 
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𝐸𝑠𝑜𝑙𝑛 = 𝐸(𝑃𝑢𝑇ℎ
𝑥 ) +  𝑈𝐿(𝑃𝑢𝑂2) −  𝑈𝐿(𝑇ℎ𝑂2)              

     

𝐸𝑠𝑜𝑙𝑛 = 𝐸(𝑈𝑇ℎ
𝑥 ) +  𝑈𝐿(𝑈𝑂2) −  𝑈𝐿(𝑇ℎ𝑂2)   

                

Figure 4.14: Solution energy calculations for the doping of a single ion at the thorium 

position. 

 

Dopant ion Lattice position Defect formation 

energy (eV per defect) 

Solution energy 

(eV) 

Pu4+ 0.0, 0.0, 0.0 -51.95 3.02 

U4+ 0.0, 0.0, 0.0 -60.90 1.58 

 

Table 3.4: Defect formation energy and solution energy for the doping of plutonium 

and uranium into the ThO2 lattice.  

 

Initial defect formation energies suggest that it is more energetically favourable to dope 

the uranium ion into the thorium position than plutonium, which is in agreement with 

the solution energy trends shown in the table above. 
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4.4.2 ThO2 - PuO2 mixed fuel  

In February 2005 the parliamentary office of science and technology issued a 

statement about the management of the UK’s plutonium stockpile [119]. They 

discussed how the stocks of plutonium have built up due to it being produced as a 

waste product in the uranium fuel cycle. They quote a value of 70 tonnes of plutonium 

currently in stock in the UK and estimate that will increase to around 100 tonnes in the 

next ten years. The statement also suggests some solutions to the large plutonium 

stock pile including the creation of a thorium/plutonium mixed fuel.  

Research into a thorium/plutonium mixed fuel has not been as prevalent as 

thorium/uranium mixed fuels but there have been some interesting studies into the 

effects that plutonium may have on the thorium fuel when a mixed fuel is generated. 

Kutty et al. [120] carried out a detailed study into the thermophysical properties of pure 

thorium oxide fuels along with uranium and plutonium mixed fuels. They concluded 

that more in depth research is needed with regards to the mixed oxide fuels 

performance is necessary before they are tested in nuclear reactors.  

In order to investigate the bulk properties in more detail the supercell was doped with 

varying concentrations of plutonium and uranium in the range of 0-60%. This range 

goes above what is used in real MOX fuels (5-15%) but useful for initial predictions. 

Figure 4.15 illustrates the supercell with varying plutonium dopant percentage.  
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(c) 

 

Figure 4.15: 4x4x4 ThO2 cell with (a) 10.16% plutonium doped (b) 30.08% 

plutonium doped (c) 60% plutonium doped  

 

A random number generator was used to ensure that each cell was randomly doped 

with the correct concentration of dopant ions. The results of the random plutonium 

doping are shown in table 3.5. Figure 4.16 shows the change in lattice parameter and 

lattice energy upon increasing plutonium dopant concentration. These initial 

calculations demonstrate a decrease in lattice parameter and lattice energy of the 

thorium cell with increasing plutonium doping. Plutonium has slightly smaller ionic 

radius (0.887Ǻ) than thorium (0.972Ǻ) which could explain the decrease in lattice 

parameter.  
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The solution energy for a single plutonium ion at the thorium vacancy position was 

also calculated for each of the dopant ion concentrations. The results are shown in 

figure 4.17.  
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% 

dopant 

Formula Lattice 

energy 

(eV) 

Lattice 

constant (Ǻ) 

C11 C12 C44 Bulk 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Youngs 

modulus 

(GPa) 

Static 

dielectric 

constant 

High freq 

dielectric 

constant 

0 Th256O512 -100.33 5.60 373.23 114.37 65.82 200.65 81.93 319.58 0.23 18.07 

1.17 Th253Pu3O512 -100.37 5.60 373.52 114.51 65.75 200.85 81.88 319.79 0.23 18.23 

1.95 Th251Pu5O512 -100.39 5.60 373.72 114.60 65.71 200.97 81.84 319.92 0.23 18.34 

3.13 Th248Pu8O512 -100.43 5.60 374.00 114.74 65.64 201.16 81.79 320.13 0.23 18.49 

3.91 Th246Pu10O512 -100.45 5.59 374.20 114.83 65.60 201.29 81.76 320.26 0.23 18.60 

5.08 Th243Pu13O512 -100.49 5.59 374.49 114.98 65.54 201.48 81.72 320.47 0.23 18.75 

5.86 Th241Pu15O512 -100.51 5.59 374.69 115.07 65.49 201.61 81.69 320.61 0.23 18.86 

7.03 Th238Pu18O512 -100.55 5.59 374.97 115.21 65.43 201.79 81.65 320.82 0.24 19.01 

7.81 Th236Pu20O512 -100.57 5.59 375.16 115.30 65.40 201.92 81.62 320.95 0.24 19.09 

8.98 Th233Pu23O512 -100.61 5.58 375.44 115.43 65.36 202.10 81.58 321.15 0.24 19.25 
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10.16 Th230Pu26O512 -100.64 5.58 375.74 115.58 65.31 202.30 81.55 321.36 0.24 19.36 

14.84 Th218Pu38O512 -100.79 5.57 376.92 116.14 65.13 203.07 81.42 322.20 0.24 19.90 

19.92 Th205Pu38O512 -100.95 5.56 378.18 116.74 64.96 203.89 81.33 323.11 0.24 20.48 

25 Th192Pu64O512 -101.10 5.55 379.49 117.31 64.84 204.71 81.27 324.08 0.24 20.96 

30.08 Th179Pu77O512 -101.26 5.54 380.86 117.97 64.75 205.59 81.24 325.07 0.24 21.37 

35.16 Th166Pu90O512 -101.42 5.53 382.29 118.59 64.67 206.50 81.24 326.13 0.24 21.86 

39.84 Th154Pu102O512 -101.57 5.52 383.64 119.21 64.67 207.37 81.28 327.11 0.24 22.18 

44.92 Th141Pu115O512 -101.73 5.51 385.24 119.93 64.66 208.37 81.34 328.29 0.24 22.49 

50 Th128Pu128O512 -101.89 5.50 386.92 120.66 64.70 209.41 81.44 329.53 0.24 22.71 

55.08 Th115Pu141O512 -102.06 5.49 388.66 121.46 64.76 210.53 81.56 330.81 0.24 22.99 

60.16 Th102Pu154O512 -102.22 5.48 390.42 122.22 64.84 211.63 81.74 332.14 0.24 23.24 

Table 3.5: Bulk properties for various plutonium dopant concentrations. 
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Figure 4.16: Lattice parameter and lattice energy changes with percentage 

plutonium doping. 

 

Figure 4.17:  A plot of the solution energy against percentage plutonium 

concentration. 
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Initial defect simulations were run on the doped system to investigate any changes in 

defect energy with percentage dopant for up to 5% plutonium. For each percentage 

dopant the configuration with the lowest lattice energy was chosen to complete the 

defect calculation. The results of the vacancy defect calculations are shown in table 

3.6. Upon increased plutonium doping the energy for an oxygen vacancy formation 

increases slightly. For the formation of a thorium and plutonium vacancy the defect 

energy decrease slightly. 

 

Percentage 

plutonium (%) 

Defect energy (eV) 

Oxygen 

vacancy  

Thorium 

vacancy  

Plutonium 

vacancy  

0 16.15 78.05 - 

1.17 16.16 78.03 80.17 

1.95 16.16 77.99 80.15 

3.13 16.17 77.96 80.11 

3.91 16.18 77.93 80.08 

5.08 16.19 77.90 80.01 

 

Table 3.6: Simple vacancy defects in the plutonium doped ThO2 system with varying 

dopant percentage.  



119 
 

4.4.3 ThO2 – UO2 mixed fuel  

As current nuclear reactors are powered by uranium oxide fuels the natural option for 

the creation of a mixed oxide thorium fuel would be with uranium. Uranium is fissile so 

would be an excellent source of neutrons for the thorium nuclear cycle to begin. 

Research into the generation of a thorium/uranium mixed fuel has been plentiful but 

as reported by Kutty et al. [120] more research into the behaviour of the mixed fuel is 

required before it can be utilized.   

As with the plutonium investigations carried out in section 4.4.2 the 4x4x4 thorium 

dioxide cell was doped with varying concentrations of uranium and various bulk 

properties were investigated. Figure 4.18 illustrates the crystal structure upon random 

uranium doping. 

The results of the random uranium doping are shown in table 3.7. Figure 4.19 shows 

the change in lattice parameter and lattice energy upon increasing uranium dopant 

concentration.  These initial calculations demonstrate a decrease in lattice parameter 

and lattice energy of the thorium cell with increasing uranium doping. Uranium has a 

smaller ionic radius (0.520Ǻ) than thorium (0.972Ǻ) which could explain the decrease 

in lattice parameter.  

The solution energy for a single uranium ion at the thorium vacancy position was also 

calculated for each of the dopant ion concentrations. The results are shown in figure 

4.18.  
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(c) 

 

Figure 4.18: 4x4x4 ThO2 cell doped with (a) 10.16% uranium doped (b) 30.08% 

uranium doped (c) 60% uranium doped  
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% 

dopant 

Formula Lattice 

energy 

(eV) 

Lattice 

constant (Ǻ) 

C11 C12 C44 Bulk 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Youngs 

modulus 

(GPa) 

Static 

dielectric 

constant 

High freq 

dielectric 

constant 

0 Th256O512 -100.33 5.60 373.23 114.37 65.82 200.65 81.93 319.58 0.23 18.07 

1.17 Th253U3O512 -100.35 5.60 373.39 114.38 65.68 200.72 81.80 319.74 0.23 18.19 

1.95 Th251U5O512 -100.37 5.60 373.49 114.40 65.59 200.76 81.72 319.85 0.23 18.27 

3.13 Th248U8O512 -100.38 5.60 373.65 114.41 65.44 200.83 81.60 320.01 0.23 18.39 

3.91 Th246U10O512 -100.40 5.60 373.76 114.43 65.35 200.87 81.52 320.12 0.23 18.47 

5.08 Th243U13O512 -100.42 5.59 373.92 114.44 65.21 200.94 81.40 320.28 0.23 18.59 

5.86 Th241U15O512 -100.43 5.59 374.01 114.45 65.13 200.97 81.34 320.37 0.23 18.65 

7.03 Th238U18O512 -100.44 5.59 374.14 114.47 65.02 201.03 81.24 320.51 0.23 18.75 

7.81 Th236U20O512 -100.45 5.59 374.24 114.48 64.94 201.06 81.17 320.60 0.23 18.80 

8.98 Th233U23O512 -100.47 5.59 374.37 114.49 64.83 201.12 81.07 320.74 0.23 18.91 
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10.16 Th230U26O512 -100.48 5.59 374.51 114.51 64.71 201.18 80.98 320.88 0.23 19.01 

14.84 Th218U38O512 -100.55 5.58 375.06 114.57 64.28 201.40 80.60 321.44 0.23 19.38 

19.92 Th205U38O512 -100.62 5.58 375.68 114.66 63.83 201.66 80.22 322.06 0.23 19.80 

25 Th192U64O512 -100.69 5.57 376.32 114.75 63.42 201.95 79.87 322.69 0.23 20.16 

30.08 Th179U77O512 -100.75 5.57 376.93 114.83 63.04 202.19 79.54 323.31 0.23 20.49 

35.16 Th166U90O512 -100.82 5.56 377.59 114.88 62.60 202.45 79.18 324.00 0.23 20.86 

39.84 Th154U102O512 -100.89 5.56 378.23 114.93 62.24 202.70 78.87 324.66 0.23 21.17 

44.92 Th141U115O512 -100.96 5.55 378.94 115.02 61.90 202.99 78.56 325.38 0.23 21.47 

50 Th128U128O512 -101.03 5.55 379.66 115.09 61.54 203.29 78.30 326.12 0.23 21.82 

55.08 Th115U141O512 -101.10 5.54 380.45 115.21 61.24 203.63 78.03 326.89 0.23 22.07 

60.16 Th102U154O512 -101.17 5.53 381.25 115.31 60.96 203.96 77.80 327.70 0.23 22.31 

Table 3.7: Bulk properties for various uranium dopant concentrations.
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Figure 4.19: Lattice parameter and lattice energy changes with percentage uranium 

doping. 

 

Figure 4.20: A plot of the solution energy against percentage plutonium 

concentration. 

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

5.61

-101.30

-101.20

-101.10

-101.00

-100.90

-100.80

-100.70

-100.60

-100.50

-100.40

-100.30

-100.20
0 20 40 60

La
tti

ce
 p

ar
am

te
r (

Ǻ
)

La
tti

ce
 e

ne
rg

y 
(e

V
)

Percentage uranium (%)

Lattice energy

Lattice parameter

1.585

1.59

1.595

1.6

1.605

1.61

1.615

1.62

1.625

0 10 20 30 40 50 60

So
lu

tio
n 

en
er

gy
 (e

V
)

Percentage uranium (%)



125 
 

Initial defect simulations were run on the doped system to investigate any changes in 

defect energy with percentage dopant for up to 5% uranium. For each percentage 

dopant the configuration with the lowest lattice energy was chosen to complete the 

defect calculation. The results of the vacancy defect calculations are shown in table 

3.8. Upon increased uranium doping the energy for an oxygen vacancy formation 

increases slightly, the value for the formation of a thorium and uranium vacancy also 

decreases. 

 

Percentage 

plutonium (%) 

Defect energy (eV) 

Oxygen 

vacancy  

Thorium 

vacancy  

Uranium  

vacancy  

0 16.15 78.05 - 

1.17 16.16 78.01 78.12 

1.95 16.17 77.98 78.08 

3.13 16.17 77.93 77.99 

3.91 16.18 77.87 77.82 

5.08 16.18 77.85 77.80 

 

Table 3.8: Simple vacancy defects in the uranium doped ThO2 system with varying 

dopant percentage.  
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Upon doping with both plutonium and uranium, a decrease in lattice parameter and 

lattice energy is seen. The same trend in vacancy defect energies is also seen 

throughout the increase in dopant concentration. The 4x4x4 supercell has been 

sufficient in modelling low percentage compositions and has provided accurate details 

of the defect and solution energies associated with plutonium and uranium doping.  

 

Chapter summary  

The defect formation energies of simple intrinsic defects within the thorium dioxide 

crystal were investigated including vacancies, defects, Frenkel and Schottky defects. 

More complex extrinsic defects were also simulated including the doping of fission 

products such as strontium and barium into interstitial lattice sites. Gadolinium defects 

were investigated including cluster formation and the effects of percentage gadolinium 

doping on the lattice parameter of the cell. Initial calculations showed that it was more 

energetically favourable for the gadolinium cluster to be further apart rather that 

clustered together. Initial mixed oxide fuel investigations were also carried out in which 

varying percentages of plutonium and uranium were added to the thorium dioxide 

supercell. In each case a decrease in lattice parameter and lattice energy was 

observed. The solution energies for the doping of the plutonium and uranium ions 

showed in increase in value as doping concentration increased. Simple defect 

vacancies were calculated for up to 5% dopant concentration within the lowest energy 

configurations.  
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Further work  

Further work that could be done within this chapter include further investigations into 

the doping of various fission products into the thorium dioxide fuel including xenon and 

caesium which would depend upon the derivation of new interatomic potentials. The 

effects of cluster formation and ion migration could also be investigated for each of the 

fission products. These calculations could be carried out using molecular dynamics 

simulations to allow RDF’s and MSD’s to be investigated. 

More in depth defect formation energies could be investigated the in the mixed oxide 

fuels including the doping of fission products. Thermophysical properties of the mixed 

oxide fuel such as thermal conductivity and heat capacity calculations would be 

valuable investigations to take out as it would enable the prediction of the fuel 

properties under high temperatures.  
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5.1 Introduction 

The surface chemistry of a material can control many different properties. For many 

processes the surface of the material will be the first point of contact for example the 

surface will be the first to interact with in incoming extrinsic defect. In fact, the surface 

of a nuclear fuel pellet is where corrosion initiates and sits at the interface between the 

fuel and cladding in a reactor core. Therefore, it is vital to study the surface of a 

material in order to gain a better understanding of the materials properties and how 

they can be manipulated. The surface calculations performed and reported in this 

chapter have all been conducted using the computational atomistic code METADISE. 

The methodologies behind the workings of this code have been outlined in chapter 

two.  

There has been much interest and research into the surface chemistry of nuclear fuels 

with particular research into the ThO2 surface being sparse. The most informative 

paper published is by Bahera et al. [71] who used all of the thorium dioxide potential 

published at the time to carry out a number of calculations including surface 

simulations. Within the research conducted by Bahera et al. they investigated the 

lower miller index surfaces [111], [110] and [100]. They reported the surface energies 

within the [111] surface being the lowest energy and therefore the most stable. They 

also looked into the relaxation of the different surface in depth; studying how the atom 

positions vary upon relaxation of the surface. Bahera concluded that the most robust 

potentials used throughout the review were that of Nadeem et al. [26], Osaka et al. 

[66] and Tharmalingham [72]. 

In this chapter the surface and attachment energies of the lower index surfaces studied 

by Bahera et al. have been calculated for comparison. This information has then been 
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taken forward to investigate the morphology of the crystal and defects within the lowest 

energy surface.  

 

5.2 The perfect surface  

At the start of the simulation the bulk system was generated using the thorium dioxide 

potential set derived and used throughout the bulk simulations for consistency and the 

direct comparison of energies with the bulk system. The size of the supercell used 

within the simulation is critical; a supercell containing too few ions may not give for a 

realistic simulation and conversely, too many ions may have a considerably long 

computational time.  Therefore, the cell must first be tested for convergence; various 

properties of the material such as lattice energy were tested against unit cell size until 

convergence was obtained. Once the correct supercell was selected, the cell was 

oriented in the correct Miller index and then ‘cut’ at a non-polar termination of the bulk. 

A range of Miller indices were cut and surface energies determined (shown in table 

3.9) but only the lowest miller index surfaces were taken forward for comparison with 

other computational work. The lower Miller index surface cut are shown in figure 5.0. 
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Figure 5.0: Schematic of the three lower miller index surfaces of the cubic structure 

[121] 
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The maximum cells size for convergence was the 3x3x3 supercell; any expansion on 

this size caused a significant increase in computational time. The 3x3x3 supercell size 

allows no deviation from any bulk or surface properties with the advantage of more 

atoms for the simulation. The studies contained within the Bahera et al. review paper 

showed a convergence cell size of 40 unit cells. This is much smaller than the 3x3x3 

supercell created in this study but to ensure the same supercell size was used 

throughout this investigation it was important to use a cell size big enough to enable 

molecular dynamics simulations to be formulated. A plot of convergence values for the 

lattice parameter and lattice energy with supercell size is shown in table 3.9. 

 

Number of ThO2 units Lattice parameter / Ǻ Lattice energy / eV 

4 5.6001 -100.33 

32 5.6001 -100.33 

108 5.6001 -100.33 

 

Table 3.9: Convergence of supercell size with lattice parameter and lattice energy. 
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Once the correct supercell size was determined the surfaces were then cut. Figure 5.1 

shows the surface structure for the three lowest miller index surfaces. 

 

 

 

 

 

 

 

 

 

 

 

                        [100]                                     [110]                                   [111] 

 

Figure 5.1: Schematic of the three low miller index surfaces used in this study. All 

surfaces have been relaxed.  
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The [100] surface has a layer of oxygen atoms at the surface followed by alternating 

thorium oxygen layers. The [110] surface has alternating oxygen thorium atoms at the 

surface and in each layer thereafter. The [111] surface has a layer of oxygen atoms 

on the surface followed by alternating oxygen and thorium layers. The [111] surface 

does not have as defined layers as the other two surfaces.  

 

5.2.2 Surface and attachment energies 

Once the surfaces had been cut the structures were allowed to relax fully using the 

energy minimisation methods outlined in chapter 2. This caused movement of the ions 

within the surface of the material. The unrelaxed and relaxed structures for the [111], 

[100] and [110] surfaces are shown in figures 5.2-5.4. The values for the surface 

energy for the unrelaxed and relaxed surfaces are shown in table 4.0 along with the 

attachment energies. 
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Miller Unrelaxed 
surface energy 

(Jm-2) 

Relaxed surface 
energy (Jm-2) 

Reference surface 
energy (Jm-2) 

Attachment 
energy (Jm-2) 

111 1.50 1.14 1.05    [66] 

0.90    [26] 

-0.41 

100 5.67 2.27 2.25    [66] 

2.94    [26] 

-0.92 

110 3.05 1.77 1.71    [66] 

1.43    [26] 

-0.69 

211 5.93 1.97 - -2.96 

221 7.52 2.17 - -4.87 

010 7.94 2.91 - -1.29 

021 9.15 2.16 - -4.34 

121 5.93 2.02 - -0.92 

210 9.15 2.64 - -4.34 

 

Table 4.0: Surface and attachment energies for a number of miller indices. 
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                           (a)                                                                     (b) 

 

  

 

 

 

 

 

 

 

Figure 5.2: Surface structures (a) before and (b) after relaxation of the [111] surface. 

 

The [111] surface ion moved the most upon relaxation with the top uppermost layer 

distorting a significant amount. The oxygen ions tended to move towards the bulk 

except for the oxygen that moved to the surface. Even though there was lots of 

movement of the ions the unrelaxed and relaxed surface energies of the [111] surface 

do not differ in value a substantial amount (1.50-1.14). 
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                                     (a)        (b) 

  

 

 

 

 

 

 

  

 

 

Figure 5.3: Surface structures for (a) before and (b) after relaxation of the [110] 

surface. 

 

The [110] surface atoms moved slightly upon relaxation with the oxygen atoms 

adjusting towards the surface and the thorium atoms moving slightly downwards 

towards  the bulk. The relaxed and unrelaxed surface energies of the [110] surface 

vary a significant amount (3.05-1.77). 
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                       (a)                                                                          (b) 

  

 

 

 

 

 

 

 

Figure 5.4: Surface structures of (a) before and (b) after relaxation of the [100] 

surface. 

 

The [100] surface atoms did not seem to move at all upon relaxation but the unrelaxed 

and relaxed surface energies differ by a large amount (5.67-2.27). 

The lower the surface energy, the more stable the surface. The order of stability for 

the surfaces discussed is shown below: 

[111]  >  [110]  >  [100] 
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The surface energies calculated for the lowest miller index surfaces were when 

compared to other calculated values reports in the Bahera et al. review paper. 

 

 

 

Figure 5.5: Surface energies values calculated in this work compared with the 

literature value for the three lower miller index surfaces. 

 

The surface energies calculated for the lowest index surfaces in this study agree with 

those calculated from the robust potentials discussed in the Bahera et al. review paper 

and a set of potentials used in DFT calculations [123].  
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5.2.3 Surface morphology  

Surface morphology predicts the structure of the material in terms of the surface 

coverage. The surface energies of the individual cut surfaces are used to determine 

the surface coverage of the crystal. The morphology of the structure was simulated 

using the low index surfaces only and the [111] surface dominated the structure 

throughout.  

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Relaxed surface morphology of theThO2 solid crystal structure. The 

[111] surface predominates in the structure. 
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5.2.4 Defective surfaces 

Any significant changes in the surface energy of a material will alter the surface 

morphology and ultimately any surface properties of that material. Therefore it is 

important that we consider any defects that may occur within the surface. The [111] 

surface is the most stable and dominated the surface morphology. The defect was first 

introduced at the surface and integrated into the bulk of the material this provided 

details about the segregation of the defect; is it more energetically favourable for the 

defects to remain within the bulk or segregate to the surface. Again, the supercell size 

was tested for convergence with the defect energies and the 3x3x3 supercell was 

selected. Table 4.1 shows the results of the defect energy calculations in GULP and 

METADISE. 

 

Defect 

Surface defect 

formation 

energy 

(eV per defect) 

Bulk defect formation energy  

(eV per defect)   

GULP    METADISE  Percentage 

difference (%) 

Th4+ vacancy 63.88 78.05 77.74 0.40 

O2- vacancy 25.36 16.15 16.14 0.06 

Th4+ Interstitial -56.97 -59.13 -59.34 -0.36 

O2- Interstitial -11.35 -11.06 -11.12 -0.54 

 

Table 4.1: Defect formation energies for various simple intrinsic point defects 
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Initial calculations showed that the thorium vacancy was more energetically favourable 

at the surface rather than the bulk and that the oxygen vacancy was more energetically 

favourable within the bulk of the material rather than at the surface. This would suggest 

that the thorium vacancies would be the most likely to form at the surface of the 

material and the oxygen vacancies would be most likely to form within the bulk of the 

material.  

 

5.4 Chapter summary  

In this chapter the lower index surface were examined explicitly with relation to their 

surface energies and attachment energies to determine the most stable surface. The 

[111] surface was determined to be the most stable surface. The morphology of the 

crystal was then determined showing predomination of the [111] surface. Some simple 

defects energies including thorium and oxygen interstitials and vacancies were then 

determined for the lowest energy [111] surface. All of the results were then compared 

to literature where possible.  

 

5.5 Further work 

Future work in this area would include a more in depth investigation of the defect 

energy of the three lower index surfaces with inclusion of extrinsic defects such as the 

fission materials mentioned in chapter four. The segregation of these defects would 

also be examined in more detail. The grain boundaries could also be investigated as 

these are thought to be the preferred site for any initial corrosion of the material.  



143 
 

 

Chapter 6 

Molecular dynamics 

simulations of ThO2 

Contents  

6.1 Introduction …………………………………………………………... 144  

6.2 The Simulation Model ……………………………………….……… 145 

6.3 Radial distribution function (RDF) …………………….….……… 147 

6.4 Chapter Summary ………………………………………….……….. 152 

6.5 Further work ……………………………………………………….… 153 

 

 

 

 

 

 



144 
 

6.1 Introduction  

Molecular dynamics simulations are used to study the physical movements of atoms, 

ions or molecules within a given structure. This allows the dynamical evolution of the 

system to be analysed over time. This is beneficial when predicting the chemical and 

physical characteristics of a nuclear fuel under the harsh conditions of a nuclear 

reactor. Static lattice simulations have been able to model the energies related to ion 

position within the lattice and therefore predict movement of ions throughout the lattice. 

Molecular dynamics simulations can complement any static calculations by providing 

detailed information of the mechanisms of diffusion of ions throughout the structure 

and the evolution of the movement over time [123-125]. These diffusion calculations 

performed can then be compared to experimental diffusion data. Molecular dynamics 

simulations can also be used to study the local atomic ordering of the structure and 

how it varies with time under different conditions.  

Molecular dynamics has been proven to be successful in modelling a range of 

materials from biological molecules [126,127] to solid state chemistry [128-129]. 

Previously mentioned studies that used molecular dynamics to study thorium dioxide 

as a fuel include Osaka et al. [66] and Martin et al. [68].  It is these two research papers 

that have been taken through and used as a comparison to the work done within this 

chapter. The code used to complete the given calculations performed within this 

chapter is DL_POLY and the methodology used is outlined in chapter 2.  
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6.2 The simulation model  

Simulations performed within this chapter have been constructed from the 4x4x4 

supercell generated for the static calculations discussed previously. This supercell 

contained around 800 thorium and oxygen ions. The interatomic potentials derived in 

chapter 3 and used throughout the static simulations have been used throughout the 

simulations performed in this chapter.  

Periodic boundary conditions (discussed in chapter 2) were applied to the system in 

order to generate an unbound system that contained no surfaces. Initial simulations 

were performed under conditions of constant volume (V), constant temperature (T) 

and with a constant number of ions (N) by utilising the NVT ensemble. A pressure of 

1 atm was applied to the system and the simulation run with a simulation time of 1 

nanosecond (1x10-9 s) and a time step of 1 femtosecond (1x10-15 s). The system was 

allowed to equilibrate after 10000 steps (0.01 nanoseconds). Once initial conditions 

had been applied and the system allowed to equilibrate the ensemble and simulation 

time could be adapted to fit the simulation being performed.  

Initial lattice simulations showed a melting point much lower than that predicted using 

GULP; changes in lattice parameter with temperature showed a breakdown of the 

lattice at around 2400K. Therefore, any further simulations performed were limited to 

a temperature of 2400K. Figure 6.0 shows the structure of the pure ThO2 simulation 

cell at 1500K and 2100K in which significant movement of the ions from their lattice 

positions can be seen.  
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(a) 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 6.0:  Illustration of the 4x4x4 supercell at (a) 1500K and (b) 2100K. 
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6.3 Radial distribution function  

The radial distribution function is used within molecular dynamics simulations to 

analyse the trajectory data and determine how the ions are radially distributed around 

each other. This allows the study of the local atomic ordering over a range of 

conditions. When a material undergoes a phase change the local atomic ordering will 

shift causing the radial distribution function to change; solid crystal structures will have 

a series of sharp peaks that will broaden and shift slightly upon melting. A RDF graph 

illustrates how the pair correlation function, g(r), changes with relation to the 

interatomic distance. The pair correlation function is related to the probability of finding 

the centre of a particle a given distance from the centre of another particle, commonly 

its nearest neighbours. 

In this chapter the radial distribution function for the pure material were investigated; 

the NPT ensemble was employed to allow the volume of the system to change and 

the simulations were run for 1 nanosecond with a time step of 1 femtosecond.  

Martin et al. calculated the RDF for pure thoria and uranium doped thoria for a range 

of concentrations and temperatures. They found that there was no change in peak 

height or placement upon doping of uranium (up to 10% doping) but there was a slight 

change in the position of the nearest neighbour peak with increasing temperature. The 

range of temperatures used throughout the work of Martin et al. was 1500 K, 2700K 

and 3600K. Unfortunately, due to the lower melting point of 2400K predicted by initial 

MD simulations, temperature of 1500K, 1800K and 2100K were used and compared 

to the work of Martin et al. where possible. 

The partial pair distribution functions, g(r), were calculated for Th-Th, O-O and Th-O 

pairs and have been compared to the literature where possible. Figure 6.1 shows the 
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radial distribution function for the Th-O pair at temperatures of 1500K, 1800K and 

2100K. It can be seem from figure 6.1, that as the temperature increases the peaks 

shift very slightly from their original position and they shorten slightly in peak height 

(g(r)). Figure 6.2 shows the RDF plot for the Th-Th pair at temperatures of 1500K, 

1800K and 2100K. As the temperature increases the peak position shifts very slightly 

and the peak height also decreases. Any changes in peak position show a change in 

the nearest neighbour distance; an increase in the distance would suggest expansion 

of the crystal structure. 

 

 

Figure 6.1: Th-O RDF plot for pure ThO2 at 1500K, 1800K and 2100K. 
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Figure 6.2: Th-Th RDF plot for the pure ThO2 system at 1500K, 1800K and 2100K. 

 

Figure 6.3: O-O RDF plot for the pure ThO2 system at 1500K, 1800K and 2100K. 
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The O-O RDF (shown in figure 6.3) shows slight deviations in the structure after the 

second nearest neighbour because of the cumulative vibrations of the lighter oxygen 

ions about their lattice positions. 

The interatomic potentials used throughout the work of Martin et al. were used within 

this work to simulate the Th-O, Th-Th and O-O RDF’s at 1500K for comparison. The 

RDF plots that show a comparison of this work with that of Martin et al. are shown in 

figure 6.4 for the Th-O separation, figure 6.5 for the Th-Th separation and figure 6.6 

for the O-O separation. The plot shows the same trend in interatomic separation but 

the peak position is shifted slightly and the values for g(r) are slightly lower (decrease 

in peak height). This is a result of different interatomic potentials being used. The 

potentials derived in this study are a closer fit to the observed crystal structure and 

thus slightly more repulsive than those used by Martin et al. 

 

Figure 6.4: RDF for the Th-O pair calculated at 1500K for this work and that of 

Martin et al. 
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Figure 6.5: RDF for the Th-Th pair calculated at 1500K for this work and that of 

Martin et al. 
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Figure 6.6: RDF for the O-O pair calculated at 1500K for this work and that of Martin 

et al. 

 

Chapter Summary  

The radial distribution plots configured within this work are characteristic of a typical, 

high symmetry crystalline solid. They show a change in interatomic distance with 

temperature which is what would be expected as thermal expansion will occur within 

the crystal structure as temperature increases. The comparison of the RDF’s plotted 

in this work to the work of Martin et al. shows slight differences in peak position and 

height but have the same general features including the number of nearest neighbours 

and the average position of the nearest neighbour.  
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Further work  

Earlier surface calculations (discussed in chapter 4) showed that oxygen ions may 

migrate into the bulk of the material rather than stay at the surface; therefore diffusion 

of oxygen throughout the material would be a natural progression from initial 

simulations. Mean square displacement calculations could be carried out to measure 

the displacement of the oxygen anion from its original lattice position over time in both 

the pure and mixed oxide fuel. Mean square displacement calculations could also be 

used to investigate the movement of fission products within the fuel. The radial 

distribution function for the mixed oxide fuel could be examined with relation to dopant 

ion concentration to predict expansion or contraction of the fuel upon doping. Osaka 

et al. studied the RDF’s for gadolinium doped thoria and investigated how they 

changed upon introduction of defects. This investigation would be interesting to repeat 

as initial static calculations carried out in chapter four show contraction of the unit cell 

upon increased gadolinium doping. 
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7.1 Derivation of enhanced interatomic potentials  

Within this work, two different derivation methods were used to develop two separate 

sets of potentials. The ThO2 potentials were derived using a method that has 

previously been used for a number of other nuclear materials including UO2. This 

method used available experimental data to derive a set of potentials, initially only on 

lattice parameter data and then later refined using other crystal structure data including 

elastic constants and dielectric properties. The Gd2O3 potentials were derived using a 

novel piece of Phython code generated within the Read group. The code also used 

available experimental data to fit to initially, but used a Monte-Carlo type approach in 

which a potential set was generated via a weighted least squares method to each of 

the crystal properties.  

Both of the methods were successful in deriving a set of potentials that correctly fit the 

bulk properties of the material with improved percentage difference values to other 

published potential sets. Both of the potential sets were then taken forward to simulate 

static, surface and molecular dynamics simulations.  

The potential sets derived within this work have proven substantial in modelling both 

of the materials in various simulations and can therefore be used in any further work 

with confidence. 

 

7.2 Static Calculations  

Within chapter 4, the General Utility Lattice Programme (GULP) was used to model 

both the pure and doped system with relation to defect formation and thermophysical 

properties. Defect properties of the pure system included the simulations of simple 
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intrinsic defects such as interstices, vacancies and frenkel and schottky defects. Once 

the pure system had been simulated, the defected system could be predicted with 

respect to extrinsic defect clusters formed by doping of waste materials such as 

strontium and gadolinium in order to model the evolution of the fuel upon exposure to 

radiation damage. Finally, the mixed oxide fuel was doped with uranium and plutonium 

and  Many of the intrinsic defect calculations were then repeated within the mixed fuel.   

The pure, mixed and fission product doped systems were all exposed to increasing 

temperatures and properties such as the melting point and lattice expansion coefficient 

were determined for the pure and mixed oxide fuels. In each case the doping of 

uranium and plutonium showed a favourable result with respect to improved efficiency 

and fuel performance.  

 

7.3 Surface calculations  

In this chapter the lower index surface were examined explicitly with relation to their 

surface energies and attachment energies to determine the most stable surface. The 

[111] surface was determined to be the most stable surface. The morphology of the 

crystal was then determined showing predomination of the [111] surface. Some simple 

defects energies including thorium and oxygen interstitials and vacancies were then 

determined for the lowest energy [111] surface. All of the results were compared to 

literature where possible.  
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7.4 Molecular dynamics  

Within chapter 6, molecular dynamics simulations were carried out using the DLPOLY 

code. Firstly, the radial distribution functions of the material were investigated and 

compared with the recent work of Martin et al. The radial distribution plots configured 

within this chapter were characteristic of a typical, high symmetry crystalline solid. 

They showed a change in interatomic distance with temperature, which is what would 

be expected as thermal expansion will occur within the crystal structure as 

temperature increases. The comparison of the RDF’s plotted in this work to the work 

of Martin et al. shows slight differences in peak position and height but have the same 

general features including the number of nearest neighbours and the average position 

of the nearest neighbour.  

These initial high temperature simulations show excellent compatibility of the potential 

sets derived within this work and those used in combination with the ThO2 set. They 

also further prove the strength of the potential sets in relation to further molecular 

dynamic simulations. 
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